Adsorption of Humic Substances on Goethite:  Comparison between Humic Acids and Fulvic Acids

The adsorption of humic acids (HA) to goethite (at pH 3−11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 40; no. 24; pp. 7494 - 7500
Main Authors Weng, Van Riemsdijk, Willem H, Koopal, Luuk K, Hiemstra, Tjisse
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.12.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The adsorption of humic acids (HA) to goethite (at pH 3−11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also reveals that for FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading.
AbstractList The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also reveals that for FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading.
The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also revealsthatfor FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading.The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also revealsthatfor FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading.
The adsorption of humic acids (HA) to goethite (at pH 3−11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also reveals that for FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading.
The adsorption of humic acids (HA) to goethite and the proton co-adsorption is measured. Compared to fulvic acid (FA), the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The model also reveals that, for FA a mean field approximately is reasonably, but for HA a patchwise approach is more appropriate at relatively low loading.
The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also revealsthatfor FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading.
The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also reveals that for FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading. [PUBLICATION ABSTRACT]
Author Koopal, Luuk K
Van Riemsdijk, Willem H
Hiemstra, Tjisse
Weng
Author_xml – sequence: 1
  surname: Weng
  fullname: Weng
– sequence: 2
  givenname: Willem H
  surname: Van Riemsdijk
  fullname: Van Riemsdijk, Willem H
– sequence: 3
  givenname: Luuk K
  surname: Koopal
  fullname: Koopal, Luuk K
– sequence: 4
  givenname: Tjisse
  surname: Hiemstra
  fullname: Hiemstra, Tjisse
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17256486$$D View this record in MEDLINE/PubMed
BookMark eNqNks2KFDEUhYOMOD2jC19ACkHBRTn5qfzU7JrGnhFHVKYFV4ZUKq0Zq5I2Sdm6c-tr-iSmqJ4WRkE3uXD5zoGTc4_AgfPOAHAfwacIYnRiImSQc97eAjNEMSypoOgAzCBEpKwJe3cIjmK8ghBiAsUdcIg4pqwSbAbez9vowyZZ7wq_Ls6H3uricmhiUk6bWOT1mTfpo03m9Of3H8XC9xsVbMz7xqStMW6nmWvbxkK5tlgO3ZfrxV1we626aO7t5jF4u3y2WpyXF6_Oni_mF6WiAqaS1hrDhtJKtJgiJhBqTCu0wJRqofCas9bwpiVUNFowzhpteCUU1I3mpm4FOQank-9WfTDOuvxIp4K2UXplZWeboMI3uR2CdN04NjmiJAwzArP48STeBP95MDHJ3kZtuk4544comSAQCir-CWJIc4b_AFHFa4KqKoMPb4BXfgguf5XMVaGK4rrO0IMdNDS9aeUm2H5Mc91iBk4mQAcfYzBrqW1SY6cpKNtJBOV4J3J_J1nx5IZib_oXtpxYG5P5ugdV-CQZJ5zK1etLWS9frtAL9kaOmR5NvNLxd5w_fX8BXbvZCw
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_gca_2013_08_038
crossref_primary_10_1080_23311843_2019_1650416
crossref_primary_10_1016_j_scitotenv_2010_01_061
crossref_primary_10_3390_ijerph20054317
crossref_primary_10_1016_j_jes_2015_08_008
crossref_primary_10_1016_j_soilbio_2015_07_022
crossref_primary_10_1021_es8003602
crossref_primary_10_1021_acs_est_7b03249
crossref_primary_10_1016_j_gca_2012_02_003
crossref_primary_10_1016_j_jes_2021_03_041
crossref_primary_10_1016_j_chemosphere_2023_138927
crossref_primary_10_1016_j_scitotenv_2020_140372
crossref_primary_10_1016_j_chemosphere_2022_136129
