Adsorption of Humic Substances on Goethite: Comparison between Humic Acids and Fulvic Acids
The adsorption of humic acids (HA) to goethite (at pH 3−11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA...
Saved in:
Published in | Environmental science & technology Vol. 40; no. 24; pp. 7494 - 7500 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.12.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The adsorption of humic acids (HA) to goethite (at pH 3−11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also reveals that for FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading. |
---|---|
AbstractList | The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also reveals that for FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading. The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also revealsthatfor FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading.The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also revealsthatfor FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading. The adsorption of humic acids (HA) to goethite (at pH 3−11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also reveals that for FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading. The adsorption of humic acids (HA) to goethite and the proton co-adsorption is measured. Compared to fulvic acid (FA), the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The model also reveals that, for FA a mean field approximately is reasonably, but for HA a patchwise approach is more appropriate at relatively low loading. The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also revealsthatfor FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading. The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also reveals that for FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading. [PUBLICATION ABSTRACT] |
Author | Koopal, Luuk K Van Riemsdijk, Willem H Hiemstra, Tjisse Weng |
Author_xml | – sequence: 1 surname: Weng fullname: Weng – sequence: 2 givenname: Willem H surname: Van Riemsdijk fullname: Van Riemsdijk, Willem H – sequence: 3 givenname: Luuk K surname: Koopal fullname: Koopal, Luuk K – sequence: 4 givenname: Tjisse surname: Hiemstra fullname: Hiemstra, Tjisse |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17256486$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks2KFDEUhYOMOD2jC19ACkHBRTn5qfzU7JrGnhFHVKYFV4ZUKq0Zq5I2Sdm6c-tr-iSmqJ4WRkE3uXD5zoGTc4_AgfPOAHAfwacIYnRiImSQc97eAjNEMSypoOgAzCBEpKwJe3cIjmK8ghBiAsUdcIg4pqwSbAbez9vowyZZ7wq_Ls6H3uricmhiUk6bWOT1mTfpo03m9Of3H8XC9xsVbMz7xqStMW6nmWvbxkK5tlgO3ZfrxV1we626aO7t5jF4u3y2WpyXF6_Oni_mF6WiAqaS1hrDhtJKtJgiJhBqTCu0wJRqofCas9bwpiVUNFowzhpteCUU1I3mpm4FOQank-9WfTDOuvxIp4K2UXplZWeboMI3uR2CdN04NjmiJAwzArP48STeBP95MDHJ3kZtuk4544comSAQCir-CWJIc4b_AFHFa4KqKoMPb4BXfgguf5XMVaGK4rrO0IMdNDS9aeUm2H5Mc91iBk4mQAcfYzBrqW1SY6cpKNtJBOV4J3J_J1nx5IZib_oXtpxYG5P5ugdV-CQZJ5zK1etLWS9frtAL9kaOmR5NvNLxd5w_fX8BXbvZCw |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_gca_2013_08_038 crossref_primary_10_1080_23311843_2019_1650416 crossref_primary_10_1016_j_scitotenv_2010_01_061 crossref_primary_10_3390_ijerph20054317 crossref_primary_10_1016_j_jes_2015_08_008 crossref_primary_10_1016_j_soilbio_2015_07_022 crossref_primary_10_1021_es8003602 crossref_primary_10_1021_acs_est_7b03249 crossref_primary_10_1016_j_gca_2012_02_003 crossref_primary_10_1016_j_jes_2021_03_041 crossref_primary_10_1016_j_chemosphere_2023_138927 crossref_primary_10_1016_j_scitotenv_2020_140372 crossref_primary_10_1016_j_chemosphere_2022_136129 crossref_primary_10_1016_j_scitotenv_2024_170919 