RF bulk acoustic wave filters for communications
For years, surface acoustic wave (SAW) filters have been widely used as radio frequency front-end filters and duplexers for mobile communication systems. Recently, bulk acoustic wave (BAW) filters are gaining more popularly for their performance benefits and are being utilized more and more in the d...
Saved in:
Main Author | |
---|---|
Format | eBook Book |
Language | English |
Published |
Boston
Artech House
2009
|
Edition | 1 |
Series | Artech House Microwave Library |
Subjects | |
Online Access | Get full text |
ISBN | 1596933216 9781596933217 |
Cover
Loading…
Table of Contents:
- 3.2.5 Resonator Design Based on Dispersion Relations -- 3.3 Device Design -- 3.3.1 Effective Coupling Coefficient -- 3.3.3 Spurious Modes -- 3.3.4 The Other Important Parameters -- 3.4 Summary -- References -- Chapter 4 Design and Fabrication of BAW Devices -- 4.1 Design Considerations for BAW Devices -- 4.1.1 Electromechanical Coupling Coefficient -- 4.1.2 Quality Factor -- 4.1.3 Spurious Modes -- 4.1.4 Power Handling -- 4.1.5 Temperature Coefficient of Frequency -- 4.1.6 Area Efficiency -- 4.1.7 Interconnect Losses and Parasitics -- 4.1.8 Robustness -- 4.1.9 Nonlinearities -- 4.2 Fabrication of BAW Devices -- 4.2.1 Material Selection -- 4.2.2 Fabrication of SMR Resonators and Filters -- 4.2.3 Fabrication Tolerances and Trimming -- 4.2.4 Process Controls -- 4.3 Application Space for BAW-FBAR Technology -- 4.3.1 RF Filters and Duplexers -- 4.3.2 Oscillators -- 4.3.3 Sensors -- References -- Chapter 5 FBAR Resonators and Filters -- 5.1 Introduction -- 5.1.1 Short History of FBAR -- 5.1.2 The Duplexer -- 5.1.3 The Package -- 5.1.4 FBAR in Context with the Rest of the World -- 5.2 FBAR Technology -- 5.2.1 Introduction -- 5.2.2 Modeling of FBARs -- 5.2.3 Method of Ascertaining Q -- 5.2.4 The Rayleigh-Lamb Modes -- 5.2.5 Apodization -- 5.2.6 Frames -- 5.2.7 Temperature-Compensated Resonators -- 5.2.8 Coupled Resonator Filters -- 5.3 FBAR Filters -- 5.3.1 Interstage Filters -- 5.3.2 The Duplexer and Multiplexers -- 5.4 Conclusions -- References -- Chapter 6 Comparison with SAW Devices -- 6.1 Introduction -- 6.2 Structural Comparison and Features -- 6.3 Resonator Performance and Reliability -- 6.3.1 Q-Factor -- 6.3.2 Power Durability -- 6.4 Filter Design -- 6.5 Manufacturing Process -- 6.6 Temperature Compensation Technique -- 6.7 Application Map -- References -- Chapter 7 Thin Films Deposition for BAW Devices
- 10.3.2 LTCC Platform -- 10.3.3 Thin Film Platform -- 10.4 SiP Design -- 10.4.1 Electromagnetic Modeling -- 10.4.2 Design Methodology -- 10.5 Test and Industrialization, Known-Good Die Concept -- 10.6 RF-SiP Examples -- 10.6.1 General Wireless Examples -- 10.6.2 Examples Including BAW -- References -- Glossary -- About the Author -- List of Contributors -- Index