crossref_primary_10_1016_j_scitotenv_2024_170919
crossref_primary_10_3390_ma12233915
crossref_primary_10_1016_j_envadv_2022_100218
crossref_primary_10_1016_j_chemgeo_2015_10_017
crossref_primary_10_1016_j_watres_2017_03_059
crossref_primary_10_1016_j_aca_2014_01_022
crossref_primary_10_2134_jeq2011_0250
crossref_primary_10_1016_j_biortech_2014_12_054
crossref_primary_10_1007_s11356_019_07282_5
crossref_primary_10_1016_j_scitotenv_2018_08_086
crossref_primary_10_1021_acs_est_8b03492
crossref_primary_10_1021_acs_est_4c06885
crossref_primary_10_1016_j_seppur_2020_116949
crossref_primary_10_1017_wsc_2020_95
crossref_primary_10_1021_es201844d
crossref_primary_10_1016_j_geoderma_2023_116737
crossref_primary_10_1016_j_scitotenv_2013_09_044
crossref_primary_10_1016_j_cej_2021_129353
crossref_primary_10_1021_jp2126448
crossref_primary_10_1007_s11356_022_20561_y
crossref_primary_10_1016_j_jhazmat_2013_04_014
crossref_primary_10_1021_acs_est_5b04136
crossref_primary_10_1089_ees_2015_0379
crossref_primary_10_1016_j_chemgeo_2013_02_005
crossref_primary_10_1007_s11430_024_1520_1
crossref_primary_10_1021_la400884t
crossref_primary_10_2139_ssrn_4167469
crossref_primary_10_1039_C5EN00141B
crossref_primary_10_1016_j_jece_2016_12_018
crossref_primary_10_1016_j_jhazmat_2020_124081
crossref_primary_10_1016_j_colsurfa_2011_03_045
crossref_primary_10_1177_0003702821991219
crossref_primary_10_1016_j_chemosphere_2011_04_024
crossref_primary_10_3390_plants11030263
crossref_primary_10_1016_j_watres_2007_12_015
crossref_primary_10_1016_j_colsurfa_2008_12_039
crossref_primary_10_1021_acs_est_6b02436
crossref_primary_10_1021_acs_est_7b04261
crossref_primary_10_1016_j_scitotenv_2019_02_235
crossref_primary_10_1007_s11104_013_1696_y
crossref_primary_10_1007_s12665_014_3686_7
crossref_primary_10_1016_j_chemosphere_2021_131784
crossref_primary_10_1016_j_envpol_2010_09_021
crossref_primary_10_1016_j_chemosphere_2013_11_065
crossref_primary_10_2139_ssrn_3993180
crossref_primary_10_1016_j_colsurfa_2010_10_032
crossref_primary_10_1016_j_chemosphere_2020_126691
crossref_primary_10_1080_15320383_2020_1819958
crossref_primary_10_1016_j_soilbio_2014_10_018
crossref_primary_10_1016_j_scitotenv_2017_10_070
crossref_primary_10_1016_j_clay_2023_106825
crossref_primary_10_1021_es501782g
crossref_primary_10_1016_j_geoderma_2010_07_004
crossref_primary_10_1016_j_jhazmat_2021_126260
crossref_primary_10_1016_j_chemosphere_2017_01_008
crossref_primary_10_1038_s41598_019_46175_y
crossref_primary_10_1016_j_heliyon_2023_e17044
crossref_primary_10_1016_j_micromeso_2013_05_027
crossref_primary_10_1021_acs_est_3c02305
crossref_primary_10_1016_j_envpol_2021_118552
crossref_primary_10_1371_journal_pone_0149632
crossref_primary_10_1016_j_chemosphere_2019_01_171
crossref_primary_10_1016_j_envres_2021_111424
crossref_primary_10_3390_plants12233937
crossref_primary_10_1016_j_scitotenv_2020_138289
crossref_primary_10_1021_es102592a
crossref_primary_10_1380_ejssnt_2018_411
crossref_primary_10_1021_es103864t
crossref_primary_10_1016_j_jconhyd_2017_12_004
crossref_primary_10_1016_j_watres_2024_121501
crossref_primary_10_1007_s11104_020_04651_9
crossref_primary_10_1007_s10118_010_9050_9
crossref_primary_10_1039_D0EN00197J
crossref_primary_10_1016_j_watres_2017_11_024
crossref_primary_10_1016_j_chemosphere_2019_05_252
crossref_primary_10_1021_acs_est_2c00828
crossref_primary_10_1111_ejss_12803
crossref_primary_10_1016_j_apgeochem_2007_12_032
crossref_primary_10_1016_j_geoderma_2021_115514
crossref_primary_10_1016_j_chemosphere_2022_135172