crossref_primary_10_3390_ma12233915 crossref_primary_10_1016_j_envadv_2022_100218 crossref_primary_10_1016_j_chemgeo_2015_10_017 crossref_primary_10_1016_j_watres_2017_03_059 crossref_primary_10_1016_j_aca_2014_01_022 crossref_primary_10_2134_jeq2011_0250 crossref_primary_10_1016_j_biortech_2014_12_054 crossref_primary_10_1007_s11356_019_07282_5 crossref_primary_10_1016_j_scitotenv_2018_08_086 crossref_primary_10_1021_acs_est_8b03492 crossref_primary_10_1021_acs_est_4c06885 crossref_primary_10_1016_j_seppur_2020_116949 crossref_primary_10_1017_wsc_2020_95 crossref_primary_10_1021_es201844d crossref_primary_10_1016_j_geoderma_2023_116737 crossref_primary_10_1016_j_scitotenv_2013_09_044 crossref_primary_10_1016_j_cej_2021_129353 crossref_primary_10_1021_jp2126448 crossref_primary_10_1007_s11356_022_20561_y crossref_primary_10_1016_j_jhazmat_2013_04_014 crossref_primary_10_1021_acs_est_5b04136 crossref_primary_10_1089_ees_2015_0379 crossref_primary_10_1016_j_chemgeo_2013_02_005 crossref_primary_10_1007_s11430_024_1520_1 crossref_primary_10_1021_la400884t crossref_primary_10_2139_ssrn_4167469 crossref_primary_10_1039_C5EN00141B crossref_primary_10_1016_j_jece_2016_12_018 crossref_primary_10_1016_j_jhazmat_2020_124081 crossref_primary_10_1016_j_colsurfa_2011_03_045 crossref_primary_10_1177_0003702821991219 crossref_primary_10_1016_j_chemosphere_2011_04_024 crossref_primary_10_3390_plants11030263 crossref_primary_10_1016_j_watres_2007_12_015 crossref_primary_10_1016_j_colsurfa_2008_12_039 crossref_primary_10_1021_acs_est_6b02436 crossref_primary_10_1021_acs_est_7b04261 crossref_primary_10_1016_j_scitotenv_2019_02_235 crossref_primary_10_1007_s11104_013_1696_y crossref_primary_10_1007_s12665_014_3686_7 crossref_primary_10_1016_j_chemosphere_2021_131784 crossref_primary_10_1016_j_envpol_2010_09_021 crossref_primary_10_1016_j_chemosphere_2013_11_065 crossref_primary_10_2139_ssrn_3993180 crossref_primary_10_1016_j_colsurfa_2010_10_032 crossref_primary_10_1016_j_chemosphere_2020_126691 crossref_primary_10_1080_15320383_2020_1819958 crossref_primary_10_1016_j_soilbio_2014_10_018 crossref_primary_10_1016_j_scitotenv_2017_10_070 crossref_primary_10_1016_j_clay_2023_106825 crossref_primary_10_1021_es501782g crossref_primary_10_1016_j_geoderma_2010_07_004 crossref_primary_10_1016_j_jhazmat_2021_126260 crossref_primary_10_1016_j_chemosphere_2017_01_008 crossref_primary_10_1038_s41598_019_46175_y crossref_primary_10_1016_j_heliyon_2023_e17044 crossref_primary_10_1016_j_micromeso_2013_05_027 crossref_primary_10_1021_acs_est_3c02305 crossref_primary_10_1016_j_envpol_2021_118552 crossref_primary_10_1371_journal_pone_0149632 crossref_primary_10_1016_j_chemosphere_2019_01_171 crossref_primary_10_1016_j_envres_2021_111424 crossref_primary_10_3390_plants12233937 crossref_primary_10_1016_j_scitotenv_2020_138289 crossref_primary_10_1021_es102592a crossref_primary_10_1380_ejssnt_2018_411 crossref_primary_10_1021_es103864t crossref_primary_10_1016_j_jconhyd_2017_12_004 crossref_primary_10_1016_j_watres_2024_121501 crossref_primary_10_1007_s11104_020_04651_9 crossref_primary_10_1007_s10118_010_9050_9 crossref_primary_10_1039_D0EN00197J crossref_primary_10_1016_j_watres_2017_11_024 crossref_primary_10_1016_j_chemosphere_2019_05_252 crossref_primary_10_1021_acs_est_2c00828 crossref_primary_10_1111_ejss_12803 crossref_primary_10_1016_j_apgeochem_2007_12_032 crossref_primary_10_1016_j_geoderma_2021_115514 crossref_primary_10_1016_j_chemosphere_2022_135172 crossref_primary_10_1016_j_scitotenv_2023_164086 crossref_primary_10_1016_j_chemosphere_2021_130780 crossref_primary_10_1007_s11368_014_0897_1 crossref_primary_10_1007_s00344_018_9843_6 crossref_primary_10_1021_acsearthspacechem_3c00334 crossref_primary_10_1088_1742_6596_1277_1_012007 crossref_primary_10_1007_s11051_022_05555_8 crossref_primary_10_1360_SSTe_2024_0103 crossref_primary_10_1080_10643389_2021_1974766 crossref_primary_10_1016_j_chemosphere_2023_140846 crossref_primary_10_1089_ees_2016_0289 crossref_primary_10_1016_j_jhazmat_2022_130463 crossref_primary_10_1016_j_chemosphere_2018_08_131 crossref_primary_10_1021_es400997n crossref_primary_10_1016_j_gca_2021_07_028 crossref_primary_10_1007_s11356_017_1083_y crossref_primary_10_1016_j_chemgeo_2020_119573 crossref_primary_10_1016_j_saa_2010_12_075 crossref_primary_10_1007_s11356_023_31640_z crossref_primary_10_1016_j_colsurfb_2010_06_031 crossref_primary_10_1039_D2EM00330A crossref_primary_10_1016_j_apgeochem_2022_105534 crossref_primary_10_1021_es2034087 crossref_primary_10_1007_s42773_022_00172_z crossref_primary_10_1016_j_chemgeo_2014_02_012 crossref_primary_10_1016_j_apsusc_2018_02_131 crossref_primary_10_1016_j_scitotenv_2023_166643 crossref_primary_10_1021_ie800912y crossref_primary_10_1016_j_watres_2015_01_020 crossref_primary_10_1016_j_molcatb_2012_06_012 crossref_primary_10_1016_j_colsurfb_2013_09_056 crossref_primary_10_1016_j_cej_2015_01_124 crossref_primary_10_1016_j_envpol_2017_06_032 crossref_primary_10_1016_j_jcis_2022_11_050 crossref_primary_10_3389_fmicb_2018_01748 crossref_primary_10_1021_acssusresmgt_3c00106 crossref_primary_10_1021_acs_est_3c05854 crossref_primary_10_1021_es502342r crossref_primary_10_1007_s11270_022_05610_z crossref_primary_10_1016_j_jcis_2020_04_050 crossref_primary_10_1021_acsami_0c00597 crossref_primary_10_1007_s11356_022_24258_0 crossref_primary_10_1021_acs_est_3c01493 crossref_primary_10_1016_j_colsurfa_2020_125486 crossref_primary_10_1007_s11356_008_0052_x crossref_primary_10_1016_j_geoderma_2008_05_005 crossref_primary_10_1016_j_colsurfa_2013_01_023 crossref_primary_10_1016_j_scitotenv_2022_159867 crossref_primary_10_1021_acsearthspacechem_1c00288 crossref_primary_10_4028_www_scientific_net_AMR_926_930_222 crossref_primary_10_1016_j_scitotenv_2018_01_001 crossref_primary_10_1016_j_cej_2012_08_026 crossref_primary_10_1016_j_colsurfa_2013_02_052 crossref_primary_10_1016_j_eti_2023_103271 crossref_primary_10_4491_eer_2009_14_1_041 crossref_primary_10_1016_j_cej_2019_01_003 crossref_primary_10_1180_minmag_2012_076_7_02 crossref_primary_10_1016_j_jcis_2007_05_039 crossref_primary_10_1016_j_jclepro_2017_08_209 crossref_primary_10_1039_C6RA12377E crossref_primary_10_1016_j_chemosphere_2024_141342 crossref_primary_10_1016_j_colsurfa_2023_132008 crossref_primary_10_1016_j_envint_2019_104995 crossref_primary_10_1021_es801631d crossref_primary_10_1016_j_jhazmat_2021_127643 crossref_primary_10_1021_acs_est_6b01749 crossref_primary_10_1016_j_jece_2025_116219 crossref_primary_10_1021_es8007062 crossref_primary_10_1590_18069657rbcs20150383 crossref_primary_10_1016_j_ecoenv_2018_08_064 crossref_primary_10_1016_j_envpol_2022_119307 crossref_primary_10_1039_C5EN00215J crossref_primary_10_1039_C5RA12091H crossref_primary_10_1007_s11356_019_05441_2 crossref_primary_10_1016_j_ijbiomac_2019_09_247 crossref_primary_10_1016_j_geoderma_2016_05_007 crossref_primary_10_1016_j_jece_2020_103940 crossref_primary_10_1016_j_watres_2013_12_041 crossref_primary_10_1021_acs_est_1c06747 crossref_primary_10_1080_10643389_2012_718947 crossref_primary_10_1016_j_scitotenv_2013_04_076 crossref_primary_10_1007_s11356_015_4271_7 crossref_primary_10_5004_dwt_2022_28283 crossref_primary_10_1016_j_conbuildmat_2023_133875 