Experimental investigation of main controls to methane adsorption in clay-rich rocks

► The difference in clay mineral type is one key element controlling CH4 adsorption in clay-rich rocks. ► BET surface area is a primary proxy for CH4 adsorption capacity in clay-rich rocks. ► Clay type affects gas-sorption capacity and the presence of moisture can greatly reduce gas-sorption capacit...

Full description

Saved in:
Bibliographic Details
Published inApplied geochemistry Vol. 27; no. 12; pp. 2533 - 2545
Main Authors Ji, Liming, Zhang, Tongwei, Milliken, Kitty L., Qu, Junli, Zhang, Xiaolong
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► The difference in clay mineral type is one key element controlling CH4 adsorption in clay-rich rocks. ► BET surface area is a primary proxy for CH4 adsorption capacity in clay-rich rocks. ► Clay type affects gas-sorption capacity and the presence of moisture can greatly reduce gas-sorption capacity. ► Quantitative model prediction is developed to estimate the methane sorption capacity of organic-lean shales. In this study a series of CH4 adsorption experiments on clay-rich rocks were conducted at 35°C, 50°C and 65°C and at CH4 pressure up to 15MPa under dry conditions. The clay-dominated rock samples used are fresh samples from quarries and mines. Samples are individually dominated by montmorillonite, kaolinite, illite, chlorite, and interstratified illite/smectite. The experimental results show that clay mineral type greatly affects CH4 sorption capacity under the experimental conditions. In terms of relative CH4 sorption capacity: montmorillonite≫illite/smectite mixed layer>kaolinite>chlorite>illite. Physisorption is the dominant process for CH4 absorption on clay minerals, as a result, there is a linear correlation between CH4 sorption capacity and BET surface area in these clay-mineral dominated rocks. The abundance of micro-mesopores in the size range of a few to a few 10s of nanometers in montmorillonite clay and illite–smectite interstratified clay results in large BET surface area values for these mineral species. A good linear relationship between the natural logarithm of Langmuir constant and the reciprocal of temperature exists for clay-mineral dominated rocks, which provides a way to quantify the impact of clay mineral type on gas adsorption capacity. Thermodynamic parameters, the heat of CH4 adsorption and the standard entropy, are calculated based on this linear correlations. The heat of adsorption (q) and the standard entropy (Δso) range from 9.4 to 16.6kJ/mol and from −64.8 to −79.5J/mol/K, respectively, values considerably smaller than those for CH4 adsorption on kerogens. Thus, it is expected that CH4 molecules may preferentially occupy surface sites on organic matter, in addition, the clay minerals are easily blocked by water. As a consequence, organic-rich mudrocks possess a larger CH4 sorption capacity than clay-dominated rocks lacking organic matter.
AbstractList ► The difference in clay mineral type is one key element controlling CH4 adsorption in clay-rich rocks. ► BET surface area is a primary proxy for CH4 adsorption capacity in clay-rich rocks. ► Clay type affects gas-sorption capacity and the presence of moisture can greatly reduce gas-sorption capacity. ► Quantitative model prediction is developed to estimate the methane sorption capacity of organic-lean shales. In this study a series of CH4 adsorption experiments on clay-rich rocks were conducted at 35°C, 50°C and 65°C and at CH4 pressure up to 15MPa under dry conditions. The clay-dominated rock samples used are fresh samples from quarries and mines. Samples are individually dominated by montmorillonite, kaolinite, illite, chlorite, and interstratified illite/smectite. The experimental results show that clay mineral type greatly affects CH4 sorption capacity under the experimental conditions. In terms of relative CH4 sorption capacity: montmorillonite≫illite/smectite mixed layer>kaolinite>chlorite>illite. Physisorption is the dominant process for CH4 absorption on clay minerals, as a result, there is a linear correlation between CH4 sorption capacity and BET surface area in these clay-mineral dominated rocks. The abundance of micro-mesopores in the size range of a few to a few 10s of nanometers in montmorillonite clay and illite–smectite interstratified clay results in large BET surface area values for these mineral species. A good linear relationship between the natural logarithm of Langmuir constant and the reciprocal of temperature exists for clay-mineral dominated rocks, which provides a way to quantify the impact of clay mineral type on gas adsorption capacity. Thermodynamic parameters, the heat of CH4 adsorption and the standard entropy, are calculated based on this linear correlations. The heat of adsorption (q) and the standard entropy (Δso) range from 9.4 to 16.6kJ/mol and from −64.8 to −79.5J/mol/K, respectively, values considerably smaller than those for CH4 adsorption on kerogens. Thus, it is expected that CH4 molecules may preferentially occupy surface sites on organic matter, in addition, the clay minerals are easily blocked by water. As a consequence, organic-rich mudrocks possess a larger CH4 sorption capacity than clay-dominated rocks lacking organic matter.
In this study a series of CH₄ adsorption experiments on clay-rich rocks were conducted at 35°C, 50°C and 65°C and at CH₄ pressure up to 15MPa under dry conditions. The clay-dominated rock samples used are fresh samples from quarries and mines. Samples are individually dominated by montmorillonite, kaolinite, illite, chlorite, and interstratified illite/smectite. The experimental results show that clay mineral type greatly affects CH₄ sorption capacity under the experimental conditions. In terms of relative CH₄ sorption capacity: montmorillonite≫illite/smectite mixed layer>kaolinite>chlorite>illite. Physisorption is the dominant process for CH₄ absorption on clay minerals, as a result, there is a linear correlation between CH₄ sorption capacity and BET surface area in these clay-mineral dominated rocks. The abundance of micro-mesopores in the size range of a few to a few 10s of nanometers in montmorillonite clay and illite–smectite interstratified clay results in large BET surface area values for these mineral species. A good linear relationship between the natural logarithm of Langmuir constant and the reciprocal of temperature exists for clay-mineral dominated rocks, which provides a way to quantify the impact of clay mineral type on gas adsorption capacity. Thermodynamic parameters, the heat of CH₄ adsorption and the standard entropy, are calculated based on this linear correlations. The heat of adsorption (q) and the standard entropy (Δsᵒ) range from 9.4 to 16.6kJ/mol and from −64.8 to −79.5J/mol/K, respectively, values considerably smaller than those for CH₄ adsorption on kerogens. Thus, it is expected that CH₄ molecules may preferentially occupy surface sites on organic matter, in addition, the clay minerals are easily blocked by water. As a consequence, organic-rich mudrocks possess a larger CH₄ sorption capacity than clay-dominated rocks lacking organic matter.
In this study a series of CH4 adsorption experiments on clay-rich rocks were conducted at 35 degree C, 50 degree C and 65 degree C and at CH4 pressure up to 15 MPa under dry conditions. The clay-dominated rock samples used are fresh samples from quarries and mines. Samples are individually dominated by montmorillonite, kaolinite, illite, chlorite, and interstratified illite/smectite. The experimental results show that clay mineral type greatly affects CH4 sorption capacity under the experimental conditions. In terms of relative CH4 sorption capacity: montmorillonite a< illite/smectite mixed layer > kaolinite > chlorite > illite. Physisorption is the dominant process for CH4 absorption on clay minerals, as a result, there is a linear correlation between CH4 sorption capacity and BET surface area in these clay-mineral dominated rocks. The abundance of micro-mesopores in the size range of a few to a few 10 s of nanometers in montmorillonite clay and illiteasmectite interstratified clay results in large BET surface area values for these mineral species. A good linear relationship between the natural logarithm of Langmuir constant and the reciprocal of temperature exists for clay-mineral dominated rocks, which provides a way to quantify the impact of clay mineral type on gas adsorption capacity. Thermodynamic parameters, the heat of CH4 adsorption and the standard entropy, are calculated based on this linear correlations. The heat of adsorption (q) and the standard entropy (Iso) range from 9.4 to 16.6 kJ/mol and from -64.8 to -79.5 J/mol/K, respectively, values considerably smaller than those for CH4 adsorption on kerogens. Thus, it is expected that CH4 molecules may preferentially occupy surface sites on organic matter, in addition, the clay minerals are easily blocked by water. As a consequence, organic-rich mudrocks possess a larger CH4 sorption capacity than clay-dominated rocks lacking organic matter.
Author Zhang, Xiaolong
Milliken, Kitty L.