crossref_primary_10_1016_j_scitotenv_2023_164086
crossref_primary_10_1016_j_chemosphere_2021_130780
crossref_primary_10_1007_s11368_014_0897_1
crossref_primary_10_1007_s00344_018_9843_6
crossref_primary_10_1021_acsearthspacechem_3c00334
crossref_primary_10_1088_1742_6596_1277_1_012007
crossref_primary_10_1007_s11051_022_05555_8
crossref_primary_10_1360_SSTe_2024_0103
crossref_primary_10_1080_10643389_2021_1974766
crossref_primary_10_1016_j_chemosphere_2023_140846
crossref_primary_10_1089_ees_2016_0289
crossref_primary_10_1016_j_jhazmat_2022_130463
crossref_primary_10_1016_j_chemosphere_2018_08_131
crossref_primary_10_1021_es400997n
crossref_primary_10_1016_j_gca_2021_07_028
crossref_primary_10_1007_s11356_017_1083_y
crossref_primary_10_1016_j_chemgeo_2020_119573
crossref_primary_10_1016_j_saa_2010_12_075
crossref_primary_10_1007_s11356_023_31640_z
crossref_primary_10_1016_j_colsurfb_2010_06_031
crossref_primary_10_1039_D2EM00330A
crossref_primary_10_1016_j_apgeochem_2022_105534
crossref_primary_10_1021_es2034087
crossref_primary_10_1007_s42773_022_00172_z
crossref_primary_10_1016_j_chemgeo_2014_02_012
crossref_primary_10_1016_j_apsusc_2018_02_131
crossref_primary_10_1016_j_scitotenv_2023_166643
crossref_primary_10_1021_ie800912y
crossref_primary_10_1016_j_watres_2015_01_020
crossref_primary_10_1016_j_molcatb_2012_06_012
crossref_primary_10_1016_j_colsurfb_2013_09_056
crossref_primary_10_1016_j_cej_2015_01_124
crossref_primary_10_1016_j_envpol_2017_06_032
crossref_primary_10_1016_j_jcis_2022_11_050
crossref_primary_10_3389_fmicb_2018_01748
crossref_primary_10_1021_acssusresmgt_3c00106
crossref_primary_10_1021_acs_est_3c05854
crossref_primary_10_1021_es502342r
crossref_primary_10_1007_s11270_022_05610_z
crossref_primary_10_1016_j_jcis_2020_04_050
crossref_primary_10_1021_acsami_0c00597
crossref_primary_10_1007_s11356_022_24258_0
crossref_primary_10_1021_acs_est_3c01493
crossref_primary_10_1016_j_colsurfa_2020_125486
crossref_primary_10_1007_s11356_008_0052_x
crossref_primary_10_1016_j_geoderma_2008_05_005
crossref_primary_10_1016_j_colsurfa_2013_01_023
crossref_primary_10_1016_j_scitotenv_2022_159867
crossref_primary_10_1021_acsearthspacechem_1c00288
crossref_primary_10_4028_www_scientific_net_AMR_926_930_222
crossref_primary_10_1016_j_scitotenv_2018_01_001
crossref_primary_10_1016_j_cej_2012_08_026
crossref_primary_10_1016_j_colsurfa_2013_02_052
crossref_primary_10_1016_j_eti_2023_103271
crossref_primary_10_4491_eer_2009_14_1_041
crossref_primary_10_1016_j_cej_2019_01_003
crossref_primary_10_1180_minmag_2012_076_7_02
crossref_primary_10_1016_j_jcis_2007_05_039
crossref_primary_10_1016_j_jclepro_2017_08_209
crossref_primary_10_1039_C6RA12377E
crossref_primary_10_1016_j_chemosphere_2024_141342
crossref_primary_10_1016_j_colsurfa_2023_132008
crossref_primary_10_1016_j_envint_2019_104995
crossref_primary_10_1021_es801631d
crossref_primary_10_1016_j_jhazmat_2021_127643
crossref_primary_10_1021_acs_est_6b01749
crossref_primary_10_1016_j_jece_2025_116219
crossref_primary_10_1021_es8007062
crossref_primary_10_1590_18069657rbcs20150383
crossref_primary_10_1016_j_ecoenv_2018_08_064
crossref_primary_10_1016_j_envpol_2022_119307
crossref_primary_10_1039_C5EN00215J
crossref_primary_10_1039_C5RA12091H
crossref_primary_10_1007_s11356_019_05441_2
crossref_primary_10_1016_j_ijbiomac_2019_09_247
crossref_primary_10_1016_j_geoderma_2016_05_007
crossref_primary_10_1016_j_jece_2020_103940
crossref_primary_10_1016_j_watres_2013_12_041
crossref_primary_10_1021_acs_est_1c06747
