The Work of Titin Protein Folding as a Major Driver in Muscle Contraction
Single-molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin immunoglobulin (Ig) domains are capable of folding against a pulling force, generating mechanical work that exceeds that produced by a myosin motor. We hypothesize that upon muscle activation, form...
Saved in:
Published in | Annual review of physiology Vol. 80; p. 327 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
10.02.2018
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Single-molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin immunoglobulin (Ig) domains are capable of folding against a pulling force, generating mechanical work that exceeds that produced by a myosin motor. We hypothesize that upon muscle activation, formation of actomyosin cross bridges reduces the force on titin, causing entropic recoil of the titin polymer and triggering the folding of the titin Ig domains. In the physiological force range of 4-15 pN under which titin operates in muscle, the folding contraction of a single Ig domain can generate 200% of the work of entropic recoil and occurs at forces that exceed the maximum stalling force of single myosin motors. Thus, titin operates like a mechanical battery, storing elastic energy efficiently by unfolding Ig domains and delivering the charge back by folding when the motors are activated during a contraction. We advance the hypothesis that titin folding and myosin activation act as inextricable partners during muscle contraction. |
---|---|
AbstractList | Single-molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin immunoglobulin (Ig) domains are capable of folding against a pulling force, generating mechanical work that exceeds that produced by a myosin motor. We hypothesize that upon muscle activation, formation of actomyosin cross bridges reduces the force on titin, causing entropic recoil of the titin polymer and triggering the folding of the titin Ig domains. In the physiological force range of 4-15 pN under which titin operates in muscle, the folding contraction of a single Ig domain can generate 200% of the work of entropic recoil and occurs at forces that exceed the maximum stalling force of single myosin motors. Thus, titin operates like a mechanical battery, storing elastic energy efficiently by unfolding Ig domains and delivering the charge back by folding when the motors are activated during a contraction. We advance the hypothesis that titin folding and myosin activation act as inextricable partners during muscle contraction. |
Author | Fernández, Julio M Tapia-Rojo, Rafael Eckels, Edward C Rivas-Pardo, Jamie Andrés |
Author_xml | – sequence: 1 givenname: Edward C surname: Eckels fullname: Eckels, Edward C email: ece2117@columbia.edu, jfernandez@columbia.edu organization: Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Medical Center, New York, NY 10032, USA – sequence: 2 givenname: Rafael surname: Tapia-Rojo fullname: Tapia-Rojo, Rafael email: ece2117@columbia.edu, jfernandez@columbia.edu organization: Department of Biological Sciences, Columbia University, New York, NY 10027, USA; email: ece2117@columbia.edu , jfernandez@columbia.edu – sequence: 3 givenname: Jamie Andrés surname: Rivas-Pardo fullname: Rivas-Pardo, Jamie Andrés email: ece2117@columbia.edu, jfernandez@columbia.edu organization: Department of Biological Sciences, Columbia University, New York, NY 10027, USA; email: ece2117@columbia.edu , jfernandez@columbia.edu – sequence: 4 givenname: Julio M surname: Fernández fullname: Fernández, Julio M email: ece2117@columbia.edu, jfernandez@columbia.edu organization: Department of Biological Sciences, Columbia University, New York, NY 10027, USA; email: ece2117@columbia.edu , jfernandez@columbia.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29433413$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j09LwzAYh4Mo7o9-BcnFY_RNmrTZUaabgw09VDyOt0nqMrukpN1g396CenoOv4cfPBNyGWJwhNxzeOBc5o8YwjG5E2t3587HhoHgGS8YF1woeUHGXEnFuNJqRCZdtweAHKS8JiMxk1kmeTYmq3Ln6GdM3zTWtPS9D_Q9xd4NXMTG-vBFsaNIN7iPiT4nf3KJDuPm2JnG0XkMfULT-xhuyFWNTedu_zglH4uXcv7K1m_L1fxpzVBp3TN0FUpdWbB1wQFUnbkKhDFaYw6VHKRsZpS1uZNGmEJpRGWNQihcLrUCMSV3v7_tsTo4u22TP2A6b_-bxA_JGVNG |
CitedBy_id | crossref_primary_10_1016_j_celrep_2019_04_046 crossref_primary_10_1007_s00424_023_02794_z crossref_primary_10_3390_ijms22010055 crossref_primary_10_3390_ijms232416223 crossref_primary_10_1002_anie_202110545 crossref_primary_10_1152_japplphysiol_00865_2018 crossref_primary_10_1007_s40618_024_02490_4 crossref_primary_10_1039_D3NR00398A crossref_primary_10_1113_JP280867 crossref_primary_10_1093_cvr_cvab328 crossref_primary_10_7554_eLife_40532 crossref_primary_10_1007_s12551_021_00822_9 crossref_primary_10_1007_s43154_021_00047_4 crossref_primary_10_1111_ijfs_14421 crossref_primary_10_1128_jb_00084_22 crossref_primary_10_7600_jpfsm_10_263 crossref_primary_10_1021_jacs_9b11281 crossref_primary_10_3390_ijerph191610173 crossref_primary_10_31635_ccschem_019_20180012 crossref_primary_10_1016_j_polymer_2021_124031 crossref_primary_10_35848_1882_0786_ac6a40 crossref_primary_10_1039_D1NR07582A crossref_primary_10_3389_fphys_2023_1242177 crossref_primary_10_3390_biomimetics4010024 crossref_primary_10_1021_acs_biomac_2c00451 crossref_primary_10_1038_s41596_024_01102_y crossref_primary_10_3390_ijms22147563 crossref_primary_10_1002_1873_3468_14301 crossref_primary_10_1021_acs_jpclett_2c01720 crossref_primary_10_1021_acs_jchemed_2c00231 crossref_primary_10_2139_ssrn_3808298 crossref_primary_10_52965_001c_129173 crossref_primary_10_1042_ETLS20180046 crossref_primary_10_1088_1478_3975_ab97a8 crossref_primary_10_1128_mbio_03754_21 crossref_primary_10_1021_acs_biomac_2c00959 crossref_primary_10_1093_rheumatology_kead109 crossref_primary_10_1111_febs_15508 crossref_primary_10_1042_ETLS20180044 crossref_primary_10_3389_fphys_2023_1265443 crossref_primary_10_1021_jacs_1c02149 crossref_primary_10_1039_D4CC06617K crossref_primary_10_1080_14789450_2019_1575205 crossref_primary_10_1002_ange_202110545 crossref_primary_10_1007_s10126_020_10017_0 crossref_primary_10_1016_j_foodchem_2021_130767 crossref_primary_10_1111_febs_14854 crossref_primary_10_3390_ijms222312644 crossref_primary_10_3390_ijms241713341 crossref_primary_10_1038_s41467_024_48828_7 crossref_primary_10_1038_s41467_020_15099_x crossref_primary_10_1021_acsnano_4c07352 crossref_primary_10_3390_biomedicines9101395 crossref_primary_10_1146_annurev_biochem_032620_104637 crossref_primary_10_1016_j_jbiomech_2022_111430 crossref_primary_10_1038_s41467_020_15465_9 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1146/annurev-physiol-021317-121254 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1545-1585 |
ExternalDocumentID | 29433413 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL061228 – fundername: NIGMS NIH HHS grantid: R01 GM116122 – fundername: NHLBI NIH HHS grantid: F30 HL129662 |
GroupedDBID | --- -QD -QH -~X 0R~ 1KX 36B 39C 4.4 51A 53G 5FA 5FB 5FC 5FD 5FE 5FF 6J9 7A. 85S 8NG AABJL AAFWJ AAGWO AALHT AALUV AAOHI AAQMF AARJV AAWJP AAXSQ AAYIS ABDOG ABGRM ABIPL ABJNI ABKGM ABZNY ACAHA ACDVT ACGFO ACGFS ACGOD ACIWK ACJYF ACKHT ACKOT ACMXS ACNCT ACPHO ACPRK ACQCJ ACQLW ACRLM ACSOE ADHEY ADLON ADNJN ADSVE AEAIQ AEKBM AENEX AEPIK AFCZG AFERR AFFNX AFKDQ AFKEJ AFONB AFRAH AGBCJ AHIXL AHKZM AHMBA AHVNO AIDEK AIJFW AIZOL AJAAW ALAFQ ALIPV ALMA_UNASSIGNED_HOLDINGS AMTJG AQQLW B9D B9E B9F B9G B9H B9L B9N BCFVH BJPMW BMYRD CGR CS3 CUY CVF EBS ECM EIF EJD EMB F-Q F-S F-V F-X F-Y F-Z F5P FIWKU FIXEU FMZAJ FQMFW FT0 FU. FUEKT FXG GJQJI GLOEX GNDDA GOAVI GQXMV H13 HZ~ H~9 IH2 J1V L7B M22 N9A NPM O9- P0P P2P RAR RAV RWL TAE WH7 X7N XSW YSK YZZ ZE2 ZYWBE ~02 ~KM |
ID | FETCH-LOGICAL-a588t-aeba48bd0df71005f3eb02cc88a60b4a5839c5dd6e4c2c758aa5dc5a07e648502 |
IngestDate | Mon Jul 21 05:58:23 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | single molecule titin force spectroscopy muscle contraction protein folding polymer physics |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a588t-aeba48bd0df71005f3eb02cc88a60b4a5839c5dd6e4c2c758aa5dc5a07e648502 |
OpenAccessLink | https://www.annualreviews.org/doi/pdf/10.1146/annurev-physiol-021317-121254 |
PMID | 29433413 |
ParticipantIDs | pubmed_primary_29433413 |
PublicationCentury | 2000 |
PublicationDate | 2018-02-10 |
PublicationDateYYYYMMDD | 2018-02-10 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Annual review of physiology |
PublicationTitleAlternate | Annu Rev Physiol |
PublicationYear | 2018 |
SSID | ssj0006044 |
Score | 2.472188 |
SecondaryResourceType | review_article |
Snippet | Single-molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin immunoglobulin (Ig) domains are capable of folding... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 327 |
SubjectTerms | Animals Connectin - metabolism Humans Muscle Contraction - physiology Muscle, Skeletal - metabolism Protein Folding |
Title | The Work of Titin Protein Folding as a Major Driver in Muscle Contraction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29433413 |
Volume | 80 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaWIlW9oBb6gD7kQ9vLym0etjc5IiiilbZCaJG4oYnjSItKstoNSPAv-MfM2A6b0ge0l2gVR6Ns5os9_jLzDWPvo0qnkBWlyKW1QmqdCzByJGxhKgzQE1M6-eLxd71_JL8dq-PB4LqXtXTeFp_M1W_rSv7Hq3gO_UpVsv_g2VujeAJ_o3_xiB7G44N9TGw3RXyTaTutKe-f2lcO9_xHJeoiA8MxnDbz4e6cUjCI3xifL9AQFfu1c1_X0A9Rg-L-sqbFkR8_se9U6vPD1zG4ns9LqnUCsymIw-bUMbCHUHUp-U4n-wIW4gCvb0J-7tS6hEr_sX5ZiGLntTsVd_w2FXE3gbcNDEWcUVJzyFW1YVaVSsTK9-bppl3fwCnMm6kXCPh1Pu8LGYvwf9F-jGGPiHHZ9QrUPV_Pzpyzk1ymtEDfP3pHbrsbWmEruPGgTqpE_4SlXUdSPmYfwp19_ut9kcx0sHVny-JCl8lTthb2HHzbA-gZG9h6nW1s19A2Z5f8Iz-4dfAG-4qY4oQp3lTcYYoHTPGAKQ4LDtxhintMcRz0mOI9TD1nR3tfJjv7IrTbEKCyrBVgC5D42kZlRZJPqkptESXGZBnoqJB4UZobVZbaSpMY3GcCqNIoiEZWy0xFyQv2qG5q-4rxJEc7IzIHWgJJ_tkSKjOK01LrIk032Uv_QE5mXlPlpHtUW38cec2eLMH1hq1W-BLbtxgRtsU756Ub6KhgGg |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Work+of+Titin+Protein+Folding+as+a+Major+Driver+in+Muscle+Contraction&rft.jtitle=Annual+review+of+physiology&rft.au=Eckels%2C+Edward+C&rft.au=Tapia-Rojo%2C+Rafael&rft.au=Rivas-Pardo%2C+Jamie+Andr%C3%A9s&rft.au=Fern%C3%A1ndez%2C+Julio+M&rft.date=2018-02-10&rft.eissn=1545-1585&rft.volume=80&rft.spage=327&rft_id=info:doi/10.1146%2Fannurev-physiol-021317-121254&rft_id=info%3Apmid%2F29433413&rft_id=info%3Apmid%2F29433413&rft.externalDocID=29433413 |