Detection of human adaptation during the past 2000 years

Detection of recent natural selection is a challenging problem in population genetics. Here we introduce the singleton density score (SDS), a method to infer very recent changes in allele frequencies from contemporary genome sequences. Applied to data from the UK10K Project, SDS reflects allele freq...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 354; no. 6313; pp. 760 - 764
Main Authors Field, Yair, Boyle, Evan A, Telis, Natalie, Gao, Ziyue, Gaulton, Kyle J., Golan, David, Yengo, Loic, Rocheleau, Ghislain, Froguel, Philippe, McCarthy, Mark I., Pritchard, Jonathan K.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 11.11.2016
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.aag0776

Cover

Loading…
Abstract Detection of recent natural selection is a challenging problem in population genetics. Here we introduce the singleton density score (SDS), a method to infer very recent changes in allele frequencies from contemporary genome sequences. Applied to data from the UK10K Project, SDS reflects allele frequency changes in the ancestors of modern Britons during the past ~2OOO to 3000 years. We see strong signals of selection at lactase and the major histocompatibility complex, and in favor of blond hair and blue eyes. For polygenic adaptation, we find that recent selection for increased height has driven allele frequency shifts across most of the genome. Moreover, we identify shifts associated with other complex traits, suggesting that polygenic adaptation has played a pervasive role in shaping genotypic and phenotypic variation in modern humans.
AbstractList Evolutionary analyses aim to identify recent genetic changes that are likely to have been subject to selection. Field et al. present a method to identify such changes, the singleton density score, which they applied to over 3000 human genomes. Over the past ∼100 generations (2000 to 3000 years), Europeans are likely to have experienced selection for genetic variants, including those that affect skin and hair pigmentation, as well as height. Science, this issue p. 760 Detection of recent natural selection is a challenging problem in population genetics. Here we introduce the singleton density score (SDS), a method to infer very recent changes in allele frequencies from contemporary genome sequences. Applied to data from the UK10K Project, SDS reflects allele frequency changes in the ancestors of modern Britons during the past ~2000 to 3000 years. We see strong signals of selection at lactase and the major histocompatibility complex, and in favor of blond hair and blue eyes. For polygenic adaptation, we find that recent selection for increased height has driven allele frequency shifts across most of the genome. Moreover, we identify shifts associated with other complex traits, suggesting that polygenic adaptation has played a pervasive role in shaping genotypic and phenotypic variation in modern humans.
Detection of recent natural selection is a challenging problem in population genetics. Here we introduce the singleton density score (SDS), a method to infer very recent changes in allele frequencies from contemporary genome sequences. Applied to data from the UK10K Project, SDS reflects allele frequency changes in the ancestors of modern Britons during the past ~2OOO to 3000 years. We see strong signals of selection at lactase and the major histocompatibility complex, and in favor of blond hair and blue eyes. For polygenic adaptation, we find that recent selection for increased height has driven allele frequency shifts across most of the genome. Moreover, we identify shifts associated with other complex traits, suggesting that polygenic adaptation has played a pervasive role in shaping genotypic and phenotypic variation in modern humans.
Detection of recent natural selection is a challenging problem in population genetics. Here we introduce the singleton density score (SDS), a method to infer very recent changes in allele frequencies from contemporary genome sequences. Applied to data from the UK10K Project, SDS reflects allele frequency changes in the ancestors of modern Britons during the past ~2000 to 3000 years. We see strong signals of selection at lactase and the major histocompatibility complex, and in favor of blond hair and blue eyes. For polygenic adaptation, we find that recent selection for increased height has driven allele frequency shifts across most of the genome. Moreover, we identify shifts associated with other complex traits, suggesting that polygenic adaptation has played a pervasive role in shaping genotypic and phenotypic variation in modern humans.Detection of recent natural selection is a challenging problem in population genetics. Here we introduce the singleton density score (SDS), a method to infer very recent changes in allele frequencies from contemporary genome sequences. Applied to data from the UK10K Project, SDS reflects allele frequency changes in the ancestors of modern Britons during the past ~2000 to 3000 years. We see strong signals of selection at lactase and the major histocompatibility complex, and in favor of blond hair and blue eyes. For polygenic adaptation, we find that recent selection for increased height has driven allele frequency shifts across most of the genome. Moreover, we identify shifts associated with other complex traits, suggesting that polygenic adaptation has played a pervasive role in shaping genotypic and phenotypic variation in modern humans.