crossref_primary_10_1080_10643389_2012_718947
crossref_primary_10_1016_j_scitotenv_2013_04_076
crossref_primary_10_1007_s11356_015_4271_7
crossref_primary_10_5004_dwt_2022_28283
crossref_primary_10_1016_j_conbuildmat_2023_133875
crossref_primary_10_1021_ac9029339
crossref_primary_10_1080_10934529_2011_590732
crossref_primary_10_1016_j_envpol_2022_120542
crossref_primary_10_1016_j_scitotenv_2020_137440
crossref_primary_10_1002_aws2_1282
crossref_primary_10_1016_j_jconhyd_2016_07_006
crossref_primary_10_1111_ejss_12785
crossref_primary_10_2136_sssaj2009_0119
crossref_primary_10_1016_j_colsurfa_2014_09_019
crossref_primary_10_5194_bg_12_6999_2015
crossref_primary_10_17221_179_2018_PSE
crossref_primary_10_1016_j_colsurfa_2015_07_045
crossref_primary_10_1016_j_chemosphere_2020_126962
crossref_primary_10_1039_C8RA06025H
crossref_primary_10_1021_acs_est_6b03587
crossref_primary_10_1016_j_gca_2013_04_006
crossref_primary_10_1016_j_cej_2019_122306
crossref_primary_10_1016_j_watres_2023_120509
crossref_primary_10_1021_es302094a
crossref_primary_10_1039_c1sm05806a
crossref_primary_10_1016_j_cej_2019_123194
crossref_primary_10_1016_j_seppur_2025_131749
crossref_primary_10_1016_j_cej_2020_124380
crossref_primary_10_1016_j_colsurfa_2012_05_003
crossref_primary_10_1002_smll_202003691
crossref_primary_10_1021_acs_est_9b04873
crossref_primary_10_1002_jssc_201200414
crossref_primary_10_1016_j_jhazmat_2011_12_072
crossref_primary_10_1016_j_wasman_2019_03_005
crossref_primary_10_1016_j_watres_2013_01_053
crossref_primary_10_1007_s11356_018_1751_6
crossref_primary_10_1016_j_cej_2018_03_125
crossref_primary_10_1021_es2023225
crossref_primary_10_2134_agronj2019_05_0347
crossref_primary_10_1016_j_colsurfa_2017_12_065
crossref_primary_10_1016_j_chemosphere_2009_11_028
crossref_primary_10_1016_j_jes_2019_09_018
crossref_primary_10_1016_j_scitotenv_2016_03_239
crossref_primary_10_1071_EN08005
crossref_primary_10_1021_es9000196
crossref_primary_10_1016_j_jes_2017_06_021
crossref_primary_10_1016_j_powtec_2016_08_042
crossref_primary_10_1016_j_chemosphere_2011_08_045
crossref_primary_10_1016_j_clay_2011_03_015
Cites_doi 10.1016/0016-7037(94)90334-4
10.1021/es00092a012
10.1021/es000123j
10.2136/sssaj1995.03615995005900020021x
10.1021/es0520518
10.1016/0021-9797(89)90285-3
10.1016/S0927-7757(98)00637-2
10.1006/jcis.1996.0242
10.1016/S0016-7037(02)01042-6
10.1006/jcis.1994.1270
10.1016/j.colsurfa.2004.11.050
10.1016/0021-9797(85)90381-9
10.1016/S0043-1354(00)00148-2
10.1016/S0016-7037(99)00176-3
10.1097/00010694-200007000-00003
10.1021/ac50047a045
10.1021/es035266v
10.1006/jcis.2000.6982
ContentType Journal Article
Copyright Copyright © 2006 American Chemical Society
Copyright American Chemical Society Dec 15, 2006
Wageningen University & Research
Copyright_xml – notice: Copyright © 2006 American Chemical Society
– notice: Copyright American Chemical Society Dec 15, 2006
– notice: Wageningen University & Research
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
QVL
DOI 10.1021/es060777d
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Environment Abstracts
MEDLINE
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 7500
ExternalDocumentID oai_library_wur_nl_wurpubs_362630
7987317
1204519361
17256486
10_1021_es060777d
ark_67375_TPS_9FMT1K6Q_4
a003880914
Genre Journal Article
Comparative Study
Feature
GroupedDBID -
.K2
186
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
A
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
K78
LG6
MS
NHB
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
