Experimental investigation of main controls to methane adsorption in clay-rich rocks
► The difference in clay mineral type is one key element controlling CH4 adsorption in clay-rich rocks. ► BET surface area is a primary proxy for CH4 adsorption capacity in clay-rich rocks. ► Clay type affects gas-sorption capacity and the presence of moisture can greatly reduce gas-sorption capacit...
Saved in:
Published in | Applied geochemistry Vol. 27; no. 12; pp. 2533 - 2545 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► The difference in clay mineral type is one key element controlling CH4 adsorption in clay-rich rocks. ► BET surface area is a primary proxy for CH4 adsorption capacity in clay-rich rocks. ► Clay type affects gas-sorption capacity and the presence of moisture can greatly reduce gas-sorption capacity. ► Quantitative model prediction is developed to estimate the methane sorption capacity of organic-lean shales.
In this study a series of CH4 adsorption experiments on clay-rich rocks were conducted at 35°C, 50°C and 65°C and at CH4 pressure up to 15MPa under dry conditions. The clay-dominated rock samples used are fresh samples from quarries and mines. Samples are individually dominated by montmorillonite, kaolinite, illite, chlorite, and interstratified illite/smectite. The experimental results show that clay mineral type greatly affects CH4 sorption capacity under the experimental conditions. In terms of relative CH4 sorption capacity: montmorillonite≫illite/smectite mixed layer>kaolinite>chlorite>illite. Physisorption is the dominant process for CH4 absorption on clay minerals, as a result, there is a linear correlation between CH4 sorption capacity and BET surface area in these clay-mineral dominated rocks. The abundance of micro-mesopores in the size range of a few to a few 10s of nanometers in montmorillonite clay and illite–smectite interstratified clay results in large BET surface area values for these mineral species.
A good linear relationship between the natural logarithm of Langmuir constant and the reciprocal of temperature exists for clay-mineral dominated rocks, which provides a way to quantify the impact of clay mineral type on gas adsorption capacity. Thermodynamic parameters, the heat of CH4 adsorption and the standard entropy, are calculated based on this linear correlations. The heat of adsorption (q) and the standard entropy (Δso) range from 9.4 to 16.6kJ/mol and from −64.8 to −79.5J/mol/K, respectively, values considerably smaller than those for CH4 adsorption on kerogens. Thus, it is expected that CH4 molecules may preferentially occupy surface sites on organic matter, in addition, the clay minerals are easily blocked by water. As a consequence, organic-rich mudrocks possess a larger CH4 sorption capacity than clay-dominated rocks lacking organic matter. |
---|---|
AbstractList | ► The difference in clay mineral type is one key element controlling CH4 adsorption in clay-rich rocks. ► BET surface area is a primary proxy for CH4 adsorption capacity in clay-rich rocks. ► Clay type affects gas-sorption capacity and the presence of moisture can greatly reduce gas-sorption capacity. ► Quantitative model prediction is developed to estimate the methane sorption capacity of organic-lean shales.
In this study a series of CH4 adsorption experiments on clay-rich rocks were conducted at 35°C, 50°C and 65°C and at CH4 pressure up to 15MPa under dry conditions. The clay-dominated rock samples used are fresh samples from quarries and mines. Samples are individually dominated by montmorillonite, kaolinite, illite, chlorite, and interstratified illite/smectite. The experimental results show that clay mineral type greatly affects CH4 sorption capacity under the experimental conditions. In terms of relative CH4 sorption capacity: montmorillonite≫illite/smectite mixed layer>kaolinite>chlorite>illite. Physisorption is the dominant process for CH4 absorption on clay minerals, as a result, there is a linear correlation between CH4 sorption capacity and BET surface area in these clay-mineral dominated rocks. The abundance of micro-mesopores in the size range of a few to a few 10s of nanometers in montmorillonite clay and illite–smectite interstratified clay results in large BET surface area values for these mineral species.
A good linear relationship between the natural logarithm of Langmuir constant and the reciprocal of temperature exists for clay-mineral dominated rocks, which provides a way to quantify the impact of clay mineral type on gas adsorption capacity. Thermodynamic parameters, the heat of CH4 adsorption and the standard entropy, are calculated based on this linear correlations. The heat of adsorption (q) and the standard entropy (Δso) range from 9.4 to 16.6kJ/mol and from −64.8 to −79.5J/mol/K, respectively, values considerably smaller than those for CH4 adsorption on kerogens. Thus, it is expected that CH4 molecules may preferentially occupy surface sites on organic matter, in addition, the clay minerals are easily blocked by water. As a consequence, organic-rich mudrocks possess a larger CH4 sorption capacity than clay-dominated rocks lacking organic matter. In this study a series of CH₄ adsorption experiments on clay-rich rocks were conducted at 35°C, 50°C and 65°C and at CH₄ pressure up to 15MPa under dry conditions. The clay-dominated rock samples used are fresh samples from quarries and mines. Samples are individually dominated by montmorillonite, kaolinite, illite, chlorite, and interstratified illite/smectite. The experimental results show that clay mineral type greatly affects CH₄ sorption capacity under the experimental conditions. In terms of relative CH₄ sorption capacity: montmorillonite≫illite/smectite mixed layer>kaolinite>chlorite>illite. Physisorption is the dominant process for CH₄ absorption on clay minerals, as a result, there is a linear correlation between CH₄ sorption capacity and BET surface area in these clay-mineral dominated rocks. The abundance of micro-mesopores in the size range of a few to a few 10s of nanometers in montmorillonite clay and illite–smectite interstratified clay results in large BET surface area values for these mineral species. A good linear relationship between the natural logarithm of Langmuir constant and the reciprocal of temperature exists for clay-mineral dominated rocks, which provides a way to quantify the impact of clay mineral type on gas adsorption capacity. Thermodynamic parameters, the heat of CH₄ adsorption and the standard entropy, are calculated based on this linear correlations. The heat of adsorption (q) and the standard entropy (Δsᵒ) range from 9.4 to 16.6kJ/mol and from −64.8 to −79.5J/mol/K, respectively, values considerably smaller than those for CH₄ adsorption on kerogens. Thus, it is expected that CH₄ molecules may preferentially occupy surface sites on organic matter, in addition, the clay minerals are easily blocked by water. As a consequence, organic-rich mudrocks possess a larger CH₄ sorption capacity than clay-dominated rocks lacking organic matter. In this study a series of CH4 adsorption experiments on clay-rich rocks were conducted at 35 degree C, 50 degree C and 65 degree C and at CH4 pressure up to 15 MPa under dry conditions. The clay-dominated rock samples used are fresh samples from quarries and mines. Samples are individually dominated by montmorillonite, kaolinite, illite, chlorite, and interstratified illite/smectite. The experimental results show that clay mineral type greatly affects CH4 sorption capacity under the experimental conditions. In terms of relative CH4 sorption capacity: montmorillonite a< illite/smectite mixed layer > kaolinite > chlorite > illite. Physisorption is the dominant process for CH4 absorption on clay minerals, as a result, there is a linear correlation between CH4 sorption capacity and BET surface area in these clay-mineral dominated rocks. The abundance of micro-mesopores in the size range of a few to a few 10 s of nanometers in montmorillonite clay and illiteasmectite interstratified clay results in large BET surface area values for these mineral species. A good linear relationship between the natural logarithm of Langmuir constant and the reciprocal of temperature exists for clay-mineral dominated rocks, which provides a way to quantify the impact of clay mineral type on gas adsorption capacity. Thermodynamic parameters, the heat of CH4 adsorption and the standard entropy, are calculated based on this linear correlations. The heat of adsorption (q) and the standard entropy (Iso) range from 9.4 to 16.6 kJ/mol and from -64.8 to -79.5 J/mol/K, respectively, values considerably smaller than those for CH4 adsorption on kerogens. Thus, it is expected that CH4 molecules may preferentially occupy surface sites on organic matter, in addition, the clay minerals are easily blocked by water. As a consequence, organic-rich mudrocks possess a larger CH4 sorption capacity than clay-dominated rocks lacking organic matter. |
Author | Zhang, Xiaolong Milliken, Kitty L. Zhang, Tongwei Ji, Liming Qu, Junli |
Author_xml | – sequence: 1 givenname: Liming surname: Ji fullname: Ji, Liming organization: Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 2 givenname: Tongwei surname: Zhang fullname: Zhang, Tongwei email: tongwei.zhang@beg.utexas.edu organization: Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, USA – sequence: 3 givenname: Kitty L. surname: Milliken fullname: Milliken, Kitty L. organization: Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, USA – sequence: 4 givenname: Junli surname: Qu fullname: Qu, Junli organization: Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 5 givenname: Xiaolong surname: Zhang fullname: Zhang, Xiaolong organization: The School of Earth Sciences, Lanzhou University, Lanzhou 730000, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26651134$$DView record in Pascal Francis |
BookMark | eNqNkT1PHDEQhq2ISDkIv4FtItHsxvauP7agQIh8SEg0UFs-e8z5smsvtkHw7_FxiCINVNM872jmfQ7RQYgBEDohuCOY8J_bTi93EM0G5o5iQjssO0zFF7QiUtB2JP1wgFZYyr6lIxXf0GHOW4wxE5iu0M3l0wLJzxCKnhofHiEXf6eLj6GJrpm1D42JoaQ45abEZoay0QEabXNMyyu2Iyb93CZvNk2K5l_-jr46PWU4fptH6PbX5c3Fn_bq-vffi_OrVjNJS2vpwDB1g-YCM9ZLSwkTjq4l78e1IwOsubbGSTlKxoVkYgRrmLEYADtndX-ETvd7lxTvH-rlavbZwDTVC-NDVoSPw1B_HuUnUEEGzgbSf4xSQQWRtcyK_nhDdTZ6ckkH47NaaqE6PSvKOSO1_8qJPWdSzDmBe0cIVjuLaqveLaqdRYWlqhZr8uy_pPHlVU9J2k-fyJ_v81A9PHpIKhsPwYD1CUxRNvoPd7wABpXAkw |
CODEN | APPGEY |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2016_09_018 crossref_primary_10_1016_j_coal_2018_12_007 crossref_primary_10_1016_j_jngse_2018_06_019 crossref_primary_10_1016_j_earscirev_2021_103746 crossref_primary_10_1016_j_cej_2022_135867 crossref_primary_10_1021_acs_energyfuels_9b01024 crossref_primary_10_3390_pr12091842 crossref_primary_10_1016_j_egyr_2021_11_259 crossref_primary_10_1021_acs_energyfuels_9b02232 crossref_primary_10_2113_2023_8015444 crossref_primary_10_3390_en17194990 crossref_primary_10_1016_j_marpetgeo_2020_104303 crossref_primary_10_1016_j_apgeochem_2022_105368 crossref_primary_10_1016_j_fuel_2013_07_040 crossref_primary_10_1016_j_petrol_2019_106183 crossref_primary_10_1016_j_petrol_2021_109193 crossref_primary_10_1016_j_fuel_2019_04_072 crossref_primary_10_32604_fdmp_2023_029281 crossref_primary_10_1021_acs_energyfuels_6b02999 crossref_primary_10_1144_petgeo2016_064 crossref_primary_10_1016_j_coal_2015_06_003 crossref_primary_10_1016_j_egyr_2022_05_037 crossref_primary_10_1016_j_jechem_2015_06_004 crossref_primary_10_1016_j_ijft_2024_100879 crossref_primary_10_1016_j_cej_2018_05_105 crossref_primary_10_1016_j_clay_2024_107495 crossref_primary_10_1016_j_jngse_2019_102903 crossref_primary_10_1016_j_marpetgeo_2020_104679 crossref_primary_10_3390_en10101586 crossref_primary_10_1002_ente_202400377 crossref_primary_10_1016_j_jngse_2020_103676 crossref_primary_10_1016_j_jsames_2021_103507 crossref_primary_10_1016_j_jngse_2019_102907 crossref_primary_10_1021_acs_energyfuels_6b01776 crossref_primary_10_1021_acs_energyfuels_6b01777 crossref_primary_10_1021_ef5023434 crossref_primary_10_1039_C9RA04963K crossref_primary_10_1016_j_ijhydene_2024_12_010 crossref_primary_10_1021_acs_energyfuels_0c00782 crossref_primary_10_2139_ssrn_3976144 crossref_primary_10_1016_j_petrol_2019_06_021 crossref_primary_10_1016_j_margeo_2022_106912 crossref_primary_10_1016_j_marpetgeo_2015_08_012 crossref_primary_10_1016_j_cej_2022_136617 crossref_primary_10_1007_s11242_021_01599_x crossref_primary_10_1016_j_petrol_2017_03_017 crossref_primary_10_1016_j_marpetgeo_2020_104565 crossref_primary_10_1007_s40710_014_0036_4 crossref_primary_10_1021_acs_energyfuels_8b00417 crossref_primary_10_1021_acs_energyfuels_5b02088 crossref_primary_10_1177_0144598718790320 crossref_primary_10_1016_j_fuel_2015_12_074 crossref_primary_10_31697_jpsg_2020_2_1_11 crossref_primary_10_1016_j_cej_2021_133056 crossref_primary_10_1016_j_clay_2021_106361 crossref_primary_10_1016_j_fuel_2016_12_005 crossref_primary_10_1021_acs_langmuir_1c00375 crossref_primary_10_1016_j_fuel_2020_118275 crossref_primary_10_1007_s12517_022_09796_8 crossref_primary_10_1007_s12517_021_07671_6 crossref_primary_10_1016_j_jngse_2020_103774 crossref_primary_10_1016_j_ijhydene_2024_05_113 crossref_primary_10_1016_j_fuel_2024_132696 crossref_primary_10_3390_min9010020 crossref_primary_10_1007_s42452_020_2072_1 crossref_primary_10_1016_j_jngse_2017_11_006 crossref_primary_10_1016_j_jngse_2016_09_022 crossref_primary_10_1016_j_rser_2024_114646 crossref_primary_10_1021_acs_energyfuels_0c01886 crossref_primary_10_1016_j_coal_2016_07_013 crossref_primary_10_1016_j_fuel_2016_06_020 crossref_primary_10_1016_j_jngse_2017_11_009 crossref_primary_10_1039_D1EM00109D crossref_primary_10_1016_j_coal_2015_05_009 crossref_primary_10_1021_acsearthspacechem_8b00039 crossref_primary_10_1016_j_fuel_2016_04_017 crossref_primary_10_1080_10916466_2022_2149799 crossref_primary_10_1016_j_marpetgeo_2016_03_018 crossref_primary_10_3389_feart_2023_1202005 crossref_primary_10_1007_s11053_023_10215_2 crossref_primary_10_1016_j_fuel_2016_05_118 crossref_primary_10_1021_acs_energyfuels_7b01297 crossref_primary_10_1021_acs_energyfuels_7b03476 crossref_primary_10_1021_acs_energyfuels_7b01298 crossref_primary_10_1142_S0218348X18400042 crossref_primary_10_3390_app13031434 crossref_primary_10_1021_acs_energyfuels_2c02193 crossref_primary_10_1021_acssuschemeng_9b06005 crossref_primary_10_1016_j_petrol_2015_06_029 crossref_primary_10_1021_acs_energyfuels_1c03495 crossref_primary_10_1016_j_fuel_2017_06_017 crossref_primary_10_1016_j_marpetgeo_2022_106017 crossref_primary_10_2343_geochemj_2_0600 crossref_primary_10_1016_j_jngse_2017_12_030 crossref_primary_10_1177_01445987231175572 crossref_primary_10_1021_acs_energyfuels_9b01116 crossref_primary_10_1080_08120099_2017_1342174 crossref_primary_10_1016_j_jngse_2015_08_070 crossref_primary_10_1016_j_coal_2020_103483 crossref_primary_10_1016_j_jngse_2020_103453 crossref_primary_10_1021_acsomega_3c01036 crossref_primary_10_3389_feart_2021_654136 crossref_primary_10_1007_s12583_020_1394_7 crossref_primary_10_1016_j_jcis_2022_03_138 crossref_primary_10_1021_acs_accounts_7b00003 crossref_primary_10_1016_j_fuel_2018_12_086 crossref_primary_10_1016_j_fluid_2013_09_047 crossref_primary_10_1021_acsomega_3c01391 crossref_primary_10_1016_j_petrol_2022_111144 crossref_primary_10_1021_acsomega_1c05779 crossref_primary_10_1007_s12517_021_09416_x crossref_primary_10_1016_j_fuel_2018_10_149 crossref_primary_10_1155_2021_9373948 crossref_primary_10_1016_j_apgeochem_2022_105269 crossref_primary_10_1016_j_fuel_2024_133560 crossref_primary_10_1038_s41598_017_12123_x crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_087 crossref_primary_10_1016_j_fuel_2020_119454 crossref_primary_10_1166_jnn_2021_18455 crossref_primary_10_1016_j_ces_2019_06_048 crossref_primary_10_1166_jnn_2021_18450 crossref_primary_10_1016_j_fuel_2014_03_064 crossref_primary_10_1016_j_petrol_2016_02_009 crossref_primary_10_1111_1755_6724_12303_3 crossref_primary_10_1016_j_marpetgeo_2018_06_035 crossref_primary_10_1007_s40789_023_00629_x crossref_primary_10_1038_ncomms13266 crossref_primary_10_1016_j_marpetgeo_2020_104377 crossref_primary_10_1016_j_petrol_2016_07_028 crossref_primary_10_1016_j_petrol_2019_106353 crossref_primary_10_59717_j_xinn_geo_2024_100125 crossref_primary_10_1016_j_petrol_2020_106923 crossref_primary_10_1016_j_coal_2017_12_005 crossref_primary_10_1016_j_jngse_2020_103272 crossref_primary_10_1016_j_jngse_2020_103393 crossref_primary_10_1021_ef5024274 crossref_primary_10_1021_acs_energyfuels_7b03429 crossref_primary_10_1016_j_cej_2019_122808 crossref_primary_10_1016_j_egyr_2023_05_266 crossref_primary_10_3389_feart_2021_542912 crossref_primary_10_1016_j_energy_2021_122789 crossref_primary_10_3390_min7050066 crossref_primary_10_1016_j_fuel_2017_02_063 crossref_primary_10_1016_j_petrol_2021_109597 crossref_primary_10_1021_acs_energyfuels_4c04095 crossref_primary_10_1021_acs_energyfuels_2c03922 crossref_primary_10_3390_atmos13060865 crossref_primary_10_1016_j_marpetgeo_2018_12_012 crossref_primary_10_1016_j_fuel_2020_118457 crossref_primary_10_1002_ente_202300004 crossref_primary_10_1016_j_petsci_2024_03_027 crossref_primary_10_1155_2020_9382058 crossref_primary_10_1016_j_petrol_2018_12_081 crossref_primary_10_1016_j_apsusc_2016_06_033 crossref_primary_10_1021_acs_energyfuels_8b01683 crossref_primary_10_3390_min13101269 crossref_primary_10_2118_212218_PA crossref_primary_10_1002_cjce_24439 crossref_primary_10_3390_en14206836 crossref_primary_10_1016_j_fuel_2017_02_072 crossref_primary_10_1021_acs_energyfuels_9b03859 crossref_primary_10_1021_acs_energyfuels_9b02643 crossref_primary_10_1016_j_coal_2014_09_005 crossref_primary_10_2139_ssrn_4071601 crossref_primary_10_1080_08927022_2014_968850 crossref_primary_10_1016_j_jngse_2016_08_047 crossref_primary_10_3390_en16083305 crossref_primary_10_1002_ghg_2318 crossref_primary_10_1007_s11430_014_5021_2 crossref_primary_10_3390_en10050626 crossref_primary_10_1016_j_fuel_2018_03_164 crossref_primary_10_1016_j_geoen_2023_212549 crossref_primary_10_1016_j_petrol_2022_110897 crossref_primary_10_1016_j_fuel_2017_03_083 crossref_primary_10_2139_ssrn_4188813 crossref_primary_10_1016_j_marpetgeo_2017_06_043 crossref_primary_10_1080_08120099_2018_1455741 crossref_primary_10_1016_j_jngse_2019_103045 crossref_primary_10_1016_j_jrmge_2021_08_019 crossref_primary_10_1021_acs_energyfuels_2c03902 crossref_primary_10_1021_acs_energyfuels_2c01603 crossref_primary_10_1016_j_jngse_2016_12_021 crossref_primary_10_1021_acs_energyfuels_2c01847 crossref_primary_10_1016_j_fuel_2019_116049 crossref_primary_10_1063_5_0249648 crossref_primary_10_1021_acs_energyfuels_8b00017 crossref_primary_10_1080_10916466_2017_1381711 crossref_primary_10_1021_acs_energyfuels_6b03425 crossref_primary_10_3390_buildings15010101 crossref_primary_10_1016_j_jclepro_2020_124465 crossref_primary_10_1007_s11356_020_07936_9 crossref_primary_10_1016_j_fuel_2023_127919 crossref_primary_10_1016_j_colsurfa_2025_136419 crossref_primary_10_3390_app14156577 crossref_primary_10_1016_j_geoen_2023_211440 crossref_primary_10_1016_j_cej_2020_125212 crossref_primary_10_1016_j_gca_2019_11_020 crossref_primary_10_1021_acs_energyfuels_9b00539 crossref_primary_10_1021_acs_energyfuels_7b02892 crossref_primary_10_1088_1755_1315_600_1_012007 crossref_primary_10_1016_j_energy_2018_12_087 crossref_primary_10_1016_j_ijggc_2021_103286 crossref_primary_10_1016_j_ijggc_2016_12_011 crossref_primary_10_1016_j_apsusc_2019_144516 crossref_primary_10_1016_j_marpetgeo_2016_11_010 crossref_primary_10_1021_acs_energyfuels_2c02919 crossref_primary_10_1021_acs_energyfuels_0c01922 crossref_primary_10_1016_j_fuel_2018_03_061 crossref_primary_10_1021_acs_energyfuels_5b00286 crossref_primary_10_1039_D1CP03239A crossref_primary_10_1016_j_clay_2018_01_017 crossref_primary_10_1016_j_egyr_2021_05_060 crossref_primary_10_1021_acs_energyfuels_2c00850 crossref_primary_10_1016_j_marpetgeo_2017_07_021 crossref_primary_10_1021_acs_langmuir_1c02408 crossref_primary_10_1007_s13369_022_06720_w crossref_primary_10_1021_acsomega_3c01640 crossref_primary_10_1021_acs_energyfuels_8b00799 crossref_primary_10_1021_acs_energyfuels_8b00551 crossref_primary_10_1016_j_petrol_2022_110543 crossref_primary_10_1177_0144598717716284 crossref_primary_10_1007_s11440_017_0624_3 crossref_primary_10_1029_2024EA003594 crossref_primary_10_1016_j_coal_2017_07_005 crossref_primary_10_1016_j_coal_2018_09_018 crossref_primary_10_1063_5_0225527 crossref_primary_10_1016_j_petrol_2017_10_081 crossref_primary_10_3389_fenrg_2023_1231338 crossref_primary_10_1080_08120099_2020_1762737 crossref_primary_10_3390_en13195184 crossref_primary_10_1021_acs_energyfuels_7b02639 crossref_primary_10_1021_acsomega_1c02539 crossref_primary_10_3390_en12081480 crossref_primary_10_1016_j_fuel_2022_124776 crossref_primary_10_1016_j_cej_2019_123191 crossref_primary_10_3390_en13071690 crossref_primary_10_1016_j_petrol_2019_106406 crossref_primary_10_1016_j_jngse_2018_01_014 crossref_primary_10_1002_er_5114 crossref_primary_10_1080_08120099_2023_2170466 crossref_primary_10_1016_j_clay_2024_107486 crossref_primary_10_3390_en13174495 crossref_primary_10_1016_j_jgsce_2023_204933 crossref_primary_10_1002_gj_3991 crossref_primary_10_1016_j_fuel_2017_09_018 crossref_primary_10_1021_acs_energyfuels_1c04088 crossref_primary_10_1021_acs_energyfuels_3c04172 crossref_primary_10_1016_j_epsl_2018_04_038 crossref_primary_10_1021_acs_energyfuels_0c02906 crossref_primary_10_1007_s11707_021_0966_5 crossref_primary_10_1016_j_fuel_2020_117412 crossref_primary_10_1016_j_chemgeo_2014_04_007 crossref_primary_10_1016_j_coal_2016_12_001 crossref_primary_10_3390_ijms232112767 crossref_primary_10_1016_j_coal_2013_06_010 crossref_primary_10_1029_2021WR030664 crossref_primary_10_1177_0144598719872802 crossref_primary_10_3390_fuels6010016 crossref_primary_10_1016_j_chemphys_2023_111975 crossref_primary_10_1016_j_coal_2019_103250 crossref_primary_10_1016_j_petrol_2018_08_010 crossref_primary_10_1016_j_fuel_2022_123304 crossref_primary_10_1016_j_petrol_2021_109518 crossref_primary_10_1155_2022_9745313 crossref_primary_10_3390_pr12071438 crossref_primary_10_1016_j_jngse_2016_06_010 crossref_primary_10_1016_j_marpetgeo_2021_105236 crossref_primary_10_1002_gj_3414 crossref_primary_10_1016_j_jngse_2016_06_027 crossref_primary_10_1016_j_jngse_2017_01_024 crossref_primary_10_1016_S2096_2495_17_30030_3 crossref_primary_10_1021_acs_energyfuels_6b03168 crossref_primary_10_1016_j_apsusc_2024_159413 crossref_primary_10_1002_ghg_1870 crossref_primary_10_1016_j_cej_2018_11_185 crossref_primary_10_1016_j_energy_2024_132463 crossref_primary_10_1016_j_jngse_2016_06_024 crossref_primary_10_1016_j_jngse_2022_104519 crossref_primary_10_1021_acs_energyfuels_8b03349 crossref_primary_10_1021_acs_energyfuels_0c04310 crossref_primary_10_1016_j_jcou_2020_02_013 crossref_primary_10_1021_acs_energyfuels_7b02628 crossref_primary_10_1016_j_jngse_2016_07_052 crossref_primary_10_1155_2020_2382153 crossref_primary_10_1021_acs_energyfuels_7b01414 crossref_primary_10_1021_acs_energyfuels_8b03462 crossref_primary_10_1021_acs_jpcc_9b06519 crossref_primary_10_1021_acs_energyfuels_8b02140 crossref_primary_10_1016_j_jseaes_2023_105901 crossref_primary_10_3389_feart_2022_1012607 crossref_primary_10_2139_ssrn_3946164 crossref_primary_10_3390_buildings13071647 crossref_primary_10_1016_j_clay_2020_105631 crossref_primary_10_1016_j_petrol_2021_109980 crossref_primary_10_3390_nano12224037 crossref_primary_10_1016_j_jfueco_2021_100039 crossref_primary_10_1021_ef402466m crossref_primary_10_1016_j_jnggs_2023_03_004 crossref_primary_10_1016_j_petrol_2017_07_020 crossref_primary_10_1016_j_fluid_2014_07_035 crossref_primary_10_1016_j_marpetgeo_2018_09_020 crossref_primary_10_1016_j_coal_2015_09_004 crossref_primary_10_1016_j_jhydrol_2022_127697 crossref_primary_10_1016_j_cej_2020_124989 crossref_primary_10_3390_en17050997 crossref_primary_10_1016_j_fuel_2018_07_098 crossref_primary_10_1021_acs_energyfuels_1c01961 crossref_primary_10_2516_stet_2023014 crossref_primary_10_1021_acs_energyfuels_8b04344 crossref_primary_10_1190_INT_2018_0045_1 crossref_primary_10_1016_j_petrol_2021_108567 crossref_primary_10_1016_j_jngse_2018_09_012 crossref_primary_10_1016_j_jngse_2019_04_020 crossref_primary_10_1016_j_jngse_2018_10_018 crossref_primary_10_1260_0144_5987_32_6_927 crossref_primary_10_1007_s11053_023_10189_1 crossref_primary_10_1016_j_jngse_2014_10_015 crossref_primary_10_1007_s11707_021_0912_y crossref_primary_10_1016_j_petrol_2018_10_086 crossref_primary_10_1016_j_coal_2022_104116 crossref_primary_10_1016_j_jngse_2022_104536 crossref_primary_10_1007_s40948_021_00262_5 crossref_primary_10_1016_j_fuel_2024_132964 crossref_primary_10_1016_j_fuel_2018_07_086 crossref_primary_10_1016_j_jngse_2014_11_030 crossref_primary_10_1016_j_cej_2022_138002 crossref_primary_10_1007_s13369_022_07353_9 crossref_primary_10_1016_j_petrol_2018_01_053 crossref_primary_10_1016_j_compgeo_2024_106178 crossref_primary_10_1515_geo_2022_0346 crossref_primary_10_1021_acs_energyfuels_5b02751 crossref_primary_10_1021_acs_iecr_3c03162 crossref_primary_10_1021_acs_energyfuels_9b01610 crossref_primary_10_1007_s11707_021_0922_9 crossref_primary_10_1016_j_sesci_2017_12_002 crossref_primary_10_1021_acs_energyfuels_9b01857 crossref_primary_10_1016_j_ijhydene_2023_08_185 crossref_primary_10_1016_j_jngse_2016_05_009 crossref_primary_10_1021_acs_energyfuels_6b02286 crossref_primary_10_1063_5_0132591 crossref_primary_10_1016_j_clay_2016_11_026 crossref_primary_10_1021_acs_energyfuels_8b03437 crossref_primary_10_1016_j_ijggc_2021_103563 crossref_primary_10_1021_acs_energyfuels_7b01849 crossref_primary_10_1016_j_fuel_2019_01_059 crossref_primary_10_3390_fractalfract7110803 crossref_primary_10_1021_acs_energyfuels_1c00526 crossref_primary_10_3390_en15051875 crossref_primary_10_3390_pr11092524 crossref_primary_10_1177_0144598716684309 crossref_primary_10_1016_j_apsusc_2017_12_239 crossref_primary_10_1021_acs_energyfuels_1c02702 crossref_primary_10_1016_j_marpetgeo_2018_01_008 crossref_primary_10_1190_INT_2018_0186_1 crossref_primary_10_1021_acs_energyfuels_2c01785 crossref_primary_10_1021_acs_iecr_7b00838 crossref_primary_10_1038_s41598_018_20949_2 crossref_primary_10_1080_08927022_2018_1453138 crossref_primary_10_5194_cp_19_999_2023 crossref_primary_10_1038_s41598_025_86095_8 crossref_primary_10_1016_j_jngse_2014_11_011 crossref_primary_10_1021_acs_energyfuels_9b04192 crossref_primary_10_1007_s11707_021_0892_y crossref_primary_10_1142_S0218348X19400140 crossref_primary_10_1016_j_coal_2019_103281 crossref_primary_10_1016_j_jngse_2016_05_024 crossref_primary_10_1007_s12583_017_0732_x crossref_primary_10_1007_s42452_020_2517_6 crossref_primary_10_1016_j_geoen_2024_212897 crossref_primary_10_1016_j_fuel_2014_06_036 crossref_primary_10_1515_geo_2019_0073 crossref_primary_10_1016_j_jngse_2018_03_024 crossref_primary_10_1080_08120099_2019_1656104 crossref_primary_10_1016_j_fuel_2017_04_087 crossref_primary_10_1002_gj_4670 crossref_primary_10_1016_j_coal_2018_02_020 crossref_primary_10_1016_j_fuel_2018_05_167 crossref_primary_10_3390_computation3040687 crossref_primary_10_3390_min9050265 crossref_primary_10_1021_acs_energyfuels_8b00070 crossref_primary_10_1016_j_fuel_2023_130578 crossref_primary_10_1016_j_marpetgeo_2016_06_001 crossref_primary_10_1016_j_applthermaleng_2016_10_164 crossref_primary_10_1021_acs_energyfuels_2c03948 crossref_primary_10_1017_jfm_2017_180 crossref_primary_10_1016_j_jngse_2018_03_027 crossref_primary_10_1021_acs_energyfuels_2c00675 crossref_primary_10_1016_j_coal_2016_03_012 crossref_primary_10_1021_acsomega_4c02325 crossref_primary_10_1111_1755_6724_14419 crossref_primary_10_1142_S0218348X19400115 crossref_primary_10_1016_j_jngse_2016_06_071 crossref_primary_10_1016_j_jnggs_2016_11_004 crossref_primary_10_1016_j_scitotenv_2024_173533 crossref_primary_10_1016_j_marpetgeo_2015_11_004 crossref_primary_10_1016_j_fuel_2023_128362 crossref_primary_10_1016_j_fluid_2016_09_011 crossref_primary_10_1016_j_marpetgeo_2015_11_001 crossref_primary_10_3390_en15134875 crossref_primary_10_1016_j_fuel_2016_01_037 crossref_primary_10_1016_j_ngib_2024_08_006 crossref_primary_10_1016_j_marpetgeo_2017_10_019 crossref_primary_10_3390_en14010002 crossref_primary_10_1016_j_jngse_2021_104287 crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_141 crossref_primary_10_1021_acsomega_9b03978 crossref_primary_10_1016_j_jngse_2018_12_009 crossref_primary_10_1155_2021_3820762 crossref_primary_10_1155_2023_8102826 crossref_primary_10_1016_j_micromeso_2018_06_050 crossref_primary_10_1039_D2RA02822K crossref_primary_10_3390_min11010063 crossref_primary_10_1039_D0EE03648J crossref_primary_10_1021_acs_energyfuels_0c01689 crossref_primary_10_1016_j_fuel_2018_11_144 crossref_primary_10_1016_j_micromeso_2017_04_044 crossref_primary_10_1190_INT_2020_0141_1 crossref_primary_10_3390_nano11020527 crossref_primary_10_1039_C8RA06678G crossref_primary_10_1002_ese3_501 crossref_primary_10_1007_s00603_018_1723_7 crossref_primary_10_1515_geo_2022_0395 crossref_primary_10_1016_j_fuel_2016_11_027 crossref_primary_10_1016_j_jngse_2016_01_041 crossref_primary_10_1016_j_fuel_2019_115629 crossref_primary_10_1029_2017WR020826 crossref_primary_10_1016_j_coal_2021_103705 crossref_primary_10_1007_s11802_018_3440_y crossref_primary_10_1016_j_jseaes_2023_105740 crossref_primary_10_1021_acs_energyfuels_0c03501 crossref_primary_10_1007_s12182_016_0142_1 crossref_primary_10_1016_j_cej_2022_137411 crossref_primary_10_1016_j_energy_2023_127788 crossref_primary_10_1021_acs_energyfuels_9b04142 crossref_primary_10_1016_j_marpetgeo_2014_12_007 crossref_primary_10_3389_feart_2022_876134 crossref_primary_10_1016_j_jngse_2017_11_026 crossref_primary_10_1021_acs_energyfuels_4c02206 crossref_primary_10_3390_en12020280 crossref_primary_10_3390_min10010072 crossref_primary_10_3390_min13020190 crossref_primary_10_1016_j_energy_2022_125433 crossref_primary_10_1016_j_fuel_2019_116969 crossref_primary_10_1016_j_sedgeo_2016_06_022 crossref_primary_10_1021_acs_iecr_9b02379 crossref_primary_10_1190_INT_2017_0128_1 crossref_primary_10_3390_jmse12050696 crossref_primary_10_1063_5_0054486 crossref_primary_10_1016_j_jngse_2017_11_015 crossref_primary_10_1016_j_ijhydene_2022_06_204 crossref_primary_10_1038_srep37579 crossref_primary_10_1016_j_cej_2018_08_067 crossref_primary_10_1016_j_clay_2015_02_016 crossref_primary_10_1016_j_marpetgeo_2014_07_029 crossref_primary_10_1021_acs_energyfuels_1c00357 crossref_primary_10_1021_acs_energyfuels_1c01448 crossref_primary_10_1016_j_eti_2020_100739 crossref_primary_10_1016_j_marpetgeo_2019_06_011 crossref_primary_10_1021_acs_est_9b03638 crossref_primary_10_1021_acs_jpcc_9b08875 crossref_primary_10_1016_j_petrol_2020_107685 crossref_primary_10_1016_j_cej_2021_130766 crossref_primary_10_1016_j_jngse_2017_03_003 crossref_primary_10_1126_sciadv_adm8443 crossref_primary_10_1021_acs_energyfuels_7b00911 crossref_primary_10_3390_app132212484 crossref_primary_10_3390_en15228353 crossref_primary_10_1021_acs_energyfuels_1c00130 crossref_primary_10_1016_j_petsci_2023_12_012 crossref_primary_10_1007_s11053_020_09738_9 crossref_primary_10_1016_j_energy_2022_124242 crossref_primary_10_1016_j_orggeochem_2014_05_003 crossref_primary_10_1016_j_coal_2019_103337 crossref_primary_10_1016_j_marpetgeo_2018_10_042 crossref_primary_10_1021_acs_jpcc_1c00039 crossref_primary_10_1016_j_marpetgeo_2014_05_010 crossref_primary_10_2118_194507_PA crossref_primary_10_1016_j_marpetgeo_2020_104869 crossref_primary_10_1016_j_fuel_2018_12_035 crossref_primary_10_1007_s12517_022_09662_7 crossref_primary_10_3390_en12214087 crossref_primary_10_1002_ggge_20254 crossref_primary_10_1016_j_petrol_2020_107387 crossref_primary_10_1016_j_petrol_2016_04_023 crossref_primary_10_1080_19392699_2022_2119559 crossref_primary_10_1016_j_marpetgeo_2019_05_038 crossref_primary_10_1063_5_0251571 crossref_primary_10_1016_j_est_2023_106865 crossref_primary_10_1155_2022_3292399 crossref_primary_10_1016_j_marpetgeo_2013_03_007 crossref_primary_10_1016_j_coal_2016_01_013 crossref_primary_10_1007_s42452_020_03928_z crossref_primary_10_1007_s12583_020_1120_5 crossref_primary_10_1021_acs_energyfuels_1c00273 crossref_primary_10_1016_j_coal_2019_103232 crossref_primary_10_3390_pr11123345 crossref_primary_10_1080_10916466_2018_1539749 crossref_primary_10_1016_j_cej_2021_128463 crossref_primary_10_1021_acs_energyfuels_2c03667 crossref_primary_10_1007_s11053_021_09920_7 crossref_primary_10_1016_j_marpetgeo_2018_10_023 crossref_primary_10_1016_j_petsci_2023_05_012 crossref_primary_10_3390_molecules25041001 crossref_primary_10_1021_acsomega_0c05490 crossref_primary_10_1016_j_apsusc_2015_08_101 crossref_primary_10_1021_acs_energyfuels_9b04125 crossref_primary_10_1016_j_mtcomm_2018_12_011 crossref_primary_10_1080_08927022_2017_1328553 crossref_primary_10_1016_j_jiec_2019_06_015 crossref_primary_10_1016_j_petrol_2018_09_059 crossref_primary_10_1155_2018_2091695 crossref_primary_10_1016_j_jngse_2016_03_059 |
Cites_doi | 10.1016/j.orggeochem.2012.03.012 10.1016/j.coal.2006.06.002 10.1180/claymin.1984.019.2.05 10.1016/j.marpetgeo.2008.06.004 10.2110/jsr.2009.092 10.1111/j.1365-2389.1967.tb01481.x 10.1016/S0166-5162(03)00113-7 10.1016/j.coal.2004.05.002 10.1016/0016-2361(95)98364-K 10.2113/gscpgbull.56.1.1 10.2113/gscpgbull.56.1.22 10.3997/2214-4609.20143944 10.2110/sedred.2008.2.4 10.1016/j.chemgeo.2008.08.006 10.1346/CCMN.1997.0450405 10.1016/S0166-5162(02)00078-2 10.1016/j.jcis.2010.05.018 10.2110/jsr.2010.005 10.1016/j.jcis.2004.07.009 10.1021/je0498917 10.1016/j.gca.2011.10.014 10.1021/la061233s 10.1346/CCMN.2007.0550508 10.1063/1.555898 10.1007/s11242-009-9359-4 10.1016/j.coal.2006.05.001 10.1346/CCMN.2005.0530302 10.2113/gscpgbull.55.1.51 10.1016/j.orggeochem.2004.01.007 10.1016/j.colsurfa.2004.04.004 10.1016/j.coal.2005.07.003 10.1346/CCMN.2004.0520604 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 8FD H8D L7M 7S9 L.6 |
DOI | 10.1016/j.apgeochem.2012.08.027 |
DatabaseName | CrossRef Pascal-Francis Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9134 |
EndPage | 2545 |
ExternalDocumentID | 26651134 10_1016_j_apgeochem_2012_08_027 S088329271200251X |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XPP ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 8FD H8D L7M 7S9 L.6 |
ID | FETCH-LOGICAL-a582t-d24502f4a6705538d2157f2b8639bf14eb6adcf88985678579edc5cd0ee0ffda3 |
IEDL.DBID | .~1 |
ISSN | 0883-2927 |
IngestDate | Sun Aug 24 04:13:41 EDT 2025 Fri Jul 11 00:33:23 EDT 2025 Fri Jul 11 14:32:47 EDT 2025 Mon Jul 21 09:15:25 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Tue Jul 01 01:59:29 EDT 2025 Fri Feb 23 02:19:55 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | experimental studies illite adsorption kaolinite absorption quarries thermodynamics chlorite pressure sorption smectite Q mines montmorillonite entropy correlation standard samples kerogen organic materials methane temperature sheet silicates silicates clay minerals |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a582t-d24502f4a6705538d2157f2b8639bf14eb6adcf88985678579edc5cd0ee0ffda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://ir.lzu.edu.cn/handle/262010/120615 |
PQID | 1272718292 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1694492798 proquest_miscellaneous_1671465413 proquest_miscellaneous_1272718292 pascalfrancis_primary_26651134 crossref_primary_10_1016_j_apgeochem_2012_08_027 crossref_citationtrail_10_1016_j_apgeochem_2012_08_027 elsevier_sciencedirect_doi_10_1016_j_apgeochem_2012_08_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-01 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Applied geochemistry |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Cheng, Huang (b0055) 2004; 35 Cavenati, Grande, Rodrigues (b0230) 2004; 49 Van Olphen, Fripiat (b0205) 1979 Busch, Gensterblum, Krooss, Siemons (b0030) 2006; 66 Myers (b0145) 2004; 241 Ross, Bustin (b0160) 2008; 92 Curtis (b0060) 2002; 86 Gregg, Sing (b0080) 1982 Rutherford, Chiou, Eberl (b0180) 1997; 45 Lu, Li, Watson (b0120) 1995; 74 Ross, Bustin (b0155) 2007; 55 Palomino, Santamarina (b0150) 2005; 53 Xia, Tang (b0215) 2012; 77 Wang, Juang, Lee, Hsu, Lee, Chao (b0210) 2004; 280 Bergaya, Theng, Lagaly (b0015) 2006 Jarvie, Hill, Ruble, Pollastro (b0090) 2007; 91 Keller, Staudt (b0100) 2005 McCarty, Arp (b0125) 1990; 35 Michot, Villieras (b0130) 2006; vol. 1 Zhang, Ellis, Ruppel, Milliken, Yang (b0225) 2012; 47 Schieber, Southard, Schimmelmann (b0185) 2010; 80 Montgomery, Jarvie, Bowker, Pallastro (b0140) 2005; 89 Ruppel, Loucks (b0175) 2008; 6 Setzmann, Wagner, Pruss (b0190) 1991; 20 Loucks, Ruppel (b0110) 2007; 91 Loucks, Reed, Ruppel, Jarvie (b0115) 2009; 79 Busch, Gensterblum, Krooss, Littke (b0025) 2004; 60 Gaspark, M., Ghanizadeh, A., Gensterblum, Y., Krooss, B.M., Littke, R., 2012. The methane storage capacity of black shale. In: 3rd EAGE Shale Workshop, Barcelona, pp. 186–188 (Abstract). Milliken, Esch, Reed, Zhang (b0235) 2012; 96 Chalmers, Bustin (b0040) 2007; 70 Rowe, Loucks, Ruppel, Rimmer (b0170) 2008; 257 Krooss, van Bergen, Gensterblum, Siemons, Pagnier, David (b0105) 2002; 51 Tsipursky, Drits (b0200) 1984; 19 Aringhieri (b0005) 2004; 52 Busch, Gensterblum, Krooss (b0020) 2003; 55 Chalmers, Bustin (b0045) 2008; 56 Hill, Jarvie, Zumberge, Henry, Pollastro (b0085) 2007; 91 Chalmers, Bustin (b0035) 2007; 69 Strapoc, Mastalerz, Schimmelmann, Drobniak, Hasenmueller (b0195) 2010; 94 Xia, Litvinov, Muhler (b0220) 2006; 22 Dogan, Dogan, Yesilyurt, Alaygut, Buckner, Wurster (b0065) 2007; 55 Fathi, Akkutlu (b0070) 2009; 80 Kaufhold, Dohrmann, Klinkenberg, Siegesmund, Ufer (b0095) 2010; 349 Ross, Bustin (b0165) 2009; 26 Aylmore, Quirk (b0010) 1967; 18 Chalmers, Bustin (b0050) 2008; 56 Busch (10.1016/j.apgeochem.2012.08.027_b0030) 2006; 66 Keller (10.1016/j.apgeochem.2012.08.027_b0100) 2005 Krooss (10.1016/j.apgeochem.2012.08.027_b0105) 2002; 51 Cavenati (10.1016/j.apgeochem.2012.08.027_b0230) 2004; 49 Myers (10.1016/j.apgeochem.2012.08.027_b0145) 2004; 241 Ross (10.1016/j.apgeochem.2012.08.027_b0155) 2007; 55 Kaufhold (10.1016/j.apgeochem.2012.08.027_b0095) 2010; 349 Montgomery (10.1016/j.apgeochem.2012.08.027_b0140) 2005; 89 Busch (10.1016/j.apgeochem.2012.08.027_b0025) 2004; 60 Ross (10.1016/j.apgeochem.2012.08.027_b0165) 2009; 26 Schieber (10.1016/j.apgeochem.2012.08.027_b0185) 2010; 80 Xia (10.1016/j.apgeochem.2012.08.027_b0215) 2012; 77 Aringhieri (10.1016/j.apgeochem.2012.08.027_b0005) 2004; 52 Ross (10.1016/j.apgeochem.2012.08.027_b0160) 2008; 92 Dogan (10.1016/j.apgeochem.2012.08.027_b0065) 2007; 55 Hill (10.1016/j.apgeochem.2012.08.027_b0085) 2007; 91 Ruppel (10.1016/j.apgeochem.2012.08.027_b0175) 2008; 6 Chalmers (10.1016/j.apgeochem.2012.08.027_b0040) 2007; 70 Wang (10.1016/j.apgeochem.2012.08.027_b0210) 2004; 280 Curtis (10.1016/j.apgeochem.2012.08.027_b0060) 2002; 86 Loucks (10.1016/j.apgeochem.2012.08.027_b0115) 2009; 79 Fathi (10.1016/j.apgeochem.2012.08.027_b0070) 2009; 80 Loucks (10.1016/j.apgeochem.2012.08.027_b0110) 2007; 91 Rowe (10.1016/j.apgeochem.2012.08.027_b0170) 2008; 257 Tsipursky (10.1016/j.apgeochem.2012.08.027_b0200) 1984; 19 Lu (10.1016/j.apgeochem.2012.08.027_b0120) 1995; 74 McCarty (10.1016/j.apgeochem.2012.08.027_b0125) 1990; 35 Busch (10.1016/j.apgeochem.2012.08.027_b0020) 2003; 55 Cheng (10.1016/j.apgeochem.2012.08.027_b0055) 2004; 35 Xia (10.1016/j.apgeochem.2012.08.027_b0220) 2006; 22 Jarvie (10.1016/j.apgeochem.2012.08.027_b0090) 2007; 91 Van Olphen (10.1016/j.apgeochem.2012.08.027_b0205) 1979 Strapoc (10.1016/j.apgeochem.2012.08.027_b0195) 2010; 94 Aylmore (10.1016/j.apgeochem.2012.08.027_b0010) 1967; 18 Rutherford (10.1016/j.apgeochem.2012.08.027_b0180) 1997; 45 Milliken (10.1016/j.apgeochem.2012.08.027_b0235) 2012; 96 Chalmers (10.1016/j.apgeochem.2012.08.027_b0045) 2008; 56 Chalmers (10.1016/j.apgeochem.2012.08.027_b0050) 2008; 56 Chalmers (10.1016/j.apgeochem.2012.08.027_b0035) 2007; 69 Setzmann (10.1016/j.apgeochem.2012.08.027_b0190) 1991; 20 Zhang (10.1016/j.apgeochem.2012.08.027_b0225) 2012; 47 Michot (10.1016/j.apgeochem.2012.08.027_b0130) 2006; vol. 1 10.1016/j.apgeochem.2012.08.027_b0075 Palomino (10.1016/j.apgeochem.2012.08.027_b0150) 2005; 53 Bergaya (10.1016/j.apgeochem.2012.08.027_b0015) 2006 Gregg (10.1016/j.apgeochem.2012.08.027_b0080) 1982 |
References_xml | – volume: 47 start-page: 120 year: 2012 end-page: 131 ident: b0225 article-title: Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems publication-title: Org. Geochem. – volume: 49 start-page: 1095 year: 2004 end-page: 1101 ident: b0230 article-title: Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures publication-title: J. Chem. Eng. Data – year: 1982 ident: b0080 article-title: Adsorption, Surface Area and Porosity – volume: 86 start-page: 1921 year: 2002 end-page: 1938 ident: b0060 article-title: Fractured shale-gas systems publication-title: Am. Assoc. Petrol. Geol. Bull. – volume: 241 start-page: 9 year: 2004 end-page: 14 ident: b0145 article-title: Characterization of nanopores by standard enthalpy and entropy of adsorption of probe molecules publication-title: Colloids Surf. A – volume: 60 start-page: 151 year: 2004 end-page: 168 ident: b0025 article-title: Methane and carbon dioxide adsorption-diffusion experiments on coal: upscaling and modeling publication-title: Int. J. Coal Geol. – volume: 51 start-page: 69 year: 2002 end-page: 92 ident: b0105 article-title: High pressure CH publication-title: Int. J. Coal Geol. – year: 2006 ident: b0015 article-title: Handbook of Clay Science. Developments in Clay Science 1 – volume: 94 start-page: 1713 year: 2010 end-page: 1740 ident: b0195 article-title: Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian–Mississippian), eastern Illinois Basin publication-title: Am. Assoc. Petrol. Geol. Bull. – volume: 52 start-page: 700 year: 2004 end-page: 704 ident: b0005 article-title: Nanoporosity characteristics of some natural clay minerals and soils publication-title: Clays Clay Min. – reference: Gaspark, M., Ghanizadeh, A., Gensterblum, Y., Krooss, B.M., Littke, R., 2012. The methane storage capacity of black shale. In: 3rd EAGE Shale Workshop, Barcelona, pp. 186–188 (Abstract). – volume: 55 start-page: 51 year: 2007 end-page: 75 ident: b0155 article-title: Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada publication-title: Bull. Can. Petrol. Geol. – volume: 66 start-page: 53 year: 2006 end-page: 68 ident: b0030 article-title: Investigation of high-pressure selective adsorption/desorption behaviour of CO publication-title: Int. J. Coal Geol. – volume: 257 start-page: 16 year: 2008 end-page: 25 ident: b0170 article-title: Mississippian Barnett Formation, Fort Worth Basin, Texas: bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction publication-title: Chem. Geol. – volume: 74 start-page: 599 year: 1995 end-page: 603 ident: b0120 article-title: Adsorption measurements in Devonian shales publication-title: Fuel – volume: 69 start-page: 288 year: 2007 end-page: 304 ident: b0035 article-title: On the effects of petrographic composition on coalbed methane sorption publication-title: Int. J. Coal Geol. – volume: 56 start-page: 22 year: 2008 end-page: 61 ident: b0050 article-title: Lower Cretaceous gas shales in northeastern British Columbia, Part II: evaluation of regional potential gas resources publication-title: Bull. Can. Petrol. Geol. – volume: 55 start-page: 534 year: 2007 end-page: 541 ident: b0065 article-title: Baseline studies of the Clay Minerals Society special clays: specific surface area by the Brunauer Emmett Teller (BET) method publication-title: Clays Clay Min. – volume: 22 start-page: 8063 year: 2006 end-page: 8070 ident: b0220 article-title: A consistent approach to adsorption thermodynamics on heterogeneous surfaces using different empirical energy distribution model publication-title: Langmuir – volume: 55 start-page: 205 year: 2003 end-page: 224 ident: b0020 article-title: Methane and CO publication-title: Int. J. Coal Geol. – volume: 349 start-page: 275 year: 2010 end-page: 282 ident: b0095 article-title: N publication-title: J. Colloid Interface. Sci. – volume: 45 start-page: 534 year: 1997 end-page: 543 ident: b0180 article-title: Effects of exchanged cation on the microporosity of montmorillonite publication-title: Clays Clay Min. – volume: 35 start-page: 413 year: 2004 end-page: 423 ident: b0055 article-title: Selective adsorption of hydrocarbon gases on clays and organic matter publication-title: Org. Geochem. – volume: 70 start-page: 223 year: 2007 end-page: 239 ident: b0040 article-title: The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada publication-title: Int. J. Coal Geol. – volume: 79 start-page: 848 year: 2009 end-page: 861 ident: b0115 article-title: Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale publication-title: J. Sed. Res. – volume: 91 start-page: 579 year: 2007 end-page: 601 ident: b0110 article-title: Mississippian Barnett shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin publication-title: Texas. Am. Assoc. Petrol. Geol. Bull. – volume: 91 start-page: 445 year: 2007 end-page: 473 ident: b0085 article-title: Oil and gas geochemistry and petroleum systems of the Fort Worth Basin publication-title: Am. Assoc. Petrol. Geol. Bull. – volume: 96 start-page: 1553 year: 2012 end-page: 1578 ident: b0235 article-title: Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas publication-title: Am. Assoc. Petrol. Geol. Bull. – year: 1979 ident: b0205 article-title: Data Handbook for Clay Minerals and Other Nonmetallic Minerals – volume: 92 start-page: 87 year: 2008 end-page: 125 ident: b0160 article-title: Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation publication-title: Am. Assoc. Petrol. Geol. Bull. – volume: 18 start-page: 1 year: 1967 end-page: 17 ident: b0010 article-title: The micropore size distribution of clay mineral systems publication-title: J. Soil Sci. – volume: 35 start-page: 1465 year: 1990 end-page: 1475 ident: b0125 article-title: A new wide range equation of state for helium publication-title: Adv. Cryog. Eng. – volume: 91 start-page: 475 year: 2007 end-page: 499 ident: b0090 article-title: Unconventional shale-gas systems: the mississippian barnett shale of north-central Texas as one model for thermogenic shale-gas assessment publication-title: Am. Assoc. Petrol. Geol. Bull. – volume: 280 start-page: 27 year: 2004 end-page: 35 ident: b0210 article-title: Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite publication-title: J. Colloid Interface Sci. – volume: 80 start-page: 281 year: 2009 end-page: 304 ident: b0070 article-title: Matrix heterogeneity effects on gas transport and adsorption in coal bed and shale gas reservoirs publication-title: J. Trans. Porous Media – volume: 77 start-page: 489 year: 2012 end-page: 503 ident: b0215 article-title: Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption publication-title: Geochim. Cosmochim. Acta – volume: vol. 1 start-page: 965 year: 2006 end-page: 978 ident: b0130 article-title: Surface area and porosity publication-title: Handbook of Clay Science – volume: 89 start-page: 155 year: 2005 end-page: 175 ident: b0140 article-title: Mississippian Barnett Shale, Fort Worth basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential publication-title: Am. Assoc. Petrol. Geol. Bull. – volume: 20 start-page: 1061 year: 1991 end-page: 1151 ident: b0190 article-title: A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 publication-title: J. Phys. Chem. Ref. Data – volume: 19 start-page: 177 year: 1984 end-page: 193 ident: b0200 article-title: The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by obliquetexture electron diffraction publication-title: Clay Min. – volume: 56 start-page: 1 year: 2008 end-page: 21 ident: b0045 article-title: Lower Cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity publication-title: Bull. Can. Petrol. Geol. – volume: 80 start-page: 119 year: 2010 end-page: 128 ident: b0185 article-title: Lenticular shale fabrics resulting from intermittent erosion of muddy sediments – comparing observations from flume experiments to the rock record publication-title: J. Sed. Res. – volume: 26 start-page: 916 year: 2009 end-page: 927 ident: b0165 article-title: The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs publication-title: Mar. Petrol. Geol. – volume: 6 start-page: 4 year: 2008 end-page: 8 ident: b0175 article-title: Black mudrocks: lessons and questions from the Mississippian Barnett Shale in the southern Midcontinent publication-title: Sediment. Rec. – volume: 53 start-page: 211 year: 2005 end-page: 223 ident: b0150 article-title: Fabric map for kaolinite: effects of pH and ionic concentration on behavior publication-title: Clays Clay Min. – year: 2005 ident: b0100 article-title: Gas Adsorption Equilibra: Experimental Methods and Adsorptive Isotherms – year: 1982 ident: 10.1016/j.apgeochem.2012.08.027_b0080 – volume: 47 start-page: 120 year: 2012 ident: 10.1016/j.apgeochem.2012.08.027_b0225 article-title: Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2012.03.012 – volume: 69 start-page: 288 year: 2007 ident: 10.1016/j.apgeochem.2012.08.027_b0035 article-title: On the effects of petrographic composition on coalbed methane sorption publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2006.06.002 – year: 2006 ident: 10.1016/j.apgeochem.2012.08.027_b0015 – volume: 19 start-page: 177 year: 1984 ident: 10.1016/j.apgeochem.2012.08.027_b0200 article-title: The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by obliquetexture electron diffraction publication-title: Clay Min. doi: 10.1180/claymin.1984.019.2.05 – volume: 35 start-page: 1465 year: 1990 ident: 10.1016/j.apgeochem.2012.08.027_b0125 article-title: A new wide range equation of state for helium publication-title: Adv. Cryog. Eng. – volume: 96 start-page: 1553 year: 2012 ident: 10.1016/j.apgeochem.2012.08.027_b0235 article-title: Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas publication-title: Am. Assoc. Petrol. Geol. Bull. – volume: 26 start-page: 916 year: 2009 ident: 10.1016/j.apgeochem.2012.08.027_b0165 article-title: The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs publication-title: Mar. Petrol. Geol. doi: 10.1016/j.marpetgeo.2008.06.004 – year: 2005 ident: 10.1016/j.apgeochem.2012.08.027_b0100 – volume: 89 start-page: 155 year: 2005 ident: 10.1016/j.apgeochem.2012.08.027_b0140 article-title: Mississippian Barnett Shale, Fort Worth basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential publication-title: Am. Assoc. Petrol. Geol. Bull. – volume: 92 start-page: 87 year: 2008 ident: 10.1016/j.apgeochem.2012.08.027_b0160 article-title: Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation publication-title: Am. Assoc. Petrol. Geol. Bull. – volume: 86 start-page: 1921 year: 2002 ident: 10.1016/j.apgeochem.2012.08.027_b0060 article-title: Fractured shale-gas systems publication-title: Am. Assoc. Petrol. Geol. Bull. – volume: 79 start-page: 848 year: 2009 ident: 10.1016/j.apgeochem.2012.08.027_b0115 article-title: Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale publication-title: J. Sed. Res. doi: 10.2110/jsr.2009.092 – volume: vol. 1 start-page: 965 year: 2006 ident: 10.1016/j.apgeochem.2012.08.027_b0130 article-title: Surface area and porosity – volume: 18 start-page: 1 year: 1967 ident: 10.1016/j.apgeochem.2012.08.027_b0010 article-title: The micropore size distribution of clay mineral systems publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1967.tb01481.x – volume: 55 start-page: 205 year: 2003 ident: 10.1016/j.apgeochem.2012.08.027_b0020 article-title: Methane and CO2 sorption and desorption measurements on dry Argonne premium coals: pure components and mixtures publication-title: Int. J. Coal Geol. doi: 10.1016/S0166-5162(03)00113-7 – volume: 60 start-page: 151 year: 2004 ident: 10.1016/j.apgeochem.2012.08.027_b0025 article-title: Methane and carbon dioxide adsorption-diffusion experiments on coal: upscaling and modeling publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2004.05.002 – volume: 74 start-page: 599 year: 1995 ident: 10.1016/j.apgeochem.2012.08.027_b0120 article-title: Adsorption measurements in Devonian shales publication-title: Fuel doi: 10.1016/0016-2361(95)98364-K – volume: 56 start-page: 1 year: 2008 ident: 10.1016/j.apgeochem.2012.08.027_b0045 article-title: Lower Cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity publication-title: Bull. Can. Petrol. Geol. doi: 10.2113/gscpgbull.56.1.1 – volume: 56 start-page: 22 year: 2008 ident: 10.1016/j.apgeochem.2012.08.027_b0050 article-title: Lower Cretaceous gas shales in northeastern British Columbia, Part II: evaluation of regional potential gas resources publication-title: Bull. Can. Petrol. Geol. doi: 10.2113/gscpgbull.56.1.22 – ident: 10.1016/j.apgeochem.2012.08.027_b0075 doi: 10.3997/2214-4609.20143944 – volume: 6 start-page: 4 year: 2008 ident: 10.1016/j.apgeochem.2012.08.027_b0175 article-title: Black mudrocks: lessons and questions from the Mississippian Barnett Shale in the southern Midcontinent publication-title: Sediment. Rec. doi: 10.2110/sedred.2008.2.4 – volume: 257 start-page: 16 year: 2008 ident: 10.1016/j.apgeochem.2012.08.027_b0170 article-title: Mississippian Barnett Formation, Fort Worth Basin, Texas: bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2008.08.006 – volume: 45 start-page: 534 year: 1997 ident: 10.1016/j.apgeochem.2012.08.027_b0180 article-title: Effects of exchanged cation on the microporosity of montmorillonite publication-title: Clays Clay Min. doi: 10.1346/CCMN.1997.0450405 – volume: 94 start-page: 1713 year: 2010 ident: 10.1016/j.apgeochem.2012.08.027_b0195 article-title: Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian–Mississippian), eastern Illinois Basin publication-title: Am. Assoc. Petrol. Geol. Bull. – volume: 51 start-page: 69 year: 2002 ident: 10.1016/j.apgeochem.2012.08.027_b0105 article-title: High pressure CH4 and carbon dioxide adsorption on dry and moisture equilibrated Pennsylvanian coals publication-title: Int. J. Coal Geol. doi: 10.1016/S0166-5162(02)00078-2 – volume: 349 start-page: 275 year: 2010 ident: 10.1016/j.apgeochem.2012.08.027_b0095 article-title: N2-BET specific surface area of bentonites publication-title: J. Colloid Interface. Sci. doi: 10.1016/j.jcis.2010.05.018 – volume: 80 start-page: 119 year: 2010 ident: 10.1016/j.apgeochem.2012.08.027_b0185 article-title: Lenticular shale fabrics resulting from intermittent erosion of muddy sediments – comparing observations from flume experiments to the rock record publication-title: J. Sed. Res. doi: 10.2110/jsr.2010.005 – volume: 280 start-page: 27 year: 2004 ident: 10.1016/j.apgeochem.2012.08.027_b0210 article-title: Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.07.009 – volume: 49 start-page: 1095 year: 2004 ident: 10.1016/j.apgeochem.2012.08.027_b0230 article-title: Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures publication-title: J. Chem. Eng. Data doi: 10.1021/je0498917 – volume: 91 start-page: 579 year: 2007 ident: 10.1016/j.apgeochem.2012.08.027_b0110 article-title: Mississippian Barnett shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin publication-title: Texas. Am. Assoc. Petrol. Geol. Bull. – volume: 77 start-page: 489 year: 2012 ident: 10.1016/j.apgeochem.2012.08.027_b0215 article-title: Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.10.014 – volume: 22 start-page: 8063 year: 2006 ident: 10.1016/j.apgeochem.2012.08.027_b0220 article-title: A consistent approach to adsorption thermodynamics on heterogeneous surfaces using different empirical energy distribution model publication-title: Langmuir doi: 10.1021/la061233s – volume: 55 start-page: 534 year: 2007 ident: 10.1016/j.apgeochem.2012.08.027_b0065 article-title: Baseline studies of the Clay Minerals Society special clays: specific surface area by the Brunauer Emmett Teller (BET) method publication-title: Clays Clay Min. doi: 10.1346/CCMN.2007.0550508 – volume: 20 start-page: 1061 year: 1991 ident: 10.1016/j.apgeochem.2012.08.027_b0190 article-title: A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625K at Pressures up to 1000MPa publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555898 – volume: 80 start-page: 281 year: 2009 ident: 10.1016/j.apgeochem.2012.08.027_b0070 article-title: Matrix heterogeneity effects on gas transport and adsorption in coal bed and shale gas reservoirs publication-title: J. Trans. Porous Media doi: 10.1007/s11242-009-9359-4 – volume: 70 start-page: 223 year: 2007 ident: 10.1016/j.apgeochem.2012.08.027_b0040 article-title: The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2006.05.001 – volume: 53 start-page: 211 year: 2005 ident: 10.1016/j.apgeochem.2012.08.027_b0150 article-title: Fabric map for kaolinite: effects of pH and ionic concentration on behavior publication-title: Clays Clay Min. doi: 10.1346/CCMN.2005.0530302 – volume: 91 start-page: 445 year: 2007 ident: 10.1016/j.apgeochem.2012.08.027_b0085 article-title: Oil and gas geochemistry and petroleum systems of the Fort Worth Basin publication-title: Am. Assoc. Petrol. Geol. Bull. – volume: 55 start-page: 51 year: 2007 ident: 10.1016/j.apgeochem.2012.08.027_b0155 article-title: Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada publication-title: Bull. Can. Petrol. Geol. doi: 10.2113/gscpgbull.55.1.51 – volume: 35 start-page: 413 year: 2004 ident: 10.1016/j.apgeochem.2012.08.027_b0055 article-title: Selective adsorption of hydrocarbon gases on clays and organic matter publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2004.01.007 – volume: 241 start-page: 9 year: 2004 ident: 10.1016/j.apgeochem.2012.08.027_b0145 article-title: Characterization of nanopores by standard enthalpy and entropy of adsorption of probe molecules publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2004.04.004 – year: 1979 ident: 10.1016/j.apgeochem.2012.08.027_b0205 – volume: 66 start-page: 53 year: 2006 ident: 10.1016/j.apgeochem.2012.08.027_b0030 article-title: Investigation of high-pressure selective adsorption/desorption behaviour of CO2 and CH4 on coals: an experimental study publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2005.07.003 – volume: 91 start-page: 475 year: 2007 ident: 10.1016/j.apgeochem.2012.08.027_b0090 article-title: Unconventional shale-gas systems: the mississippian barnett shale of north-central Texas as one model for thermogenic shale-gas assessment publication-title: Am. Assoc. Petrol. Geol. Bull. – volume: 52 start-page: 700 year: 2004 ident: 10.1016/j.apgeochem.2012.08.027_b0005 article-title: Nanoporosity characteristics of some natural clay minerals and soils publication-title: Clays Clay Min. doi: 10.1346/CCMN.2004.0520604 |
SSID | ssj0005702 |
Score | 2.5729465 |
Snippet | ► The difference in clay mineral type is one key element controlling CH4 adsorption in clay-rich rocks. ► BET surface area is a primary proxy for CH4... In this study a series of CH4 adsorption experiments on clay-rich rocks were conducted at 35 degree C, 50 degree C and 65 degree C and at CH4 pressure up to 15... In this study a series of CH₄ adsorption experiments on clay-rich rocks were conducted at 35°C, 50°C and 65°C and at CH₄ pressure up to 15MPa under dry... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2533 |
SubjectTerms | absorption Adsorption clay Clay minerals Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Entropy Exact sciences and technology Geochemistry heat Illite kaolinite methane Montmorillonite organic matter Pollution, environment geology Rocks smectite Sorption surface area Surface chemistry temperature |
Title | Experimental investigation of main controls to methane adsorption in clay-rich rocks |
URI | https://dx.doi.org/10.1016/j.apgeochem.2012.08.027 https://www.proquest.com/docview/1272718292 https://www.proquest.com/docview/1671465413 https://www.proquest.com/docview/1694492798 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQFVKlqiq0VbePlZF6NZs4jh-9IQRsQXApSHuznNhut6XJiiwHLvx2ZvLYsmoFhx43GivZGc9842RmPkI-61RlMouSGQAfBuevghkhPCtL4xTgj_ESG4XPzuX0UpzM8tkGORh6YbCsso_9XUxvo3V_ZdJrc7KYzyffwD8ybrhKeZsoz7CDXSjc5Xt3D8o8VFt3iMIMpddqvNzie0BiKmxJx5eCei9Bepl_I9SLhWtAb7EjvPgrdreAdPSKvOwzSbrfPew22QjVDtk6bpl6b1-Ti8MHs_vp_M84jbqidaS_3byifZ16Q5c1RSppVwXqfFNft3GEosSVu2UQKn9QALpfzRtyeXR4cTBlPYUCc7nmS-a5yBMehZM4NSfTHhBeRV5oSEyKmIpQSOfLqLXROcBWrkzwZV76JIQkRu-yt2SzqqvwjlCelbBAFuDFUfDAwZZKm9ILBye8xOkRkYPabNnPF0eaiys7FJL9tCt9W9S3RQJMrkYkWS1cdCM2nl7yZbCLXdstFoDg6cXjNUuubgq5CqSfmRiR3cG0FpwNv6CA_uubxqYc0j04kRn-iIxUKQ6pS7PHZMAhYDMa_f5__skH8hx_ddU1H8nm8vomfIIcaVmMWycYk2f7X0-n5_dwEhJQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa6FMMGDMOeaNat04BdvdiyrEdvRdEuXdtclgK5CbIldenDDur00H8_yo90wYb2sKtNwjZp8qNsih_AV5mIlKeeRwrBJ8L1Vx4pxmxUFMoIxB9ledgofDrh4zP2Y5bNNmC_3wsT2iq73N_m9CZbd0dGnTVHi_l89BPjI6WKioQ2hfLsCWyG6VTZADb3jo7Hk_tOD9G0Hgb5KCistXmZxbkL3FRhV3r4Lii_xYFh5t8g9WJhajSdbzkv_krfDSYdvoKXXTFJ9tr7fQ0brnwDT783ZL13b2F68Mf4fjK_n6hRlaTy5NrMS9K1qtdkWZHAJm1KR4ytq5smlZAgcWXuIsyWvwhi3WX9Ds4OD6b746hjUYhMJukyspRlMfXM8DA4J5UWQV54mkusTXKfMJdzYwsvpZIZIlcmlLNFVtjYudh7a9L3MCir0m0BoWmBCjzHQPaMOoruFFIVlhlc5MVGDoH3ZtNFN2I8MF1c6b6X7EKv7K2DvXXgwKRiCPFKcdFO2XhcZbf3i157YTRiwePKO2ueXF0UyxWsQFM2hC-9azXGW_iJgvavbmudUKz4cFGm6AMyXCRhTl2SPiSDMYEvo5If_udJPsOz8fT0RJ8cTY634Xk40zbbfITB8ubWfcKSaZnvdCHxG8O7FQE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+of+main+controls+to+methane+adsorption+in+clay-rich+rocks&rft.jtitle=Applied+geochemistry&rft.au=Ji%2C+Liming&rft.au=Zhang%2C+Tongwei&rft.au=Milliken%2C+Kitty+L.&rft.au=Qu%2C+Junli&rft.date=2012-12-01&rft.pub=Elsevier+Ltd&rft.issn=0883-2927&rft.eissn=1872-9134&rft.volume=27&rft.issue=12&rft.spage=2533&rft.epage=2545&rft_id=info:doi/10.1016%2Fj.apgeochem.2012.08.027&rft.externalDocID=S088329271200251X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon |