Transition-metal-mediated aromatic ring construction
State-of-the-science methods, synthetic routes, and strategies to construct aromatic rings The development of new reactions for the synthesis of aromatic compounds is a highly active research area in organic synthesis, providing new functional organic materials, functional reagents, and biologically...
Saved in:
Main Author | |
---|---|
Format | eBook Book |
Language | English |
Published |
Hoboken, N.J
WILEY
2013
Wiley John Wiley & Sons, Incorporated Wiley-Blackwell |
Edition | 1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Table of Contents:
- Transition-metal-mediated aromatic ring construction -- Contents -- Contributors -- Preface -- Part I. [2 + 2 + 2] and related cycloaddition reactions -- 1. Cobalt-mediated [2+2+2] cycloaddition -- 2. Nickel-mediated [2+2+2] cycloaddition -- 3. Ruthenium-mediated [2+2+2] cycloaddition -- 4. Rhodium-mediated [2+2+2] cycloaddition -- 5. Iridium-mediated [2+2+2] cycloaddition -- 6. [2+2+2] and related cycloadditions mediated by other transition metals -- 7. Application to the synthesis of natural products -- 8. Synthesis of planar chiral aromatic compounds via [2+2+2] cycloaddition -- 9. Synthesis of axially chiral aromatic compounds via [2+2+2] cycloaddition -- 10. Synthesis of helically chiral aromatic compounds via [2+2+2] cycloaddition -- 11. Aromatic ring construction from zirconocenes and titanocenes -- Part II. [4+2], [3+2], and related cycloaddition reactions -- 12. [4+2] and [3+2] cycloaddition via metallacycles -- 13. Diels-alder reactions -- 14. [4+2] benzannulation of enynes with alkynes -- 15. Formal [4+2] benzannulation via pyrylium intermediates -- 16. Utilization of 1,3-dipolar compounds -- 17. Utilization of transition-metal carbenoids -- Part III. Electrocyclization reactions -- 18. Intramolecular hydroarylation of alkynes, alkenes, and allenes -- 19. Intramolecular C X bond formation between C X or X H and alkynes -- 20. Synthesis of heterocycles via X H bond addition to diynes -- 21. Cycloaromatization via transition metal-cumulenylidenes -- Part IV. Coupling and addition reactions -- 22. C-C Bond-forming coupling reactions -- 23. Synthesis of carbazoles and related compounds via C E bond-forming coupling reactions -- 24. Synthesis of aromatic benzo-fused five- and six-membered heterocycles via palladium- and copper-catalyzed C-X bond-forming reactions -- 25. Coupling reactions of the SP2 C-H bond with alkynes -- Part V. Other important transformations -- 26. Metathesis reactions -- 27. Skeletal rearrangement reactions -- 28. Dearomatization-aromatization sequence -- Index.
