The Work of Titin Protein Folding as a Major Driver in Muscle Contraction

Single-molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin immunoglobulin (Ig) domains are capable of folding against a pulling force, generating mechanical work that exceeds that produced by a myosin motor. We hypothesize that upon muscle activation, form...

Full description

Saved in:
Bibliographic Details
Published inAnnual review of physiology Vol. 80; p. 327
Main Authors Eckels, Edward C, Tapia-Rojo, Rafael, Rivas-Pardo, Jamie Andrés, Fernández, Julio M
Format Journal Article
LanguageEnglish
Published United States 10.02.2018
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Single-molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin immunoglobulin (Ig) domains are capable of folding against a pulling force, generating mechanical work that exceeds that produced by a myosin motor. We hypothesize that upon muscle activation, formation of actomyosin cross bridges reduces the force on titin, causing entropic recoil of the titin polymer and triggering the folding of the titin Ig domains. In the physiological force range of 4-15 pN under which titin operates in muscle, the folding contraction of a single Ig domain can generate 200% of the work of entropic recoil and occurs at forces that exceed the maximum stalling force of single myosin motors. Thus, titin operates like a mechanical battery, storing elastic energy efficiently by unfolding Ig domains and delivering the charge back by folding when the motors are activated during a contraction. We advance the hypothesis that titin folding and myosin activation act as inextricable partners during muscle contraction.
AbstractList Single-molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin immunoglobulin (Ig) domains are capable of folding against a pulling force, generating mechanical work that exceeds that produced by a myosin motor. We hypothesize that upon muscle activation, formation of actomyosin cross bridges reduces the force on titin, causing entropic recoil of the titin polymer and triggering the folding of the titin Ig domains. In the physiological force range of 4-15 pN under which titin operates in muscle, the folding contraction of a single Ig domain can generate 200% of the work of entropic recoil and occurs at forces that exceed the maximum stalling force of single myosin motors. Thus, titin operates like a mechanical battery, storing elastic energy efficiently by unfolding Ig domains and delivering the charge back by folding when the motors are activated during a contraction. We advance the hypothesis that titin folding and myosin activation act as inextricable partners during muscle contraction.
Author Fernández, Julio M
Tapia-Rojo, Rafael
Eckels, Edward C
Rivas-Pardo, Jamie Andrés
Author_xml – sequence: 1
  givenname: Edward C
  surname: Eckels
  fullname: Eckels, Edward C
  email: ece2117@columbia.edu, jfernandez@columbia.edu
  organization: Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Medical Center, New York, NY 10032, USA
– sequence: 2
  givenname: Rafael
  surname: Tapia-Rojo
  fullname: Tapia-Rojo, Rafael
  email: ece2117@columbia.edu, jfernandez@columbia.edu
  organization: Department of Biological Sciences, Columbia University, New York, NY 10027, USA; email: ece2117@columbia.edu , jfernandez@columbia.edu
– sequence: 3
  givenname: Jamie Andrés
  surname: Rivas-Pardo
  fullname: Rivas-Pardo, Jamie Andrés
  email: ece2117@columbia.edu, jfernandez@columbia.edu
  organization: Department of Biological Sciences, Columbia University, New York, NY 10027, USA; email: ece2117@columbia.edu , jfernandez@columbia.edu
– sequence: 4
  givenname: Julio M
  surname: Fernández
  fullname: Fernández, Julio M
  email: ece2117@columbia.edu, jfernandez@columbia.edu
  organization: Department of Biological Sciences, Columbia University, New York, NY 10027, USA; email: ece2117@columbia.edu , jfernandez@columbia.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29433413$$D View this record in MEDLINE/PubMed
BookMark eNo1j09LwzAYh4Mo7o9-BcnFY_RNmrTZUaabgw09VDyOt0nqMrukpN1g396CenoOv4cfPBNyGWJwhNxzeOBc5o8YwjG5E2t3587HhoHgGS8YF1woeUHGXEnFuNJqRCZdtweAHKS8JiMxk1kmeTYmq3Ln6GdM3zTWtPS9D_Q9xd4NXMTG-vBFsaNIN7iPiT4nf3KJDuPm2JnG0XkMfULT-xhuyFWNTedu_zglH4uXcv7K1m_L1fxpzVBp3TN0FUpdWbB1wQFUnbkKhDFaYw6VHKRsZpS1uZNGmEJpRGWNQihcLrUCMSV3v7_tsTo4u22TP2A6b_-bxA_JGVNG
CitedBy_id crossref_primary_10_1016_j_celrep_2019_04_046
crossref_primary_10_1007_s00424_023_02794_z
crossref_primary_10_3390_ijms22010055
crossref_primary_10_3390_ijms232416223
crossref_primary_10_1002_anie_202110545
crossref_primary_10_1152_japplphysiol_00865_2018
crossref_primary_10_1007_s40618_024_02490_4
crossref_primary_10_1039_D3NR00398A
crossref_primary_10_1113_JP280867
crossref_primary_10_1093_cvr_cvab328
crossref_primary_10_7554_eLife_40532
crossref_primary_10_1007_s12551_021_00822_9
crossref_primary_10_1007_s43154_021_00047_4
crossref_primary_10_1111_ijfs_14421
crossref_primary_10_1128_jb_00084_22
crossref_primary_10_7600_jpfsm_10_263
crossref_primary_10_1021_jacs_9b11281
crossref_primary_10_3390_ijerph191610173
crossref_primary_10_31635_ccschem_019_20180012
crossref_primary_10_1016_j_polymer_2021_124031
crossref_primary_10_35848_1882_0786_ac6a40
crossref_primary_10_1039_D1NR07582A
crossref_primary_10_3389_fphys_2023_1242177
crossref_primary_10_3390_biomimetics4010024
crossref_primary_10_1021_acs_biomac_2c00451
crossref_primary_10_1038_s41596_024_01102_y
crossref_primary_10_3390_ijms22147563
crossref_primary_10_1002_1873_3468_14301
crossref_primary_10_1021_acs_jpclett_2c01720
crossref_primary_10_1021_acs_jchemed_2c00231
crossref_primary_10_2139_ssrn_3808298
crossref_primary_10_52965_001c_129173
crossref_primary_10_1042_ETLS20180046
crossref_primary_10_1088_1478_3975_ab97a8
crossref_primary_10_1128_mbio_03754_21
crossref_primary_10_1021_acs_biomac_2c00959
crossref_primary_10_1093_rheumatology_kead109
crossref_primary_10_1111_febs_15508
crossref_primary_10_1042_ETLS20180044
crossref_primary_10_3389_fphys_2023_1265443
crossref_primary_10_1021_jacs_1c02149
crossref_primary_10_1039_D4CC06617K
crossref_primary_10_1080_14789450_2019_1575205
crossref_primary_10_1002_ange_202110545
crossref_primary_10_1007_s10126_020_10017_0
crossref_primary_10_1016_j_foodchem_2021_130767
crossref_primary_10_1111_febs_14854
crossref_primary_10_3390_ijms222312644
crossref_primary_10_3390_ijms241713341
crossref_primary_10_1038_s41467_024_48828_7
crossref_primary_10_1038_s41467_020_15099_x
crossref_primary_10_1021_acsnano_4c07352
crossref_primary_10_3390_biomedicines9101395
crossref_primary_10_1146_annurev_biochem_032620_104637
crossref_primary_10_1016_j_jbiomech_2022_111430
crossref_primary_10_1038_s41467_020_15465_9
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1146/annurev-physiol-021317-121254
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1545-1585
ExternalDocumentID 29433413
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL061228
– fundername: NIGMS NIH HHS
  grantid: R01 GM116122
– fundername: NHLBI NIH HHS
  grantid: F30 HL129662
GroupedDBID ---
-QD
-QH
-~X
0R~
1KX
36B
39C
4.4
51A
53G
5FA
5FB
5FC
5FD
5FE
5FF
6J9
7A.
85S
8NG
AABJL
AAFWJ
AAGWO
AALHT
AALUV
AAOHI
AAQMF
AARJV
AAWJP
AAXSQ
AAYIS
ABDOG
ABGRM
ABIPL
ABJNI
ABKGM
ABZNY
ACAHA
ACDVT
ACGFO
ACGFS
ACGOD
ACIWK
ACJYF
ACKHT
ACKOT
ACMXS
ACNCT
ACPHO
ACPRK
ACQCJ
ACQLW
ACRLM
ACSOE
ADHEY
ADLON
ADNJN
ADSVE
AEAIQ
AEKBM
AENEX
AEPIK
AFCZG
AFERR
AFFNX
AFKDQ
AFKEJ
AFONB
AFRAH
AGBCJ
AHIXL
AHKZM
AHMBA
AHVNO
AIDEK
AIJFW
AIZOL
AJAAW
ALAFQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTJG
AQQLW
B9D
B9E
B9F
B9G
B9H
B9L
B9N
BCFVH
BJPMW
BMYRD
CGR
CS3
CUY
CVF
EBS
ECM
EIF
EJD
EMB
F-Q
F-S
F-V
F-X
F-Y
F-Z
F5P
FIWKU
FIXEU
FMZAJ
FQMFW
FT0
FU.
FUEKT
FXG
GJQJI
GLOEX
GNDDA
GOAVI
GQXMV
H13
HZ~
H~9
IH2
J1V
L7B
M22
N9A
NPM
O9-
P0P
P2P
RAR
RAV
RWL
TAE
WH7
X7N
XSW
YSK
YZZ
ZE2
ZYWBE
~02
~KM
ID FETCH-LOGICAL-a588t-aeba48bd0df71005f3eb02cc88a60b4a5839c5dd6e4c2c758aa5dc5a07e648502
IngestDate Mon Jul 21 05:58:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords single molecule
titin
force spectroscopy
muscle contraction
protein folding
polymer physics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a588t-aeba48bd0df71005f3eb02cc88a60b4a5839c5dd6e4c2c758aa5dc5a07e648502
OpenAccessLink https://www.annualreviews.org/doi/pdf/10.1146/annurev-physiol-021317-121254
PMID 29433413
ParticipantIDs pubmed_primary_29433413
PublicationCentury 2000
PublicationDate 2018-02-10
PublicationDateYYYYMMDD 2018-02-10
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annual review of physiology
PublicationTitleAlternate Annu Rev Physiol
PublicationYear 2018
SSID ssj0006044
Score 2.472188
SecondaryResourceType review_article
Snippet Single-molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin immunoglobulin (Ig) domains are capable of folding...
SourceID pubmed
SourceType Index Database
StartPage 327
SubjectTerms Animals
Connectin - metabolism
Humans
Muscle Contraction - physiology
Muscle, Skeletal - metabolism
Protein Folding
Title The Work of Titin Protein Folding as a Major Driver in Muscle Contraction
URI https://www.ncbi.nlm.nih.gov/pubmed/29433413
Volume 80
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaWIlW9oBb6gD7kQ9vLym0etjc5IiiilbZCaJG4oYnjSItKstoNSPAv-MfM2A6b0ge0l2gVR6Ns5os9_jLzDWPvo0qnkBWlyKW1QmqdCzByJGxhKgzQE1M6-eLxd71_JL8dq-PB4LqXtXTeFp_M1W_rSv7Hq3gO_UpVsv_g2VujeAJ_o3_xiB7G44N9TGw3RXyTaTutKe-f2lcO9_xHJeoiA8MxnDbz4e6cUjCI3xifL9AQFfu1c1_X0A9Rg-L-sqbFkR8_se9U6vPD1zG4ns9LqnUCsymIw-bUMbCHUHUp-U4n-wIW4gCvb0J-7tS6hEr_sX5ZiGLntTsVd_w2FXE3gbcNDEWcUVJzyFW1YVaVSsTK9-bppl3fwCnMm6kXCPh1Pu8LGYvwf9F-jGGPiHHZ9QrUPV_Pzpyzk1ymtEDfP3pHbrsbWmEruPGgTqpE_4SlXUdSPmYfwp19_ut9kcx0sHVny-JCl8lTthb2HHzbA-gZG9h6nW1s19A2Z5f8Iz-4dfAG-4qY4oQp3lTcYYoHTPGAKQ4LDtxhintMcRz0mOI9TD1nR3tfJjv7IrTbEKCyrBVgC5D42kZlRZJPqkptESXGZBnoqJB4UZobVZbaSpMY3GcCqNIoiEZWy0xFyQv2qG5q-4rxJEc7IzIHWgJJ_tkSKjOK01LrIk032Uv_QE5mXlPlpHtUW38cec2eLMH1hq1W-BLbtxgRtsU756Ub6KhgGg
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Work+of+Titin+Protein+Folding+as+a+Major+Driver+in+Muscle+Contraction&rft.jtitle=Annual+review+of+physiology&rft.au=Eckels%2C+Edward+C&rft.au=Tapia-Rojo%2C+Rafael&rft.au=Rivas-Pardo%2C+Jamie+Andr%C3%A9s&rft.au=Fern%C3%A1ndez%2C+Julio+M&rft.date=2018-02-10&rft.eissn=1545-1585&rft.volume=80&rft.spage=327&rft_id=info:doi/10.1146%2Fannurev-physiol-021317-121254&rft_id=info%3Apmid%2F29433413&rft_id=info%3Apmid%2F29433413&rft.externalDocID=29433413