Identifying genes under recent selectionEvolutionary analyses aim to identify recent genetic changes that are likely to have been subject to selection. Field et al. present a method to identify such changes, the singleton density score, which they applied to over 3000 human genomes. Over the past similar to 100 generations (2000 to 3000 years), Europeans are likely to have experienced selection for genetic variants, including those that affect skin and hair pigmentation, as well as height.Science, this issue p. 760 Detection of recent natural selection is a challenging problem in population genetics. Here we introduce the singleton density score (SDS), a method to infer very recent changes in allele frequencies from contemporary genome sequences. Applied to data from the UK10K Project, SDS reflects allele frequency changes in the ancestors of modern Britons during the past ~2000 to 3000 years. We see strong signals of selection at lactase and the major histocompatibility complex, and in favor of blond hair and blue eyes. For polygenic adaptation, we find that recent selection for increased height has driven allele frequency shifts across most of the genome. Moreover, we identify shifts associated with other complex traits, suggesting that polygenic adaptation has played a pervasive role in shaping genotypic and phenotypic variation in modern humans.
Detection of recent natural selection is a challenging problem in population genetics. Here we introduce the singleton density score (SDS), a method to infer very recent changes in allele frequencies from contemporary genome sequences. Applied to data from the UK10K Project, SDS reflects allele frequency changes in the ancestors of modern Britons during the past ~2000 to 3000 years. We see strong signals of selection at lactase and the major histocompatibility complex, and in favor of blond hair and blue eyes. For polygenic adaptation, we find that recent selection for increased height has driven allele frequency shifts across most of the genome. Moreover, we identify shifts associated with other complex traits, suggesting that polygenic adaptation has played a pervasive role in shaping genotypic and phenotypic variation in modern humans.
Evolutionary analyses aim to identify recent genetic changes that are likely to have been subject to selection. Field et al. present a method to identify such changes, the singleton density score, which they applied to over 3000 human genomes. Over the past ∼100 generations (2000 to 3000 years), Europeans are likely to have experienced selection for genetic variants, including those that affect skin and hair pigmentation, as well as height. Science , this issue p. 760 The singleton density score identifies evidence of recent selection in Europeans. Detection of recent natural selection is a challenging problem in population genetics. Here we introduce the singleton density score (SDS), a method to infer very recent changes in allele frequencies from contemporary genome sequences. Applied to data from the UK10K Project, SDS reflects allele frequency changes in the ancestors of modern Britons during the past ~2000 to 3000 years. We see strong signals of selection at lactase and the major histocompatibility complex, and in favor of blond hair and blue eyes. For polygenic adaptation, we find that recent selection for increased height has driven allele frequency shifts across most of the genome. Moreover, we identify shifts associated with other complex traits, suggesting that polygenic adaptation has played a pervasive role in shaping genotypic and phenotypic variation in modern humans.
Author Boyle, Evan A
Gao, Ziyue
Rocheleau, Ghislain
Telis, Natalie
Field, Yair
Yengo, Loic
Pritchard, Jonathan K.
Golan, David
Gaulton, Kyle J.
Froguel, Philippe
McCarthy, Mark I.
AuthorAffiliation 3 Program in Biomedical Informatics, Stanford University, Stanford, CA 94305, USA
5 Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199–EGID, F-59000 Lille, France
4 Wellcome Trust Center for Human Genetics, and Oxford Center for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
6 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
8 Department of Biology, Stanford University, Stanford, CA, USA
7 Imperial College, Department of Genomics of Common Disease, London Hammersmith Hospital, London, UK
1 Department of Genetics, Stanford University, Stanford, CA 94305, USA
2 Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
AuthorAffiliation_xml – name: 7 Imperial College, Department of Genomics of Common Disease, London Hammersmith Hospital, London, UK
– name: 5 Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199–EGID, F-59000 Lille, France
– name: 4 Wellcome Trust Center for Human Genetics, and Oxford Center for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
– name: 8 Department of Biology, Stanford University, Stanford, CA, USA
– name: 2 Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
– name: 6 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
– name: 1 Department of Genetics, Stanford University, Stanford, CA 94305, USA
– name: 3 Program in Biomedical Informatics, Stanford University, Stanford, CA 94305, USA
Author_xml – sequence: 1
  givenname: Yair
  surname: Field
  fullname: Field, Yair
– sequence: 2
  givenname: Evan A
  surname: Boyle
  fullname: Boyle, Evan A
– sequence: 3
  givenname: Natalie
  surname: Telis
  fullname: Telis, Natalie
– sequence: 4
  givenname: Ziyue
  surname: Gao
  fullname: Gao, Ziyue
– sequence: 5
  givenname: Kyle J.
  surname: Gaulton
  fullname: Gaulton, Kyle J.
– sequence: 6
  givenname: David
  surname: Golan
  fullname: Golan, David
– sequence: 7
  givenname: Loic
  surname: Yengo
  fullname: Yengo, Loic
– sequence: 8
  givenname: Ghislain
  surname: Rocheleau
  fullname: Rocheleau, Ghislain
– sequence: 9
  givenname: Philippe
  surname: Froguel
  fullname: Froguel, Philippe
– sequence: 10
  givenname: Mark I.
  surname: McCarthy
  fullname: McCarthy, Mark I.