Zhang, Tongwei
Ji, Liming
Qu, Junli
Author_xml – sequence: 1
  givenname: Liming
  surname: Ji
  fullname: Ji, Liming
  organization: Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 2
  givenname: Tongwei
  surname: Zhang
  fullname: Zhang, Tongwei
  email: tongwei.zhang@beg.utexas.edu
  organization: Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, USA
– sequence: 3
  givenname: Kitty L.
  surname: Milliken
  fullname: Milliken, Kitty L.
  organization: Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, USA
– sequence: 4
  givenname: Junli
  surname: Qu
  fullname: Qu, Junli
  organization: Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 5
  givenname: Xiaolong
  surname: Zhang
  fullname: Zhang, Xiaolong
  organization: The School of Earth Sciences, Lanzhou University, Lanzhou 730000, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26651134$$DView record in Pascal Francis
BookMark eNqNkT1PHDEQhq2ISDkIv4FtItHsxvauP7agQIh8SEg0UFs-e8z5smsvtkHw7_FxiCINVNM872jmfQ7RQYgBEDohuCOY8J_bTi93EM0G5o5iQjssO0zFF7QiUtB2JP1wgFZYyr6lIxXf0GHOW4wxE5iu0M3l0wLJzxCKnhofHiEXf6eLj6GJrpm1D42JoaQ45abEZoay0QEabXNMyyu2Iyb93CZvNk2K5l_-jr46PWU4fptH6PbX5c3Fn_bq-vffi_OrVjNJS2vpwDB1g-YCM9ZLSwkTjq4l78e1IwOsubbGSTlKxoVkYgRrmLEYADtndX-ETvd7lxTvH-rlavbZwDTVC-NDVoSPw1B_HuUnUEEGzgbSf4xSQQWRtcyK_nhDdTZ6ckkH47NaaqE6PSvKOSO1_8qJPWdSzDmBe0cIVjuLaqveLaqdRYWlqhZr8uy_pPHlVU9J2k-fyJ_v81A9PHpIKhsPwYD1CUxRNvoPd7wABpXAkw
CODEN APPGEY
CitedBy_id crossref_primary_10_1016_j_jhydrol_2016_09_018
crossref_primary_10_1016_j_coal_2018_12_007
crossref_primary_10_1016_j_jngse_2018_06_019
crossref_primary_10_1016_j_earscirev_2021_103746
crossref_primary_10_1016_j_cej_2022_135867
crossref_primary_10_1021_acs_energyfuels_9b01024
crossref_primary_10_3390_pr12091842
crossref_primary_10_1016_j_egyr_2021_11_259
crossref_primary_10_1021_acs_energyfuels_9b02232
crossref_primary_10_2113_2023_8015444
crossref_primary_10_3390_en17194990
crossref_primary_10_1016_j_marpetgeo_2020_104303
crossref_primary_10_1016_j_apgeochem_2022_105368
crossref_primary_10_1016_j_fuel_2013_07_040
crossref_primary_10_1016_j_petrol_2019_106183
crossref_primary_10_1016_j_petrol_2021_109193
crossref_primary_10_1016_j_fuel_2019_04_072
crossref_primary_10_32604_fdmp_2023_029281
crossref_primary_10_1021_acs_energyfuels_6b02999
crossref_primary_10_1144_petgeo2016_064
crossref_primary_10_1016_j_coal_2015_06_003
crossref_primary_10_1016_j_egyr_2022_05_037
crossref_primary_10_1016_j_jechem_2015_06_004
crossref_primary_10_1016_j_ijft_2024_100879
crossref_primary_10_1016_j_cej_2018_05_105
crossref_primary_10_1016_j_clay_2024_107495
crossref_primary_10_1016_j_jngse_2019_102903
crossref_primary_10_1016_j_marpetgeo_2020_104679
crossref_primary_10_3390_en10101586
crossref_primary_10_1002_ente_202400377
crossref_primary_10_1016_j_jngse_2020_103676
crossref_primary_10_1016_j_jsames_2021_103507
crossref_primary_10_1016_j_jngse_2019_102907
crossref_primary_10_1021_acs_energyfuels_6b01776
crossref_primary_10_1021_acs_energyfuels_6b01777
crossref_primary_10_1021_ef5023434
crossref_primary_10_1039_C9RA04963K
crossref_primary_10_1016_j_ijhydene_2024_12_010
crossref_primary_10_1021_acs_energyfuels_0c00782
crossref_primary_10_2139_ssrn_3976144
crossref_primary_10_1016_j_petrol_2019_06_021
crossref_primary_10_1016_j_margeo_2022_106912
crossref_primary_10_1016_j_marpetgeo_2015_08_012
crossref_primary_10_1016_j_cej_2022_136617
crossref_primary_10_1007_s11242_021_01599_x
crossref_primary_10_1016_j_petrol_2017_03_017
crossref_primary_10_1016_j_marpetgeo_2020_104565
crossref_primary_10_1007_s40710_014_0036_4
crossref_primary_10_1021_acs_energyfuels_8b00417
crossref_primary_10_1021_acs_energyfuels_5b02088
crossref_primary_10_1177_0144598718790320
crossref_primary_10_1016_j_fuel_2015_12_074
crossref_primary_10_31697_jpsg_2020_2_1_11
crossref_primary_10_1016_j_cej_2021_133056
crossref_primary_10_1016_j_clay_2021_106361
crossref_primary_10_1016_j_fuel_2016_12_005
crossref_primary_10_1021_acs_langmuir_1c00375
crossref_primary_10_1016_j_fuel_2020_118275
crossref_primary_10_1007_s12517_022_09796_8
crossref_primary_10_1007_s12517_021_07671_6
crossref_primary_10_1016_j_jngse_2020_103774
crossref_primary_10_1016_j_ijhydene_2024_05_113
crossref_primary_10_1016_j_fuel_2024_132696
crossref_primary_10_3390_min9010020
crossref_primary_10_1007_s42452_020_2072_1
crossref_primary_10_1016_j_jngse_2017_11_006
crossref_primary_10_1016_j_jngse_2016_09_022
crossref_primary_10_1016_j_rser_2024_114646
crossref_primary_10_1021_acs_energyfuels_0c01886
crossref_primary_10_1016_j_coal_2016_07_013
crossref_primary_10_1016_j_fuel_2016_06_020
crossref_primary_10_1016_j_jngse_2017_11_009
crossref_primary_10_1039_D1EM00109D
crossref_primary_10_1016_j_coal_2015_05_009
crossref_primary_10_1021_acsearthspacechem_8b00039
crossref_primary_10_1016_j_fuel_2016_04_017
crossref_primary_10_1080_10916466_2022_2149799
crossref_primary_10_1016_j_marpetgeo_2016_03_018
crossref_primary_10_3389_feart_2023_1202005
crossref_primary_10_1007_s11053_023_10215_2
crossref_primary_10_1016_j_fuel_2016_05_118
crossref_primary_10_1021_acs_energyfuels_7b01297
crossref_primary_10_1021_acs_energyfuels_7b03476
crossref_primary_10_1021_acs_energyfuels_7b01298
crossref_primary_10_1142_S0218348X18400042
crossref_primary_10_3390_app13031434
crossref_primary_10_1021_acs_energyfuels_2c02193
crossref_primary_10_1021_acssuschemeng_9b06005
crossref_primary_10_1016_j_petrol_2015_06_029
crossref_primary_10_1021_acs_energyfuels_1c03495
crossref_primary_10_1016_j_fuel_2017_06_017
crossref_primary_10_1016_j_marpetgeo_2022_106017
crossref_primary_10_2343_geochemj_2_0600
crossref_primary_10_1016_j_jngse_2017_12_030
crossref_primary_10_1177_01445987231175572
crossref_primary_10_1021_acs_energyfuels_9b01116
crossref_primary_10_1080_08120099_2017_1342174
crossref_primary_10_1016_j_jngse_2015_08_070
crossref_primary_10_1016_j_coal_2020_103483
crossref_primary_10_1016_j_jngse_2020_103453
crossref_primary_10_1021_acsomega_3c01036
crossref_primary_10_3389_feart_2021_654136
crossref_primary_10_1007_s12583_020_1394_7
crossref_primary_10_1016_j_jcis_2022_03_138
crossref_primary_10_1021_acs_accounts_7b00003
crossref_primary_10_1016_j_fuel_2018_12_086
crossref_primary_10_1016_j_fluid_2013_09_047
crossref_primary_10_1021_acsomega_3c01391
crossref_primary_10_1016_j_petrol_2022_111144
crossref_primary_10_1021_acsomega_1c05779
crossref_primary_10_1007_s12517_021_09416_x
crossref_primary_10_1016_j_fuel_2018_10_149
crossref_primary_10_1155_2021_9373948
crossref_primary_10_1016_j_apgeochem_2022_105269
crossref_primary_10_1016_j_fuel_2024_133560
crossref_primary_10_1038_s41598_017_12123_x
crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_087
crossref_primary_10_1016_j_fuel_2020_119454
crossref_primary_10_1166_jnn_2021_18455
crossref_primary_10_1016_j_ces_2019_06_048
crossref_primary_10_1166_jnn_2021_18450
crossref_primary_10_1016_j_fuel_2014_03_064
crossref_primary_10_1016_j_petrol_2016_02_009
crossref_primary_10_1111_1755_6724_12303_3
crossref_primary_10_1016_j_marpetgeo_2018_06_035
crossref_primary_10_1007_s40789_023_00629_x
crossref_primary_10_1038_ncomms13266
crossref_primary_10_1016_j_marpetgeo_2020_104377
crossref_primary_10_1016_j_petrol_2016_07_028
crossref_primary_10_1016_j_petrol_2019_106353
crossref_primary_10_59717_j_xinn_geo_2024_100125
crossref_primary_10_1016_j_petrol_2020_106923
crossref_primary_10_1016_j_coal_2017_12_005
crossref_primary_10_1016_j_jngse_2020_103272
crossref_primary_10_1016_j_jngse_2020_103393
crossref_primary_10_1021_ef5024274
crossref_primary_10_1021_acs_energyfuels_7b03429
crossref_primary_10_1016_j_cej_2019_122808
crossref_primary_10_1016_j_egyr_2023_05_266
crossref_primary_10_3389_feart_2021_542912
crossref_primary_10_1016_j_energy_2021_122789
crossref_primary_10_3390_min7050066
crossref_primary_10_1016_j_fuel_2017_02_063
crossref_primary_10_1016_j_petrol_2021_109597
crossref_primary_10_1021_acs_energyfuels_4c04095
crossref_primary_10_1021_acs_energyfuels_2c03922
crossref_primary_10_3390_atmos13060865
crossref_primary_10_1016_j_marpetgeo_2018_12_012
crossref_primary_10_1016_j_fuel_2020_118457
crossref_primary_10_1002_ente_202300004
crossref_primary_10_1016_j_petsci_2024_03_027
crossref_primary_10_1155_2020_9382058
crossref_primary_10_1016_j_petrol_2018_12_081
crossref_primary_10_1016_j_apsusc_2016_06_033
crossref_primary_10_1021_acs_energyfuels_8b01683
crossref_primary_10_3390_min13101269
crossref_primary_10_2118_212218_PA
crossref_primary_10_1002_cjce_24439
crossref_primary_10_3390_en14206836
crossref_primary_10_1016_j_fuel_2017_02_072
crossref_primary_10_1021_acs_energyfuels_9b03859
crossref_primary_10_1021_acs_energyfuels_9b02643
crossref_primary_10_1016_j_coal_2014_09_005
crossref_primary_10_2139_ssrn_4071601
crossref_primary_10_1080_08927022_2014_968850
crossref_primary_10_1016_j_jngse_2016_08_047
crossref_primary_10_3390_en16083305
crossref_primary_10_1002_ghg_2318
crossref_primary_10_1007_s11430_014_5021_2
crossref_primary_10_3390_en10050626
crossref_primary_10_1016_j_fuel_2018_03_164
crossref_primary_10_1016_j_geoen_2023_212549
crossref_primary_10_1016_j_petrol_2022_110897
crossref_primary_10_1016_j_fuel_2017_03_083
crossref_primary_10_2139_ssrn_4188813
crossref_primary_10_1016_j_marpetgeo_2017_06_043
crossref_primary_10_1080_08120099_2018_1455741
crossref_primary_10_1016_j_jngse_2019_103045
crossref_primary_10_1016_j_jrmge_2021_08_019
crossref_primary_10_1021_acs_energyfuels_2c03902
crossref_primary_10_1021_acs_energyfuels_2c01603
crossref_primary_10_1016_j_jngse_2016_12_021
crossref_primary_10_1021_acs_energyfuels_2c01847
crossref_primary_10_1016_j_fuel_2019_116049
crossref_primary_10_1063_5_0249648
crossref_primary_10_1021_acs_energyfuels_8b00017
crossref_primary_10_1080_10916466_2017_1381711
crossref_primary_10_1021_acs_energyfuels_6b03425
crossref_primary_10_3390_buildings15010101
crossref_primary_10_1016_j_jclepro_2020_124465
crossref_primary_10_1007_s11356_020_07936_9
crossref_primary_10_1016_j_fuel_2023_127919
crossref_primary_10_1016_j_colsurfa_2025_136419
crossref_primary_10_3390_app14156577
crossref_primary_10_1016_j_geoen_2023_211440
crossref_primary_10_1016_j_cej_2020_125212
crossref_primary_10_1016_j_gca_2019_11_020
crossref_primary_10_1021_acs_energyfuels_9b00539
crossref_primary_10_1021_acs_energyfuels_7b02892
crossref_primary_10_1088_1755_1315_600_1_012007
crossref_primary_10_1016_j_energy_2018_12_087
crossref_primary_10_1016_j_ijggc_2021_103286
crossref_primary_10_1016_j_ijggc_2016_12_011
crossref_primary_10_1016_j_apsusc_2019_144516
crossref_primary_10_1016_j_marpetgeo_2016_11_010
crossref_primary_10_1021_acs_energyfuels_2c02919
crossref_primary_10_1021_acs_energyfuels_0c01922
crossref_primary_10_1016_j_fuel_2018_03_061
crossref_primary_10_1021_acs_energyfuels_5b00286
crossref_primary_10_1039_D1CP03239A
crossref_primary_10_1016_j_clay_2018_01_017
crossref_primary_10_1016_j_egyr_2021_05_060
crossref_primary_10_1021_acs_energyfuels_2c00850
crossref_primary_10_1016_j_marpetgeo_2017_07_021
crossref_primary_10_1021_acs_langmuir_1c02408
crossref_primary_10_1007_s13369_022_06720_w
crossref_primary_10_1021_acsomega_3c01640
crossref_primary_10_1021_acs_energyfuels_8b00799
crossref_primary_10_1021_acs_energyfuels_8b00551
crossref_primary_10_1016_j_petrol_2022_110543
crossref_primary_10_1177_0144598717716284
crossref_primary_10_1007_s11440_017_0624_3
crossref_primary_10_1029_2024EA003594
crossref_primary_10_1016_j_coal_2017_07_005
crossref_primary_10_1016_j_coal_2018_09_018
crossref_primary_10_1063_5_0225527
crossref_primary_10_1016_j_petrol_2017_10_081
crossref_primary_10_3389_fenrg_2023_1231338
crossref_primary_10_1080_08120099_2020_1762737
crossref_primary_10_3390_en13195184
crossref_primary_10_1021_acs_energyfuels_7b02639
crossref_primary_10_1021_acsomega_1c02539
crossref_primary_10_3390_en12081480
crossref_primary_10_1016_j_fuel_2022_124776
crossref_primary_10_1016_j_cej_2019_123191
crossref_primary_10_3390_en13071690
crossref_primary_10_1016_j_petrol_2019_106406
crossref_primary_10_1016_j_jngse_2018_01_014
crossref_primary_10_1002_er_5114
crossref_primary_10_1080_08120099_2023_2170466
crossref_primary_10_1016_j_clay_2024_107486
crossref_primary_10_3390_en13174495
crossref_primary_10_1016_j_jgsce_2023_204933
crossref_primary_10_1002_gj_3991
crossref_primary_10_1016_j_fuel_2017_09_018
crossref_primary_10_1021_acs_energyfuels_1c04088
crossref_primary_10_1021_acs_energyfuels_3c04172
crossref_primary_10_1016_j_epsl_2018_04_038
crossref_primary_10_1021_acs_energyfuels_0c02906
crossref_primary_10_1007_s11707_021_0966_5
crossref_primary_10_1016_j_fuel_2020_117412
crossref_primary_10_1016_j_chemgeo_2014_04_007
crossref_primary_10_1016_j_coal_2016_12_001
crossref_primary_10_3390_ijms232112767
crossref_primary_10_1016_j_coal_2013_06_010
crossref_primary_10_1029_2021WR030664
crossref_primary_10_1177_0144598719872802
crossref_primary_10_3390_fuels6010016
crossref_primary_10_1016_j_chemphys_2023_111975
crossref_primary_10_1016_j_coal_2019_103250
crossref_primary_10_1016_j_petrol_2018_08_010
crossref_primary_10_1016_j_fuel_2022_123304
crossref_primary_10_1016_j_petrol_2021_109518
crossref_primary_10_1155_2022_9745313
crossref_primary_10_3390_pr12071438
crossref_primary_10_1016_j_jngse_2016_06_010
crossref_primary_10_1016_j_marpetgeo_2021_105236
crossref_primary_10_1002_gj_3414
crossref_primary_10_1016_j_jngse_2016_06_027
crossref_primary_10_1016_j_jngse_2017_01_024
crossref_primary_10_1016_S2096_2495_17_30030_3
crossref_primary_10_1021_acs_energyfuels_6b03168
crossref_primary_10_1016_j_apsusc_2024_159413
crossref_primary_10_1002_ghg_1870
crossref_primary_10_1016_j_cej_2018_11_185
crossref_primary_10_1016_j_energy_2024_132463
crossref_primary_10_1016_j_jngse_2016_06_024
crossref_primary_10_1016_j_jngse_2022_104519
crossref_primary_10_1021_acs_energyfuels_8b03349
crossref_primary_10_1021_acs_energyfuels_0c04310
crossref_primary_10_1016_j_jcou_2020_02_013
crossref_primary_10_1021_acs_energyfuels_7b02628
