Applications of unitary symmetry and combinatorics

This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A un...

Full description

Saved in:
Bibliographic Details
Main Author Louck, James D
Format eBook Book
LanguageEnglish
Published Singapore World Scientific Publishing Co. Pte. Ltd 2011
World Scientific
World Scientific Publishing Company
WORLD SCIENTIFIC
WSPC
Edition1
Subjects
Online AccessGet full text
ISBN9789814350716
9814350710
DOI10.1142/8161

Cover

Abstract This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n–j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrices, the properties of magic squares and an associated generalized Regge form, the Zeilberger counting formula for alternating sign matrices, and the Heisenberg ring problem, viewed as a composite system in which the total angular momentum is conserved.
AbstractList This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n–j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrices, the properties of magic squares and an associated generalized Regge form, the Zeilberger counting formula for alternating sign matrices, and the Heisenberg ring problem, viewed as a composite system in which the total angular momentum is conserved.
This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n-j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrices, the properties of magic squares and an associated generalized Regge form, the Zeilberger counting formula for alternating sign matrices, and the Heisenberg ring problem, viewed as a composite system in which the total angular momentum is conserved.The readership is intended to be advanced graduate students and researchers interested in learning about the relationship between unitary symmetry and combinatorics and challenging unsolved problems. The many examples serve partially as exercises, but this monograph is not a textbook. It is hoped that the topics presented promote further and more rigorous developments that lead to a deeper understanding of the angular momentum properties of complex systems viewed as composite wholes.Sample Chapter(s)Chapter 1: Composite Quantum Systems (312 KB)Contents: Composite Quantum SystemsAlgebra of Permutation MatricesCoordinates of A in Basis ℙΣn(e,p)Further Applications of Permutation MatricesDoubly Stochastic Matrices in Angular Momentum TheoryMagic SquaresAlternating Sign MatricesThe Heisenberg Magnetic RingReadership: Graduate students and researchers in physics and mathematics who wish to learn about the relationships between symmetry and combinatorics.
Author Louck, James D
Author_xml – sequence: 1
  fullname: Louck, James D
– sequence: 2
  fullname: Louck, James D
BackLink https://cir.nii.ac.jp/crid/1130000798082269568$$DView record in CiNii
BookMark eNpVkFtLwzAUgCNecG77D3sQ0Ydp0qRp8riVeYGBgqKPIUnTLa5LatM59u_NrCA7D-cC3zlwvgtw4rwzAAwQvEWIJHcMUXQEhjxjnCGCU5gl-PhgRvQM9FjKkoSlEJ6DYQifMAYlhEHSA8mkriurZWu9CyNfjjbOtrLZjcJuvTZtbKQrRtqvlXWy9Y3VYQBOS1kFM_yrffB-P3vLH8fz54enfDIfy5SnMBlnMi0hJqzgGSKFUYxjQqSiGFHCDWSKKqwRjQ2mSsFCqiwrpGRYUamxLnEf3HSHZViZbVj6qg3iuzLK-1UQB0__s1vfVEXQ1rjWllaLDkZQ7IWJvbDIXnVs3fivjQmt-D2p40ojKzGb5oxAitIIXnags1Zou88I4b2-jDMYnVKeUhax6w6zi3qjKhuW1i1E3dh1FCk-Xl_yaVxJIIf4B8vMfsg
ContentType eBook
Book
DBID WMAQA
RYH
DEWEY 530.12
DOI 10.1142/8161
DatabaseName World Scientific
CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
Mathematics
EISBN 9789814350723
9814350729
9814458732
9789814458733
Edition 1
ExternalDocumentID 9789814350723
10.1142/8161
EBC840615
BB06311285
WSPCB0002090
GroupedDBID -VQ
-VX
089
20A
38.
9WS
A4J
AABBV
AATMT
ABARN
ABCYV
ABIAV
ABQPQ
ACLGV
ACZWY
ADVEM
AERYV
AFNLJ
AFOJC
AIXPE
AJFER
AKHYG
ALMA_UNASSIGNED_HOLDINGS
ALUEM
AZZ
BBABE
CGASQ
CZZ
DUGUG
EBSCA
ECOWB
GEOUK
IVK
IWG
J-X
JJU
MYL
PQQKQ
PVBBV
WMAQA
XI1
ABMRC
AHWGJ
RYH
ID FETCH-LOGICAL-a59502-7a5f0348d9714deb89344ab631649e08b6b3c1608b36bb0dab77daa83b6ac3cf3
ISBN 9789814350716
9814350710
IngestDate Fri Nov 08 00:05:15 EST 2024
Sat Mar 08 08:40:20 EST 2025
Wed Sep 03 03:05:27 EDT 2025
Fri Jun 27 00:43:35 EDT 2025
Thu Nov 16 04:41:36 EST 2023
IsPeerReviewed false
IsScholarly false
Keywords Unitary Symmetry
Combinatorics Binary Tree
Angular Momentum Theory
LCCallNum QC174.17.S9
LCCallNum_Ident QC174.17.S9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a59502-7a5f0348d9714deb89344ab631649e08b6b3c1608b36bb0dab77daa83b6ac3cf3
OCLC 858228500
PQID EBC840615
PageCount 381
ParticipantIDs nii_cinii_1130000798082269568
askewsholts_vlebooks_9789814350723
worldscientific_books_10_1142_8161
igpublishing_primary_WSPCB0002090
proquest_ebookcentral_EBC840615
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2011.
c2011
2011
20110500
2011-05-11
PublicationDateYYYYMMDD 2011-01-01
2011-05-01
2011-05-11
PublicationDate_xml – year: 2011
  text: 2011.
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationYear 2011
Publisher World Scientific Publishing Co. Pte. Ltd
World Scientific
World Scientific Publishing Company
WORLD SCIENTIFIC
WSPC
Publisher_xml – name: World Scientific Publishing Co. Pte. Ltd
– name: World Scientific
– name: World Scientific Publishing Company
– name: WORLD SCIENTIFIC
– name: WSPC
SSID ssj0000644804
ssib011113374
Score 1.8743733
Snippet This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular...
SourceID askewsholts
worldscientific
proquest
nii
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms Combinatorial analysis
Eightfold way (Nuclear physics)
Symmetry (Physics)
SubjectTermsDisplay Combinatorial analysis
Symmetry (Physics)
TableOfContents Applications of unitary symmetry and combinatorics -- Preface and Prelude -- Contents -- Notation -- Chapter 1: Composite Quantum Systems -- Chapter 2: Algebra of Permutation Matrices -- Chapter 3: Coordinates of A in Basis PΣn(e,p) -- Chapter 4: Further Applications of Permutation Matrices -- Chapter 5: Doubly Stochastic Matrices in Angular Momentum Theory -- Chapter 6: Magic Squares -- Chapter 7: Alternating Sign Matrices -- Chapter 8: The Heisenberg Magnetic Ring -- Appendix A: Counting Formulas for Compositions and Partitions -- Appendix B: No Single Coupling Scheme for n ≥ 5 -- Appendix C: Generalization of Binary Coupling Schemes -- Bibliography -- Index -- Errata and Related Notes
5.5.1 Pair of Spin-1/2 Systems -- 5.5.2 Pair of Spin-1/2 Systems as a Composite System -- 5.6 Binary Coupling of Angular Momenta -- 5.6.1 Complete Sets of Commuting Hermitian Observables -- 5.6.2 Domain of Definition RT (j) -- 5.6.3 Binary Bracketings, Shapes, and Binary Trees -- 5.7 State Vectors: Uncoupled and Coupled -- 5.8 General Binary Tree Couplings and Doubly Stochastic Matrices -- 5.8.1 Overview -- 5.8.2 Uncoupled States -- 5.8.3 Generalized WCG Coefficients -- 5.8.4 Binary Tree Coupled State Vectors -- 5.8.5 Racah Sum-Rule and Biedenharn-Elliott Identity as Transition Probability Amplitude Relations -- 5.8.6 Symmetries of the 6 - j and 9 - j Coefficients -- 5.8.7 General Binary Tree Shape Transformations -- 5.8.8 Summary -- 5.8.9 Expansion of Doubly Stochastic Matrices into Permutation Matrices -- 6 Magic Squares -- 6.1 Review -- 6.2 Magic Squares and Addition of Angular Momenta -- 6.3 Rational Generating Function of Hn(r) -- 7 Alternating Sign Matrices -- 7.1 Introduction -- 7.2 Standard Gelfand-Tsetlin Patterns -- 7.2.1 A-Matrix Arrays -- 7.2.2 Strict Gelfand-Tsetlin Patterns -- 7.3 Strict Gelfand-Tsetlin Patterns for λ = (n n . 1 · · · 2 1) -- 7.3.1 Symmetries -- 7.4 Sign-Reversal-Shift Invariant Polynomials -- 7.5 The Requirement of Zeros -- 7.6 The Incidence Matrix Formulation -- 8 The Heisenberg Magnetic Ring -- 8.1 Introduction -- 8.2 Matrix Elements of H in the Uncoupled and Coupled Bases -- 8.3 Exact Solution of the Heisenberg Ring Magnet for n = 2, 3, 4 -- 8.4 The Heisenberg Ring Hamiltonian: Even n -- 8.4.1 Summary of Properties of Recoupling Matrices -- 8.4.2 Maximal Angular Momentum Eigenvalues -- 8.4.3 Shapes and Paths for Coupling Schemes I and II -- 8.4.4 Determination of the Shape Transformations -- 8.4.5 The Transformation Method for n = 4 -- 8.4.6 The General 3(2f - 1) - j Coefficients
Intro -- Contents -- Preface and Prelude -- OVERVIEW AND SYNTHESIS OF BINARY COUPLING THEORY -- TOPICAL CONTENTS -- MATTERS OF STYLE, READERSHIP, AND RECOGNITION -- Notation -- 1 Composite Quantum Systems -- 1.1 Introduction -- 1.2 Angular Momentum State Vectors of a Composite System -- 1.2.1 Group Actions in a Composite System -- 1.3 Standard Form of the Kronecker Direct Sum -- 1.3.1 Reduction of Kronecker Products -- 1.4 Recoupling Matrices -- 1.5 Preliminary Results on Doubly Stochastic Matrices and Permutation Matrices -- 1.6 Relationship between Doubly Stochastic Matrices and Density Matrices in Angular Momentum Theory -- 2 Algebra of Permutation Matrices -- 2.1 Introduction -- 2.2 Basis Sets of Permutation Matrices -- 2.2.1 Summary -- 3 Coordinates of A in Basis P n(e,p) -- 3.1 Notations -- 3.2 The A-Expansion Rule in the Basis P n(e,p) -- 3.3 Dual Matrices in the Basis Set Σn(e, p) -- 3.3.1 Dual Matrices for Σ3(e, p) -- 3.3.2 Dual Matrices for Σ4(e, p) -- 3.4 The General Dual Matrices in the Basis Σn(e, p) -- 3.4.1 Relation between the A-Expansion and Dual Matrices -- 4 Further Applications of Permutation Matrices -- 4.1 Introduction -- 4.2 An Algebra of Young Operators -- 4.3 Matrix Schur Functions -- 4.4 Real Orthogonal Irreducible Representations of Sn -- 4.4.1 Matrix Schur Function Real Orthogonal Irreducible Representations -- 4.4.2 Jucys-Murphy Real Orthogonal Representations -- 4.5 Left and Right Regular Representations of Finite Groups -- 5 Doubly Stochastic Matrices in Angular Momentum Theory -- 5.1 Introduction -- 5.2 Abstractions and Interpretations -- 5.3 Permutation Matrices as Doubly Stochastic -- 5.4 The Doubly Stochastic Matrix for a Single System with Angular Momentum J -- 5.4.1 Spin-1/2 System -- 5.4.2 Angular Momentum-j System -- 5.5 Doubly Stochastic Matrices for Composite Angular Momentum Systems
8.4.7 The General 3(2f - 1) - j Coefficients Continued -- 8.5 The Heisenberg Ring Hamiltonian: Odd n -- 8.5.1 Matrix Representations of H -- 8.5.2 Matrix Elements of Rj2 -- j1 : The 6f - j Coefficients -- 8.5.3 Matrix Elements of Rj3 -- j1 : The 3(f + 1) - j Coefficients -- 8.5.4 Properties of Normal Matrices -- 8.6 Recount, Synthesis, and Critique -- 8.7 Action of the Cyclic Group -- 8.7.1 Representations of the Cyclic Group -- 8.7.2 The Action of the Cyclic Group on Coupled State Vectors -- 8.8 Concluding Remarks -- A Counting Formulas for Compositions and Partitions -- A.1 Compositions -- A.2 Partitions -- B No Single Coupling Scheme for n ≥ 5 -- B.1 No Single Coupling Scheme Diagonalizing H for n ≥ 5 -- C Generalization of Binary Coupling Schemes -- C.1 Generalized Systems -- C.2 The Composite U(n) System Problem -- Bibliography -- Index -- Errata and Related Notes
Title Applications of unitary symmetry and combinatorics
URI http://portal.igpublish.com/iglibrary/search/WSPCB0002090.html
https://cir.nii.ac.jp/crid/1130000798082269568
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=840615
https://www.worldscientific.com/doi/10.1142/8161
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9789814350723&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6xIhCbNA0YovvBAuINZUsax7Ff2xVNaJuQGLA3y46TqYK105Iijb-eOyfN3GoSghcryUMu-c4_vovvvgC8tyzHaZEi1QG3Icm3hLrgMkzyuMgyYW1uqVD47JyffGWfLtPL-38BuuqS2hzmvx-sK_kfr-I19CtVyf6DZ7ub4gU8Rv9iix7GdoX8dqdtarG37Ux0b44Dk9Lfqrvr66K-vVtUq2HYq50KSMecT2fzZgJ06bEfjg_9sN8Vv_lhf5Nq48a_yylaCgulIBaE5IE_PEkyEl0VcaOCviI3PRwiaUESJtI1WENv9eAxLpDjs-7DVUQRXdRoKnqWMOLtTqKnsNEaOiIz67Cuqx84aeOEXlckCnt1031kw0V9OpksEfxNpxZbdS_nrfgXW9CjKpDn8KiYvoAnLk82r17CwEc-mJVBi3ywQD5A5IMl5Lfh28fxxegkbH87EepUprhAZDoto4QJK7OY2cIgpWNMG4SFM1lEwnCDXZnjQcKNiaw2WWa1FonhOk_yMnkFvelsWryGgMkS42djHTXGQSBkGVtrjEWeprm0fXjnIaN-_XRb5JXyoB0kfXjrA6ZuGh0S9f3L59HQ7SXLqA_7iKLKJ9TGtEeJ5E8K0vPnVBHah4MFvsrZaHN_1Xg4EkTqUnyUFdhV8yxN6fpAkSd3_mJmF57dd9Y96NW382IfWVtt3rT96A-2UDqX
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Applications+of+unitary+symmetry+and+combinatorics&rft.au=Louck%2C+James+D.&rft.date=2011-01-01&rft.pub=World+Scientific&rft.isbn=9789814350716&rft_id=info:doi/10.1142%2F8161&rft.externalDocID=BB06311285
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97898143%2F9789814350723.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FWSPCB0002090_null_0_320.png
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.worldscientific.com%2Faction%2FshowCoverImage%3Fdoi%3D10.1142%2F8161