ABJNI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
MS~
MW2
XSW
ZCA
ZCG
~A~
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
08R
1WB
42X
8WZ
A6W
ABDEX
ABDTD
ACDCL
ACKIV
AETEA
AFDAS
AFMIJ
HR
MVM
OHT
QVL
RNS
TAE
UBX
UBY
VJK
VOH
ZY4
ID FETCH-LOGICAL-a580t-59c20b5548d2516811bed8c8255c8a2f76de7bd358bc8676bce748a0cbc7e9d83
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Fri Feb 05 18:08:15 EST 2021
Thu Jul 10 17:56:30 EDT 2025
Mon Jul 21 10:10:59 EDT 2025
Thu Jul 10 18:47:06 EDT 2025
Fri Jul 25 06:33:21 EDT 2025
Wed Feb 19 02:35:46 EST 2025
Tue Jul 01 04:04:46 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Wed Oct 30 09:35:03 EDT 2024
Thu Aug 27 13:42:37 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a580t-59c20b5548d2516811bed8c8255c8a2f76de7bd358bc8676bce748a0cbc7e9d83
Notes This article is part of the Modeling Natural Organic Matter Focus Group.
istex:E93891D5DC232C2501924841B34D72DB3381FF74
ark:/67375/TPS-9FMT1K6Q-4
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PMID 17256486
PQID 230145299
PQPubID 23462
PageCount 7
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_362630
proquest_miscellaneous_68300858
proquest_miscellaneous_20555458
proquest_miscellaneous_14793144
proquest_journals_230145299
pubmed_primary_17256486
crossref_citationtrail_10_1021_es060777d
crossref_primary_10_1021_es060777d
istex_primary_ark_67375_TPS_9FMT1K6Q_4
acs_journals_10_1021_es060777d
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2006-12-15
PublicationDateYYYYMMDD 2006-12-15
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2006
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Kinniburgh D. G. (es060777db00025/es060777db00025_1) 1995; 59
Meeussen J. C. L. (es060777db00032/es060777db00032_1) 2003; 37
Ko I. (es060777db00013/es060777db00013_1) 2005; 17
Aiken G. R. (es060777db00022/es060777db00022_1) 1979; 51
Saito T. (es060777db00005/es060777db00005_1) 2004; 20
Koopal L. K. (es060777db00028/es060777db00028_1) 1994; 166
Vermeer A. W. P. (es060777db00007/es060777db00007_1) 1998; 14
Hiemstra T. (es060777db00026/es060777db00026_1) 1996; 179
Parfitt R. L. (es060777db00004/es060777db00004_1) 1977; 28
Schlautman M. A. (es060777db00011/es060777db00011_1) 1994; 58
Tipping E (es060777db00006/es060777db00006_1) 1981; 45
Specht C. H. (es060777db00033/es060777db00033_1) 2000; 34
Namjesnik-Dejanovic K. (es060777db00034/es060777db00034_1) 2000; 165
Rietra R. (es060777db00019/es060777db00019_1) 2000; 229
Vreysen S. (es060777db00008/es060777db00008_1) 2006; 32
Koopal L. K. (es060777db00030/es060777db00030_1) 2005; 265
Weng L. P. (es060777db00031/es060777db00031_1)
Kinniburgh D. G. (es060777db00029/es060777db00029_1) 1999; 151
Hur J. (es060777db00012/es060777db00012_1) 2006; 41
De Wit J. C. M. (es060777db00027/es060777db00027_1) 1990; 232
Filius J. D. (es060777db00020/es060777db00020_1) 2003; 67
Weng L. P. (es060777db00009/es060777db00009_1) 2005; 69
Schulthess C. P. (es060777db00010/es060777db00010_1) 1991; 55
Hiemstra T. (es060777db00017/es060777db00017_1) 2002
Milne C. J. (es060777db00015/es060777db00015_1) 2001; 35
Perona M. J. (es060777db00018/es060777db00018_1) 1985; 106
Gu B. H. (es060777db00003/es060777db00003_1) 1994; 28
Davis J. A. (es060777db00016/es060777db00016_1) 1981; 15
Reiller P. (es060777db00014/es060777db00014_1) 2006; 40
Davis J. A (es060777db00001/es060777db00001_1) 1982; 46
Filius J. D. (es060777db00002/es060777db00002_1) 2000; 64
Van Zomeren A. (es060777db00024/es060777db00024_1) 2004; 38
Swift R. (es060777db00023/es060777db00023_1) 1996
Hiemstra T. (es060777db00021/es060777db00021_1) 1989; 133
References_xml – volume: 58
  start-page: 4303
  year: 1994
  ident: es060777db00011/es060777db00011_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90334-4
– volume: 15
  start-page: 1229
  year: 1981
  ident: es060777db00016/es060777db00016_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00092a012
– volume-title: Methods of Soil Analysis. Part 3. Chemical Methods
  year: 1996
  ident: es060777db00023/es060777db00023_1
– volume: 32
  start-page: 196
  year: 2006
  ident: es060777db00008/es060777db00008_1
  publication-title: Appl. Clay Sci.
– volume: 35
  start-page: 2059
  year: 2001
  ident: es060777db00015/es060777db00015_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es000123j
– volume: 59
  start-page: 422
  year: 1995
  ident: es060777db00025/es060777db00025_1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1995.03615995005900020021x
– volume: 40
  start-page: 2241
  year: 2006
  ident: es060777db00014/es060777db00014_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0520518
– volume: 133
  start-page: 104
  year: 1989
  ident: es060777db00021/es060777db00021_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(89)90285-3
– volume: 151
  start-page: 166
  year: 1999
  ident: es060777db00029/es060777db00029_1
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(98)00637-2
– volume: 37
  start-page: 1182
  year: 2003
  ident: es060777db00032/es060777db00032_1
  publication-title: Environ. Sci. Technol.
– volume: 232
  start-page: 207
  year: 1990
  ident: es060777db00027/es060777db00027_1
  publication-title: Anal. Chim. Acta
– volume: 45
  start-page: 199
  year: 1981
  ident: es060777db00006/es060777db00006_1
  publication-title: Geochim. Cosmochim. Acta
– volume: 179
  start-page: 508
  year: 1996
  ident: es060777db00026/es060777db00026_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0242
– volume: 41
  start-page: 358
  year: 2006
  ident: es060777db00012/es060777db00012_1
  publication-title: J. Environ. Sci. Health Part A
– volume: 67
  start-page: 1474
  year: 2003
  ident: es060777db00020/es060777db00020_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(02)01042-6
– volume: 166
  start-page: 60
  year: 1994
  ident: es060777db00028/es060777db00028_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1994.1270
– volume: 265
  start-page: 54
  year: 2005
  ident: es060777db00030/es060777db00030_1
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2004.11.050
– volume: 28
  start-page: 296
  year: 1977
  ident: es060777db00004/es060777db00004_1
  publication-title: J. Soil Sci.
– ident: es060777db00031/es060777db00031_1
  publication-title: J. Colloid Interface Sci. (in press).
– volume: 106
  start-page: 69
  year: 1985
  ident: es060777db00018/es060777db00018_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(85)90381-9
– volume: 17
  start-page: 48
  year: 2005
  ident: es060777db00013/es060777db00013_1
  publication-title: Chem. Speciation Bioavailability
– volume: 34
  start-page: 4069
  year: 2000
  ident: es060777db00033/es060777db00033_1
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(00)00148-2
– volume: 64
  start-page: 60
  year: 2000
  ident: es060777db00002/es060777db00002_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00176-3
– volume-title: Encyclopaedia of Surface Colloid Science
  year: 2002
  ident: es060777db00017/es060777db00017_1
– volume: 165
  start-page: 559
  year: 2000
  ident: es060777db00034/es060777db00034_1
  publication-title: Soil Sci.
  doi: 10.1097/00010694-200007000-00003
– volume: 46
  start-page: 2393
  year: 1982
  ident: es060777db00001/es060777db00001_1
  publication-title: Geochim. Cosmochim. Acta
– volume: 14
  start-page: 2819
  year: 1998
  ident: es060777db00007/es060777db00007_1
  publication-title: Langmuir
– volume: 69
  start-page: 339
  year: 2005
  ident: es060777db00009/es060777db00009_1
  publication-title: Geochim. Cosmochim. Acta
– volume: 20
  start-page: 700
  year: 2004
  ident: es060777db00005/es060777db00005_1
  publication-title: Langmuir
– volume: 51
  start-page: 1803
  year: 1979
  ident: es060777db00022/es060777db00022_1
  publication-title: Anal. Chim. Acta
  doi: 10.1021/ac50047a045
– volume: 55
  start-page: 42
  year: 1991
  ident: es060777db00010/es060777db00010_1
  publication-title: Soil Sci. Soc. Am. J.
– volume: 28
  start-page: 46
  year: 1994
  ident: es060777db00003/es060777db00003_1
  publication-title: Environ. Sci. Technol.
– volume: 38
  start-page: 3932
  year: 2004
  ident: es060777db00024/es060777db00024_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035266v
– volume: 229
  start-page: 206
  year: 2000
  ident: es060777db00019/es060777db00019_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2000.6982
SSID ssj0002308
Score 2.3437798
Snippet The adsorption of humic acids (HA) to goethite (at pH 3−11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared...
The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared...
The adsorption of humic acids (HA) to goethite and the proton co-adsorption is measured. Compared to fulvic acid (FA), the adsorption of HA is stronger and...
SourceID wageningen
proquest
pubmed
crossref
istex
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7494
SubjectTerms Acids
Adsorption
aluminum-oxide
Benzopyrans - chemistry
clay-minerals
Comparative analysis
fractionation
fulvic acids
Humic acids
Humic Substances
Hydrogen-Ion Concentration
ion-binding
Ions
Iron Compounds - chemistry
isotherms
Measurement
Minerals
Models, Chemical
natural organic-matter
nica-donnan model
Particulates
Protons
Q1
stoichiometry
surfaces
water interface
Title Adsorption of Humic Substances on Goethite:  Comparison between Humic Acids and Fulvic Acids
URI http://dx.doi.org/10.1021/es060777d
https://api.istex.fr/ark:/67375/TPS-9FMT1K6Q-4/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17256486
https://www.proquest.com/docview/230145299
https://www.proquest.com/docview/14793144
https://www.proquest.com/docview/20555458
https://www.proquest.com/docview/68300858
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F362630
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9tIeeBQKaaFEgBCXFMdJbIfbaulSgYpA3Up7woofkapWSbXJUsSJK3-TX8I4m2QXsQunSM44iu0Z-xvPC-CFykNiWEqDSJgoiCnRgcgjjToPDS1hJhPaxQ6ffmQn5_H7STLZgOdrLPg0fG0rwgjn3NyCLcpQeB3-GZ712y1iaNGVKUgjNunSBy13dUePrv44erbcLH5bhSt3YPsGZblogpuWDpvRHXjbhezMfUwuj2a1OtLf_87g-K9x3IXbLdj0B3PuuAcbttiFnaUUhLuwd7yIdEPSVtSr-_BlYKpy2mwofpn7uOwX2nfbTO34pPKx-V1pneuiffPrx09_2Bc09Fvfr7bPQF-Yys8K46O6-7VreADno-Px8CRoizEEWSJIHSSppkQh-BAGIRETYaisERoVzESLjOacGcuViRKhtGCcKW15LDKileY2NSLag82iLOwj8EOVWEW0dRbMOFI8TbWI85hE2C7iUHhwiKslW2GqZGMnp6HsZ9CDV91CSt2mMncVNa5WkT7rSa_n-TtWEb1suKGnyKaXzuGNJ3L86Uymo9Nx-IF9lrEHBx27LH6POq00wWPdg6f9WxRSZ3nJClvOcATu_hJV1_UU1CVeixOxnoKJyOFjpHg459PFeDji1lgwD6IF48rC1aKqpEsf3l4IypvZVBZX7oFfqGSTiYjs_2-2D2CbttWawuQxbNbTmX2CSKxWh40k_gY1tC6o
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgPdAe-CgUQqGNEEJcUpzEsR1uq1WXhXYrULfSnrDij0hVqwRtshRx4srf5JcwzjrJgraCUyRnEtnOG_tNbL9B6KXMQ6xpGgUx13FAIqwCnscKYp4oNJjqjCt7dnhySsfn5MMsmTmZHHsWBipRwZuqZhG_VxcI35gKU8wY07fRJpCQyKJ5MDzrRl2g0rzNVpDGdNaqCK0-amcgVf0xA23azvy2jl5uo61rcOmiOeO0MueM7i2TFzW1bbaaXB4uanmovv8l5Ph_zbmP7jrq6Q-WWHmAbpliB22vCBLuoN2j_twbmDrHrx6izwNdlfNmePHL3AcQXCjfDjq1RU3lQ_G70tiNjObtrx8__WGX3tB3O8HcMwN1oSs_K7QPwe_XtuAROh8dTYfjwKVmCLKE4zpIUhVhCVSEayBIlIehNJorCDcTxbMoZ1QbJnWccKk4ZVQqwwjPsJKKmVTzeBdtFGVhniA_lImRWBm7nkliydJUcZITHEM5JyH30D50oHCuVYlm1TwKRdeDHnrdfk-hnLC5za9xtc70RWf6Zanmsc7oVQOKziKbX9rtbywR049nIh1NpuEx_SSIh_Za1PTVi2yMmsAk76GD7i64rF2HyQpTLqAF9m8mBLI3W0RWho0k_GYLymPLlsHi8RKufXsYsFjCqYfiHr-isJmpKmHFxN3vQXG9mIviyl4sSkWjS4Sf_qu3D9Cd8XRyIk7enx7voa3I5XEKk2doo54vzHPgaLXcb5zzN0r2Nwk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaglVB74FEohEIbIYS4pDgv2-G2WroUSktRt9KeasWPSFWrpNrsUsSJK3-TX8JM1skuaCs4RXLGke18Y8947G8IeamKkBqWRUEsTBwkEdWBKGINPk8UWspMLjTeHT48YvunycdROnKOIt6FgUbU8KW6CeKjVl-ZwjEMhG9sTRnlnJvbZBXDdYjoXv-km3nBnBZtxoIsZqOWSWixKq5Cuv5jFVrFAf22zMRcJ2vXoNZlc89pYd0Z3COfuxY3x00udqcTtau__0Xm-P9duk_uOhPU780w84DcsuUGWV8gJtwgm3vz-28g6iaA-iE565m6GjfTjF8VPoDhXPs4-UwQPbUPxe8riwca7dtfP376_S7Noe9OhLk6PX1uaj8vjQ9O8Ne24BE5HewN-_uBS9EQ5KmgkyDNdEQVmCTCgKHERBgqa4QGtzPVIo8KzozlysSpUFowzpS2PBE51UpzmxkRb5KVsirtE-KHKrWKaotxzSRWPMu0SIqExlAuklB4ZBsGUToVq2UTPY9C2Y2gR163_1RqR3COeTYul4m-6ESvZqwey4ReNcDoJPLxBR6D46kcHp_IbHA4DA_YF5l4ZKtFzrx5EfqqKSz2Htnp3oLqYjwmL201hR7griY4tDdLREjHlqTiZgkmYrSaQeLxDLLz_nCwZhPBPBLPMSxLzFBVSyQVd9uE8no6luUlPhCpsuEnok__Ndo75M7xu4H89OHoYIusRS6dU5g-IyuT8dQ-B1NtorYb_fwNMpw5jA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+humic+substances+on+goethite%3A+Comparison+between+humic+acids+and+fulvic+acids&rft.jtitle=Environmental+science+%26+technology&rft.au=Weng%2C+L.P&rft.au=Riemsdijk%2C+W.H.%2C+van&rft.au=Koopal%2C+L.K&rft.au=Hiemstra%2C+T&rft.date=2006-12-15&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=40&rft.issue=24&rft_id=info:doi/10.1021%2Fes060777d&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_362630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon