Ultra-Capacitors in Power Conversion Systems Applications, Analysis, and Design from Theory to Practice

<p>Ultra-capacitors, used as short-term energy storage devices, are growing in popularity especially in the transportation and renewable energy sectors. This text provides an up-to-date and comprehensive analysis of ultra-capacitor theory, modeling, and module design from an applicatio...

Full description

Saved in:
Bibliographic Details
Main Author Grbovic, Petar J
Format eBook
LanguageEnglish
Published Newark Wiley 2013
WILEY
John Wiley & Sons, Incorporated
Edition1
SeriesWiley - IEEE
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • Preface ix 1 Energy Storage Technologies and Devices 1 1.1 Introduction 1 1.2 Direct Electrical Energy Storage Devices 3 1.3 Indirect Electrical Energy Storage Technologies and Devices 11 1.4 Applications and Comparison 19 2 Ultra-Capacitor Energy Storage Devices 22 2.1 Background of Ultra-Capacitors 22 2.2 Electric Double-Layer Capacitors—EDLC 24 2.3 The Ultra-Capacitor Macro (Electric Circuit) Model 27 2.4 The Ultra-Capacitor’s Energy and Power 42 2.5 The Ultra-Capacitor’s Charge/Discharge Methods 47 2.6 Frequency Related Losses 59 2.7 The Ultra-Capacitor’s Thermal Aspects 65 2.8 Ultra-Capacitor High Power Modules 72 2.9 Ultra-Capacitor Trends and Future Development 74 2.10 Summary 76 3 Power Conversion and Energy Storage Applications 78 3.1 Fundamentals of Static Power Converters 78 3.2 Interest in Power Conversion with Energy Storage 84 3.3 Controlled Electric Drive Applications 90 3.4 Renewable Energy Source Applications 102 3.5 Autonomous Power Generators and Applications 113 3.6 Energy Transmission and Distribution Applications 121 3.7 Uninterruptible Power Supply (UPS) Applications 128 3.8 Electric Traction Applications 131 3.9 Summary 145 4 Ultra-Capacitor Module Selection and Design 149 4.1 Introduction 149 4.2 The Module Voltage Rating and Voltage Level Selection 152 4.3 The Capacitance Determination 164 4.4 Ultra-Capacitor Module Design 173 4.5 The Module's Thermal Management 189 4.6 Ultra-Capacitor Module Testing 207 4.7 Summary 214 5 Interface DC–DC Converters 216 5.1 Introduction 216 5.2 Background and Classification of Interface DC–DC Converters 216 5.3 State-of-the-Art Interface DC–DC Converters 223 5.4 The Ultra-Capacitor’s Current and Voltage Definition 229 5.5 Multi-Cell Interleaved DC–DC Converters 231 5.6 Design of a Two-Level N-Cell Interleaved DC–DC Converter 254 5.7 Conversion Power Losses: A General Case Analysis 295 5.8 Power Converter Thermal Management: A General Case Analysis 299 5.9 Summary 313 References 314 Index 317
  • Ultra-capacitors in power conversion systems : applications, analysis, and design from theory to practice -- Contents -- Preface -- Chapter 1: Energy Storage Technologies and Devices -- Chapter 2: Ultra-Capacitor Energy Storage Devices -- Chapter 3: Power Conversion and Energy Storage Applications -- Chapter 4: Ultra-Capacitor Module Selection and Design -- Chapter 5: Interface DC-DC Converters -- Index
  • 4.2.1 Relation between the Inner and Terminal Voltages -- 4.2.2 Maximum Operating Voltage -- 4.2.3 Minimum Operating Voltage -- 4.2.4 The Ultra-Capacitor Intermediate Voltage -- 4.2.5 The Ultra-Capacitor Rated Voltage -- 4.2.6 Exercises -- 4.3 The Capacitance Determination -- 4.3.1 Energy Storage/Recovery Capability -- 4.3.2 Conversion Efficiency -- 4.3.3 End-of-Life Effect on the Capacitance Selection -- 4.3.4 Exercises -- 4.4 Ultra-Capacitor Module Design -- 4.4.1 Series/Parallel Connection -- 4.4.2 Current Stress and Losses -- 4.4.3 String Voltage Balancing -- 4.4.4 Exercises -- 4.5 The Module's Thermal Management -- 4.5.1 The Model's Definition -- 4.5.2 Determination of the Model's Parameters -- 4.5.3 The Model's Parameters-Experimental Identification -- 4.5.4 The Cooling System Design -- 4.5.5 Exercises -- 4.6 Ultra-Capacitor Module Testing -- 4.6.1 Capacitance and Internal Resistance -- 4.6.2 Leakage Current and Self-Discharge -- 4.7 Summary -- References -- Chapter 5 Interface DC-DC Converters -- 5.1 Introduction -- 5.2 Background and Classification of Interface DC-DC Converters -- 5.2.1 Voltage and Current Source DC-DC Converters -- 5.2.2 Full Power and Fractional Power Rated Interface DC-DC Converters -- 5.2.3 Isolated and Non-Isolated Interface DC-DC Converters -- 5.2.4 Two-Level and Multi-Level Interface DC-DC Converters -- 5.2.5 Single-Cell and Multi-Cell Interleaved Interface DC-DC Converters -- 5.3 State-of-the-Art Interface DC-DC Converters -- 5.3.1 Two-Level DC-DC Converters -- 5.3.2 Three-Level DC-DC Converters -- 5.3.3 Boost-Buck and Buck-Boost DC-DC Converters -- 5.3.4 Isolated DC-DC Converters -- 5.3.5 Application Summary -- 5.4 The Ultra-Capacitor's Current and Voltage Definition -- 5.5 Multi-Cell Interleaved DC-DC Converters -- 5.5.1 Background of Interleaved DC-DC Converters -- 5.5.2 Analysis of a Two-Cell Interleaved Converter
  • 5.5.3 N-Cell General Case Analysis -- 5.6 Design of a Two-Level N-Cell Interleaved DC-DC Converter -- 5.6.1 ICT Design: A Two-Cell Example -- 5.6.2 The Filter Inductor Design -- 5.6.3 DC Bus Capacitor Selection -- 5.6.4 Output Filter Capacitor Selection -- 5.6.5 Power Semiconductor Selection -- 5.6.6 Exercises -- 5.7 Conversion Power Losses: A General Case Analysis -- 5.7.1 The Origin of the Losses -- 5.7.2 Conduction Losses -- 5.7.3 Switching Losses -- 5.7.4 Blocking Losses -- 5.7.5 Definition of the Moving Average and RMS Value -- 5.8 Power Converter Thermal Management: A General Case Analysis -- 5.8.1 Why is Thermal Management Important? -- 5.8.2 Thermal Model of Power Semiconductors -- 5.8.3 Thermal Model of Magnetic Devices -- 5.8.4 Thermal Model of Power Electrolytic Capacitors -- 5.9 Summary -- References -- Index
  • 2.9.1 The Requirements for Future Ultra-Capacitors -- 2.9.2 The Technology Directions -- 2.10 Summary -- References -- Chapter 3 Power Conversion and Energy Storage Applications -- 3.1 Fundamentals of Static Power Converters -- 3.1.1 Switching-Mode Converters -- 3.1.2 Power Converter Classification -- 3.1.3 Some Examples of Voltage-Source Converters -- 3.1.4 Indirect Static AC-AC Power Converters -- 3.2 Interest in Power Conversion with Energy Storage -- 3.2.1 Definition of the Problem -- 3.2.2 The Solution -- 3.2.3 Which Energy