- 16.4.3 Use of α-Azido Carbonyl Compounds -- 16.5 Summary and Outlook -- References -- 17 Utilization of Transition-Metal Carbenoids -- 17.1 Introduction -- 17.2 Five-membered Aromatic Ring Construction -- 17.2.1 Pyrrole Construction -- 17.2.2 Interchangeable Pyrrole and Furan Construction -- 17.2.3 Furan Ring Construction -- 17.3 Six-Membered Aromatic Ring Construction -- 17.3.1 D¬otz Benzannulation Reaction -- 17.3.2 Mechanism-Based Alternative Benzannulation -- 17.3.3 Benzannulation Unrelated to the D¬otz Reaction -- 17.3.4 Pyridine Syntheses -- 17.3.5 Synthesis of Pyrones and Pyranylidene Complexes -- 17.4 Summary and Outlook -- References -- PART III ELECTROCYCLIZATION REACTIONS -- 18 Intramolecular Hydroarylation of Alkynes, Alkenes, and Allenes -- 18.1 Introduction -- 18.2 Intramolecular Hydroarylation -- 18.2.1 Synthesis of Carbocycles -- 18.2.2 Synthesis of Oxygen Heterocycles -- 18.2.3 Synthesis of Nitrogen Heterocycles -- 18.2.4 Synthetic Applications -- 18.3 Summary and Outlook -- References -- 19 Intramolecular C X Bond Formation between C X or X H and Alkynes -- 19.1 Introduction -- 19.2 C X Bond Formation between C X and Alkynes -- 19.2.1 Pyridine Formation -- 19.2.2 Pyrrole Formation -- 19.2.3 Furan Formation -- 19.2.4 Miscellaneous Reactions -- 19.2.5 Cascade Reactions -- 19.3 C X Bond Formation between X H and Alkynes -- 19.3.1 Pyridine Formation -- 19.3.2 Pyrrole Formation -- 19.3.3 Furan Formation -- 19.3.4 Miscellaneous Reactions -- 19.3.5 Cascade Reactions -- 19.4 Summary and Outlook -- References -- 20 Synthesis of Heterocycles via X H Bond Addition to Diynes -- 20.1 Introduction -- 20.2 Synthesis of Pyrroles and Furans via Double trans Addition to 1,3-Diynes -- 20.3 Synthesis of Pyrroles via Hydroamination of 1,4- and 1,5-Diynes -- 20.4 Synthesis of Siloles and Germoles via Double trans Addition to 1,3-Diynes
- Intro -- TRANSITION-METAL-MEDIATEDAROMATIC RING CONSTRUCTION -- CONTENTS -- CONTRIBUTORS -- PREFACE -- PART I [2 + 2 + 2] AND RELATED CYCLOADDITION REACTIONS -- 1 Cobalt-Mediated [2+2+2] Cycloaddition -- 1.1 Introduction -- 1.2 Synthesis of Benzenes -- 1.2.1 New Catalytic Systems -- 1.2.2 New Cyclization Partners -- 1.2.3 Chemo- and Regioselectivity Issues -- 1.3 Synthesis of Heterocycles -- 1.3.1 New Catalytic Systems -- 1.3.2 New Cyclization Partners -- 1.3.3 Chemo- and Regioselectivity Issues -- 1.4 Mechanistic Aspects -- 1.5 Synthetic Applications -- 1.5.1 Natural Products and Naturally Occurring Scaffolds -- 1.5.2 Polyphenylenes -- 1.6 Summary and Outlook -- References -- 2 Nickel-Mediated [2+2+2] Cycloaddition -- 2.1 Introduction -- 2.2 Synthesis of Benzenes -- 2.3 Cycloaddition of Alkynes and Nitriles -- 2.4 Cycloaddition of Alkynes and Imines -- 2.5 Cycloaddition of Alkynes and Carbon Dioxide -- 2.6 Cycloaddition of Alkynes and Isocyanates -- 2.7 Cycloaddition of Alkynes and Carbodiimide -- 2.8 Cycloaddition of Diynes and Ketenes -- 2.9 Cycloaddition of Arynes -- 2.10 Mechanism -- 2.10.1 Coupling of Alkynes and Allene -- 2.10.2 Cycloaddition of Alkyne and Nitrile -- 2.10.3 Cycloaddition of Alkynes and Heterocumulenes -- 2.10.4 Cycloaddition of Arynes -- 2.11 Summary and Outlook -- References -- 3 Ruthenium-Mediated [2+2+2] Cycloaddition -- 3.1 Introduction -- 3.2 Synthesis of Benzenes -- 3.2.1 Cyclotrimerization -- 3.2.2 Cross-Cyclotrimerization -- 3.2.3 Partially Intramolecular Cyclotrimerizations -- 3.2.4 Fully Intramolecular Cyclotrimerization -- 3.2.5 Cyclotrimerization of Alkynylboronates and 1-Haloalkynes -- 3.3 Synthesis of Heterocycles -- 3.3.1 Cyclocotrimerization of Alkynes with Nitriles to Form Pyridines -- 3.3.2 Cyclocotrimerization of Alkynes with Heterocumulenes -- 3.4 Mechanism of Ruthenium-Catalyzed [2+2+2] Cycloadditions
- 3.5 Synthetic Applications -- 3.5.1 Synthesis of Biologically Interesting Molecules -- 3.5.2 Synthesis of Polyaromatic Functional Molecules -- 3.6 Summary and Outlook -- References -- 4 Rhodium-Mediated [2+2+2] Cycloaddition -- 4.1 Introduction -- 4.2 Synthesis of Benzenes -- 4.2.1 Intermolecular Reactions Catalyzed by Neutral Rhodium Complexes -- 4.2.2 Intermolecular Reactions Catalyzed by Cationic Rhodium Complexes -- 4.2.3 Intramolecular Reactions Catalyzed by Neutral Rhodium Complexes -- 4.2.4 Intramolecular Reactions Catalyzed by Cationic Rhodium Complexes -- 4.3 Synthesis of Pyridines -- 4.3.1 Intermolecular Reactions -- 4.3.2 Intramolecular Reactions -- 4.4 Synthesis of Pyridones and Related Heterocycles -- 4.4.1 Intermolecular Reactions -- 4.4.2 Intramolecular Reactions -- 4.5 Summary and Outlook -- References -- 5 Iridium-Mediated [2+2+2] Cycloaddition -- 5.1 Introduction -- 5.2 Synthesis of Benzene Derivatives -- 5.3 Synthesis of Heterocyclic Compounds -- 5.4 Mechanistic Aspects -- 5.5 Summary and Outlook -- References -- 6 [2+2+2] and Related Cycloadditions Mediated by Other Transition Metals -- 6.1 Introduction -- 6.2 Palladium-Catalyzed [2+2+2] and [2+2+1] Cycloadditions -- 6.2.1 [2+2+2] Cycloaddition -- 6.2.2 [2+2+1] Cycloaddition -- 6.3 Iron-Catalyzed [2+2+2] Cycloaddition -- 6.4 Manganese-Catalyzed [2+2+2] Cycloaddition -- 6.5 Rhenium-Catalyzed [2+2+2], [2+1+2+1], and [2+2+1+1] Cycloadditions -- 6.6 Other Transition-Metal-Catalyzed [2+2+2] Cycloaddition -- 6.7 Summary and Outlook -- References -- 7 Application to the Synthesis of Natural Products -- 7.1 Introduction -- 7.2 Construction of Benzene Rings -- 7.2.1 Application to the Synthesis of Steroids -- 7.2.2 Applications of the Intramolecular [2+2+2] Cycloaddition Reaction -- 7.2.3 Application of the Crossed Version of the [2+2+2] Alkyne Cycloaddition Reaction
- 20.5 Summary and Outlook
- 12.3 [3+2] Cycloaddition via Elimination of Small Molecules -- 12.4 [4+2] Cycloaddition via C C Bond Activation -- 12.5 [4+2] Cycloaddition via C-H Bond Activation -- 12.6 Summary and Outlook -- References -- 13 Diels-Alder Reactions -- 13.1 Introduction -- 13.2 Transition-Metal-Mediated Diels-Alder Reaction/Aromatization Sequence -- 13.3 Intramolecular Diels-Alder Reactions toward Dihydroaromatic and Aromatic Products -- 13.4 Synthetic Applications -- 13.5 Summary and Outlook -- References -- 14 [4+2] Benzannulation of Enynes with Alkynes -- 14.1 Introduction -- 14.2 Benzannulation of Enyne with Alkyne: Gold-catalyzed Benzannulation Reaction -- 14.3 Benzannulation of Enyne with Enyne -- 14.3.1 Palladium-Catalyzed [4+2] Homo-benzannulation Reaction -- 14.3.2 Cobalt-Catalyzed [4+2] Homo-benzannulation Reaction -- 14.4 Benzannulation of Enyne with Diyne -- 14.5 Synthetic Applications -- 14.6 Summary and Outlook -- References -- 15 Formal [4+2] Benzannulation via Pyrylium Intermediates -- 15.1 Introduction -- 15.2 Benzannulation of Pyrylium Salts -- 15.3 Benzannulation of O-Alkynylbenzaldehydes -- 15.3.1 With Alkynes -- 15.3.2 With Alkenes or Enol Ethers -- 15.3.3 With Carbonyl Compounds -- 15.3.4 With Other Dienophiles -- 15.4 Intramolecular [4+2] Benzannulation -- 15.5 Application to Natural Product Synthesis -- 15.6 Summary and Outlook -- References -- 16 Utilization of 1,3-Dipolar Compounds -- 16.1 Introduction -- 16.2 1,3-Dipolar Cycloaddition -- 16.2.1 Azides -- 16.2.2 Diazoalkanes -- 16.2.3 Carbonyl Ylides -- 16.2.4 Azomethine Ylides -- 16.3 Five-Membered Ring Construction via Decomposition of Azides -- 16.3.1 Use of Vinyl Azides -- 16.3.2 Use of Aryl Azides -- 16.3.3 Use of Alkyl Azides -- 16.4 Six-Membered Ring Construction via Decomposition of Azides -- 16.4.1 Use of Vinyl Azides -- 16.4.2 Use of Cyclic 2-Azido Alcohols
- 7.3 Construction of a Heterocyclic Ring -- 7.4 Miscellaneous -- 7.5 Summary and Outlook -- References -- 8 Synthesis of Planar Chiral Aromatic Compounds via [2+2+2] Cycloaddition -- 8.1 Introduction -- 8.2 Cobalt-Catalyzed [2+2+2] Cycloaddition -- 8.3 Rhodium-Catalyzed [2+2+2] Cycloaddition -- 8.4 Enantioselective [2+2+2] Cycloaddition -- 8.5 Summary and Outlook -- References -- 9 Synthesis of Axially Chiral Aromatic Compounds via [2+2+2] Cycloaddition -- 9.1 Introduction -- 9.2 Cobalt-Catalyzed Enantioselective [2+2+2] Cycloaddition -- 9.3 Iridium-Catalyzed Enantioselective [2+2+2] Cycloaddition -- 9.4 Rhodium-Catalyzed Enantioselective [2+2+2] Cycloaddition -- 9.4.1 Synthesis of Biaryls and Teraryls -- 9.4.2 Synthesis of Biaryls and Tetraphenylenes via Double Cycloaddition -- 9.4.3 Synthesis of Heterobiaryls -- 9.4.4 Synthesis of Biaryl Phosphorus Compounds -- 9.5 Enantioselective Synthesis of Axially Chiral Anilides and Bezamides -- 9.5.1 Synthesis of Anilides -- 9.5.2 Synthesis of Benzamides -- 9.6 Summary and Outlook -- References -- 10 Synthesis of Helically Chiral Aromatic Compounds via [2+2+2] Cycloaddition -- 10.1 Introduction -- 10.2 Nonasymmetric Synthesis -- 10.3 Diastereoselective Synthesis -- 10.4 Enantioselective Synthesis -- 10.5 Summary and Outlook -- References -- 11 Aromatic Ring Construction from Zirconocenes and Titanocenes -- 11.1 Introduction -- 11.2 Aromatic Ring Construction from Zirconocenes -- 11.2.1 [2+2+2] and [2+2+1] Cycloadditions -- 11.2.2 Coupling Reactions -- 11.3 Aromatic Ring Construction from Titanocenes -- 11.4 Application to Synthesis of Substituted Acenes -- 11.5 Summary and Outlook -- References -- PART II [4+2], [3+2], AND RELATED CYCLOADDITION REACTIONS -- 12 [4+2] and [3+2] Cycloaddition via Metallacycles -- 12.1 Introduction -- 12.2 [4+2] Cycloaddition via Elimination of Small Molecules