crossref_primary_10_1016_j_jngse_2016_07_052
crossref_primary_10_1155_2020_2382153
crossref_primary_10_1021_acs_energyfuels_7b01414
crossref_primary_10_1021_acs_energyfuels_8b03462
crossref_primary_10_1021_acs_jpcc_9b06519
crossref_primary_10_1021_acs_energyfuels_8b02140
crossref_primary_10_1016_j_jseaes_2023_105901
crossref_primary_10_3389_feart_2022_1012607
crossref_primary_10_2139_ssrn_3946164
crossref_primary_10_3390_buildings13071647
crossref_primary_10_1016_j_clay_2020_105631
crossref_primary_10_1016_j_petrol_2021_109980
crossref_primary_10_3390_nano12224037
crossref_primary_10_1016_j_jfueco_2021_100039
crossref_primary_10_1021_ef402466m
crossref_primary_10_1016_j_jnggs_2023_03_004
crossref_primary_10_1016_j_petrol_2017_07_020
crossref_primary_10_1016_j_fluid_2014_07_035
crossref_primary_10_1016_j_marpetgeo_2018_09_020
crossref_primary_10_1016_j_coal_2015_09_004
crossref_primary_10_1016_j_jhydrol_2022_127697
crossref_primary_10_1016_j_cej_2020_124989
crossref_primary_10_3390_en17050997
crossref_primary_10_1016_j_fuel_2018_07_098
crossref_primary_10_1021_acs_energyfuels_1c01961
crossref_primary_10_2516_stet_2023014
crossref_primary_10_1021_acs_energyfuels_8b04344
crossref_primary_10_1190_INT_2018_0045_1
crossref_primary_10_1016_j_petrol_2021_108567
crossref_primary_10_1016_j_jngse_2018_09_012
crossref_primary_10_1016_j_jngse_2019_04_020
crossref_primary_10_1016_j_jngse_2018_10_018
crossref_primary_10_1260_0144_5987_32_6_927
crossref_primary_10_1007_s11053_023_10189_1
crossref_primary_10_1016_j_jngse_2014_10_015
crossref_primary_10_1007_s11707_021_0912_y
crossref_primary_10_1016_j_petrol_2018_10_086
crossref_primary_10_1016_j_coal_2022_104116
crossref_primary_10_1016_j_jngse_2022_104536
crossref_primary_10_1007_s40948_021_00262_5
crossref_primary_10_1016_j_fuel_2024_132964
crossref_primary_10_1016_j_fuel_2018_07_086
crossref_primary_10_1016_j_jngse_2014_11_030
crossref_primary_10_1016_j_cej_2022_138002
crossref_primary_10_1007_s13369_022_07353_9
crossref_primary_10_1016_j_petrol_2018_01_053
crossref_primary_10_1016_j_compgeo_2024_106178
crossref_primary_10_1515_geo_2022_0346
crossref_primary_10_1021_acs_energyfuels_5b02751
crossref_primary_10_1021_acs_iecr_3c03162
crossref_primary_10_1021_acs_energyfuels_9b01610
crossref_primary_10_1007_s11707_021_0922_9
crossref_primary_10_1016_j_sesci_2017_12_002
crossref_primary_10_1021_acs_energyfuels_9b01857
crossref_primary_10_1016_j_ijhydene_2023_08_185
crossref_primary_10_1016_j_jngse_2016_05_009
crossref_primary_10_1021_acs_energyfuels_6b02286
crossref_primary_10_1063_5_0132591
crossref_primary_10_1016_j_clay_2016_11_026
crossref_primary_10_1021_acs_energyfuels_8b03437
crossref_primary_10_1016_j_ijggc_2021_103563
crossref_primary_10_1021_acs_energyfuels_7b01849
crossref_primary_10_1016_j_fuel_2019_01_059
crossref_primary_10_3390_fractalfract7110803
crossref_primary_10_1021_acs_energyfuels_1c00526
crossref_primary_10_3390_en15051875
crossref_primary_10_3390_pr11092524
crossref_primary_10_1177_0144598716684309
crossref_primary_10_1016_j_apsusc_2017_12_239
crossref_primary_10_1021_acs_energyfuels_1c02702
crossref_primary_10_1016_j_marpetgeo_2018_01_008
crossref_primary_10_1190_INT_2018_0186_1
crossref_primary_10_1021_acs_energyfuels_2c01785
crossref_primary_10_1021_acs_iecr_7b00838
crossref_primary_10_1038_s41598_018_20949_2
crossref_primary_10_1080_08927022_2018_1453138
crossref_primary_10_5194_cp_19_999_2023
crossref_primary_10_1038_s41598_025_86095_8
crossref_primary_10_1016_j_jngse_2014_11_011
crossref_primary_10_1021_acs_energyfuels_9b04192
crossref_primary_10_1007_s11707_021_0892_y
crossref_primary_10_1142_S0218348X19400140
crossref_primary_10_1016_j_coal_2019_103281
crossref_primary_10_1016_j_jngse_2016_05_024
crossref_primary_10_1007_s12583_017_0732_x
crossref_primary_10_1007_s42452_020_2517_6
crossref_primary_10_1016_j_geoen_2024_212897
crossref_primary_10_1016_j_fuel_2014_06_036
crossref_primary_10_1515_geo_2019_0073
crossref_primary_10_1016_j_jngse_2018_03_024
crossref_primary_10_1080_08120099_2019_1656104
crossref_primary_10_1016_j_fuel_2017_04_087
crossref_primary_10_1002_gj_4670
crossref_primary_10_1016_j_coal_2018_02_020
crossref_primary_10_1016_j_fuel_2018_05_167
crossref_primary_10_3390_computation3040687
crossref_primary_10_3390_min9050265
crossref_primary_10_1021_acs_energyfuels_8b00070
crossref_primary_10_1016_j_fuel_2023_130578
crossref_primary_10_1016_j_marpetgeo_2016_06_001
crossref_primary_10_1016_j_applthermaleng_2016_10_164
crossref_primary_10_1021_acs_energyfuels_2c03948
crossref_primary_10_1017_jfm_2017_180
crossref_primary_10_1016_j_jngse_2018_03_027
crossref_primary_10_1021_acs_energyfuels_2c00675
crossref_primary_10_1016_j_coal_2016_03_012
crossref_primary_10_1021_acsomega_4c02325
crossref_primary_10_1111_1755_6724_14419
crossref_primary_10_1142_S0218348X19400115
crossref_primary_10_1016_j_jngse_2016_06_071
crossref_primary_10_1016_j_jnggs_2016_11_004
crossref_primary_10_1016_j_scitotenv_2024_173533
crossref_primary_10_1016_j_marpetgeo_2015_11_004
crossref_primary_10_1016_j_fuel_2023_128362
crossref_primary_10_1016_j_fluid_2016_09_011
crossref_primary_10_1016_j_marpetgeo_2015_11_001
crossref_primary_10_3390_en15134875
crossref_primary_10_1016_j_fuel_2016_01_037
crossref_primary_10_1016_j_ngib_2024_08_006
crossref_primary_10_1016_j_marpetgeo_2017_10_019
crossref_primary_10_3390_en14010002
crossref_primary_10_1016_j_jngse_2021_104287
crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_141
crossref_primary_10_1021_acsomega_9b03978
crossref_primary_10_1016_j_jngse_2018_12_009
crossref_primary_10_1155_2021_3820762
crossref_primary_10_1155_2023_8102826
crossref_primary_10_1016_j_micromeso_2018_06_050
crossref_primary_10_1039_D2RA02822K
crossref_primary_10_3390_min11010063
crossref_primary_10_1039_D0EE03648J
crossref_primary_10_1021_acs_energyfuels_0c01689
crossref_primary_10_1016_j_fuel_2018_11_144
crossref_primary_10_1016_j_micromeso_2017_04_044
crossref_primary_10_1190_INT_2020_0141_1
crossref_primary_10_3390_nano11020527
crossref_primary_10_1039_C8RA06678G
crossref_primary_10_1002_ese3_501
crossref_primary_10_1007_s00603_018_1723_7
crossref_primary_10_1515_geo_2022_0395
crossref_primary_10_1016_j_fuel_2016_11_027
crossref_primary_10_1016_j_jngse_2016_01_041
crossref_primary_10_1016_j_fuel_2019_115629
crossref_primary_10_1029_2017WR020826
crossref_primary_10_1016_j_coal_2021_103705
crossref_primary_10_1007_s11802_018_3440_y
crossref_primary_10_1016_j_jseaes_2023_105740
crossref_primary_10_1021_acs_energyfuels_0c03501
crossref_primary_10_1007_s12182_016_0142_1
crossref_primary_10_1016_j_cej_2022_137411
crossref_primary_10_1016_j_energy_2023_127788
crossref_primary_10_1021_acs_energyfuels_9b04142
crossref_primary_10_1016_j_marpetgeo_2014_12_007
crossref_primary_10_3389_feart_2022_876134
crossref_primary_10_1016_j_jngse_2017_11_026
crossref_primary_10_1021_acs_energyfuels_4c02206
crossref_primary_10_3390_en12020280
crossref_primary_10_3390_min10010072
crossref_primary_10_3390_min13020190
crossref_primary_10_1016_j_energy_2022_125433
crossref_primary_10_1016_j_fuel_2019_116969
crossref_primary_10_1016_j_sedgeo_2016_06_022
crossref_primary_10_1021_acs_iecr_9b02379
crossref_primary_10_1190_INT_2017_0128_1
crossref_primary_10_3390_jmse12050696
crossref_primary_10_1063_5_0054486
crossref_primary_10_1016_j_jngse_2017_11_015
crossref_primary_10_1016_j_ijhydene_2022_06_204
crossref_primary_10_1038_srep37579
crossref_primary_10_1016_j_cej_2018_08_067
crossref_primary_10_1016_j_clay_2015_02_016
crossref_primary_10_1016_j_marpetgeo_2014_07_029
crossref_primary_10_1021_acs_energyfuels_1c00357
crossref_primary_10_1021_acs_energyfuels_1c01448
crossref_primary_10_1016_j_eti_2020_100739
crossref_primary_10_1016_j_marpetgeo_2019_06_011
crossref_primary_10_1021_acs_est_9b03638
crossref_primary_10_1021_acs_jpcc_9b08875
crossref_primary_10_1016_j_petrol_2020_107685
crossref_primary_10_1016_j_cej_2021_130766
crossref_primary_10_1016_j_jngse_2017_03_003
crossref_primary_10_1126_sciadv_adm8443
crossref_primary_10_1021_acs_energyfuels_7b00911
crossref_primary_10_3390_app132212484
crossref_primary_10_3390_en15228353
crossref_primary_10_1021_acs_energyfuels_1c00130
crossref_primary_10_1016_j_petsci_2023_12_012
crossref_primary_10_1007_s11053_020_09738_9
crossref_primary_10_1016_j_energy_2022_124242
crossref_primary_10_1016_j_orggeochem_2014_05_003
crossref_primary_10_1016_j_coal_2019_103337
crossref_primary_10_1016_j_marpetgeo_2018_10_042
crossref_primary_10_1021_acs_jpcc_1c00039
crossref_primary_10_1016_j_marpetgeo_2014_05_010
crossref_primary_10_2118_194507_PA
crossref_primary_10_1016_j_marpetgeo_2020_104869
crossref_primary_10_1016_j_fuel_2018_12_035
crossref_primary_10_1007_s12517_022_09662_7
crossref_primary_10_3390_en12214087
crossref_primary_10_1002_ggge_20254
crossref_primary_10_1016_j_petrol_2020_107387
crossref_primary_10_1016_j_petrol_2016_04_023
crossref_primary_10_1080_19392699_2022_2119559
crossref_primary_10_1016_j_marpetgeo_2019_05_038
crossref_primary_10_1063_5_0251571
crossref_primary_10_1016_j_est_2023_106865
crossref_primary_10_1155_2022_3292399
crossref_primary_10_1016_j_marpetgeo_2013_03_007
crossref_primary_10_1016_j_coal_2016_01_013
crossref_primary_10_1007_s42452_020_03928_z
crossref_primary_10_1007_s12583_020_1120_5
crossref_primary_10_1021_acs_energyfuels_1c00273
crossref_primary_10_1016_j_coal_2019_103232
crossref_primary_10_3390_pr11123345
crossref_primary_10_1080_10916466_2018_1539749
crossref_primary_10_1016_j_cej_2021_128463
crossref_primary_10_1021_acs_energyfuels_2c03667
crossref_primary_10_1007_s11053_021_09920_7
crossref_primary_10_1016_j_marpetgeo_2018_10_023
crossref_primary_10_1016_j_petsci_2023_05_012
crossref_primary_10_3390_molecules25041001
crossref_primary_10_1021_acsomega_0c05490
crossref_primary_10_1016_j_apsusc_2015_08_101
crossref_primary_10_1021_acs_energyfuels_9b04125
crossref_primary_10_1016_j_mtcomm_2018_12_011
crossref_primary_10_1080_08927022_2017_1328553
crossref_primary_10_1016_j_jiec_2019_06_015
crossref_primary_10_1016_j_petrol_2018_09_059
crossref_primary_10_1155_2018_2091695
crossref_primary_10_1016_j_jngse_2016_03_059
Cites_doi 10.1016/j.orggeochem.2012.03.012
10.1016/j.coal.2006.06.002
10.1180/claymin.1984.019.2.05
10.1016/j.marpetgeo.2008.06.004
10.2110/jsr.2009.092
10.1111/j.1365-2389.1967.tb01481.x
10.1016/S0166-5162(03)00113-7
10.1016/j.coal.2004.05.002
10.1016/0016-2361(95)98364-K
10.2113/gscpgbull.56.1.1
10.2113/gscpgbull.56.1.22
10.3997/2214-4609.20143944
10.2110/sedred.2008.2.4
10.1016/j.chemgeo.2008.08.006
10.1346/CCMN.1997.0450405
10.1016/S0166-5162(02)00078-2
10.1016/j.jcis.2010.05.018
10.2110/jsr.2010.005
10.1016/j.jcis.2004.07.009
10.1021/je0498917
10.1016/j.gca.2011.10.014
10.1021/la061233s
10.1346/CCMN.2007.0550508
10.1063/1.555898
10.1007/s11242-009-9359-4
10.1016/j.coal.2006.05.001
10.1346/CCMN.2005.0530302
10.2113/gscpgbull.55.1.51
10.1016/j.orggeochem.2004.01.007
10.1016/j.colsurfa.2004.04.004
10.1016/j.coal.2005.07.003
10.1346/CCMN.2004.0520604
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8FD
H8D
L7M
7S9
L.6
DOI 10.1016/j.apgeochem.2012.08.027
DatabaseName CrossRef
Pascal-Francis
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-9134
EndPage 2545
ExternalDocumentID 26651134
10_1016_j_apgeochem_2012_08_027
S088329271200251X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZCA
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
8FD
H8D
L7M
7S9
L.6
ID FETCH-LOGICAL-a582t-d24502f4a6705538d2157f2b8639bf14eb6adcf88985678579edc5cd0ee0ffda3
IEDL.DBID .~1
ISSN 0883-2927
IngestDate Sun Aug 24 04:13:41 EDT 2025
Fri Jul 11 00:33:23 EDT 2025
Fri Jul 11 14:32:47 EDT 2025
Mon Jul 21 09:15:25 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Tue Jul 01 01:59:29 EDT 2025
Fri Feb 23 02:19:55 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords experimental studies
illite
adsorption
kaolinite
absorption
quarries
thermodynamics
chlorite
pressure
sorption
smectite
Q
mines
montmorillonite
entropy
correlation
standard samples
kerogen
organic materials
methane
temperature
sheet silicates
silicates
clay minerals
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a582t-d24502f4a6705538d2157f2b8639bf14eb6adcf88985678579edc5cd0ee0ffda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://ir.lzu.edu.cn/handle/262010/120615
PQID 1272718292
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1694492798
proquest_miscellaneous_1671465413
proquest_miscellaneous_1272718292
pascalfrancis_primary_26651134
crossref_primary_10_1016_j_apgeochem_2012_08_027
crossref_citationtrail_10_1016_j_apgeochem_2012_08_027
elsevier_sciencedirect_doi_10_1016_j_apgeochem_2012_08_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied geochemistry
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Cheng, Huang (b0055) 2004; 35
Cavenati, Grande, Rodrigues (b0230) 2004; 49
Van Olphen, Fripiat (b0205) 1979
Busch, Gensterblum, Krooss, Siemons (b0030) 2006; 66
Myers (b0145) 2004; 241
Ross, Bustin (b0160) 2008; 92
Curtis (b0060) 2002; 86
Gregg, Sing (b0080) 1982
Rutherford, Chiou, Eberl (b0180) 1997; 45
Lu, Li, Watson (b0120) 1995; 74
Ross, Bustin (b0155) 2007; 55
Palomino, Santamarina (b0150) 2005; 53
Xia, Tang (b0215) 2012; 77
Wang, Juang, Lee, Hsu, Lee, Chao (b0210) 2004; 280
Bergaya, Theng, Lagaly (b0015) 2006
Jarvie, Hill, Ruble, Pollastro (b0090) 2007; 91
Keller, Staudt (b0100) 2005
McCarty, Arp (b0125) 1990; 35
Michot, Villieras (b0130) 2006; vol. 1
Zhang, Ellis, Ruppel, Milliken, Yang (b0225) 2012; 47
Schieber, Southard, Schimmelmann (b0185) 2010; 80
Montgomery, Jarvie, Bowker, Pallastro (b0140) 2005; 89
Ruppel, Loucks (b0175) 2008; 6
Setzmann, Wagner, Pruss (b0190) 1991; 20
Loucks, Ruppel (b0110) 2007; 91
Loucks, Reed, Ruppel, Jarvie (b0115) 2009; 79
Busch, Gensterblum, Krooss, Littke (b0025) 2004; 60
Gaspark, M., Ghanizadeh, A., Gensterblum, Y., Krooss, B.M., Littke, R., 2012. The methane storage capacity of black shale. In: 3rd EAGE Shale Workshop, Barcelona, pp. 186–188 (Abstract).
Milliken, Esch, Reed, Zhang (b0235) 2012; 96
Chalmers, Bustin (b0040) 2007; 70
Rowe, Loucks, Ruppel, Rimmer (b0170) 2008; 257
Krooss, van Bergen, Gensterblum, Siemons, Pagnier, David (b0105) 2002; 51
Tsipursky, Drits (b0200) 1984; 19
Aringhieri (b0005) 2004; 52
Busch, Gensterblum, Krooss (b0020) 2003; 55
Chalmers, Bustin (b0045) 2008; 56
Hill, Jarvie, Zumberge, Henry, Pollastro (b0085) 2007; 91
Chalmers, Bustin (b0035) 2007; 69
Strapoc, Mastalerz, Schimmelmann, Drobniak, Hasenmueller (b0195) 2010; 94
Xia, Litvinov, Muhler (b0220) 2006; 22
Dogan, Dogan, Yesilyurt, Alaygut, Buckner, Wurster (b0065) 2007; 55
Fathi, Akkutlu (b0070) 2009; 80
Kaufhold, Dohrmann, Klinkenberg, Siegesmund, Ufer (b0095) 2010; 349
Ross, Bustin (b0165) 2009; 26
Aylmore, Quirk (b0010) 1967; 18
Chalmers, Bustin (b0050) 2008; 56
Busch (10.1016/j.apgeochem.2012.08.027_b0030) 2006; 66
Keller (10.1016/j.apgeochem.2012.08.027_b0100) 2005
Krooss (10.1016/j.apgeochem.2012.08.027_b0105) 2002; 51
Cavenati (10.1016/j.apgeochem.2012.08.027_b0230) 2004; 49
Myers (10.1016/j.apgeochem.2012.08.027_b0145) 2004; 241
Ross (10.1016/j.apgeochem.2012.08.027_b0155) 2007; 55
Kaufhold (10.1016/j.apgeochem.2012.08.027_b0095) 2010; 349
Montgomery (10.1016/j.apgeochem.2012.08.027_b0140) 2005; 89
Busch (10.1016/j.apgeochem.2012.08.027_b0025) 2004; 60
Ross (10.1016/j.apgeochem.2012.08.027_b0165) 2009; 26
Schieber (10.1016/j.apgeochem.2012.08.027_b0185) 2010; 80
Xia (10.1016/j.apgeochem.2012.08.027_b0215) 2012; 77
Aringhieri (10.1016/j.apgeochem.2012.08.027_b0005) 2004; 52
Ross (10.1016/j.apgeochem.2012.08.027_b0160) 2008; 92
Dogan (10.1016/j.apgeochem.2012.08.027_b0065) 2007; 55
Hill (10.1016/j.apgeochem.2012.08.027_b0085) 2007; 91
Ruppel (10.1016/j.apgeochem.2012.08.027_b0175) 2008; 6
Chalmers (10.1016/j.apgeochem.2012.08.027_b0040) 2007; 70
Wang (10.1016/j.apgeochem.2012.08.027_b0210) 2004; 280
Curtis (10.1016/j.apgeochem.2012.08.027_b0060) 2002; 86
Loucks (10.1016/j.apgeochem.2012.08.027_b0115) 2009; 79
Fathi (10.1016/j.apgeochem.2012.08.027_b0070) 2009; 80
Loucks (10.1016/j.apgeochem.2012.08.027_b0110) 2007; 91
Rowe (10.1016/j.apgeochem.2012.08.027_b0170) 2008; 257
Tsipursky (10.1016/j.apgeochem.2012.08.027_b0200) 1984; 19
Lu (10.1016/j.apgeochem.2012.08.027_b0120) 1995; 74
McCarty (10.1016/j.apgeochem.2012.08.027_b0125) 1990; 35
Busch (10.1016/j.apgeochem.2012.08.027_b0020) 2003; 55
Cheng (10.1016/j.apgeochem.2012.08.027_b0055) 2004; 35
Xia (10.1016/j.apgeochem.2012.08.027_b0220) 2006; 22
Jarvie (10.1016/j.apgeochem.2012.08.027_b0090) 2007; 91
Van Olphen (10.1016/j.apgeochem.2012.08.027_b0205) 1979
Strapoc (10.1016/j.apgeochem.2012.08.027_b0195) 2010; 94
Aylmore (10.1016/j.apgeochem.2012.08.027_b0010) 1967; 18
Rutherford (10.1016/j.apgeochem.2012.08.027_b0180) 1997; 45
Milliken (10.1016/j.apgeochem.2012.08.027_b0235) 2012; 96
Chalmers (10.1016/j.apgeochem.2012.08.027_b0045) 2008; 56
Chalmers (10.1016/j.apgeochem.2012.08.027_b0050) 2008; 56
Chalmers (10.1016/j.apgeochem.2012.08.027_b0035) 2007; 69
Setzmann (10.1016/j.apgeochem.2012.08.027_b0190) 1991; 20
Zhang (10.1016/j.apgeochem.2012.08.027_b0225) 2012; 47
Michot (10.1016/j.apgeochem.2012.08.027_b0130) 2006; vol. 1
10.1016/j.apgeochem.2012.08.027_b0075
Palomino (10.1016/j.apgeochem.2012.08.027_b0150) 2005; 53
Bergaya (10.1016/j.apgeochem.2012.08.027_b0015) 2006
Gregg (10.1016/j.apgeochem.2012.08.027_b0080) 1982
References_xml – volume: 47
  start-page: 120
  year: 2012
  end-page: 131
  ident: b0225
  article-title: Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems
  publication-title: Org. Geochem.
– volume: 49
  start-page: 1095
  year: 2004
  end-page: 1101
  ident: b0230
  article-title: Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures
  publication-title: J. Chem. Eng. Data
– year: 1982
  ident: b0080
  article-title: Adsorption, Surface Area and Porosity
– volume: 86
  start-page: 1921
  year: 2002
  end-page: 1938
  ident: b0060
  article-title: Fractured shale-gas systems
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– volume: 241
  start-page: 9
  year: 2004
  end-page: 14
  ident: b0145
  article-title: Characterization of nanopores by standard enthalpy and entropy of adsorption of probe molecules
  publication-title: Colloids Surf. A
– volume: 60
  start-page: 151
  year: 2004
  end-page: 168
  ident: b0025
  article-title: Methane and carbon dioxide adsorption-diffusion experiments on coal: upscaling and modeling
  publication-title: Int. J. Coal Geol.
– volume: 51
  start-page: 69
  year: 2002
  end-page: 92
  ident: b0105
  article-title: High pressure CH
  publication-title: Int. J. Coal Geol.
– year: 2006
  ident: b0015
  article-title: Handbook of Clay Science. Developments in Clay Science 1
– volume: 94
  start-page: 1713
  year: 2010
  end-page: 1740
  ident: b0195
  article-title: Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian–Mississippian), eastern Illinois Basin
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– volume: 52
  start-page: 700
  year: 2004
  end-page: 704
  ident: b0005
  article-title: Nanoporosity characteristics of some natural clay minerals and soils
  publication-title: Clays Clay Min.
– reference: Gaspark, M., Ghanizadeh, A., Gensterblum, Y., Krooss, B.M., Littke, R., 2012. The methane storage capacity of black shale. In: 3rd EAGE Shale Workshop, Barcelona, pp. 186–188 (Abstract).
– volume: 55
  start-page: 51
  year: 2007
  end-page: 75
  ident: b0155
  article-title: Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada
  publication-title: Bull. Can. Petrol. Geol.
– volume: 66
  start-page: 53
  year: 2006
  end-page: 68
  ident: b0030
  article-title: Investigation of high-pressure selective adsorption/desorption behaviour of CO
  publication-title: Int. J. Coal Geol.
– volume: 257
  start-page: 16
  year: 2008
  end-page: 25
  ident: b0170
  article-title: Mississippian Barnett Formation, Fort Worth Basin, Texas: bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction
  publication-title: Chem. Geol.
– volume: 74
  start-page: 599
  year: 1995
  end-page: 603
  ident: b0120
  article-title: Adsorption measurements in Devonian shales
  publication-title: Fuel
– volume: 69
  start-page: 288
  year: 2007
  end-page: 304
  ident: b0035
  article-title: On the effects of petrographic composition on coalbed methane sorption
  publication-title: Int. J. Coal Geol.
– volume: 56
  start-page: 22
  year: 2008
  end-page: 61
  ident: b0050
  article-title: Lower Cretaceous gas shales in northeastern British Columbia, Part II: evaluation of regional potential gas resources
  publication-title: Bull. Can. Petrol. Geol.
– volume: 55
  start-page: 534
  year: 2007
  end-page: 541
  ident: b0065
  article-title: Baseline studies of the Clay Minerals Society special clays: specific surface area by the Brunauer Emmett Teller (BET) method
  publication-title: Clays Clay Min.
– volume: 22
  start-page: 8063
  year: 2006
  end-page: 8070
  ident: b0220
  article-title: A consistent approach to adsorption thermodynamics on heterogeneous surfaces using different empirical energy distribution model
  publication-title: Langmuir
– volume: 55
  start-page: 205
  year: 2003
  end-page: 224
  ident: b0020
  article-title: Methane and CO
  publication-title: Int. J. Coal Geol.
– volume: 349
  start-page: 275
  year: 2010
  end-page: 282
  ident: b0095
  article-title: N
  publication-title: J. Colloid Interface. Sci.
– volume: 45
  start-page: 534
  year: 1997
  end-page: 543
  ident: b0180
  article-title: Effects of exchanged cation on the microporosity of montmorillonite
  publication-title: Clays Clay Min.
– volume: 35
  start-page: 413
  year: 2004
  end-page: 423
  ident: b0055
  article-title: Selective adsorption of hydrocarbon gases on clays and organic matter
  publication-title: Org. Geochem.
– volume: 70
  start-page: 223
  year: 2007
  end-page: 239
  ident: b0040
  article-title: The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada
  publication-title: Int. J. Coal Geol.
– volume: 79
  start-page: 848
  year: 2009
  end-page: 861
  ident: b0115
  article-title: Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale
  publication-title: J. Sed. Res.
– volume: 91
  start-page: 579
  year: 2007
  end-page: 601
  ident: b0110
  article-title: Mississippian Barnett shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin
  publication-title: Texas. Am. Assoc. Petrol. Geol. Bull.
– volume: 91
  start-page: 445
  year: 2007
  end-page: 473
  ident: b0085
  article-title: Oil and gas geochemistry and petroleum systems of the Fort Worth Basin
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– volume: 96
  start-page: 1553
  year: 2012
  end-page: 1578
  ident: b0235
  article-title: Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– year: 1979
  ident: b0205
  article-title: Data Handbook for Clay Minerals and Other Nonmetallic Minerals
– volume: 92
  start-page: 87
  year: 2008
  end-page: 125
  ident: b0160
  article-title: Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– volume: 18
  start-page: 1
  year: 1967
  end-page: 17
  ident: b0010
  article-title: The micropore size distribution of clay mineral systems
  publication-title: J. Soil Sci.
– volume: 35
  start-page: 1465
  year: 1990
  end-page: 1475
  ident: b0125
  article-title: A new wide range equation of state for helium
  publication-title: Adv. Cryog. Eng.
– volume: 91
  start-page: 475
  year: 2007
  end-page: 499
  ident: b0090
  article-title: Unconventional shale-gas systems: the mississippian barnett shale of north-central Texas as one model for thermogenic shale-gas assessment
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– volume: 280
  start-page: 27
  year: 2004
  end-page: 35
  ident: b0210
  article-title: Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite
  publication-title: J. Colloid Interface Sci.
– volume: 80
  start-page: 281
  year: 2009
  end-page: 304
  ident: b0070
  article-title: Matrix heterogeneity effects on gas transport and adsorption in coal bed and shale gas reservoirs
  publication-title: J. Trans. Porous Media
– volume: 77
  start-page: 489
  year: 2012
  end-page: 503
  ident: b0215
  article-title: Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption
  publication-title: Geochim. Cosmochim. Acta
– volume: vol. 1
  start-page: 965
  year: 2006
  end-page: 978
  ident: b0130
  article-title: Surface area and porosity
  publication-title: Handbook of Clay Science
– volume: 89
  start-page: 155
  year: 2005
  end-page: 175
  ident: b0140
  article-title: Mississippian Barnett Shale, Fort Worth basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– volume: 20
  start-page: 1061
  year: 1991
  end-page: 1151
  ident: b0190
  article-title: A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625
  publication-title: J. Phys. Chem. Ref. Data
– volume: 19
  start-page: 177
  year: 1984
  end-page: 193
  ident: b0200
  article-title: The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by obliquetexture electron diffraction
  publication-title: Clay Min.
– volume: 56
  start-page: 1
  year: 2008
  end-page: 21
  ident: b0045
  article-title: Lower Cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity
  publication-title: Bull. Can. Petrol. Geol.
– volume: 80
  start-page: 119
  year: 2010
  end-page: 128
  ident: b0185
  article-title: Lenticular shale fabrics resulting from intermittent erosion of muddy sediments – comparing observations from flume experiments to the rock record
  publication-title: J. Sed. Res.
– volume: 26
  start-page: 916
  year: 2009
  end-page: 927
  ident: b0165
  article-title: The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs
  publication-title: Mar. Petrol. Geol.
– volume: 6
  start-page: 4
  year: 2008
  end-page: 8
  ident: b0175
  article-title: Black mudrocks: lessons and questions from the Mississippian Barnett Shale in the southern Midcontinent
  publication-title: Sediment. Rec.
– volume: 53
  start-page: 211
  year: 2005
  end-page: 223
  ident: b0150
  article-title: Fabric map for kaolinite: effects of pH and ionic concentration on behavior
  publication-title: Clays Clay Min.
– year: 2005
  ident: b0100
  article-title: Gas Adsorption Equilibra: Experimental Methods and Adsorptive Isotherms
– year: 1982
  ident: 10.1016/j.apgeochem.2012.08.027_b0080
– volume: 47
  start-page: 120
  year: 2012
  ident: 10.1016/j.apgeochem.2012.08.027_b0225
  article-title: Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2012.03.012
– volume: 69
  start-page: 288
  year: 2007
  ident: 10.1016/j.apgeochem.2012.08.027_b0035
  article-title: On the effects of petrographic composition on coalbed methane sorption
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2006.06.002
– year: 2006
  ident: 10.1016/j.apgeochem.2012.08.027_b0015
– volume: 19
  start-page: 177
  year: 1984
  ident: 10.1016/j.apgeochem.2012.08.027_b0200
  article-title: The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by obliquetexture electron diffraction
  publication-title: Clay Min.
  doi: 10.1180/claymin.1984.019.2.05
– volume: 35
  start-page: 1465
  year: 1990
  ident: 10.1016/j.apgeochem.2012.08.027_b0125
  article-title: A new wide range equation of state for helium
  publication-title: Adv. Cryog. Eng.
– volume: 96
  start-page: 1553
  year: 2012
  ident: 10.1016/j.apgeochem.2012.08.027_b0235
  article-title: Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– volume: 26
  start-page: 916
  year: 2009
  ident: 10.1016/j.apgeochem.2012.08.027_b0165
  article-title: The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs
  publication-title: Mar. Petrol. Geol.
  doi: 10.1016/j.marpetgeo.2008.06.004
– year: 2005
  ident: 10.1016/j.apgeochem.2012.08.027_b0100
– volume: 89
  start-page: 155
  year: 2005
  ident: 10.1016/j.apgeochem.2012.08.027_b0140
  article-title: Mississippian Barnett Shale, Fort Worth basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– volume: 92
  start-page: 87
  year: 2008
  ident: 10.1016/j.apgeochem.2012.08.027_b0160
  article-title: Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– volume: 86
  start-page: 1921
  year: 2002
  ident: 10.1016/j.apgeochem.2012.08.027_b0060
  article-title: Fractured shale-gas systems
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– volume: 79
  start-page: 848
  year: 2009
  ident: 10.1016/j.apgeochem.2012.08.027_b0115
  article-title: Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale
  publication-title: J. Sed. Res.
  doi: 10.2110/jsr.2009.092
– volume: vol. 1
  start-page: 965
  year: 2006
  ident: 10.1016/j.apgeochem.2012.08.027_b0130
  article-title: Surface area and porosity
– volume: 18
  start-page: 1
  year: 1967
  ident: 10.1016/j.apgeochem.2012.08.027_b0010
  article-title: The micropore size distribution of clay mineral systems
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1967.tb01481.x
– volume: 55
  start-page: 205
  year: 2003
  ident: 10.1016/j.apgeochem.2012.08.027_b0020
  article-title: Methane and CO2 sorption and desorption measurements on dry Argonne premium coals: pure components and mixtures
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/S0166-5162(03)00113-7
– volume: 60
  start-page: 151
  year: 2004
  ident: 10.1016/j.apgeochem.2012.08.027_b0025
  article-title: Methane and carbon dioxide adsorption-diffusion experiments on coal: upscaling and modeling
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2004.05.002
– volume: 74
  start-page: 599
  year: 1995
  ident: 10.1016/j.apgeochem.2012.08.027_b0120
  article-title: Adsorption measurements in Devonian shales
  publication-title: Fuel
  doi: 10.1016/0016-2361(95)98364-K
– volume: 56
  start-page: 1
  year: 2008
  ident: 10.1016/j.apgeochem.2012.08.027_b0045
  article-title: Lower Cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity
  publication-title: Bull. Can. Petrol. Geol.
  doi: 10.2113/gscpgbull.56.1.1
– volume: 56
  start-page: 22
  year: 2008
  ident: 10.1016/j.apgeochem.2012.08.027_b0050
  article-title: Lower Cretaceous gas shales in northeastern British Columbia, Part II: evaluation of regional potential gas resources
  publication-title: Bull. Can. Petrol. Geol.
  doi: 10.2113/gscpgbull.56.1.22
– ident: 10.1016/j.apgeochem.2012.08.027_b0075
  doi: 10.3997/2214-4609.20143944
– volume: 6
  start-page: 4
  year: 2008
  ident: 10.1016/j.apgeochem.2012.08.027_b0175
  article-title: Black mudrocks: lessons and questions from the Mississippian Barnett Shale in the southern Midcontinent
  publication-title: Sediment. Rec.
  doi: 10.2110/sedred.2008.2.4
– volume: 257
  start-page: 16
  year: 2008
  ident: 10.1016/j.apgeochem.2012.08.027_b0170
  article-title: Mississippian Barnett Formation, Fort Worth Basin, Texas: bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2008.08.006
– volume: 45
  start-page: 534
  year: 1997
  ident: 10.1016/j.apgeochem.2012.08.027_b0180
  article-title: Effects of exchanged cation on the microporosity of montmorillonite
  publication-title: Clays Clay Min.
  doi: 10.1346/CCMN.1997.0450405
– volume: 94
  start-page: 1713
  year: 2010
  ident: 10.1016/j.apgeochem.2012.08.027_b0195
  article-title: Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian–Mississippian), eastern Illinois Basin
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– volume: 51
  start-page: 69
  year: 2002
  ident: 10.1016/j.apgeochem.2012.08.027_b0105
  article-title: High pressure CH4 and carbon dioxide adsorption on dry and moisture equilibrated Pennsylvanian coals
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/S0166-5162(02)00078-2
– volume: 349
  start-page: 275
  year: 2010
  ident: 10.1016/j.apgeochem.2012.08.027_b0095
  article-title: N2-BET specific surface area of bentonites
  publication-title: J. Colloid Interface. Sci.
  doi: 10.1016/j.jcis.2010.05.018
– volume: 80
  start-page: 119
  year: 2010
  ident: 10.1016/j.apgeochem.2012.08.027_b0185
  article-title: Lenticular shale fabrics resulting from intermittent erosion of muddy sediments – comparing observations from flume experiments to the rock record
  publication-title: J. Sed. Res.
  doi: 10.2110/jsr.2010.005
– volume: 280
  start-page: 27
  year: 2004
  ident: 10.1016/j.apgeochem.2012.08.027_b0210
  article-title: Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.07.009
– volume: 49
  start-page: 1095
  year: 2004
  ident: 10.1016/j.apgeochem.2012.08.027_b0230
  article-title: Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je0498917
– volume: 91
  start-page: 579
  year: 2007
  ident: 10.1016/j.apgeochem.2012.08.027_b0110
  article-title: Mississippian Barnett shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin
  publication-title: Texas. Am. Assoc. Petrol. Geol. Bull.
– volume: 77
  start-page: 489
  year: 2012
  ident: 10.1016/j.apgeochem.2012.08.027_b0215
  article-title: Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.10.014
– volume: 22
  start-page: 8063
  year: 2006
  ident: 10.1016/j.apgeochem.2012.08.027_b0220
  article-title: A consistent approach to adsorption thermodynamics on heterogeneous surfaces using different empirical energy distribution model
  publication-title: Langmuir
  doi: 10.1021/la061233s
– volume: 55
  start-page: 534
  year: 2007
  ident: 10.1016/j.apgeochem.2012.08.027_b0065
  article-title: Baseline studies of the Clay Minerals Society special clays: specific surface area by the Brunauer Emmett Teller (BET) method
  publication-title: Clays Clay Min.
  doi: 10.1346/CCMN.2007.0550508
– volume: 20
  start-page: 1061
  year: 1991
  ident: 10.1016/j.apgeochem.2012.08.027_b0190
  article-title: A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625K at Pressures up to 1000MPa
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555898
– volume: 80
  start-page: 281
  year: 2009
  ident: 10.1016/j.apgeochem.2012.08.027_b0070
  article-title: Matrix heterogeneity effects on gas transport and adsorption in coal bed and shale gas reservoirs
  publication-title: J. Trans. Porous Media
  doi: 10.1007/s11242-009-9359-4
– volume: 70
  start-page: 223
  year: 2007
  ident: 10.1016/j.apgeochem.2012.08.027_b0040
  article-title: The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2006.05.001
– volume: 53
  start-page: 211
  year: 2005
  ident: 10.1016/j.apgeochem.2012.08.027_b0150
  article-title: Fabric map for kaolinite: effects of pH and ionic concentration on behavior
  publication-title: Clays Clay Min.
  doi: 10.1346/CCMN.2005.0530302
– volume: 91
  start-page: 445
  year: 2007
  ident: 10.1016/j.apgeochem.2012.08.027_b0085
  article-title: Oil and gas geochemistry and petroleum systems of the Fort Worth Basin
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– volume: 55
  start-page: 51
  year: 2007
  ident: 10.1016/j.apgeochem.2012.08.027_b0155
  article-title: Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada
  publication-title: Bull. Can. Petrol. Geol.
  doi: 10.2113/gscpgbull.55.1.51
– volume: 35
  start-page: 413
  year: 2004
  ident: 10.1016/j.apgeochem.2012.08.027_b0055
  article-title: Selective adsorption of hydrocarbon gases on clays and organic matter
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2004.01.007
– volume: 241
  start-page: 9
  year: 2004
  ident: 10.1016/j.apgeochem.2012.08.027_b0145
  article-title: Characterization of nanopores by standard enthalpy and entropy of adsorption of probe molecules
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2004.04.004
– year: 1979
  ident: 10.1016/j.apgeochem.2012.08.027_b0205
– volume: 66
  start-page: 53
  year: 2006
  ident: 10.1016/j.apgeochem.2012.08.027_b0030
  article-title: Investigation of high-pressure selective adsorption/desorption behaviour of CO2 and CH4 on coals: an experimental study
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2005.07.003
– volume: 91
  start-page: 475
  year: 2007
  ident: 10.1016/j.apgeochem.2012.08.027_b0090
  article-title: Unconventional shale-gas systems: the mississippian barnett shale of north-central Texas as one model for thermogenic shale-gas assessment
  publication-title: Am. Assoc. Petrol. Geol. Bull.
– volume: 52
  start-page: 700
  year: 2004
  ident: 10.1016/j.apgeochem.2012.08.027_b0005
  article-title: Nanoporosity characteristics of some natural clay minerals and soils
  publication-title: Clays Clay Min.
  doi: 10.1346/CCMN.2004.0520604
SSID ssj0005702
Score 2.5729465
Snippet ► The difference in clay mineral type is one key element controlling CH4 adsorption in clay-rich rocks. ► BET surface area is a primary proxy for CH4...
In this study a series of CH4 adsorption experiments on clay-rich rocks were conducted at 35 degree C, 50 degree C and 65 degree C and at CH4 pressure up to 15...
In this study a series of CH₄ adsorption experiments on clay-rich rocks were conducted at 35°C, 50°C and 65°C and at CH₄ pressure up to 15MPa under dry...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2533
SubjectTerms absorption
Adsorption
clay
Clay minerals
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Entropy
Exact sciences and technology
Geochemistry
heat
Illite
kaolinite
methane
Montmorillonite
organic matter
Pollution, environment geology
Rocks
smectite
Sorption
surface area
Surface chemistry
temperature
Title Experimental investigation of main controls to methane adsorption in clay-rich rocks
URI https://dx.doi.org/10.1016/j.apgeochem.2012.08.027
https://www.proquest.com/docview/1272718292
https://www.proquest.com/docview/1671465413
https://www.proquest.com/docview/1694492798
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQFVKlqiq0VbePlZF6NZs4jh-9IQRsQXApSHuznNhut6XJiiwHLvx2ZvLYsmoFhx43GivZGc9842RmPkI-61RlMouSGQAfBuevghkhPCtL4xTgj_ESG4XPzuX0UpzM8tkGORh6YbCsso_9XUxvo3V_ZdJrc7KYzyffwD8ybrhKeZsoz7CDXSjc5Xt3D8o8VFt3iMIMpddqvNzie0BiKmxJx5eCei9Bepl_I9SLhWtAb7EjvPgrdreAdPSKvOwzSbrfPew22QjVDtk6bpl6b1-Ti8MHs_vp_M84jbqidaS_3byifZ16Q5c1RSppVwXqfFNft3GEosSVu2UQKn9QALpfzRtyeXR4cTBlPYUCc7nmS-a5yBMehZM4NSfTHhBeRV5oSEyKmIpQSOfLqLXROcBWrkzwZV76JIQkRu-yt2SzqqvwjlCelbBAFuDFUfDAwZZKm9ILBye8xOkRkYPabNnPF0eaiys7FJL9tCt9W9S3RQJMrkYkWS1cdCM2nl7yZbCLXdstFoDg6cXjNUuubgq5CqSfmRiR3cG0FpwNv6CA_uubxqYc0j04kRn-iIxUKQ6pS7PHZMAhYDMa_f5__skH8hx_ddU1H8nm8vomfIIcaVmMWycYk2f7X0-n5_dwEhJQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa6FMMGDMOeaNat04BdvdiyrEdvRdEuXdtclgK5CbIldenDDur00H8_yo90wYb2sKtNwjZp8qNsih_AV5mIlKeeRwrBJ8L1Vx4pxmxUFMoIxB9ledgofDrh4zP2Y5bNNmC_3wsT2iq73N_m9CZbd0dGnTVHi_l89BPjI6WKioQ2hfLsCWyG6VTZADb3jo7Hk_tOD9G0Hgb5KCistXmZxbkL3FRhV3r4Lii_xYFh5t8g9WJhajSdbzkv_krfDSYdvoKXXTFJ9tr7fQ0brnwDT783ZL13b2F68Mf4fjK_n6hRlaTy5NrMS9K1qtdkWZHAJm1KR4ytq5smlZAgcWXuIsyWvwhi3WX9Ds4OD6b746hjUYhMJukyspRlMfXM8DA4J5UWQV54mkusTXKfMJdzYwsvpZIZIlcmlLNFVtjYudh7a9L3MCir0m0BoWmBCjzHQPaMOoruFFIVlhlc5MVGDoH3ZtNFN2I8MF1c6b6X7EKv7K2DvXXgwKRiCPFKcdFO2XhcZbf3i157YTRiwePKO2ueXF0UyxWsQFM2hC-9azXGW_iJgvavbmudUKz4cFGm6AMyXCRhTl2SPiSDMYEvo5If_udJPsOz8fT0RJ8cTY634Xk40zbbfITB8ubWfcKSaZnvdCHxG8O7FQE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+of+main+controls+to+methane+adsorption+in+clay-rich+rocks&rft.jtitle=Applied+geochemistry&rft.au=Ji%2C+Liming&rft.au=Zhang%2C+Tongwei&rft.au=Milliken%2C+Kitty+L.&rft.au=Qu%2C+Junli&rft.date=2012-12-01&rft.pub=Elsevier+Ltd&rft.issn=0883-2927&rft.eissn=1872-9134&rft.volume=27&rft.issue=12&rft.spage=2533&rft.epage=2545&rft_id=info:doi/10.1016%2Fj.apgeochem.2012.08.027&rft.externalDocID=S088329271200251X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon