Solute Breakthrough Curves for Processed Kaolin at Low Flow Rates

Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric flow rates (2.65 × 10 −4 cm 3 s and 2.65 × 10 −5 cm 3 s) using a flow pump system. Regression analyses of the effluent solute concentrations wi...

Full description

Saved in:
Bibliographic Details
Published inJournal of geotechnical engineering Vol. 121; no. 1; pp. 17 - 32
Main Authors Shackelford, Charles D, Redmond, Patrick L
Format Journal Article
LanguageEnglish
Published New York, NY American Society of Civil Engineers 01.01.1995
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric flow rates (2.65 × 10 −4 cm 3 s and 2.65 × 10 −5 cm 3 s) using a flow pump system. Regression analyses of the effluent solute concentrations with two analytical models resulted in hydrodynamic dispersion coefficients D ranging from 1.49 × 10 −6 cm 2 s to 3.95 × 10 −6 cm 2 s for chloride and from 2.11 × 10 −6 cm 2 s to 8.74 × 10 −6 cm 2 s for sodium indicating that diffusion dominated the transport process in the two column tests. The effluent electrical conductance values measured immediately after sampling also tend to reflect the dominance of diffusion on the solute migration process. An observed decrease in effluent pH from between 4.8 and 5.5 during permeation with distilled water to about 4.5 during subsequent permeation with the NaCl solution is consistent with Na + for H + exchange at relatively low pH previously reported for studies involving kaolinite soils. The results of this laboratory study tend to confirm previous field studies that indicate diffusion-dominated transport at the low flow rates common in fine-grained barrier materials.
AbstractList Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric flow rates (2.65 x 10 super(-4) cm super(3)/s and 2.65 x 10 super(-5) cm super(3)/s) using a flow pump system. Regression analyses of the effluent solute concentrations with two analytical models resulted in hydrodynamic dispersion coefficients D ranging from 1.49 x 10 super(-6) cm super(2)/s to 3.95 x 10 super(-6) cm super(2)/s for chloride and from 2.11 x 10 super(-6) cm super(2)/s to 8.74 x 10 super(-6) cm super(2)/s for sodium indicating that diffusion dominated the transport process in the two column tests. The effluent electrical conductance values measured immediately after sampling also tend to reflect the dominance of diffusion on the solute migration process. An observed decrease in effluent pH from between 4.8 and 5.5 during permeation with distilled water to about 4.5 during subsequent permeation with the NaCl solution is consistent with Na super(+) for H super(+) exchange at relatively low pH previously reported for studies involving kaolinite soils. The results of this laboratory study tend to confirm previous field studies that indicate diffusion-dominated transport at the low flow rates common in fine-grained barrier materials.
Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric flow rates (2.65x10 super(-4) cm super(3)/s and 2.65x10 super(-5) cm super(3)/s) using a flow pump system. Regression analyses of the effluent solute concentrations with two analytical models resulted in hydrodynamic dispersion coefficients D ranging from 1.49x10 super(-6) cm super(2)/s to 3.95x10 super(-6) cm super(2)/s to 8.74x10 super(-6) cm super(2)/s for sodium indicating that diffusion dominated the transport process in the two column tests. The effluent electrical conductance values measured immediately after sampling also tend to reflect the dominance of diffusion on the solute migration process. An observed decrease in effluent pH from between 4.8 and 5.5 during permeation with distilled water to about 4.5 during subsequent permeation with the NaCl solution is consistent with Na super(+) for H super(+) exchange at relatively low pH previously reported for studies involving kaolinite soils. The results of this laboratory study tend to confirm previous field studies that indicate diffusion-dominated transport at the low flow rates common in fine-grained barrier materials.
Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric flow rates (2.65 \* 10-4 cm 3/s and 2.65 \* 10 -5 cm3/s) using a flow pump system. Regression analyses of the effluent solute concentrations with two analytical models resulted in hydrodynamic dispersion coefficients D ranging from 1.49 \* 10-6 cm2/s to 3.95 \* 10-6 cm2/s for chloride and from 2.11 \* 10-6 cm2/s to 8.74 \* 10 -6 cm2/s for sodium indicating that diffusion dominated the transport process in the two column tests. The effluent electrical conductance values measured immediately after sampling also tend to reflect the dominance of diffusion on the solute migration process. An observed decrease in effluent pH from between 4.8 and 5.5 during permeation with distilled water to about 4.5 during subsequent permeation with the NaCl solution is consistent with Na+ for H+ exchange at relatively low pH previously reported for studies involving kaolinite soils. The results of this laboratory study tend to confirm previous field studies that indicate diffusion-dominated transport at the low flow rates common in fine-grained barrier materials.
Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric flow rates (2.65 × 10 −4 cm 3 s and 2.65 × 10 −5 cm 3 s) using a flow pump system. Regression analyses of the effluent solute concentrations with two analytical models resulted in hydrodynamic dispersion coefficients D ranging from 1.49 × 10 −6 cm 2 s to 3.95 × 10 −6 cm 2 s for chloride and from 2.11 × 10 −6 cm 2 s to 8.74 × 10 −6 cm 2 s for sodium indicating that diffusion dominated the transport process in the two column tests. The effluent electrical conductance values measured immediately after sampling also tend to reflect the dominance of diffusion on the solute migration process. An observed decrease in effluent pH from between 4.8 and 5.5 during permeation with distilled water to about 4.5 during subsequent permeation with the NaCl solution is consistent with Na + for H + exchange at relatively low pH previously reported for studies involving kaolinite soils. The results of this laboratory study tend to confirm previous field studies that indicate diffusion-dominated transport at the low flow rates common in fine-grained barrier materials.
Author Redmond, Patrick L
Shackelford, Charles D
Author_xml – sequence: 1
  givenname: Charles D
  surname: Shackelford
  fullname: Shackelford, Charles D
– sequence: 2
  givenname: Patrick L
  surname: Redmond
  fullname: Redmond, Patrick L
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3389215$$DView record in Pascal Francis
BookMark eNqNkd9P2zAQgK2JSZRu_0MeELQPgTs7TmykPZRSfq3aJroJiRfLNQ4U0rjYCYj_fs7K-shmS2fL_nw-3bdDtmpXW0L2EA4QcjwcjGbjyRAKxlKZIQxQSj5Eikc4wGL4gfRQZlkqWC62SG-DbZOdEB4AKHKe9cho5qq2scmxt_qxufeuvbtPxq1_tiEpnU9-eGdsCPY2-apdtagT3SRT95KcVjFc6caGT-RjqatgP7-tffLrdPJzfJ5Ov59djEfTVHMhm5TbAudAhZZCxgPKpObUyJILA4LNGZMZK4XOczs38SYvQJSg9a2BORdYUNYn--u8K--eWhsatVwEY6tK19a1QRVZTrmgkkVy712Scik4MPxPkNJ_gpiLnGImI_hlDRrvQvC2VCu_WGr_qhBUZ02pzprqdKhOh-qsqWhNxVnE97tvH-lgdFV6XZtF2CRhLHYOecSu11ikrHpwra9j69Xl2eTbyQ0AxHzQjT8Ri_X-bwXvFvAbFomu1A
CODEN JGENDZ
CitedBy_id crossref_primary_10_1139_cgj_2013_0277
crossref_primary_10_1007_s12303_008_0010_0
crossref_primary_10_1061__ASCE_1090_0241_1997_123_3_260
crossref_primary_10_1016_j_compgeo_2022_104929
crossref_primary_10_1016_j_wasman_2013_10_008
crossref_primary_10_1061__ASCE_GT_1943_5606_0001877
crossref_primary_10_3208_jgssp_v09_cpeg024
crossref_primary_10_1021_es9702024
crossref_primary_10_1520_GTJ10102J
crossref_primary_10_1346_CCMN_2003_0510209
crossref_primary_10_1061__ASCE_EE_1943_7870_0000205
crossref_primary_10_1061__ASCE_1090_0241_2002_128_2_97
crossref_primary_10_1061__ASCE_GT_1943_5606_0002880
crossref_primary_10_1016_j_jconhyd_2010_06_001
crossref_primary_10_1111_j_1745_6584_2000_tb00244_x
crossref_primary_10_2134_jeq2006_0134
crossref_primary_10_1016_j_chemgeo_2012_10_041
crossref_primary_10_1061__ASCE_0733_9410_1996_122_3_173
crossref_primary_10_1139_T10_014
crossref_primary_10_1016_j_clay_2014_09_017
crossref_primary_10_1016_j_apradiso_2013_07_004
crossref_primary_10_1016_S1006_1266_08_60027_9
crossref_primary_10_1111_j_1745_6592_1995_tb00548_x
crossref_primary_10_1007_s12665_014_3729_0
crossref_primary_10_1016_j_conbuildmat_2021_126285
crossref_primary_10_1631_jzus_A2200416
crossref_primary_10_1061__ASCE_1090_0241_1999_125_4_260
crossref_primary_10_3390_app11209735
crossref_primary_10_1139_cgj_2019_0468
crossref_primary_10_1016_j_wasman_2014_06_012
crossref_primary_10_1016_j_sandf_2013_08_006
crossref_primary_10_1007_s10653_023_01642_4
crossref_primary_10_1016_j_jhydrol_2013_09_046
crossref_primary_10_1139_cgj_2016_0708
crossref_primary_10_1080_02533839_2000_9670575
crossref_primary_10_1520_GTJ11343J
crossref_primary_10_1520_GTJ11420J
crossref_primary_10_1016_j_clay_2024_107298
crossref_primary_10_1061__ASCE_0733_9410_1996_122_3_186
crossref_primary_10_1016_j_clay_2016_10_041
crossref_primary_10_1061__ASCE_0733_9372_1998_124_11_1135
crossref_primary_10_1061__ASCE_GT_1943_5606_0000047
crossref_primary_10_1061__ASCE_GT_1943_5606_0000566
crossref_primary_10_1061__ASCE_GT_1943_5606_0002107
crossref_primary_10_1016_j_seppur_2011_01_022
crossref_primary_10_1061__ASCE_GT_1943_5606_0001734
crossref_primary_10_1061__ASCE_GT_1943_5606_0001733
crossref_primary_10_1520_GTJ10411J
crossref_primary_10_1061__ASCE_1090_0241_1997_123_12_1135
crossref_primary_10_1520_GTJ10746J
crossref_primary_10_1016_j_jhazmat_2024_133990
crossref_primary_10_1061__ASCE_0733_9372_2004_130_8_906
crossref_primary_10_1016_j_desal_2010_08_006
crossref_primary_10_1016_j_clay_2015_02_006
crossref_primary_10_1016_j_envres_2021_112239
crossref_primary_10_1007_s12665_014_3514_0
crossref_primary_10_1680_jenge_22_00186
crossref_primary_10_1061__ASCE_1090_0241_2007_133_2_227
crossref_primary_10_1520_GTJ12520
crossref_primary_10_1680_jenge_17_00041
crossref_primary_10_1007_s10706_011_9482_1
crossref_primary_10_1016_j_geotexmem_2013_07_011
crossref_primary_10_1061__ASCE_1090_0241_2005_131_1_64
crossref_primary_10_1016_j_jrmge_2023_04_010
crossref_primary_10_1061__ASCE_1090_025X_2003_7_1_37
crossref_primary_10_1061__ASCE_GT_1943_5606_0001344
crossref_primary_10_1007_s12665_013_2675_6
crossref_primary_10_1061__ASCE_0733_9410_1995_121_10_696
crossref_primary_10_1080_02630259908970273
crossref_primary_10_1061__ASCE_1090_0241_1998_124_3_231
crossref_primary_10_1590_S1413_41522004000300007
crossref_primary_10_1061__ASCE_1090_0241_2007_133_2_175
crossref_primary_10_1016_j_geotexmem_2016_05_009
crossref_primary_10_1061__ASCE_HZ_1944_8376_0000033
crossref_primary_10_1111_j_1745_6584_1997_tb00080_x
crossref_primary_10_1061__ASCE_EE_1943_7870_0001792
crossref_primary_10_1061__ASCE_1090_0241_2002_128_8_640
crossref_primary_10_1016_j_clay_2018_03_030
crossref_primary_10_1007_s11356_024_34170_4
crossref_primary_10_1061__ASCE_1090_0241_2005_131_4_418
crossref_primary_10_1590_S0104_66322001000300005
crossref_primary_10_1680_jenge_21_00124
crossref_primary_10_1061__ASCE_GT_1943_5606_0000729
Cites_doi 10.1520/STP23887S
10.2134/agronmonogr9.2.2ed.c8
10.1016/0021-9797(75)90110-1
10.1061/(ASCE)0733-9410(1994)120:10(1804)
10.1016/0169-7722(91)90028-Y
10.2134/agronmonogr9.2.2ed.c9
10.1021/es60007a001
10.1021/es00180a012
10.2136/sssaj1987.03615995005100020007x
10.2136/sssaj1984.03615995004800040002x
10.1346/CCMN.1980.0280602
10.1139/t84-035
10.1097/00010694-196507000-00038
10.1007/978-1-4615-3070-1_3
10.1680/geot.1992.42.1.49
10.1061/(ASCE)0733-9410(1990)116:7(1031)
10.1016/0009-2509(78)85196-3
10.1346/CCMN.1978.0260204
10.1071/SR9760197
10.1029/WR005i004p00830
10.1139/t77-023
10.3133/pp411A
10.1029/WR020i007p00866
ContentType Journal Article
Copyright Copyright © 1995 American Society of Civil Engineers
1995 INIST-CNRS
Copyright_xml – notice: Copyright © 1995 American Society of Civil Engineers
– notice: 1995 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
8FD
FR3
KR7
7TC
DOI 10.1061/(ASCE)0733-9410(1995)121:1(17)
DatabaseName Pascal-Francis
CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Mechanical Engineering Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
Mechanical Engineering Abstracts
DatabaseTitleList Technology Research Database
Mechanical Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1944-8368
EndPage 32
ExternalDocumentID 10_1061__ASCE_0733_9410_1995_121_1_17
3389215
JGENDZ00012100000100001700000110_1061_ASCE_0733_9410_1995_121_1_17
GroupedDBID -0O
08R
0O
29K
4.4
4P2
4S
5GY
6XO
ABBOT
ABDBF
ABEFU
ABFLS
ABPTK
ACDCL
ACKIV
ACNET
ACVYA
ADZKS
AFDAS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ARKUK
CS3
D-I
E70
EAD
EAP
EBS
EDH
EDO
EJD
EMK
EPL
ESX
I-F
L7B
MM-
O~X
RAC
TN5
TUS
VH1
X
ZY4
-~X
.4S
.DC
AAELQ
AAIKC
AAMNW
AAYOK
ABTAH
ADVLX
AI.
GQVBS
IQODW
AAYXX
ALNAR
CITATION
7UA
C1K
F1W
H96
L.G
8FD
FR3
KR7
7TC
ID FETCH-LOGICAL-a589t-5e71b028a989589239a52c9f58c083b33943f8a66ebca526708f0aadc0b581723
ISSN 0733-9410
IngestDate Fri Aug 16 05:15:31 EDT 2024
Fri Aug 16 08:06:36 EDT 2024
Fri Aug 16 04:25:05 EDT 2024
Fri Aug 23 02:24:12 EDT 2024
Sun Oct 29 17:08:49 EDT 2023
Tue Jan 05 18:50:20 EST 2021
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords Hydrology
Electrical conductivity
Chemical transport
pH
Clay soil
Hydraulic conductivity
Kaolinite
Porosity
Diffusion
Sodium chloride
Breakthrough curve
Ground water
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a589t-5e71b028a989589239a52c9f58c083b33943f8a66ebca526708f0aadc0b581723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 16862149
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_746258293
proquest_miscellaneous_25985031
proquest_miscellaneous_25985022
proquest_miscellaneous_16862149
crossref_primary_10_1061__ASCE_0733_9410_1995_121_1_17
pascalfrancis_primary_3389215
asce_journals_JGENDZ00012100000100001700000110_1061_ASCE_0733_9410_1995_121_1_17
ProviderPackageCode ABBOT
RAC
ACNET
ARKUK
ADZKS
-0O
E70
PublicationCentury 1900
PublicationDate 1995-01
1995
1995-01-00
19950101
PublicationDateYYYYMMDD 1995-01-01
PublicationDate_xml – month: 01
  year: 1995
  text: 1995-01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Journal of geotechnical engineering
PublicationYear 1995
Publisher American Society of Civil Engineers
Publisher_xml – name: American Society of Civil Engineers
References Bolland, M. D. A.; Posner, A. M.; Quirk, J. P. 1976; 14
Shackelford, C. D. 1994b; 120
Shackelford, C. D. 1991; 7
McBride, M. B. 1978; 26
Shackelford, C. D. 1988; 6
Johnson, R. L.; Cherry, J. A.; Pankow, J. F. 1989; 23
Gershon, N. D.; Nir, A. 1969; 5
Crooks, V. E.; Quigley, R. M. 1984; 21
Goodall, D. C.; Quigley, R. M. 1977; 14
Kreft, A.; Zuber, A. 1978; 33
Redmond, P. L.; Shackelford, C. D. 1994; 17
Acar, Y. B.; Haider, L. 1990; 116
Ferris, A. P.; Jepson, W. B. 1975; 51
Parker, J. C.; van Genuchten, M. Th. 1984; 20
van Genuchten, M. Th.; Parker, J. C. 1984; 48
Bolland, M. D. A.; Posner, A. M.; Quirk, J. P. 1980; 28
e_1_2_1_22_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
Shackelford C. D. (e_1_2_1_27_2) 1988; 6
e_1_2_1_6_2
Redmond P. L. (e_1_2_1_23_2) 1994; 17
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_1_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – volume: 21
  start-page: 349
  year: 1984
  article-title: Saline leachate migration through clay: a comparative laboratory and field investigation.
  publication-title: Can. Geotech. J.
  contributor:
    fullname: Crooks, V. E.; Quigley, R. M.
– volume: 51
  start-page: 245
  year: 1975
  article-title: The exchange capacities of kaolinite and the preparation of homoionic clays.
  publication-title: J. Colloid and Interface Sci.
  contributor:
    fullname: Ferris, A. P.; Jepson, W. B.
– volume: 7
  start-page: 177
  year: 1991
  article-title: Laboratory diffusion testing for waste disposal-a review.
  publication-title: J. Contaminant Hydrol., Elsevier, Amsterdam, The Netherlands
  contributor:
    fullname: Shackelford, C. D.
– volume: 33
  start-page: 1471
  year: 1978
  article-title: On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions.
  publication-title: Chemical Engrg. Sci.
  contributor:
    fullname: Kreft, A.; Zuber, A.
– volume: 20
  start-page: 866
  year: 1984
  article-title: Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport.
  publication-title: Water Resour. Res.
  contributor:
    fullname: Parker, J. C.; van Genuchten, M. Th.
– volume: 14
  start-page: 197
  year: 1976
  article-title: Surface charges on kaolinites in aqueous suspension.
  publication-title: Australian J. Soil Res.
  contributor:
    fullname: Bolland, M. D. A.; Posner, A. M.; Quirk, J. P.
– volume: 14
  start-page: 223
  year: 1977
  article-title: Pollutant migration from two sanitary landfill sites near Sarnia, Ontario.
  publication-title: Can. Geotech. J.
  contributor:
    fullname: Goodall, D. C.; Quigley, R. M.
– volume: 17
  start-page: 269
  year: 1994
  article-title: Design and evaluation of a flow pump system for column testing.
  publication-title: ASTM Geotech. Testing J.
  contributor:
    fullname: Redmond, P. L.; Shackelford, C. D.
– volume: 28
  start-page: 412
  year: 1980
  article-title: pH-independent and pH-dependent surface charges on kaolinite.
  publication-title: Clays and clay minerals
  contributor:
    fullname: Bolland, M. D. A.; Posner, A. M.; Quirk, J. P.
– volume: 5
  start-page: 830
  year: 1969
  article-title: Effects of boundary conditions of models on tracer distribution in flow through porous mediums.
  publication-title: Water Resour. Res.
  contributor:
    fullname: Gershon, N. D.; Nir, A.
– volume: 48
  start-page: 703
  year: 1984
  article-title: Boundary conditions for displacement experiments through short laboratory soil columns.
  publication-title: J. Soil Sci. Soc. of Am.
  contributor:
    fullname: van Genuchten, M. Th.; Parker, J. C.
– volume: 116
  start-page: 1031
  year: 1990
  article-title: Transport of low-concentration contaminants in saturated earthen barriers.
  publication-title: J. Geotech. Engrg., ASCE
  contributor:
    fullname: Acar, Y. B.; Haider, L.
– volume: 23
  start-page: 340
  year: 1989
  article-title: Diffusive contaminant transport in natural clay: a field example and implications for clay-lined waste disposal sites.
  publication-title: Envir. Sci. and Technol.
  contributor:
    fullname: Johnson, R. L.; Cherry, J. A.; Pankow, J. F.
– volume: 6
  start-page: 24
  year: 1988
  article-title: Diffusion as a transport process in fine-grained barrier materials.
  publication-title: Geotech. News
  contributor:
    fullname: Shackelford, C. D.
– volume: 26
  start-page: 101
  year: 1978
  article-title: Copper (II) interactions with kaolinite: factors controlling adsorption.
  publication-title: Clays and Clay Minerals
  contributor:
    fullname: McBride, M. B.
– volume: 120
  start-page: 1804
  year: 1994b
  article-title: Critical concepts for column testing.
  publication-title: J. Geotech. Engrg., ASCE
  contributor:
    fullname: Shackelford, C. D.
– ident: e_1_2_1_30_2
  doi: 10.1520/STP23887S
– ident: e_1_2_1_24_2
  doi: 10.2134/agronmonogr9.2.2ed.c8
– ident: e_1_2_1_25_2
– ident: e_1_2_1_11_2
  doi: 10.1016/0021-9797(75)90110-1
– ident: e_1_2_1_3_2
– ident: e_1_2_1_31_2
  doi: 10.1061/(ASCE)0733-9410(1994)120:10(1804)
– ident: e_1_2_1_28_2
  doi: 10.1016/0169-7722(91)90028-Y
– ident: e_1_2_1_32_2
  doi: 10.2134/agronmonogr9.2.2ed.c9
– ident: e_1_2_1_2_2
– ident: e_1_2_1_18_2
  doi: 10.1021/es60007a001
– ident: e_1_2_1_6_2
– ident: e_1_2_1_16_2
  doi: 10.1021/es00180a012
– volume: 17
  start-page: 269
  issue: 1
  year: 1994
  ident: e_1_2_1_23_2
  article-title: Design and evaluation of a flow pump system for column testing.
  publication-title: ASTM Geotech. Testing J.
  contributor:
    fullname: Redmond P. L.
– ident: e_1_2_1_26_2
  doi: 10.2136/sssaj1987.03615995005100020007x
– ident: e_1_2_1_9_2
– ident: e_1_2_1_10_2
– ident: e_1_2_1_33_2
– ident: e_1_2_1_34_2
  doi: 10.2136/sssaj1984.03615995004800040002x
– ident: e_1_2_1_5_2
  doi: 10.1346/CCMN.1980.0280602
– ident: e_1_2_1_7_2
  doi: 10.1139/t84-035
– ident: e_1_2_1_8_2
  doi: 10.1097/00010694-196507000-00038
– ident: e_1_2_1_29_2
  doi: 10.1007/978-1-4615-3070-1_3
– volume: 6
  start-page: 24
  issue: 2
  year: 1988
  ident: e_1_2_1_27_2
  article-title: Diffusion as a transport process in fine-grained barrier materials.
  publication-title: Geotech. News
  contributor:
    fullname: Shackelford C. D.
– ident: e_1_2_1_35_2
  doi: 10.1680/geot.1992.42.1.49
– ident: e_1_2_1_1_2
  doi: 10.1061/(ASCE)0733-9410(1990)116:7(1031)
– ident: e_1_2_1_17_2
  doi: 10.1016/0009-2509(78)85196-3
– ident: e_1_2_1_19_2
  doi: 10.1346/CCMN.1978.0260204
– ident: e_1_2_1_20_2
– ident: e_1_2_1_4_2
  doi: 10.1071/SR9760197
– ident: e_1_2_1_13_2
  doi: 10.1029/WR005i004p00830
– ident: e_1_2_1_14_2
  doi: 10.1139/t77-023
– ident: e_1_2_1_15_2
– ident: e_1_2_1_21_2
  doi: 10.3133/pp411A
– ident: e_1_2_1_12_2
– ident: e_1_2_1_22_2
  doi: 10.1029/WR020i007p00866
SSID ssj0021554
Score 1.3805379
Snippet Solute breakthrough curves for a 0.01-M NaCl solution permeated through two compacted test specimens of processed kaolin soil are measured at two volumetric...
SourceID proquest
crossref
pascalfrancis
asce
SourceType Aggregation Database
Index Database
Publisher
StartPage 17
SubjectTerms Applied sciences
Buildings. Public works
Diffusion in solids
Effluents
Electric resistance measurement
Exact sciences and technology
Flow of fluids
Freshwater
Geotechnics
Hydrodynamics
Mathematical models
Mechanical permeability
Sodium chloride
Soil testing
TECHNICAL PAPERS
Water effect, drainage, ground water lowering, filtration
Title Solute Breakthrough Curves for Processed Kaolin at Low Flow Rates
URI http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9410(1995)121:1(17)
https://search.proquest.com/docview/16862149
https://search.proquest.com/docview/25985022
https://search.proquest.com/docview/25985031
https://search.proquest.com/docview/746258293
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaqTkIgxI8BosDAD4BaTSmJHScxb13bUQ2YEGzStBfLSR00rWqrtQWJB_527mInbRlVAVWyIteurX6X8-fz3ZmQl0YmYcayoad5lHthlBkvBQ3pxX4Oy51mzNdo7_h4HA1Ow6MzcVar_VyNLpmn7ezHH-NK_gdVqANcMUr2H5CtfhQq4BnwhRIQhvKvMC5sWmYfdrX6srxwJ1tcYSJZ9B6c2iAAoJSXGu_mwcDF0eT7fo4FpoiYbaCmX83E5nZFAM0yY2Fljhl0uu_7H2ADWdhZ20u34c_9HijpXsFN2y6iYeiC7MQS__KYqPQZRZ-Qi28Xoyo94qoJMebck6FzSzVWgcow9BJur8qpNKwNgl4TJasvbdymW3mtofOaTgfGAUAA3-586fZfMVkNi5msYPJQBQNg6gmsqCwoa6m1f1vyKkdE2KBLhjkKdhgoKlEnO52D3sFhtWVHtlUkcnVD3iCv3ZTeNHE6reqbJk6lBRN5GzSDuAUrvJ7hlmeF7dyeQpUe5fbGlGuLf8FoTu6ROw5v2rFydZ_UzHiX3HXbEuqU_myX3FrJWfkA1uFC6Oiq0FErdBSEjlZCR63QUT2nIG8UhY4WQveQnB72T7oDz93D4WmRyLknTBykwEO1TCRUMC61YJmElzkDAp9yLkOeJzqK0LFOsCj2k9zXepj5qQBAGH9E6uPJ2DwmNJLGSC4TwxMdZlwD_89ZJIJhmORxnOUN8gn_NuVespk6etc_7p0X9tLiJMq351GxfS48KKJAIRQKoVAIhUIoFHRQ8IkbJCohUFObwUWV_bZ03FsDrOrthKZBXpQAKtDJeNCmx2aymKkAw66CUG5uwYRMBNDnbS140CB0Q4s4jJhIgK4_2TLRp-SmTcSAhsNnpD6_Wpg9oNLz9LmT918A8bv3
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solute+breakthrough+curves+for+processed+kaolin+at+low+flow+rates&rft.jtitle=Journal+of+geotechnical+engineering&rft.au=SHACKELFOR%2C+C.+D&rft.au=REDMOND%2C+P.+L&rft.date=1995&rft.pub=American+Society+of+Civil+Engineers&rft.issn=0733-9410&rft.eissn=1944-8368&rft.volume=121&rft.issue=1&rft.spage=17&rft.epage=32&rft_id=info:doi/10.1061%2F%28ASCE%290733-9410%281995%29121%3A1%2817%29&rft.externalDBID=n%2Fa&rft.externalDocID=3389215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-9410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-9410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-9410&client=summon