Asymptotic Analysis of Statistical Estimators related to MultiGraphex Processes under Misspecification

Bernoulli 30(4): 2644-2675, 2024 This article studies the asymptotic properties of Bayesian or frequentist estimators of a vector of parameters related to structural properties of sequences of graphs. The estimators studied originate from a particular class of graphex model introduced by Caron and F...

Full description

Saved in:
Bibliographic Details
Main Authors Naulet, Zacharie, Rousseau, Judith, Caron, François
Format Journal Article
LanguageEnglish
Published 02.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bernoulli 30(4): 2644-2675, 2024 This article studies the asymptotic properties of Bayesian or frequentist estimators of a vector of parameters related to structural properties of sequences of graphs. The estimators studied originate from a particular class of graphex model introduced by Caron and Fox. The analysis is however performed here under very weak assumptions on the underlying data generating process, which may be different from the model of Caron and Fox or from a graphex model. In particular, we consider generic sparse graph models, with unbounded degree, whose degree distribution satisfies some assumptions. We show that one can relate the limit of the estimator of one of the parameters to the sparsity constant of the true graph generating process. When taking a Bayesian approach, we also show that the posterior distribution is asymptotically normal. We discuss situations where classical random graphs models such as configuration models, sparse graphon models, edge exchangeable models or graphon processes satisfy our assumptions.
AbstractList Bernoulli 30(4): 2644-2675, 2024 This article studies the asymptotic properties of Bayesian or frequentist estimators of a vector of parameters related to structural properties of sequences of graphs. The estimators studied originate from a particular class of graphex model introduced by Caron and Fox. The analysis is however performed here under very weak assumptions on the underlying data generating process, which may be different from the model of Caron and Fox or from a graphex model. In particular, we consider generic sparse graph models, with unbounded degree, whose degree distribution satisfies some assumptions. We show that one can relate the limit of the estimator of one of the parameters to the sparsity constant of the true graph generating process. When taking a Bayesian approach, we also show that the posterior distribution is asymptotically normal. We discuss situations where classical random graphs models such as configuration models, sparse graphon models, edge exchangeable models or graphon processes satisfy our assumptions.
Author Rousseau, Judith
Naulet, Zacharie
Caron, François
Author_xml – sequence: 1
  givenname: Zacharie
  surname: Naulet
  fullname: Naulet, Zacharie
– sequence: 2
  givenname: Judith
  surname: Rousseau
  fullname: Rousseau, Judith
– sequence: 3
  givenname: François
  surname: Caron
  fullname: Caron, François
BackLink https://doi.org/10.48550/arXiv.2107.01120$$DView paper in arXiv
https://doi.org/10.3150/23-BEJ1689$$DView published paper (Access to full text may be restricted)
BookMark eNotj7FOwzAURT3AAIUPYMI_kGDHTuyOVVUKUiuQ6B49O8_CUhpHtouavyeUTke6w9E99-RmCAMS8sRZKXVdsxeIZ_9TVpypknFesTviVmk6jjlkb-lqgH5KPtHg6FeG7NO8Qk83M4-QQ0w0Yg8ZO5oD3Z_67LcRxm88088YLKaEiZ6GDiPd-5RGtN7NguzD8EBuHfQJH69ckMPr5rB-K3Yf2_f1aldArXlhVeVqoZe2a1RtHNMKlJFMKm2ZEa7RWqNUUFVOmUYYi47bpUQjuRZcgxQL8vyvvYS2Y5x_x6n9C24vweIX51RUoA
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
EPD
GOX
DOI 10.48550/arxiv.2107.01120
DatabaseName arXiv Mathematics
arXiv Statistics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2107_01120
GroupedDBID AKZ
EPD
GOX
ID FETCH-LOGICAL-a581-c72f5389cd675bf087a7b40478c0b3f6888e47a22f7b63bcef1c94eb418318a43
IEDL.DBID GOX
IngestDate Tue Jul 22 23:17:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a581-c72f5389cd675bf087a7b40478c0b3f6888e47a22f7b63bcef1c94eb418318a43
OpenAccessLink https://arxiv.org/abs/2107.01120
ParticipantIDs arxiv_primary_2107_01120
PublicationCentury 2000
PublicationDate 2021-07-02
PublicationDateYYYYMMDD 2021-07-02
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-02
  day: 02
PublicationDecade 2020
PublicationYear 2021
Score 2.2591465
SecondaryResourceType preprint
Snippet Bernoulli 30(4): 2644-2675, 2024 This article studies the asymptotic properties of Bayesian or frequentist estimators of a vector of parameters related to...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Statistics Theory
Statistics - Theory
Title Asymptotic Analysis of Statistical Estimators related to MultiGraphex Processes under Misspecification
URI https://arxiv.org/abs/2107.01120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwELZKJxYEAlSe8sAaiB3nNVaoDyEVliJlq3y2T2JoUzUBlX_P2UkFC5Ml-7ycH_fd-e4zYw82kZghmKjEVEWeYS7SWQxRnCSytCCU1T7esXjN5u_qpUqrAeOHWhi92398dfzA0DyRP5I_0g6U5JQfSelTtmZvVfc4Gai4evlfOcKYoeuPkZiespMe3fFxtxxnbOA25wzHzfd629bUxw8cILxG7nFeoEmmGRNq197_bXioLnGWtzUP1bEzTynt9rxP6XcN93VfO74glfnP47GPul2w5XSyfJ5H_fcGkU4LEZlcIt02pbGE2QHjItc5KE-WY2JIMCPX1KlcS4k5ZAkYh8KUyoGiQygKrZJLNtzUGzdiHKRBKSyaEsniWg1SmYJwoDCoM0jFFRsFpay2HYPFyutrFfR1_f_QDTuWPoHDxzLlLRu2u093Rxa4hfuwDD9DRojE
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+Analysis+of+Statistical+Estimators+related+to+MultiGraphex+Processes+under+Misspecification&rft.au=Naulet%2C+Zacharie&rft.au=Rousseau%2C+Judith&rft.au=Caron%2C+Fran%C3%A7ois&rft.date=2021-07-02&rft_id=info:doi/10.48550%2Farxiv.2107.01120&rft.externalDocID=2107_01120