Solute Breakthrough Curves for Processed Kaolin at Low Flow Rates
Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric flow rates (2.65 × 10 −4 cm 3 s and 2.65 × 10 −5 cm 3 s) using a flow pump system. Regression analyses of the effluent solute concentrations wi...
Saved in:
Published in | Journal of geotechnical engineering Vol. 121; no. 1; pp. 17 - 32 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
American Society of Civil Engineers
01.01.1995
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric flow rates (2.65 × 10 −4
cm 3
s and 2.65 × 10 −5
cm 3
s) using a flow pump system. Regression analyses of the effluent solute concentrations with two analytical models resulted in hydrodynamic dispersion coefficients D
ranging from 1.49 × 10 −6
cm 2
s to 3.95 × 10 −6
cm 2
s for chloride and from 2.11 × 10 −6
cm 2
s to 8.74 × 10 −6
cm 2
s for sodium indicating that diffusion dominated the transport process in the two column tests. The effluent electrical conductance values measured immediately after sampling also tend to reflect the dominance of diffusion on the solute migration process. An observed decrease in effluent pH from between 4.8 and 5.5 during permeation with distilled water to about 4.5 during subsequent permeation with the NaCl solution is consistent with Na +
for H +
exchange at relatively low pH previously reported for studies involving kaolinite soils. The results of this laboratory study tend to confirm previous field studies that indicate diffusion-dominated transport at the low flow rates common in fine-grained barrier materials. |
---|---|
AbstractList | Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric flow rates (2.65 x 10 super(-4) cm super(3)/s and 2.65 x 10 super(-5) cm super(3)/s) using a flow pump system. Regression analyses of the effluent solute concentrations with two analytical models resulted in hydrodynamic dispersion coefficients D ranging from 1.49 x 10 super(-6) cm super(2)/s to 3.95 x 10 super(-6) cm super(2)/s for chloride and from 2.11 x 10 super(-6) cm super(2)/s to 8.74 x 10 super(-6) cm super(2)/s for sodium indicating that diffusion dominated the transport process in the two column tests. The effluent electrical conductance values measured immediately after sampling also tend to reflect the dominance of diffusion on the solute migration process. An observed decrease in effluent pH from between 4.8 and 5.5 during permeation with distilled water to about 4.5 during subsequent permeation with the NaCl solution is consistent with Na super(+) for H super(+) exchange at relatively low pH previously reported for studies involving kaolinite soils. The results of this laboratory study tend to confirm previous field studies that indicate diffusion-dominated transport at the low flow rates common in fine-grained barrier materials. Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric flow rates (2.65x10 super(-4) cm super(3)/s and 2.65x10 super(-5) cm super(3)/s) using a flow pump system. Regression analyses of the effluent solute concentrations with two analytical models resulted in hydrodynamic dispersion coefficients D ranging from 1.49x10 super(-6) cm super(2)/s to 3.95x10 super(-6) cm super(2)/s to 8.74x10 super(-6) cm super(2)/s for sodium indicating that diffusion dominated the transport process in the two column tests. The effluent electrical conductance values measured immediately after sampling also tend to reflect the dominance of diffusion on the solute migration process. An observed decrease in effluent pH from between 4.8 and 5.5 during permeation with distilled water to about 4.5 during subsequent permeation with the NaCl solution is consistent with Na super(+) for H super(+) exchange at relatively low pH previously reported for studies involving kaolinite soils. The results of this laboratory study tend to confirm previous field studies that indicate diffusion-dominated transport at the low flow rates common in fine-grained barrier materials. Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric flow rates (2.65 \* 10-4 cm 3/s and 2.65 \* 10 -5 cm3/s) using a flow pump system. Regression analyses of the effluent solute concentrations with two analytical models resulted in hydrodynamic dispersion coefficients D ranging from 1.49 \* 10-6 cm2/s to 3.95 \* 10-6 cm2/s for chloride and from 2.11 \* 10-6 cm2/s to 8.74 \* 10 -6 cm2/s for sodium indicating that diffusion dominated the transport process in the two column tests. The effluent electrical conductance values measured immediately after sampling also tend to reflect the dominance of diffusion on the solute migration process. An observed decrease in effluent pH from between 4.8 and 5.5 during permeation with distilled water to about 4.5 during subsequent permeation with the NaCl solution is consistent with Na+ for H+ exchange at relatively low pH previously reported for studies involving kaolinite soils. The results of this laboratory study tend to confirm previous field studies that indicate diffusion-dominated transport at the low flow rates common in fine-grained barrier materials. Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric flow rates (2.65 × 10 −4 cm 3 s and 2.65 × 10 −5 cm 3 s) using a flow pump system. Regression analyses of the effluent solute concentrations with two analytical models resulted in hydrodynamic dispersion coefficients D ranging from 1.49 × 10 −6 cm 2 s to 3.95 × 10 −6 cm 2 s for chloride and from 2.11 × 10 −6 cm 2 s to 8.74 × 10 −6 cm 2 s for sodium indicating that diffusion dominated the transport process in the two column tests. The effluent electrical conductance values measured immediately after sampling also tend to reflect the dominance of diffusion on the solute migration process. An observed decrease in effluent pH from between 4.8 and 5.5 during permeation with distilled water to about 4.5 during subsequent permeation with the NaCl solution is consistent with Na + for H + exchange at relatively low pH previously reported for studies involving kaolinite soils. The results of this laboratory study tend to confirm previous field studies that indicate diffusion-dominated transport at the low flow rates common in fine-grained barrier materials. |
Author | Redmond, Patrick L Shackelford, Charles D |
Author_xml | – sequence: 1 givenname: Charles D surname: Shackelford fullname: Shackelford, Charles D – sequence: 2 givenname: Patrick L surname: Redmond fullname: Redmond, Patrick L |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3389215$$DView record in Pascal Francis |
BookMark | eNqNkd9P2zAQgK2JSZRu_0MeELQPgTs7TmykPZRSfq3aJroJiRfLNQ4U0rjYCYj_fs7K-shmS2fL_nw-3bdDtmpXW0L2EA4QcjwcjGbjyRAKxlKZIQxQSj5Eikc4wGL4gfRQZlkqWC62SG-DbZOdEB4AKHKe9cho5qq2scmxt_qxufeuvbtPxq1_tiEpnU9-eGdsCPY2-apdtagT3SRT95KcVjFc6caGT-RjqatgP7-tffLrdPJzfJ5Ov59djEfTVHMhm5TbAudAhZZCxgPKpObUyJILA4LNGZMZK4XOczs38SYvQJSg9a2BORdYUNYn--u8K--eWhsatVwEY6tK19a1QRVZTrmgkkVy712Scik4MPxPkNJ_gpiLnGImI_hlDRrvQvC2VCu_WGr_qhBUZ02pzprqdKhOh-qsqWhNxVnE97tvH-lgdFV6XZtF2CRhLHYOecSu11ikrHpwra9j69Xl2eTbyQ0AxHzQjT8Ri_X-bwXvFvAbFomu1A |
CODEN | JGENDZ |
CitedBy_id | crossref_primary_10_1139_cgj_2013_0277 crossref_primary_10_1007_s12303_008_0010_0 crossref_primary_10_1061__ASCE_1090_0241_1997_123_3_260 crossref_primary_10_1016_j_compgeo_2022_104929 crossref_primary_10_1016_j_wasman_2013_10_008 crossref_primary_10_1061__ASCE_GT_1943_5606_0001877 crossref_primary_10_3208_jgssp_v09_cpeg024 crossref_primary_10_1021_es9702024 crossref_primary_10_1520_GTJ10102J crossref_primary_10_1346_CCMN_2003_0510209 crossref_primary_10_1061__ASCE_EE_1943_7870_0000205 crossref_primary_10_1061__ASCE_1090_0241_2002_128_2_97 crossref_primary_10_1061__ASCE_GT_1943_5606_0002880 crossref_primary_10_1016_j_jconhyd_2010_06_001 crossref_primary_10_1111_j_1745_6584_2000_tb00244_x crossref_primary_10_2134_jeq2006_0134 crossref_primary_10_1016_j_chemgeo_2012_10_041 crossref_primary_10_1061__ASCE_0733_9410_1996_122_3_173 crossref_primary_10_1139_T10_014 crossref_primary_10_1016_j_clay_2014_09_017 crossref_primary_10_1016_j_apradiso_2013_07_004 crossref_primary_10_1016_S1006_1266_08_60027_9 crossref_primary_10_1111_j_1745_6592_1995_tb00548_x crossref_primary_10_1007_s12665_014_3729_0 crossref_primary_10_1016_j_conbuildmat_2021_126285 crossref_primary_10_1631_jzus_A2200416 crossref_primary_10_1061__ASCE_1090_0241_1999_125_4_260 crossref_primary_10_3390_app11209735 crossref_primary_10_1139_cgj_2019_0468 crossref_primary_10_1016_j_wasman_2014_06_012 crossref_primary_10_1016_j_sandf_2013_08_006 crossref_primary_10_1007_s10653_023_01642_4 crossref_primary_10_1016_j_jhydrol_2013_09_046 crossref_primary_10_1139_cgj_2016_0708 crossref_primary_10_1080_02533839_2000_9670575 crossref_primary_10_1520_GTJ11343J crossref_primary_10_1520_GTJ11420J crossref_primary_10_1016_j_clay_2024_107298 crossref_primary_10_1061__ASCE_0733_9410_1996_122_3_186 crossref_primary_10_1016_j_clay_2016_10_041 crossref_primary_10_1061__ASCE_0733_9372_1998_124_11_1135 crossref_primary_10_1061__ASCE_GT_1943_5606_0000047 crossref_primary_10_1061__ASCE_GT_1943_5606_0000566 crossref_primary_10_1061__ASCE_GT_1943_5606_0002107 crossref_primary_10_1016_j_seppur_2011_01_022 crossref_primary_10_1061__ASCE_GT_1943_5606_0001734 crossref_primary_10_1061__ASCE_GT_1943_5606_0001733 crossref_primary_10_1520_GTJ10411J crossref_primary_10_1061__ASCE_1090_0241_1997_123_12_1135 crossref_primary_10_1520_GTJ10746J crossref_primary_10_1016_j_jhazmat_2024_133990 crossref_primary_10_1061__ASCE_0733_9372_2004_130_8_906 crossref_primary_10_1016_j_desal_2010_08_006 crossref_primary_10_1016_j_clay_2015_02_006 crossref_primary_10_1016_j_envres_2021_112239 crossref_primary_10_1007_s12665_014_3514_0 crossref_primary_10_1680_jenge_22_00186 crossref_primary_10_1061__ASCE_1090_0241_2007_133_2_227 crossref_primary_10_1520_GTJ12520 crossref_primary_10_1680_jenge_17_00041 crossref_primary_10_1007_s10706_011_9482_1 crossref_primary_10_1016_j_geotexmem_2013_07_011 crossref_primary_10_1061__ASCE_1090_0241_2005_131_1_64 crossref_primary_10_1016_j_jrmge_2023_04_010 crossref_primary_10_1061__ASCE_1090_025X_2003_7_1_37 crossref_primary_10_1061__ASCE_GT_1943_5606_0001344 crossref_primary_10_1007_s12665_013_2675_6 crossref_primary_10_1061__ASCE_0733_9410_1995_121_10_696 crossref_primary_10_1080_02630259908970273 crossref_primary_10_1061__ASCE_1090_0241_1998_124_3_231 crossref_primary_10_1590_S1413_41522004000300007 crossref_primary_10_1061__ASCE_1090_0241_2007_133_2_175 crossref_primary_10_1016_j_geotexmem_2016_05_009 crossref_primary_10_1061__ASCE_HZ_1944_8376_0000033 crossref_primary_10_1111_j_1745_6584_1997_tb00080_x crossref_primary_10_1061__ASCE_EE_1943_7870_0001792 crossref_primary_10_1061__ASCE_1090_0241_2002_128_8_640 crossref_primary_10_1016_j_clay_2018_03_030 crossref_primary_10_1007_s11356_024_34170_4 crossref_primary_10_1061__ASCE_1090_0241_2005_131_4_418 crossref_primary_10_1590_S0104_66322001000300005 crossref_primary_10_1680_jenge_21_00124 crossref_primary_10_1061__ASCE_GT_1943_5606_0000729 |
Cites_doi | 10.1520/STP23887S 10.2134/agronmonogr9.2.2ed.c8 10.1016/0021-9797(75)90110-1 10.1061/(ASCE)0733-9410(1994)120:10(1804) 10.1016/0169-7722(91)90028-Y 10.2134/agronmonogr9.2.2ed.c9 10.1021/es60007a001 10.1021/es00180a012 10.2136/sssaj1987.03615995005100020007x 10.2136/sssaj1984.03615995004800040002x 10.1346/CCMN.1980.0280602 10.1139/t84-035 10.1097/00010694-196507000-00038 10.1007/978-1-4615-3070-1_3 10.1680/geot.1992.42.1.49 10.1061/(ASCE)0733-9410(1990)116:7(1031) 10.1016/0009-2509(78)85196-3 10.1346/CCMN.1978.0260204 10.1071/SR9760197 10.1029/WR005i004p00830 10.1139/t77-023 10.3133/pp411A 10.1029/WR020i007p00866 |
ContentType | Journal Article |
Copyright | Copyright © 1995 American Society of Civil Engineers 1995 INIST-CNRS |
Copyright_xml | – notice: Copyright © 1995 American Society of Civil Engineers – notice: 1995 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7UA C1K F1W H96 L.G 8FD FR3 KR7 7TC |
DOI | 10.1061/(ASCE)0733-9410(1995)121:1(17) |
DatabaseName | Pascal-Francis CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Engineering Research Database Civil Engineering Abstracts Mechanical Engineering Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database Mechanical Engineering Abstracts |
DatabaseTitleList | Technology Research Database Mechanical Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1944-8368 |
EndPage | 32 |
ExternalDocumentID | 10_1061__ASCE_0733_9410_1995_121_1_17 3389215 JGENDZ00012100000100001700000110_1061_ASCE_0733_9410_1995_121_1_17 |
GroupedDBID | -0O 08R 0O 29K 4.4 4P2 4S 5GY 6XO ABBOT ABDBF ABEFU ABFLS ABPTK ACDCL ACKIV ACNET ACVYA ADZKS AFDAS AFFNX ALMA_UNASSIGNED_HOLDINGS ARCSS ARKUK CS3 D-I E70 EAD EAP EBS EDH EDO EJD EMK EPL ESX I-F L7B MM- O~X RAC TN5 TUS VH1 X ZY4 -~X .4S .DC AAELQ AAIKC AAMNW AAYOK ABTAH ADVLX AI. GQVBS IQODW AAYXX ALNAR CITATION 7UA C1K F1W H96 L.G 8FD FR3 KR7 7TC |
ID | FETCH-LOGICAL-a589t-5e71b028a989589239a52c9f58c083b33943f8a66ebca526708f0aadc0b581723 |
ISSN | 0733-9410 |
IngestDate | Fri Aug 16 05:15:31 EDT 2024 Fri Aug 16 08:06:36 EDT 2024 Fri Aug 16 04:25:05 EDT 2024 Fri Aug 23 02:24:12 EDT 2024 Sun Oct 29 17:08:49 EDT 2023 Tue Jan 05 18:50:20 EST 2021 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Keywords | Hydrology Electrical conductivity Chemical transport pH Clay soil Hydraulic conductivity Kaolinite Porosity Diffusion Sodium chloride Breakthrough curve Ground water |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a589t-5e71b028a989589239a52c9f58c083b33943f8a66ebca526708f0aadc0b581723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 16862149 |
PQPubID | 23500 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_746258293 proquest_miscellaneous_25985031 proquest_miscellaneous_25985022 proquest_miscellaneous_16862149 crossref_primary_10_1061__ASCE_0733_9410_1995_121_1_17 pascalfrancis_primary_3389215 asce_journals_JGENDZ00012100000100001700000110_1061_ASCE_0733_9410_1995_121_1_17 |
ProviderPackageCode | ABBOT RAC ACNET ARKUK ADZKS -0O E70 |
PublicationCentury | 1900 |
PublicationDate | 1995-01 1995 1995-01-00 19950101 |
PublicationDateYYYYMMDD | 1995-01-01 |
PublicationDate_xml | – month: 01 year: 1995 text: 1995-01 |
PublicationDecade | 1990 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | Journal of geotechnical engineering |
PublicationYear | 1995 |
Publisher | American Society of Civil Engineers |
Publisher_xml | – name: American Society of Civil Engineers |
References | Bolland, M. D. A.; Posner, A. M.; Quirk, J. P. 1976; 14 Shackelford, C. D. 1994b; 120 Shackelford, C. D. 1991; 7 McBride, M. B. 1978; 26 Shackelford, C. D. 1988; 6 Johnson, R. L.; Cherry, J. A.; Pankow, J. F. 1989; 23 Gershon, N. D.; Nir, A. 1969; 5 Crooks, V. E.; Quigley, R. M. 1984; 21 Goodall, D. C.; Quigley, R. M. 1977; 14 Kreft, A.; Zuber, A. 1978; 33 Redmond, P. L.; Shackelford, C. D. 1994; 17 Acar, Y. B.; Haider, L. 1990; 116 Ferris, A. P.; Jepson, W. B. 1975; 51 Parker, J. C.; van Genuchten, M. Th. 1984; 20 van Genuchten, M. Th.; Parker, J. C. 1984; 48 Bolland, M. D. A.; Posner, A. M.; Quirk, J. P. 1980; 28 e_1_2_1_22_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_28_2 e_1_2_1_29_2 Shackelford C. D. (e_1_2_1_27_2) 1988; 6 e_1_2_1_6_2 Redmond P. L. (e_1_2_1_23_2) 1994; 17 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_1_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – volume: 21 start-page: 349 year: 1984 article-title: Saline leachate migration through clay: a comparative laboratory and field investigation. publication-title: Can. Geotech. J. contributor: fullname: Crooks, V. E.; Quigley, R. M. – volume: 51 start-page: 245 year: 1975 article-title: The exchange capacities of kaolinite and the preparation of homoionic clays. publication-title: J. Colloid and Interface Sci. contributor: fullname: Ferris, A. P.; Jepson, W. B. – volume: 7 start-page: 177 year: 1991 article-title: Laboratory diffusion testing for waste disposal-a review. publication-title: J. Contaminant Hydrol., Elsevier, Amsterdam, The Netherlands contributor: fullname: Shackelford, C. D. – volume: 33 start-page: 1471 year: 1978 article-title: On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. publication-title: Chemical Engrg. Sci. contributor: fullname: Kreft, A.; Zuber, A. – volume: 20 start-page: 866 year: 1984 article-title: Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport. publication-title: Water Resour. Res. contributor: fullname: Parker, J. C.; van Genuchten, M. Th. – volume: 14 start-page: 197 year: 1976 article-title: Surface charges on kaolinites in aqueous suspension. publication-title: Australian J. Soil Res. contributor: fullname: Bolland, M. D. A.; Posner, A. M.; Quirk, J. P. – volume: 14 start-page: 223 year: 1977 article-title: Pollutant migration from two sanitary landfill sites near Sarnia, Ontario. publication-title: Can. Geotech. J. contributor: fullname: Goodall, D. C.; Quigley, R. M. – volume: 17 start-page: 269 year: 1994 article-title: Design and evaluation of a flow pump system for column testing. publication-title: ASTM Geotech. Testing J. contributor: fullname: Redmond, P. L.; Shackelford, C. D. – volume: 28 start-page: 412 year: 1980 article-title: pH-independent and pH-dependent surface charges on kaolinite. publication-title: Clays and clay minerals contributor: fullname: Bolland, M. D. A.; Posner, A. M.; Quirk, J. P. – volume: 5 start-page: 830 year: 1969 article-title: Effects of boundary conditions of models on tracer distribution in flow through porous mediums. publication-title: Water Resour. Res. contributor: fullname: Gershon, N. D.; Nir, A. – volume: 48 start-page: 703 year: 1984 article-title: Boundary conditions for displacement experiments through short laboratory soil columns. publication-title: J. Soil Sci. Soc. of Am. contributor: fullname: van Genuchten, M. Th.; Parker, J. C. – volume: 116 start-page: 1031 year: 1990 article-title: Transport of low-concentration contaminants in saturated earthen barriers. publication-title: J. Geotech. Engrg., ASCE contributor: fullname: Acar, Y. B.; Haider, L. – volume: 23 start-page: 340 year: 1989 article-title: Diffusive contaminant transport in natural clay: a field example and implications for clay-lined waste disposal sites. publication-title: Envir. Sci. and Technol. contributor: fullname: Johnson, R. L.; Cherry, J. A.; Pankow, J. F. – volume: 6 start-page: 24 year: 1988 article-title: Diffusion as a transport process in fine-grained barrier materials. publication-title: Geotech. News contributor: fullname: Shackelford, C. D. – volume: 26 start-page: 101 year: 1978 article-title: Copper (II) interactions with kaolinite: factors controlling adsorption. publication-title: Clays and Clay Minerals contributor: fullname: McBride, M. B. – volume: 120 start-page: 1804 year: 1994b article-title: Critical concepts for column testing. publication-title: J. Geotech. Engrg., ASCE contributor: fullname: Shackelford, C. D. – ident: e_1_2_1_30_2 doi: 10.1520/STP23887S – ident: e_1_2_1_24_2 doi: 10.2134/agronmonogr9.2.2ed.c8 – ident: e_1_2_1_25_2 – ident: e_1_2_1_11_2 doi: 10.1016/0021-9797(75)90110-1 – ident: e_1_2_1_3_2 – ident: e_1_2_1_31_2 doi: 10.1061/(ASCE)0733-9410(1994)120:10(1804) – ident: e_1_2_1_28_2 doi: 10.1016/0169-7722(91)90028-Y – ident: e_1_2_1_32_2 doi: 10.2134/agronmonogr9.2.2ed.c9 – ident: e_1_2_1_2_2 – ident: e_1_2_1_18_2 doi: 10.1021/es60007a001 – ident: e_1_2_1_6_2 – ident: e_1_2_1_16_2 doi: 10.1021/es00180a012 – volume: 17 start-page: 269 issue: 1 year: 1994 ident: e_1_2_1_23_2 article-title: Design and evaluation of a flow pump system for column testing. publication-title: ASTM Geotech. Testing J. contributor: fullname: Redmond P. L. – ident: e_1_2_1_26_2 doi: 10.2136/sssaj1987.03615995005100020007x – ident: e_1_2_1_9_2 – ident: e_1_2_1_10_2 – ident: e_1_2_1_33_2 – ident: e_1_2_1_34_2 doi: 10.2136/sssaj1984.03615995004800040002x – ident: e_1_2_1_5_2 doi: 10.1346/CCMN.1980.0280602 – ident: e_1_2_1_7_2 doi: 10.1139/t84-035 – ident: e_1_2_1_8_2 doi: 10.1097/00010694-196507000-00038 – ident: e_1_2_1_29_2 doi: 10.1007/978-1-4615-3070-1_3 – volume: 6 start-page: 24 issue: 2 year: 1988 ident: e_1_2_1_27_2 article-title: Diffusion as a transport process in fine-grained barrier materials. publication-title: Geotech. News contributor: fullname: Shackelford C. D. – ident: e_1_2_1_35_2 doi: 10.1680/geot.1992.42.1.49 – ident: e_1_2_1_1_2 doi: 10.1061/(ASCE)0733-9410(1990)116:7(1031) – ident: e_1_2_1_17_2 doi: 10.1016/0009-2509(78)85196-3 – ident: e_1_2_1_19_2 doi: 10.1346/CCMN.1978.0260204 – ident: e_1_2_1_20_2 – ident: e_1_2_1_4_2 doi: 10.1071/SR9760197 – ident: e_1_2_1_13_2 doi: 10.1029/WR005i004p00830 – ident: e_1_2_1_14_2 doi: 10.1139/t77-023 – ident: e_1_2_1_15_2 – ident: e_1_2_1_21_2 doi: 10.3133/pp411A – ident: e_1_2_1_12_2 – ident: e_1_2_1_22_2 doi: 10.1029/WR020i007p00866 |
SSID | ssj0021554 |
Score | 1.3805379 |
Snippet | Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric... |
SourceID | proquest crossref pascalfrancis asce |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 17 |
SubjectTerms | Applied sciences Buildings. Public works Diffusion in solids Effluents Electric resistance measurement Exact sciences and technology Flow of fluids Freshwater Geotechnics Hydrodynamics Mathematical models Mechanical permeability Sodium chloride Soil testing TECHNICAL PAPERS Water effect, drainage, ground water lowering, filtration |
Title | Solute Breakthrough Curves for Processed Kaolin at Low Flow Rates |
URI | http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9410(1995)121:1(17) https://search.proquest.com/docview/16862149 https://search.proquest.com/docview/25985022 https://search.proquest.com/docview/25985031 https://search.proquest.com/docview/746258293 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaqTkIgxI8BosDAD4BaTSmJHScxb13bUQ2YEGzStBfLSR00rWqrtQWJB_527mInbRlVAVWyIteurX6X8-fz3ZmQl0YmYcayoad5lHthlBkvBQ3pxX4Oy51mzNdo7_h4HA1Ow6MzcVar_VyNLpmn7ezHH-NK_gdVqANcMUr2H5CtfhQq4BnwhRIQhvKvMC5sWmYfdrX6srxwJ1tcYSJZ9B6c2iAAoJSXGu_mwcDF0eT7fo4FpoiYbaCmX83E5nZFAM0yY2Fljhl0uu_7H2ADWdhZ20u34c_9HijpXsFN2y6iYeiC7MQS__KYqPQZRZ-Qi28Xoyo94qoJMebck6FzSzVWgcow9BJur8qpNKwNgl4TJasvbdymW3mtofOaTgfGAUAA3-586fZfMVkNi5msYPJQBQNg6gmsqCwoa6m1f1vyKkdE2KBLhjkKdhgoKlEnO52D3sFhtWVHtlUkcnVD3iCv3ZTeNHE6reqbJk6lBRN5GzSDuAUrvJ7hlmeF7dyeQpUe5fbGlGuLf8FoTu6ROw5v2rFydZ_UzHiX3HXbEuqU_myX3FrJWfkA1uFC6Oiq0FErdBSEjlZCR63QUT2nIG8UhY4WQveQnB72T7oDz93D4WmRyLknTBykwEO1TCRUMC61YJmElzkDAp9yLkOeJzqK0LFOsCj2k9zXepj5qQBAGH9E6uPJ2DwmNJLGSC4TwxMdZlwD_89ZJIJhmORxnOUN8gn_NuVespk6etc_7p0X9tLiJMq351GxfS48KKJAIRQKoVAIhUIoFHRQ8IkbJCohUFObwUWV_bZ03FsDrOrthKZBXpQAKtDJeNCmx2aymKkAw66CUG5uwYRMBNDnbS140CB0Q4s4jJhIgK4_2TLRp-SmTcSAhsNnpD6_Wpg9oNLz9LmT918A8bv3 |
link.rule.ids | 315,783,787,4031,27935,27936,27937 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solute+breakthrough+curves+for+processed+kaolin+at+low+flow+rates&rft.jtitle=Journal+of+geotechnical+engineering&rft.au=SHACKELFOR%2C+C.+D&rft.au=REDMOND%2C+P.+L&rft.date=1995&rft.pub=American+Society+of+Civil+Engineers&rft.issn=0733-9410&rft.eissn=1944-8368&rft.volume=121&rft.issue=1&rft.spage=17&rft.epage=32&rft_id=info:doi/10.1061%2F%28ASCE%290733-9410%281995%29121%3A1%2817%29&rft.externalDBID=n%2Fa&rft.externalDocID=3389215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-9410&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-9410&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-9410&client=summon |