– sequence: 11
  givenname: Jonathan K.
  surname: Pritchard
  fullname: Pritchard, Jonathan K.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27738015$$D View this record in MEDLINE/PubMed
BookMark eNqNkktrGzEUhUVJaRy3665aBrrpZhK9H5tCSV-BQDfJWmhm7tgyY8mVNIX8-8q1E9pAIAsh0P3O4V7dc4ZOQgyA0FuCzwmh8iL3HkIP586tsFLyBVoQbERrKGYnaIExk63GSpyis5w3GNeaYa_QKVWKaUzEAukvUKAvPoYmjs163rrQuMHtivv7NszJh1VT1tDsXC4NrR7NHbiUX6OXo5syvDneS3T77evN5Y_2-uf3q8vP160TRpeWccokSNwBZ84NmJjaBJMdB0ak5kNXz4hdp5SQ_WjoiIForgzX3SjowNgSfTr47uZuC0MPoSQ32V3yW5fubHTe_l8Jfm1X8bcVRFOsSDX4eDRI8dcMuditzz1MkwsQ52yJVlRTyql4Biq54Nxg9QyUCU60qCtYog-P0E2cU6iftqc0lXu0Uu__nfNhwPtVVUAcgD7FnBOMtveHLdWx_WQJtvtI2GMk7DESVXfxSHdv_bTi3UGxySWmB5xzVcOlDfsDMJ_Csw
CODEN SCIEAS
CitedBy_id crossref_primary_10_1111_mec_16329
crossref_primary_10_1016_j_gde_2018_05_012
crossref_primary_10_1038_s41580_021_00354_w
crossref_primary_10_1002_evl3_263
crossref_primary_10_1073_pnas_2200638119
crossref_primary_10_1093_g3journal_jkab139
crossref_primary_10_1016_j_scib_2023_08_027
crossref_primary_10_1038_nrg_2017_101
crossref_primary_10_1111_mec_14264
crossref_primary_10_1093_genetics_iyab161
crossref_primary_10_1038_s41588_018_0100_5
crossref_primary_10_1016_j_ajhg_2017_09_010
crossref_primary_10_1007_s00439_020_02152_4
crossref_primary_10_1016_j_ajhg_2020_05_014
crossref_primary_10_1111_evo_13792
crossref_primary_10_1093_gbe_evad032
crossref_primary_10_1038_s41467_018_03274_0
crossref_primary_10_3389_fgene_2021_703541
crossref_primary_10_1093_genetics_iyac009
crossref_primary_10_1016_j_gde_2020_06_003
crossref_primary_10_7554_eLife_48376
crossref_primary_10_1038_s41588_018_0059_2
crossref_primary_10_1093_gbe_evaa207
crossref_primary_10_1093_molbev_msx278
crossref_primary_10_1111_1755_0998_13415
crossref_primary_10_1093_cercor_bhaa327
crossref_primary_10_3390_genes13040708
crossref_primary_10_3389_fgene_2022_983646
crossref_primary_10_1186_s13059_021_02425_9
crossref_primary_10_1038_nature_2017_22914
crossref_primary_10_1093_molbev_msx154
crossref_primary_10_1016_j_cell_2017_05_038
crossref_primary_10_3389_fimmu_2021_691475
crossref_primary_10_1002_ajpa_23737
crossref_primary_10_1038_s41586_024_07721_5
crossref_primary_10_1093_molbev_msad157
crossref_primary_10_1038_s41588_018_0101_4
crossref_primary_10_1111_mec_16666
crossref_primary_10_1371_journal_pgen_1009562
crossref_primary_10_1038_s41467_022_34456_6
crossref_primary_10_1038_s41467_019_11112_0
crossref_primary_10_1111_1755_0998_13628
crossref_primary_10_1093_molbev_msx240
crossref_primary_10_1093_molbev_msae115
crossref_primary_10_7554_eLife_24284
crossref_primary_10_1002_evl3_97
crossref_primary_10_1038_s41576_018_0082_2
crossref_primary_10_1126_sciadv_adi8419
crossref_primary_10_1111_cobi_14202
crossref_primary_10_1073_pnas_1904159116
crossref_primary_10_1146_annurev_genom_083115_022316
crossref_primary_10_1093_bib_bbac354
crossref_primary_10_1016_j_ajhg_2023_12_014
crossref_primary_10_1111_evo_14432
crossref_primary_10_1038_s41598_023_35312_3
crossref_primary_10_7554_eLife_66697
crossref_primary_10_1007_s40806_018_0153_9
crossref_primary_10_1146_annurev_genet_111523_102651
crossref_primary_10_1038_s41586_021_03236_5
crossref_primary_10_1007_s00122_020_03668_z
crossref_primary_10_1371_journal_pbio_2002458
crossref_primary_10_1073_pnas_1902766117
crossref_primary_10_1111_jfb_15243
crossref_primary_10_1038_s41431_021_00938_2
crossref_primary_10_1016_j_xhgg_2021_100071
crossref_primary_10_1093_molbev_msx103
crossref_primary_10_7554_eLife_63177
crossref_primary_10_1038_s41588_024_01841_4
crossref_primary_10_1016_j_cub_2023_08_021
crossref_primary_10_1186_s12859_023_05511_w
crossref_primary_10_1534_genetics_119_302662
crossref_primary_10_1038_s41562_023_01528_6
crossref_primary_10_1534_g3_120_401285
crossref_primary_10_1371_journal_pgen_1009495
crossref_primary_10_1534_genetics_117_300489
crossref_primary_10_1038_s41586_024_08496_5
crossref_primary_10_1098_rstb_2020_0406
crossref_primary_10_1371_journal_pgen_1008035
crossref_primary_10_1136_annrheumdis_2019_216644
crossref_primary_10_1146_annurev_genet_021821_020805
crossref_primary_10_1038_s41588_019_0492_x
crossref_primary_10_1093_molbev_msy201
crossref_primary_10_1007_s00439_019_02040_6
crossref_primary_10_1016_j_asoc_2022_109428
crossref_primary_10_3390_genes9070358
crossref_primary_10_1371_journal_pcbi_1011175
crossref_primary_10_7554_eLife_49898
crossref_primary_10_1093_molbev_msaa005
crossref_primary_10_1016_j_cell_2019_02_033
crossref_primary_10_1038_s41559_017_0167
crossref_primary_10_1007_s00251_017_1017_3
crossref_primary_10_1371_journal_pgen_1011312
crossref_primary_10_1093_nar_gkad1078
crossref_primary_10_1007_s00239_019_09902_7
crossref_primary_10_1038_nrg_2017_65
crossref_primary_10_7554_eLife_39725
crossref_primary_10_1093_molbev_msae053
crossref_primary_10_1093_gbe_evab272
crossref_primary_10_1038_s41431_020_0699_4
crossref_primary_10_1186_s12711_021_00688_1
crossref_primary_10_1093_g3journal_jkac319
crossref_primary_10_1093_molbev_msae034
crossref_primary_10_1038_s41562_022_01438_z
crossref_primary_10_1098_rsos_210382
crossref_primary_10_1002_ajmg_c_31696
crossref_primary_10_1038_nmeth_4606
crossref_primary_10_1093_molbev_msaa115
crossref_primary_10_1093_nar_gkx626
crossref_primary_10_1038_s41586_023_06705_1
crossref_primary_10_1038_nature21347
crossref_primary_10_1186_s13073_018_0532_7
crossref_primary_10_1007_s42977_022_00146_z
crossref_primary_10_3389_fphys_2021_696516
crossref_primary_10_1093_gbe_evaa073
crossref_primary_10_1093_bib_bby064
crossref_primary_10_1038_s41576_020_0250_z
crossref_primary_10_1371_journal_pbio_3002469
crossref_primary_10_1038_s41598_017_05744_9
crossref_primary_10_1111_mec_16843
crossref_primary_10_1016_j_gde_2020_05_024
crossref_primary_10_3389_fgene_2017_00139
crossref_primary_10_1093_genetics_iyad060
crossref_primary_10_1371_journal_pgen_1007672
crossref_primary_10_1007_s10539_020_9741_8
crossref_primary_10_3389_fendo_2020_00107
crossref_primary_10_1038_s41588_018_0177_x
crossref_primary_10_7554_eLife_39702
crossref_primary_10_1186_s12864_017_3964_3
crossref_primary_10_1093_g3journal_jkad035
crossref_primary_10_1093_molbev_msae192
crossref_primary_10_1038_s41576_018_0012_3
crossref_primary_10_1007_s40750_019_00111_6
crossref_primary_10_3389_fgene_2018_00462
crossref_primary_10_1084_jem_20161942
crossref_primary_10_7554_eLife_45380
crossref_primary_10_1093_molbev_msy092
crossref_primary_10_1111_1755_0998_13371
crossref_primary_10_1126_science_abi8206
crossref_primary_10_18699_VJGB_23_79
crossref_primary_10_1111_mec_15067
crossref_primary_10_1534_genetics_118_300786
crossref_primary_10_7717_peerj_9554
crossref_primary_10_1080_03014460_2021_1936634
crossref_primary_10_1073_pnas_2404393122
crossref_primary_10_1093_genetics_iyae024
crossref_primary_10_1111_age_13355
crossref_primary_10_1093_emph_eoy036
crossref_primary_10_1073_pnas_2117312119
crossref_primary_10_1038_s41467_022_30526_x
crossref_primary_10_3389_fpsyg_2018_02343
crossref_primary_10_1266_ggs_18_00008
crossref_primary_10_1093_molbev_msy180
crossref_primary_10_24072_pci_evolbiol_100092
crossref_primary_10_1534_genetics_118_301786
crossref_primary_10_1038_s41467_017_00366_1
crossref_primary_10_1016_j_meegid_2017_08_021
crossref_primary_10_1080_03014460_2019_1644373
crossref_primary_10_1266_ggs_19_00012
crossref_primary_10_1093_gbe_evaa021
crossref_primary_10_3389_fgene_2021_714491
crossref_primary_10_1038_d41586_022_00693_4
crossref_primary_10_1093_molbev_msy053
crossref_primary_10_1002_ajpa_70010
crossref_primary_10_1007_s00439_022_02471_8
crossref_primary_10_1038_s41467_018_04191_y
crossref_primary_10_3389_fcvm_2019_00127
crossref_primary_10_1111_mec_15169
crossref_primary_10_4000_bmsap_7460
crossref_primary_10_1093_gbe_evab237
crossref_primary_10_1371_journal_pgen_1010934
crossref_primary_10_1007_s13752_020_00350_x
crossref_primary_10_1371_journal_pgen_1010134
crossref_primary_10_1016_j_gde_2020_05_037
crossref_primary_10_1038_ncomms15927
crossref_primary_10_1038_s41598_023_42578_0
crossref_primary_10_1111_age_13454
crossref_primary_10_1038_s41598_020_65322_4
crossref_primary_10_1016_j_tig_2017_04_002
crossref_primary_10_1371_journal_pgen_1010494
crossref_primary_10_1016_j_ajhg_2024_08_023
crossref_primary_10_1016_j_neubiorev_2024_105745
crossref_primary_10_1093_molbev_msad216
crossref_primary_10_1007_s00335_018_9746_7
crossref_primary_10_1016_j_ajhg_2020_12_005
crossref_primary_10_1016_j_isci_2024_110050
crossref_primary_10_1534_genetics_118_301687
crossref_primary_10_1101_gr_276862_122
crossref_primary_10_1098_rstb_2018_0248
crossref_primary_10_1126_science_abo0498
crossref_primary_10_1038_s41467_024_54052_0
crossref_primary_10_1007_s00439_020_02167_x
crossref_primary_10_3390_life11080797
crossref_primary_10_1080_19485565_2019_1689351
crossref_primary_10_1016_j_bbr_2020_112521
crossref_primary_10_1038_s41588_019_0484_x
crossref_primary_10_7554_eLife_82824
crossref_primary_10_3389_fgene_2021_643883
crossref_primary_10_1371_journal_pbio_2002985
crossref_primary_10_1016_j_tig_2019_12_008
crossref_primary_10_1111_obr_12625
crossref_primary_10_1093_hmg_ddab007
crossref_primary_10_1186_s13100_021_00250_2
crossref_primary_10_1038_s41562_021_01232_3
crossref_primary_10_1016_j_cell_2020_09_017
crossref_primary_10_1186_s12915_017_0434_y
crossref_primary_10_1093_genetics_iyad139
crossref_primary_10_1111_mec_16900
crossref_primary_10_1186_s12864_024_10115_6
crossref_primary_10_1016_j_evolhumbehav_2021_08_001
crossref_primary_10_1016_j_tig_2020_03_006
crossref_primary_10_1242_dmm_049601
crossref_primary_10_3389_fpsyg_2019_02218
crossref_primary_10_1007_s11154_019_09505_z
crossref_primary_10_1038_s41559_018_0773_2
crossref_primary_10_1073_pnas_2312377121
crossref_primary_10_1186_s12864_017_4262_9
crossref_primary_10_1534_g3_120_401304
crossref_primary_10_1016_j_gde_2020_05_004
crossref_primary_10_1038_s41586_021_03205_y
crossref_primary_10_1073_pnas_2009227118
crossref_primary_10_1038_s41588_022_01062_7
crossref_primary_10_1007_s40200_021_00745_y
crossref_primary_10_1080_19336934_2017_1337612
crossref_primary_10_1038_s41588_021_00931_x
crossref_primary_10_1016_j_ajhg_2017_06_005
crossref_primary_10_1038_s41562_018_0476_3
crossref_primary_10_1007_s11914_019_00527_9
crossref_primary_10_1016_j_cub_2023_02_049
crossref_primary_10_1016_j_cois_2019_08_013
crossref_primary_10_1371_journal_pgen_1008773
crossref_primary_10_1038_s41366_018_0046_9
crossref_primary_10_1038_s41562_021_01231_4
crossref_primary_10_1098_rstb_2021_0243
crossref_primary_10_1371_journal_pbio_3001072
crossref_primary_10_3389_fgene_2022_833190
Cites_doi 10.1023/A:1008800423698
10.1038/ng.608
10.1098/rstb.2010.0268
10.1016/j.cell.2007.10.055
10.1038/ng.3211
10.1093/bioinformatics/bti584
10.1136/bmjopen-2013-003735
10.1038/nature04072
10.1073/pnas.1316513111
10.1038/ng.386
10.1038/ng.2368
10.1101/058024
10.1186/1477-7827-8-115
10.1554/05-273.1
10.1371/journal.pgen.1000500
10.1210/er.2002-0019
10.1371/journal.pbio.0040072
10.1093/hmg/ddu150
10.1038/nature01140
10.1126/science.1116238
10.1073/pnas.1418652112
10.1093/bioinformatics/18.2.337
10.1101/gr.178756.114
10.1371/journal.pgen.1004412
10.1093/bioinformatics/btq322
10.1371/journal.pcbi.1000491
10.1093/molbev/msu049
10.1093/molbev/mss207
10.1093/genetics/134.4.1289
10.1101/038216
10.1371/journal.pgen.1004528
10.1038/ng.2007.13
10.1016/j.ajhg.2011.07.025
10.1038/ng.3406
10.1038/nature16152
10.1126/science.1217876
10.1146/annurev-genet-111212-133526
10.1159/000346826
10.1038/ng.3401
10.1126/science.1234070
10.1371/journal.pone.0006369
10.1016/j.cub.2009.11.055
10.1093/hmg/dds384
10.1371/journal.pgen.1000471
10.1086/421051
10.1534/genetics.104.036947
10.1371/journal.pgen.0030090
10.1371/journal.pcbi.1004842
10.1038/nature14962
10.1126/science.1190371
10.1093/molbev/msu211
10.1126/science.1219240
10.1111/j.1469-1809.2006.00341.x
10.1214/aos/1176347265
10.1038/ng.3097
10.1038/nature15393
10.1101/059436
10.1093/nar/gkt1229
10.1073/pnas.1310398110
10.1186/1471-2105-10-166
10.1038/nature11632
ContentType Journal Article
Copyright Copyright © 2016 American Association for the Advancement of Science
Copyright © 2016, American Association for the Advancement of Science.
Copyright © 2016, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2016 American Association for the Advancement of Science
– notice: Copyright © 2016, American Association for the Advancement of Science.
– notice: Copyright © 2016, American Association for the Advancement of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.aag0776
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
Ecology Abstracts

Solid State and Superconductivity Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 764
ExternalDocumentID PMC5182071
4246316401
27738015
10_1126_science_aag0776
44710989
Genre Journal Article
Feature
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: T15 LM007033
– fundername: NIMH NIH HHS
  grantid: R01 MH084703
– fundername: NHGRI NIH HHS
  grantid: R01 HG008140
– fundername: NIEHS NIH HHS
  grantid: R01 ES025009
– fundername: Howard Hughes Medical Institute
– fundername: NHGRI NIH HHS
  grantid: T32 HG000044
– fundername: NIMH NIH HHS
  grantid: R01 MH101825
– fundername: NHGRI NIH HHS
  grantid: K22 HG000044
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-a598t-34236e60be43aad01900936b4e31684db84df0ab7756cf92f0e1847948bf52d33
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 14:09:10 EDT 2025
Thu Jul 10 20:18:16 EDT 2025
Fri Jul 11 05:14:15 EDT 2025
Fri Jul 11 01:23:18 EDT 2025
Fri Jul 25 10:12:11 EDT 2025
Mon Jul 21 06:01:38 EDT 2025
Tue Jul 01 00:37:22 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Thu Jul 03 22:16:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6313
Language English
License Copyright © 2016, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a598t-34236e60be43aad01900936b4e31684db84df0ab7756cf92f0e1847948bf52d33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://hdl.handle.net/1721.1/124745
PMID 27738015
PQID 1838268354
PQPubID 1256
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5182071
proquest_miscellaneous_1872822425
proquest_miscellaneous_1864544907
proquest_miscellaneous_1835418500
proquest_journals_1838268354
pubmed_primary_27738015
crossref_citationtrail_10_1126_science_aag0776
crossref_primary_10_1126_science_aag0776
jstor_primary_44710989
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-11
PublicationDateYYYYMMDD 2016-11-11
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2016
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
29094708 - Nature. 2017 Oct 30;551(7678):15-16. doi: 10.1038/nature.2017.22914.
References_xml – ident: e_1_3_2_55_2
  doi: 10.1023/A:1008800423698
– ident: e_1_3_2_23_2
  doi: 10.1038/ng.608
– ident: e_1_3_2_44_2
  doi: 10.1098/rstb.2010.0268
– ident: e_1_3_2_52_2
  doi: 10.1016/j.cell.2007.10.055
– ident: e_1_3_2_25_2
  doi: 10.1038/ng.3211
– ident: e_1_3_2_32_2
  doi: 10.1093/bioinformatics/bti584
– ident: e_1_3_2_61_2
  doi: 10.1136/bmjopen-2013-003735
– ident: e_1_3_2_48_2
  doi: 10.1038/nature04072
– ident: e_1_3_2_12_2
  doi: 10.1073/pnas.1316513111
– ident: e_1_3_2_58_2
  doi: 10.1038/ng.386
– ident: e_1_3_2_10_2
  doi: 10.1038/ng.2368
– ident: e_1_3_2_41_2
  doi: 10.1101/058024
– ident: e_1_3_2_60_2
  doi: 10.1186/1477-7827-8-115
– ident: e_1_3_2_8_2
  doi: 10.1554/05-273.1
– ident: e_1_3_2_51_2
  doi: 10.1371/journal.pgen.1000500
– ident: e_1_3_2_59_2
  doi: 10.1210/er.2002-0019
– ident: e_1_3_2_6_2
  doi: 10.1371/journal.pbio.0040072
– ident: e_1_3_2_57_2
  doi: 10.1093/hmg/ddu150
– ident: e_1_3_2_28_2
  doi: 10.1038/nature01140
– ident: e_1_3_2_4_2
  doi: 10.1126/science.1116238
– ident: e_1_3_2_30_2
  doi: 10.1073/pnas.1418652112
– ident: e_1_3_2_31_2
  doi: 10.1093/bioinformatics/18.2.337
– ident: e_1_3_2_62_2
  doi: 10.1101/gr.178756.114
– ident: e_1_3_2_20_2
  doi: 10.1371/journal.pgen.1004412
– ident: e_1_3_2_35_2
  doi: 10.1093/bioinformatics/btq322
– ident: e_1_3_2_43_2
  doi: 10.1371/journal.pcbi.1000491
– ident: e_1_3_2_46_2
  doi: 10.1093/molbev/msu049
– ident: e_1_3_2_53_2
  doi: 10.1093/molbev/mss207
– ident: e_1_3_2_64_2
  doi: 10.1093/genetics/134.4.1289
– ident: e_1_3_2_24_2
  doi: 10.1101/038216
– ident: e_1_3_2_29_2
  doi: 10.1371/journal.pgen.1004528
– ident: e_1_3_2_47_2
  doi: 10.1038/ng.2007.13
– ident: e_1_3_2_11_2
  doi: 10.1016/j.ajhg.2011.07.025
– ident: e_1_3_2_26_2
  doi: 10.1038/ng.3406
– ident: e_1_3_2_13_2
  doi: 10.1038/nature16152
– ident: e_1_3_2_39_2
  doi: 10.1126/science.1217876
– ident: e_1_3_2_2_2
  doi: 10.1146/annurev-genet-111212-133526
– ident: e_1_3_2_63_2
  doi: 10.1159/000346826
– ident: e_1_3_2_21_2
  doi: 10.1038/ng.3401
– ident: e_1_3_2_18_2
  doi: 10.1126/science.1234070
– ident: e_1_3_2_45_2
  doi: 10.1371/journal.pone.0006369
– ident: e_1_3_2_9_2
  doi: 10.1016/j.cub.2009.11.055
– ident: e_1_3_2_17_2
  doi: 10.1093/hmg/dds384
– ident: e_1_3_2_56_2
  doi: 10.1371/journal.pgen.1000471
– ident: e_1_3_2_3_2
  doi: 10.1086/421051
– ident: e_1_3_2_7_2
  doi: 10.1534/genetics.104.036947
– ident: e_1_3_2_50_2
  doi: 10.1371/journal.pgen.0030090
– ident: e_1_3_2_34_2
  doi: 10.1371/journal.pcbi.1004842
– ident: e_1_3_2_16_2
  doi: 10.1038/nature14962
– ident: e_1_3_2_5_2
  doi: 10.1126/science.1190371
– ident: e_1_3_2_37_2
  doi: 10.1093/molbev/msu211
– ident: e_1_3_2_15_2
  doi: 10.1126/science.1219240
– ident: e_1_3_2_27_2
– ident: e_1_3_2_49_2
  doi: 10.1111/j.1469-1809.2006.00341.x
– ident: e_1_3_2_54_2
  doi: 10.1214/aos/1176347265
– ident: e_1_3_2_22_2
  doi: 10.1038/ng.3097
– ident: e_1_3_2_38_2
  doi: 10.1038/nature15393
– ident: e_1_3_2_42_2
  doi: 10.1101/059436
– ident: e_1_3_2_19_2
  doi: 10.1093/nar/gkt1229
– ident: e_1_3_2_40_2
  doi: 10.1073/pnas.1310398110
– ident: e_1_3_2_33_2
  doi: 10.1186/1471-2105-10-166
– ident: e_1_3_2_36_2
  doi: 10.1038/nature11632
– reference: 29094708 - Nature. 2017 Oct 30;551(7678):15-16. doi: 10.1038/nature.2017.22914.
SSID ssj0009593
Score 2.6275594
Snippet Detection of recent natural selection is a challenging problem in population genetics. Here we introduce the singleton density score (SDS), a method to infer...
Evolutionary analyses aim to identify recent genetic changes that are likely to have been subject to selection. Field et al. present a method to identify such...
Evolutionary analyses aim to identify recent genetic changes that are likely to have been subject to selection. Field et al. present a method to identify such...
Identifying genes under recent selectionEvolutionary analyses aim to identify recent genetic changes that are likely to have been subject to selection. Field...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 760
SubjectTerms Adaptation
Adaptation, Physiological - genetics
Density
Evolutionary biology
Eye Color - genetics
Frequency shift
Gene Frequency
Genes
Genetic Loci
Genetic variance
Genetics
Genome, Human
Genome-Wide Association Study
Genomes
Hair
Hair Color - genetics
Haplotypes
Humans - genetics
Lactase
Lactase - genetics
Major Histocompatibility Complex - genetics
Pedigree
Phenotypic variations
Pigmentation
Population genetics
Selection, Genetic
United Kingdom
Title Detection of human adaptation during the past 2000 years
URI https://www.jstor.org/stable/44710989
https://www.ncbi.nlm.nih.gov/pubmed/27738015
https://www.proquest.com/docview/1838268354
https://www.proquest.com/docview/1835418500
https://www.proquest.com/docview/1864544907
https://www.proquest.com/docview/1872822425
https://pubmed.ncbi.nlm.nih.gov/PMC5182071
Volume 354
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgExIviA0GgYGMxMMQSpXGiZ08tmxlQqO8tFLhJbITe1RC6UTTh_LXc_4RJ4VtGjw0qmKnqXyfz-fz3XcIveWKE5UKEUoQQZjkVRRyAcqQpnlE84pxZRz6n6f0fJ58WqSLLvfEZJc0YlD-ujav5H-kCvdArjpL9h8k638UbsB3kC9cQcJwvZOMT2UjS2_yGXc8r_iVCyB0GYgmF4qvG00eGL3fArLXfYu0ndxgafrTm57MfBjiyAYLtLED7rGeI2HSFrv-ypc-4ne82tp4ZW2xd37TmXRl2Kfae7T04PrIjef223K7kX1_xJDqxDynL52OdRTHfR1LLFO0AxMlQ9JTmsxWFHDrL7Os5n-r9l4xSjng_FITEXWrWHtyP_1STOYXF8XsbDG7j_Zj2D2Avt4fjU_HkxvZmB3nUy-bqn3BjrliI1av24v8GVLbs1Fmj9Ejt7nAI4uUA3RP1ofogS03uj1EB05oa3zi2MbfPUGZBxFeKWxAhDsQYQsiDAjAGkRYgwgbED1F88nZ7MN56MpphDzNsybUXI9U0kjIhHBeaRKBKCdUJFIXL0sqAR8VccFYSkuVxyqSsP0HfZ0JlcYVIUdor17V8jnCJad5qohkTIikpGVGKypZxakaErBgywAN2lErSsc1r0ue_CjMnjOmhRvmwg1zgE78A1eWZuXmrkdGDL5fkuh44iwP0HErl8JN0nUBKxZsoLV3M0BvfDOoUH0uxmu52pg-qeZwiqLb-mjquySP2G19mAnKjtMAPbNw8H8ScEjAGIQWtgMU30HTvO-21Mvvhu491TUW2PDFHd77Ej3spuQx2mt-buQrMJob8dpNgd-Qb8P4
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+human+adaptation+during+the+past+2000+years&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Field%2C+Yair&rft.au=Boyle%2C+Evan+A&rft.au=Telis%2C+Natalie&rft.au=Gao%2C+Ziyue&rft.date=2016-11-11&rft.issn=0036-8075&rft.volume=354&rft.issue=6313&rft.spage=760&rft.epage=764&rft_id=info:doi/10.1126%2Fscience.aag0776&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon