Thermal performance and heat transport in aquifer thermal energy storage

Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as t...

Full description

Saved in:
Bibliographic Details
Published inHydrogeology journal Vol. 22; no. 1; pp. 263 - 279
Main Authors Sommer, W. T., Doornenbal, P. J., Drijver, B. C., van Gaans, P. F. M., Leusbrock, I., Grotenhuis, J. T. C., Rijnaarts, H. H. M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.
AbstractList Issue Title: Hydrogeology of Shallow Thermal Systems Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.[PUBLICATION ABSTRACT]
Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.Original Abstract: Le stockage d'energie thermique en aquifere (STEA) est utilise pour le stockage saisonnier de grandes quantites d'energie thermique. A cause de l'augmentation de la demande pour des energies durables, le nombre de systemes STEA a augmente rapidement, ce qui a fait emerger des questions sur l'effet des systemes STEA sur leur environnement proche ainsi que sur leur performance thermique. De plus, l'augmentation de la densite des systemes genere une inquietude sur les interferences thermiques entre les puits d'un systeme et entre les systemes voisins. Une evaluation est faite sur (1) la performance du stockage thermique et (2) le transport de chaleur autour des puits de systemes STEA existants aux Pays Bas. La reconstitution des debits et des temperatures d'injection et d'extraction a partir d'enregistrements horaires des donnees operationnelles entre 2005 et 2012 montre que le taux de recuperation thermique est de 82 % pour le stockage froid et de 68 % pour le stockage chaud. Le transport de chaleur dans le sous-sol est enregistre a partir de capteurs de temperature distribues. Bien que les mesures revelent une distribution inegale des debits pour differentes sections des crepines des forages et un ecoulement preferentiel du a l'heterogeneite de l'aquifere, un espace suffisant entre forages a evite une interference thermique. Cependant, le surdimensionnement de l'espace entre les forages peut limiter le nombre de systemes qui peuvent etre realises dans une region et diminuer le potentiel des STEA.
Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82% for cold storage and 68% for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can
Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.
Author Drijver, B. C.
van Gaans, P. F. M.
Leusbrock, I.
Grotenhuis, J. T. C.
Sommer, W. T.
Doornenbal, P. J.
Rijnaarts, H. H. M.
Author_xml – sequence: 1
  givenname: W. T.
  surname: Sommer
  fullname: Sommer, W. T.
  email: wijb.sommer@wur.nl
  organization: Sub-department of Environmental Technology, Wageningen University, Deltares
– sequence: 2
  givenname: P. J.
  surname: Doornenbal
  fullname: Doornenbal, P. J.
  organization: Deltares
– sequence: 3
  givenname: B. C.
  surname: Drijver
  fullname: Drijver, B. C.
  organization: IF Technology
– sequence: 4
  givenname: P. F. M.
  surname: van Gaans
  fullname: van Gaans, P. F. M.
  organization: Deltares
– sequence: 5
  givenname: I.
  surname: Leusbrock
  fullname: Leusbrock, I.
  organization: Sub-department of Environmental Technology, Wageningen University
– sequence: 6
  givenname: J. T. C.
  surname: Grotenhuis
  fullname: Grotenhuis, J. T. C.
  organization: Sub-department of Environmental Technology, Wageningen University
– sequence: 7
  givenname: H. H. M.
  surname: Rijnaarts
  fullname: Rijnaarts, H. H. M.
  organization: Sub-department of Environmental Technology, Wageningen University
BookMark eNqFkU1r3DAQhkVJIJ8_IDdDL7m40cj6sHMLIe0WAr2kZyHb410vXskZ2YT8-8hxDiVQAmJmEM87Gs17xo588MjYFfAfwLm5iSlKnnMocuBa5_wbOwVZqHSjzNF7DbkAI0_YWYx7nmgwxSnbPO2QDm7IRqQupMo3mDnfZjt0UzaR83EMNGW9z9zz3HdI2fShQI-0fc3iFMht8YIdd26IePmRz9nfnw9P95v88c-v3_d3j7lTlZhyIUtR6FJLVLyTVV222BZNGrRF1fAauTOFaVylyhag4kZ3NXZOtFU6TSdUcc5u174v6VHf-xSsd9T00QbX26GvydGrfZnJ-mFJ41xHK6VRpU7i61U8UnieMU720McGh8F5DHO0oKUQZQECvkZVWrs2HBb0-yd0H2byaQsWZAVKGzBlomClGgoxEnZ2pP6wzArcLh7a1UObPLSLh5YnjVg1MbHpq_RP5_-K3gCeMaDb
CitedBy_id crossref_primary_10_1016_j_apenergy_2018_02_068
crossref_primary_10_1016_j_geothermics_2018_10_011
crossref_primary_10_1016_j_renene_2022_07_107
crossref_primary_10_3390_s23125498
crossref_primary_10_1016_j_apenergy_2016_08_091
crossref_primary_10_3390_geosciences10010033
crossref_primary_10_1016_j_rser_2018_06_057
crossref_primary_10_1029_2022WR033045
crossref_primary_10_1016_j_apenergy_2018_06_154
crossref_primary_10_1186_s40517_023_00279_x
crossref_primary_10_1021_acs_est_5b03068
crossref_primary_10_1007_s10040_014_1224_z
crossref_primary_10_1002_2017WR022135
crossref_primary_10_1007_s00767_019_00430_1
crossref_primary_10_1016_j_applthermaleng_2017_01_009
crossref_primary_10_1111_gwat_13163
crossref_primary_10_3390_w16111572
crossref_primary_10_3390_en13246510
crossref_primary_10_1016_j_yofte_2022_103091
crossref_primary_10_1016_j_apenergy_2019_113474
crossref_primary_10_1080_15435075_2019_1641106
crossref_primary_10_1186_s40517_023_00275_1
crossref_primary_10_1016_j_egypro_2017_12_242
crossref_primary_10_3390_en14020347
crossref_primary_10_1016_j_jhydrol_2015_12_013
crossref_primary_10_1021_acs_est_9b07020
crossref_primary_10_1016_j_jhydrol_2017_03_057
crossref_primary_10_1186_s40517_022_00234_2
crossref_primary_10_1093_ce_zkae008
crossref_primary_10_1007_s13201_023_01918_1
crossref_primary_10_1016_j_rser_2024_114545
crossref_primary_10_1016_j_geothermics_2020_102019
crossref_primary_10_1144_petgeo2018_104
crossref_primary_10_1186_s40517_018_0089_0
crossref_primary_10_3390_en11092356
crossref_primary_10_1007_s10653_021_01130_7
crossref_primary_10_1016_j_scitotenv_2017_09_087
crossref_primary_10_2139_ssrn_4072504
crossref_primary_10_1016_j_envpol_2021_117609
crossref_primary_10_1016_j_renene_2016_12_003
crossref_primary_10_1016_j_proeng_2017_11_133
crossref_primary_10_1016_j_geothermics_2017_10_009
crossref_primary_10_1007_s10040_022_02481_w
crossref_primary_10_1029_2023WR035797
crossref_primary_10_1016_j_geothermics_2023_102889
crossref_primary_10_1007_s10040_015_1244_3
crossref_primary_10_1016_j_renene_2019_07_030
crossref_primary_10_1016_j_apenergy_2022_118587
crossref_primary_10_1016_j_geothermics_2021_102166
crossref_primary_10_1007_s12665_015_4193_1
crossref_primary_10_3390_en15144992
Cites_doi 10.1007/s10040-006-0047-y
10.3390/s111110859
10.1080/15435070701845667
10.1029/WR018i002p00253
10.1139/T09-078
10.1029/WR018i002p00245
10.1029/WR018i003p00571
10.1038/230235a0
10.1111/j.1745-6584.2007.00323.x
10.3390/en3061320
10.1016/0038-092X(94)90630-0
10.1016/S0022-1694(99)00108-0
10.1029/WR017i003p00641
10.1016/j.energy.2010.08.029
10.1029/WR019i001p00149
10.1016/S0375-6505(03)00060-9
10.1680/geot.2009.59.3.249
10.1016/j.renene.2013.04.004
10.1016/j.jhydrol.2009.10.033
10.1016/j.jhydrol.2007.06.011
10.1007/978-94-009-9059-3_44
10.1029/2006WR005326
10.3390/s120505471
10.1016/j.jconhyd.2013.01.002
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2013
Springer-Verlag Berlin Heidelberg 2014
Wageningen University & Research
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
– notice: Springer-Verlag Berlin Heidelberg 2014
– notice: Wageningen University & Research
DBID AAYXX
CITATION
3V.
7QH
7ST
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M2P
M7S
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
QVL
DOI 10.1007/s10040-013-1066-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
NARCIS:Publications
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database


Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
DocumentTitle_FL Performance thermique et transport de chaleur dans un contexte de stockage d’énergie thermique en aquifère
EISSN 1435-0157
EndPage 279
ExternalDocumentID oai_library_wur_nl_wurpubs_447586
3190675421
10_1007_s10040_013_1066_0
Genre Feature
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID -5A
-5G
-5~
-BR
-DZ
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29I
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67M
67Z
6NX
78A
7XC
88I
8CJ
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABBXA
ABDZT
ABECU
ABEOS
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPPZ
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D1J
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z83
Z85
Z86
ZMTXR
ZY4
~02
~KM
AACDK
AAEOY
AAHBH
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
7QH
7ST
7TG
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KL.
KR7
L.G
PQEST
PQUKI
Q9U
SOI
AAEIZ
ADTIX
IPNFZ
QVL
ID FETCH-LOGICAL-a592t-248236864e50f49b8ded3c435de5c0be0a737ca958d119076fbefa2d92d9cf253
IEDL.DBID 8FG
ISSN 1431-2174
IngestDate Thu Oct 13 09:30:24 EDT 2022
Fri Aug 16 22:21:25 EDT 2024
Fri Aug 16 10:06:17 EDT 2024
Thu Oct 10 20:53:31 EDT 2024
Thu Sep 12 19:01:46 EDT 2024
Sat Dec 16 12:00:41 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords The Netherlands
Heterogeneity
Thermal conditions
Aquifer thermal energy storage (ATES)
Distributed temperature sensing (DTS)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a592t-248236864e50f49b8ded3c435de5c0be0a737ca958d119076fbefa2d92d9cf253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1491567178
PQPubID 55405
PageCount 17
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_447586
proquest_miscellaneous_1642283121
proquest_miscellaneous_1500767011
proquest_journals_1491567178
crossref_primary_10_1007_s10040_013_1066_0
springer_journals_10_1007_s10040_013_1066_0
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Official Journal of the International Association of Hydrogeologists
PublicationTitle Hydrogeology journal
PublicationTitleAbbrev Hydrogeol J
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ferguson (CR12) 2007; 45
Starink, Hehenkamp (CR36) 2001
Kangas, Lund (CR19) 1994; 53
Sauty, Gringarten, Fabris, Thiery, Menjoz, Landel (CR31) 1982; 18
Lee, Jeong (CR25) 2008; 5
Molz, Parr, Andersen (CR26) 1981; 17
Zuurbier, Hartog, Valstar, Post, Breukelen (CR42) 2013; 147
CR18
CR38
CR15
CR37
CR35
CR34
CR11
CR33
Buik, Willemsen, Verbeek (CR5) 2003; 9
Chevalier, Banton (CR7) 1999; 222
Sanner, Karytsas, Mendrinos, Rybach (CR29) 2003; 32
Lee (CR24) 2010; 3
(CR6) 2010
Vogt, Schneider, Hahn-Woernle, Cirpka (CR39) 2010; 380
Kim, Lee, Yoon, Jeon, Koo, Keehm (CR20) 2010; 35
Bakr, Oostrom, Sommer (CR1) 2013; 59
CR2
Sauty, Gringarten, Menjoz, Landel (CR30) 1982; 18
Harper (CR16) 1971; 230
CR4
CR28
CR23
Hausner, Suarez, Glander, van de Giesen, Selker, Tyler (CR17) 2011; 11
CR22
Molz, Melville, Parr, King, Hopf (CR27) 1983; 19
De Mulder, Geluk, Ritsema, Westerhoff, Wong (CR8) 2003
CR21
CR41
CR40
Dickinson, Buik, Matthews, Snijders (CR9) 2009; 59
Ferguson, Woodbury (CR13) 2006; 14
Giesen, Steele-Dunne, Jansen, Hoes, Hausner, Tyler, Selker (CR14) 2012; 12
Bridger, Allen (CR3) 2010; 47
Doughty, Hellstrom, Tsang, Claesson (CR10) 1982; 18
Selker, Thevenaz, Huwald, Mallet, Luxemburg, Giesen, Stejskal, Zeman, Westhoff, Parlange (CR32) 2006; 42
FJ Molz (1066_CR26) 1981; 17
FJ Molz (1066_CR27) 1983; 19
DW Bridger (1066_CR3) 2010; 47
KS Lee (1066_CR24) 2010; 3
B Sanner (1066_CR29) 2003; 32
G Ferguson (1066_CR13) 2006; 14
1066_CR5
1066_CR4
1066_CR2
1066_CR32
1066_CR1
1066_CR11
1066_CR33
J Kim (1066_CR20) 2010; 35
1066_CR14
1066_CR15
1066_CR37
1066_CR34
G Ferguson (1066_CR12) 2007; 45
1066_CR35
1066_CR18
1066_CR38
1066_CR39
KS Lee (1066_CR25) 2008; 5
S Chevalier (1066_CR7) 1999; 222
EFJ Mulder De (1066_CR8) 2003
CBS (1066_CR6) 2010
C Doughty (1066_CR10) 1982; 18
1066_CR40
MB Hausner (1066_CR17) 2011; 11
JP Sauty (1066_CR30) 1982; 18
1066_CR21
MT Kangas (1066_CR19) 1994; 53
1066_CR22
1066_CR41
1066_CR42
JS Dickinson (1066_CR9) 2009; 59
1066_CR23
ML Harper (1066_CR16) 1971; 230
1066_CR28
JP Sauty (1066_CR31) 1982; 18
L Starink (1066_CR36) 2001
References_xml – volume: 12
  start-page: 5471
  issue: 5
  year: 2012
  end-page: 5485
  ident: CR14
  article-title: Double-ended calibration of fiber-optic raman spectra distributed temperature sensing data
  publication-title: Sensors
  contributor:
    fullname: Selker
– ident: CR22
– year: 2001
  ident: CR36
  publication-title: Koude-/warmteopslag Noordwesthoek Uithof Utrecht: Effectenstudie grondwatersysteem (ATES in the northwest corner of Uithof Utrecht: study on the effect on the groundwater system) 2/50168/LS
  contributor:
    fullname: Hehenkamp
– ident: CR18
– volume: 14
  start-page: 1206
  issue: 7
  year: 2006
  end-page: 1215
  ident: CR13
  article-title: Observed thermal pollution and post-development simulations of low-temperature geothermal systems in Winnipeg, Canada
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-006-0047-y
  contributor:
    fullname: Woodbury
– ident: CR4
– volume: 11
  start-page: 10859
  issue: 11
  year: 2011
  end-page: 10879
  ident: CR17
  article-title: Calibrating single-ended fiber-optic Raman spectra distributed temperature sensing data
  publication-title: Sensors
  doi: 10.3390/s111110859
  contributor:
    fullname: Tyler
– ident: CR2
– ident: CR37
– volume: 147
  start-page: 1
  year: 2013
  end-page: 13
  ident: CR42
  article-title: The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: modeling of spreading and degradation
  publication-title: J Contam Hydrol
  contributor:
    fullname: Breukelen
– volume: 59
  start-page: 39
  year: 2013
  end-page: 48
  ident: CR1
  article-title: Efficiency of and interference among multiple aquifer thermal energy storage systems: a dutch case study
  publication-title: Renewable Energ
  contributor:
    fullname: Sommer
– volume: 5
  start-page: 1
  issue: 1–2
  year: 2008
  end-page: 14
  ident: CR25
  article-title: Numerical modeling on the performance of aquifer thermal energy storage system under cyclic flow regime
  publication-title: Int J Green Energy
  doi: 10.1080/15435070701845667
  contributor:
    fullname: Jeong
– ident: CR33
– volume: 18
  start-page: 253
  issue: 2
  year: 1982
  end-page: 265
  ident: CR31
  article-title: Sensible energy-storage in aquifers: 2, field experiments and comparison with theoretical results
  publication-title: Water Resour Res
  doi: 10.1029/WR018i002p00253
  contributor:
    fullname: Landel
– ident: CR35
– start-page: 379
  year: 2003
  ident: CR8
  publication-title: De Ondergrond van Nederland [The subsurface of the Netherlands]. Geologie van Nederland, vol 7
  contributor:
    fullname: Wong
– ident: CR40
– ident: CR23
– volume: 47
  start-page: 96
  issue: 1
  year: 2010
  end-page: 115
  ident: CR3
  article-title: Heat transport simulations in a heterogeneous aquifer used for aquifer thermal energy storage (ATES)
  publication-title: Can Geotech J
  doi: 10.1139/T09-078
  contributor:
    fullname: Allen
– ident: CR21
– volume: 18
  start-page: 245
  issue: 2
  year: 1982
  end-page: 252
  ident: CR30
  article-title: Sensible energy-storage in aquifers: 1, theoretical-study
  publication-title: Water Resour Res
  doi: 10.1029/WR018i002p00245
  contributor:
    fullname: Landel
– volume: 18
  start-page: 571
  issue: 3
  year: 1982
  end-page: 587
  ident: CR10
  article-title: A dimensionless parameter approach to the thermal-behavior of an aquifer thermal-energy storage-system
  publication-title: Water Resour Res
  doi: 10.1029/WR018i003p00571
  contributor:
    fullname: Claesson
– year: 2010
  ident: CR6
  publication-title: Hernieuwbare energie in Nederland 2009 [Renewable energy in the Netherlands 2009]
– volume: 380
  start-page: 154
  year: 2010
  end-page: 164
  ident: CR39
  article-title: Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling
  publication-title: J Hydrol
  contributor:
    fullname: Cirpka
– ident: CR15
– ident: CR38
– volume: 230
  start-page: 235
  year: 1971
  end-page: 236
  ident: CR16
  article-title: Approximate geothermal gradients in the North Sea Basin
  publication-title: Nature
  doi: 10.1038/230235a0
  contributor:
    fullname: Harper
– volume: 45
  start-page: 485
  issue: 4
  year: 2007
  end-page: 490
  ident: CR12
  article-title: Heterogeneity and thermal modeling of ground water
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2007.00323.x
  contributor:
    fullname: Ferguson
– volume: 3
  start-page: 1320
  issue: 6
  year: 2010
  end-page: 1334
  ident: CR24
  article-title: A review on concepts, applications, and models of aquifer thermal energy storage systems
  publication-title: Energies
  doi: 10.3390/en3061320
  contributor:
    fullname: Lee
– volume: 42
  start-page: W12202
  year: 2006
  ident: CR32
  article-title: Distributed fiber-optic temperature sensing for hydrologic systems
  publication-title: Water Resour Res
  contributor:
    fullname: Parlange
– volume: 9
  start-page: 33
  issue: 2
  year: 2003
  end-page: 43
  ident: CR5
  article-title: Effecten van thermische opslagsystemen: berekeningen en metingen [Effects of thermal storage systems: calculations and measurements]
  publication-title: Stromingen
  contributor:
    fullname: Verbeek
– volume: 53
  start-page: 237
  issue: 3
  year: 1994
  end-page: 247
  ident: CR19
  article-title: Modeling and simulation of aquifer storage energy-systems
  publication-title: Sol Energy
  doi: 10.1016/0038-092X(94)90630-0
  contributor:
    fullname: Lund
– ident: CR11
– volume: 222
  start-page: 129
  issue: 1–4
  year: 1999
  end-page: 139
  ident: CR7
  article-title: Modelling of heat transfer with the random walk method, part 1: application to thermal energy storage in porous aquifers
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(99)00108-0
  contributor:
    fullname: Banton
– volume: 17
  start-page: 641
  issue: 3
  year: 1981
  end-page: 645
  ident: CR26
  article-title: Thermal-energy storage in a confined aquifer: 2nd cycle
  publication-title: Water Resour Res
  doi: 10.1029/WR017i003p00641
  contributor:
    fullname: Andersen
– ident: CR34
– volume: 35
  start-page: 4955
  issue: 12
  year: 2010
  end-page: 4965
  ident: CR20
  article-title: Numerical modeling of aquifer thermal energy storage system
  publication-title: Energy
  doi: 10.1016/j.energy.2010.08.029
  contributor:
    fullname: Keehm
– volume: 19
  start-page: 149
  issue: 1
  year: 1983
  end-page: 160
  ident: CR27
  article-title: Aquifer thermal-energy storage: a well doublet experiment at increased temperatures
  publication-title: Water Resour Res
  doi: 10.1029/WR019i001p00149
  contributor:
    fullname: Hopf
– ident: CR28
– volume: 32
  start-page: 579
  issue: 4–6
  year: 2003
  end-page: 588
  ident: CR29
  article-title: Current status of ground source heat pumps and underground thermal energy storage in Europe
  publication-title: Geothermics
  doi: 10.1016/S0375-6505(03)00060-9
  contributor:
    fullname: Rybach
– ident: CR41
– volume: 59
  start-page: 249
  issue: 3
  year: 2009
  end-page: 260
  ident: CR9
  article-title: Aquifer thermal energy storage: theoretical and operational analysis
  publication-title: Geotechnique
  doi: 10.1680/geot.2009.59.3.249
  contributor:
    fullname: Snijders
– ident: 1066_CR5
– volume: 222
  start-page: 129
  issue: 1–4
  year: 1999
  ident: 1066_CR7
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(99)00108-0
  contributor:
    fullname: S Chevalier
– ident: 1066_CR1
  doi: 10.1016/j.renene.2013.04.004
– ident: 1066_CR39
  doi: 10.1016/j.jhydrol.2009.10.033
– ident: 1066_CR40
  doi: 10.1016/j.jhydrol.2007.06.011
– ident: 1066_CR21
– volume: 3
  start-page: 1320
  issue: 6
  year: 2010
  ident: 1066_CR24
  publication-title: Energies
  doi: 10.3390/en3061320
  contributor:
    fullname: KS Lee
– ident: 1066_CR23
– volume: 19
  start-page: 149
  issue: 1
  year: 1983
  ident: 1066_CR27
  publication-title: Water Resour Res
  doi: 10.1029/WR019i001p00149
  contributor:
    fullname: FJ Molz
– volume-title: Koude-/warmteopslag Noordwesthoek Uithof Utrecht: Effectenstudie grondwatersysteem (ATES in the northwest corner of Uithof Utrecht: study on the effect on the groundwater system) 2/50168/LS
  year: 2001
  ident: 1066_CR36
  contributor:
    fullname: L Starink
– volume: 35
  start-page: 4955
  issue: 12
  year: 2010
  ident: 1066_CR20
  publication-title: Energy
  doi: 10.1016/j.energy.2010.08.029
  contributor:
    fullname: J Kim
– volume: 17
  start-page: 641
  issue: 3
  year: 1981
  ident: 1066_CR26
  publication-title: Water Resour Res
  doi: 10.1029/WR017i003p00641
  contributor:
    fullname: FJ Molz
– volume: 45
  start-page: 485
  issue: 4
  year: 2007
  ident: 1066_CR12
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2007.00323.x
  contributor:
    fullname: G Ferguson
– volume: 47
  start-page: 96
  issue: 1
  year: 2010
  ident: 1066_CR3
  publication-title: Can Geotech J
  doi: 10.1139/T09-078
  contributor:
    fullname: DW Bridger
– volume: 230
  start-page: 235
  year: 1971
  ident: 1066_CR16
  publication-title: Nature
  doi: 10.1038/230235a0
  contributor:
    fullname: ML Harper
– ident: 1066_CR35
– ident: 1066_CR33
– ident: 1066_CR18
– volume: 32
  start-page: 579
  issue: 4–6
  year: 2003
  ident: 1066_CR29
  publication-title: Geothermics
  doi: 10.1016/S0375-6505(03)00060-9
  contributor:
    fullname: B Sanner
– volume: 18
  start-page: 571
  issue: 3
  year: 1982
  ident: 1066_CR10
  publication-title: Water Resour Res
  doi: 10.1029/WR018i003p00571
  contributor:
    fullname: C Doughty
– volume: 5
  start-page: 1
  issue: 1–2
  year: 2008
  ident: 1066_CR25
  publication-title: Int J Green Energy
  contributor:
    fullname: KS Lee
– volume: 59
  start-page: 249
  issue: 3
  year: 2009
  ident: 1066_CR9
  publication-title: Geotechnique
  doi: 10.1680/geot.2009.59.3.249
  contributor:
    fullname: JS Dickinson
– volume: 18
  start-page: 245
  issue: 2
  year: 1982
  ident: 1066_CR30
  publication-title: Water Resour Res
  doi: 10.1029/WR018i002p00245
  contributor:
    fullname: JP Sauty
– ident: 1066_CR37
  doi: 10.1007/978-94-009-9059-3_44
– start-page: 379
  volume-title: De Ondergrond van Nederland [The subsurface of the Netherlands]. Geologie van Nederland, vol 7
  year: 2003
  ident: 1066_CR8
  contributor:
    fullname: EFJ Mulder De
– ident: 1066_CR22
– ident: 1066_CR4
– ident: 1066_CR28
– ident: 1066_CR2
– volume: 14
  start-page: 1206
  issue: 7
  year: 2006
  ident: 1066_CR13
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-006-0047-y
  contributor:
    fullname: G Ferguson
– ident: 1066_CR32
  doi: 10.1029/2006WR005326
– ident: 1066_CR41
– volume: 11
  start-page: 10859
  issue: 11
  year: 2011
  ident: 1066_CR17
  publication-title: Sensors
  doi: 10.3390/s111110859
  contributor:
    fullname: MB Hausner
– volume: 18
  start-page: 253
  issue: 2
  year: 1982
  ident: 1066_CR31
  publication-title: Water Resour Res
  doi: 10.1029/WR018i002p00253
  contributor:
    fullname: JP Sauty
– volume: 53
  start-page: 237
  issue: 3
  year: 1994
  ident: 1066_CR19
  publication-title: Sol Energy
  doi: 10.1016/0038-092X(94)90630-0
  contributor:
    fullname: MT Kangas
– volume-title: Hernieuwbare energie in Nederland 2009 [Renewable energy in the Netherlands 2009]
  year: 2010
  ident: 1066_CR6
  contributor:
    fullname: CBS
– ident: 1066_CR11
– ident: 1066_CR14
  doi: 10.3390/s120505471
– ident: 1066_CR38
– ident: 1066_CR15
– ident: 1066_CR34
– ident: 1066_CR42
  doi: 10.1016/j.jconhyd.2013.01.002
SSID ssj0004173
Score 2.347779
Snippet Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy,...
Issue Title: Hydrogeology of Shallow Thermal Systems Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy....
SourceID wageningen
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 263
SubjectTerms Aquatic Pollution
Aquifers
Density
Earth and Environmental Science
Earth Sciences
Energy management
Energy storage
Flow rate
Flow rates
Geology
Geophysics/Geodesy
Heat transport
Heterogeneity
Hydrogeology
Hydrology/Water Resources
Interference
Preferential flow
Seasonal storage
simulations
Sustainable energy
systems
Temperature effects
temperature sensing data
Thermal energy
Transport
Waste Water Technology
Water Management
Water Pollution Control
Water Quality/Water Pollution
Wells
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SXUqTQ9puGrJJGlToqcWLX_LjuIR90NCeGkhPQpJlEhKUNGuzbH59ZvxYb0lSCBh8sGxZj5G-0cx8A_A11qhx-Sp3siSUTmgC7cg08RxP-Rp3NKVllYvg569ofh7-uOAXW-Cvjy7s9ai1SFYL9UasGzm_UTIC1GJQC34DfU58Xz3oj2d_ziZdNGRtV0Yg4DkEuFtb5nMf-Xc36iDm2iq6A9tLFGxbRTpt7DzT93U04KIiLCSHk-tRWaiRfnhK5_iKRn2A3QaIsnE9cz7ClrEDeNfkRL9cDeDtrEr6u9qDOc4lXL9v2F0XZcCkzRgt5Kxo6dHZlWXyb0m-Mqxo3jBVaCEjF0xs3yc4n05-n86dJgODI3nqF44fUj70JAoNd_MwVUlmskAjwsoM164yroyDWMuUJ5mHyCKOcmVy6WcpXjr3ebAPPXtrzQEwjxRPFeggV2mIoBFxaRLnbqxkTmkV-BC-tSMh7mqiDdFRKlM3CewmQd0k3CEct2MlGplboBKTojKK6mkyhC_rxygtZAKR1tyWWIaT6THGRe0_ZaKKFs3zscz3dtg2qnn5p4JuqghLqaAWgti7m_M4sSzvhb2hG4raQhDVYhIdvqqOI9hGxBbWbuPH0CvuS_MZUVGhThoxeATqvwL5
  priority: 102
  providerName: Springer Nature
Title Thermal performance and heat transport in aquifer thermal energy storage
URI https://link.springer.com/article/10.1007/s10040-013-1066-0
https://www.proquest.com/docview/1491567178
https://search.proquest.com/docview/1500767011
https://search.proquest.com/docview/1642283121
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F447586
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSxxBEC4SJUQPwUdC1qi04CmhybwfJ9mVfRBxkZAFc2q6e3pQWHpXdxbx31s10-PoQWGgD9PLzFZNV3_V9fgATlONHlegSl5kkeSRCTWXeeZzXwUadzSlZc1FcDlNJrPoz3V87Q7cVi6tsrWJtaEuFprOyH8jkkdXA52P7Gx5x4k1iqKrjkLjI2z61AmPKsVH464usokwIyTwOUHvNqrZlM5RLh1xG6BThE71632pA5vP8dFt2HrAJW7rmqcXe9BoB7448Mj6jbZ34YOxe_DZ8ZjfPO7Bp3FN1Pu4DxPUP9rcOVt2lQFM2oKR8WVV29Kc3Vom79aU38Iq9wtTlwMySpvEN_kKs9Hw3_mEO9YELuM8qHgQEYd5lkQm9sooV1lhilAjKipMrD1lPJmGqZZ5nBU-ooE0KZUpZVDkeOkyiMNvsGEX1nwH5pOzqEIdliqPEOghlszS0kuVLIkKIe7Bz1ZmYtk0xxBdG2QSsEABCxKw8Hpw2EpVuHWyEp1We3DyfBu_cApbSGsWa5wTU7gwRUP0zpykbmXmBzjnV6uxF495-6XCTqnCEn3TSlDHbXeGJh7W98LOacDlsRLUHjFLDt7_Kz9gC2FV1OR2H8JGdb82RwhdKnVcf5_HsNkfDQZTGsf_L4Y4DobTq794dxb0nwCLPvBp
link.rule.ids 230,315,786,790,891,12792,21416,27955,27956,33406,33407,33777,33778,41114,41556,42183,42625,43633,43838,52144,52267,74390,74657
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS90wFD_olaF7EKcO7-ZHBJ8cwX43fRpT1LtNL0MUfAtJmjJBcq_eXsT_fue0qXUPCoU-NKXpSXLyOzkfP4CD3KDFFemKlyJRPLGx4aoQIQ91ZHBH00Y1XASX42x0k_y6TW_9gdvMh1V2OrFR1OXE0Bn5ESJ5NDXQ-BDfpw-cWKPIu-opNBZhiUpuigEsHZ-O_1z1mZGtjxlBQcgJfHd-zTZ5jqLpiN0AzSI0q__fmXq4-eIh_QgrT7jIXZP19GoXOluDVQ8f2Y92vD_BgnXrsOyZzP8-r8OH84aq93kDRjgDUOves2mfG8CUKxmpX1Z3Rc3ZnWPqYU4RLqz2b9gmIZBR4CT2ZBNuzk6vT0bc8yZwlRZRzaOEWMxFltg0qJJCi9KWsUFcVNrUBNoGKo9zo4pUlCHigTyrtK1UVBZ4mSpK488wcBNnt4CFZC7q2MSVLhKEeogmRV4FuVYVkSGkQzjsZCanbXkM2RdCJgFLFLAkActgCNudVKVfKTPZj-sQ9l8e4xwnx4VydjLHNik5DHNURe-0yZpiZmGEbb51I_bqM293Ku4HVToicJpJqrntT9Hk0_xRunu64QKZSSqQKLIv7__KHiyPri8v5MXP8e-vsIIgK2kjvbdhUD_O7Q4CmVrv-tn6D-8J7y0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VKl6HqqVUbEtbV-IEsjbvOKcK0S7bF-IAEjfLdmxRCXkXNivEv-9M4hA4FClSDnEUZ2yPv_E8PoD90qDFlWjHa5EpntnUcFWJmMc6MbijaaNaLoI_p8X0Ivt5mV-G-KdFCKvsdWKrqOuZoTPyMSJ5NDXQ-BBjF8Iizr5Nvs5vODFIkac10GmswEsC2UTjICYnQ45k521GeBBzguG9h7NLo6O4OuI5QAMJDeyne9QAPB98pVuweYfL3bf5T4_2o8lreBWAJDvqRv4NvLB-GzYCp_nV_TasnbSkvfdvYYpzAfXvNZsPWQJM-ZqRImZNX96c_fVM3Swp1oU14Q3bpgYyCqHEnuzAxeT7-fGUBwYFrvIqaXiSEZ-5KDKbRy6rtKhtnRpESLXNTaRtpMq0NKrKRR0jMigLp61TSV3hZVySp-9g1c-83QUWk-GoU5M6XWUI-hBXitJFpVaOaBHyERz0MpPzrlCGHEoik4AlCliSgGU0gr1eqjKsmYUcRngEXx4e42wnF4bydrbENjm5DktUSs-0KdqyZnGCbQ77EXv0mf93Kh0GVXqiclpIqr4dztPk3fJW-mu64VJZSCqVKIr3z__KZ1jHaSp__zj99QE2EW1lXcj3Hqw2t0v7ERFNoz-1U_UfDs3x8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+performance+and+heat+transport+in+aquifer+thermal+energy+storage&rft.jtitle=Hydrogeology+journal&rft.au=Sommer%2C+W+T&rft.au=Doornenbal%2C+P+J&rft.au=Drijver%2C+B+C&rft.au=van+Gaans%2C+P+F%3B+M&rft.date=2014-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1431-2174&rft.eissn=1435-0157&rft.volume=22&rft.issue=1&rft.spage=263&rft_id=info:doi/10.1007%2Fs10040-013-1066-0&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3190675421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-2174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-2174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-2174&client=summon