- 7.1 Most Commonly Used Piezoelectric Materials -- 7.1.1 Zinc Oxide -- 7.1.2 PZT -- 7.1.3 Aluminum Nitride -- 7.2 Methods of Deposition of Piezoelectric Films -- 7.2.1 Sputtering -- 7.2.2 Practical Aspects of the Sputter Deposition of the AlN Films -- 7.2.3 Electron Cyclotron Resonance Deposition -- 7.2.4 Ion Beam Deposition -- 7.2.5 Metalorganic Chemical Vapor Deposition -- 7.2.6 Jet Vapor Deposition -- 7.2.7 Nonvacuum Deposition -- 7.3 Metal Deposition for BAW Applications -- 7.3.1 Aluminum -- 7.3.2 Molybdenum -- 7.3.3 Tungsten -- 7.3.4 Platinum -- 7.3.5 Ruthenium -- 7.3.6 Combinations of Metals -- References -- Chapter 8 Characterization of BAW Devices -- 8.1 Introduction -- 8.2 Single-Layer Material Characterization -- 8.2.1 Introduction -- 8.2.2 Dielectric and Piezoelectric Layers -- 8.2.3 Metallic Layers -- 8.3 Laser Interferometry -- 8.3.1 Introduction -- 8.3.2 Measurement Setup -- 8.3.3 Evaluation of Dispersion -- 8.4 Loss Mechanisms -- 8.4.1 Introduction -- 8.4.2 Acoustic Leakage -- 8.4.3 Acoustic Leakage Through the Bragg Reflector -- 8.4.4 Laterally Leaking Waves -- 8.4.5 Electrical Losses -- 8.4.6 Viscoelastic Losses -- 8.4.7 Scattering Losses -- 8.5 Electrical Characterization -- 8.5.1 Introduction -- 8.5.2 Resonator Measurements -- 8.5.3 Filter Measurements -- References -- Chapter 9 Monolithic Integration -- 9.1 Introduction -- 9.2 Compatibility Issues Between IC and BAW Technologies -- 9.3 Practical Implementation -- 9.3.1 Technology Description -- 9.3.2 Filtering LNA -- 9.3.3 WCDMA RF Front-End -- 9.3.4 WLAN Oscillator -- 9.4 Conclusion -- Acknowledgements -- References -- Chapter 10 System-in-Package Integration -- 10.1 Introduction -- 10.2 Trends in Front-End Integration for Wireless Applications -- 10.2.1 Multiband, Multimode Wireless Systems -- 10.2.2 SiP Versus SoC -- 10.3 SiP Technologies -- 10.3.1 Laminate Platform
- RF Bulk Acoustic Wave Filtersfor Communications -- Contents -- Preface -- Chapter 1 Background and History -- 1.1 BAW Technology Background -- 1.1.1 Basic Definitions -- 1.1.2 Role of Piezoelectric Materials -- 1.1.3 Transducers and Resonators -- 1.1.4 Comparisons with SAW and Plate Wave Resonators -- 1.1.5 Other Kind of Resonators -- 1.1.6 Electrical Characteristics of Piezoelectric Resonators -- 1.1.7 Technology Driving Forces -- 1.2 Thin Plate Resonators: Towards High Frequencies -- 1.2.1 Conventional Quartz Crystal Thinning -- 1.2.2 Bonded Plate Resonators -- 1.3 Composite Resonators -- 1.4 Development of Thin Films -- 1.5 Multidimensional Effects -- 1.6 Legacy Filter Topologies -- 1.6.1 Balanced Bridge Filter -- 1.6.2 Ladder Filters -- 1.6.3 Lattice Filter -- 1.6.4 Monolithic Filters -- 1.7 Some Acoustic Device and Materials Processing Legacy -- References -- Chapter 2 Resonator and Filter Topologies -- 2.1 Plate Edge-Supported Resonators -- 2.1.1 Pothole Membrane -- 2.1.2 Pocket Membrane -- 2.1.3 Undercut Air Gap Membrane -- 2.2 Solidly Mounted Resonators -- 2.3 Electrode Metallization -- 2.4 Temperature Compensation -- 2.5 Electrically Coupled Filters -- 2.5.1 Ladder Filters -- 2.5.2 Balanced Ladder -- 2.5.3 Conventional Lattice -- 2.6 Acoustically Coupled Filters -- 2.6.1 Stacked Crystal Filter -- 2.6.2 Coupled Resonator Filter -- 2.7 Wide-Bandwidth Tuned Coupled Resonator Filters -- 2.8 Hybrid Filters -- 2.9 Summary -- Chapter 3 BAW Device Basics -- 3.1 Thin Film Bulk Acoustic Wave Resonator -- 3.1.1 The Prototype Resonator and Piezoelectric Constitutive Relations -- 3.1.2 The Basic Parameters and Equivalent Circuit -- 3.2 Basic Physics -- 3.2.1 Wave Propagation, Transmission, Reflection, and Attenuation ofAcoustic Waves -- 3.2.2 Electroacoustic Conversion -- 3.2.3 Mason Model -- 3.2.4 Dispersion Relations and Wave Modes