Storage is the Right Choice? -- 3.2.4 Electrochemical Batteries versus Ultra-Capacitors -- 3.3 Controlled Electric Drive Applications -- 3.3.1 Controlled Electric Drives from Yesterday to Today -- 3.3.2 Application of Controlled Electric Drives -- 3.3.3 Definition of the Application Problems -- 3.3.4 The Solution -- 3.4 Renewable Energy Source Applications -- 3.4.1 Renewable Energy Sources -- 3.4.2 Definition of the Problem -- 3.4.3 Virtual Inertia and Renewable Energy `Generators' -- 3.4.4 The Solution -- 3.5 Autonomous Power Generators and Applications -- 3.5.1 Applications -- 3.5.2 Definition of the Problem -- 3.5.3 The Solution -- 3.6 Energy Transmission and Distribution Applications -- 3.6.1 STATCOM Applications -- 3.6.2 Definition of the Problems -- 3.6.3 The Solution -- 3.7 Uninterruptible Power Supply (UPS) Applications -- 3.7.1 UPS System Applications -- 3.7.2 UPS with Ultra-Capacitor Energy Storage -- 3.8 Electric Traction Applications -- 3.8.1 Rail Vehicles -- 3.8.2 Road Vehicles -- 3.8.3 A Generalized Traction System -- 3.9 Summary -- References -- Chapter 4 Ultra-Capacitor Module Selection and Design -- 4.1 Introduction -- 4.1.1 The Analysis and Design Objectives -- 4.1.2 Main Design Steps -- 4.1.3 The Ultra-Capacitor Model -- 4.2 The Module Voltage Rating and Voltage Level Selection
  • Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Energy Storage Technologies and Devices -- 1.1 Introduction -- 1.1.1 Energy -- 1.1.2 Electrical Energy and its Role in Everyday Life -- 1.1.3 Energy Storage -- 1.2 Direct Electrical Energy Storage Devices -- 1.2.1 An Electric Capacitor as Energy Storage -- 1.2.2 An Inductor as Energy Storage -- 1.3 Indirect Electrical Energy Storage Technologies and Devices -- 1.3.1 Mechanical Energy Storage -- 1.3.2 Chemical Energy Storage -- 1.4 Applications and Comparison -- References -- Chapter 2 Ultra-Capacitor Energy Storage Devices -- 2.1 Background of Ultra-Capacitors -- 2.1.1 Overview of Ultra-Capacitor Technologies -- 2.2 Electric Double-Layer Capacitors-EDLC -- 2.2.1 A Short History of the EDLC -- 2.2.2 The Ultra-Capacitor's Structure -- 2.2.3 The Ultra-Capacitor's Physical Model -- 2.3 The Ultra-Capacitor Macro (Electric Circuit) Model -- 2.3.1 Full Theoretical Model -- 2.3.2 A Simplified Model -- 2.3.3 A Simulation/Control Model -- 2.3.4 Exercises -- 2.4 The Ultra-Capacitor's Energy and Power -- 2.4.1 The Ultra-Capacitor's Energy and Specific Energy -- 2.4.2 The Ultra-Capacitor's Energy Efficiency -- 2.4.3 The Ultra-Capacitor's Specific Power -- 2.4.4 The Electrode Carbon Loading Limitation -- 2.4.5 Exercises -- 2.5 The Ultra-Capacitor's Charge/Discharge Methods -- 2.5.1 Constant Resistive Loading -- 2.5.2 Constant Current Charging and Loading -- 2.5.3 Constant Power Charging and Loading -- 2.5.4 Exercises -- 2.6 Frequency Related Losses -- 2.6.1 The Current as a Periodic Function -- 2.6.2 The Current as a Nonperiodic Function -- 2.7 The Ultra-Capacitor's Thermal Aspects -- 2.7.1 Heat Generation -- 2.7.2 Thermal Model -- 2.7.3 Temperature Rise -- 2.7.4 Exercises -- 2.8 Ultra-Capacitor High Power Modules -- 2.9 Ultra-Capacitor Trends and Future Development