crossref_primary_10_1021_ac9029339 crossref_primary_10_1080_10934529_2011_590732 crossref_primary_10_1016_j_envpol_2022_120542 crossref_primary_10_1016_j_scitotenv_2020_137440 crossref_primary_10_1002_aws2_1282 crossref_primary_10_1016_j_jconhyd_2016_07_006 crossref_primary_10_1111_ejss_12785 crossref_primary_10_2136_sssaj2009_0119 crossref_primary_10_1016_j_colsurfa_2014_09_019 crossref_primary_10_5194_bg_12_6999_2015 crossref_primary_10_17221_179_2018_PSE crossref_primary_10_1016_j_colsurfa_2015_07_045 crossref_primary_10_1016_j_chemosphere_2020_126962 crossref_primary_10_1039_C8RA06025H crossref_primary_10_1021_acs_est_6b03587 crossref_primary_10_1016_j_gca_2013_04_006 crossref_primary_10_1016_j_cej_2019_122306 crossref_primary_10_1016_j_watres_2023_120509 crossref_primary_10_1021_es302094a crossref_primary_10_1039_c1sm05806a crossref_primary_10_1016_j_cej_2019_123194 crossref_primary_10_1016_j_seppur_2025_131749 crossref_primary_10_1016_j_cej_2020_124380 crossref_primary_10_1016_j_colsurfa_2012_05_003 crossref_primary_10_1002_smll_202003691 crossref_primary_10_1021_acs_est_9b04873 crossref_primary_10_1002_jssc_201200414 crossref_primary_10_1016_j_jhazmat_2011_12_072 crossref_primary_10_1016_j_wasman_2019_03_005 crossref_primary_10_1016_j_watres_2013_01_053 crossref_primary_10_1007_s11356_018_1751_6 crossref_primary_10_1016_j_cej_2018_03_125 crossref_primary_10_1021_es2023225 crossref_primary_10_2134_agronj2019_05_0347 crossref_primary_10_1016_j_colsurfa_2017_12_065 crossref_primary_10_1016_j_chemosphere_2009_11_028 crossref_primary_10_1016_j_jes_2019_09_018 crossref_primary_10_1016_j_scitotenv_2016_03_239 crossref_primary_10_1071_EN08005 crossref_primary_10_1021_es9000196 crossref_primary_10_1016_j_jes_2017_06_021 crossref_primary_10_1016_j_powtec_2016_08_042 crossref_primary_10_1016_j_chemosphere_2011_08_045 crossref_primary_10_1016_j_clay_2011_03_015 |
Cites_doi | 10.1016/0016-7037(94)90334-4 10.1021/es00092a012 10.1021/es000123j 10.2136/sssaj1995.03615995005900020021x 10.1021/es0520518 10.1016/0021-9797(89)90285-3 10.1016/S0927-7757(98)00637-2 10.1006/jcis.1996.0242 10.1016/S0016-7037(02)01042-6 10.1006/jcis.1994.1270 10.1016/j.colsurfa.2004.11.050 10.1016/0021-9797(85)90381-9 10.1016/S0043-1354(00)00148-2 10.1016/S0016-7037(99)00176-3 10.1097/00010694-200007000-00003 10.1021/ac50047a045 10.1021/es035266v 10.1006/jcis.2000.6982 |
ContentType | Journal Article |
Copyright | Copyright © 2006 American Chemical Society Copyright American Chemical Society Dec 15, 2006 Wageningen University & Research |
Copyright_xml | – notice: Copyright © 2006 American Chemical Society – notice: Copyright American Chemical Society Dec 15, 2006 – notice: Wageningen University & Research |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 QVL |
DOI | 10.1021/es060777d |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Environment Abstracts MEDLINE Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 7500 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_362630 7987317 1204519361 17256486 10_1021_es060777d ark_67375_TPS_9FMT1K6Q_4 a003880914 |
Genre | Journal Article Comparative Study Feature |
GroupedDBID | - .K2 186 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S A AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 K78 LG6 MS NHB PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UNC UPT UQL VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK ABJNI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ BSCLL CUPRZ GGK MS~ MW2 XSW ZCA ZCG ~A~ AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 08R 1WB 42X 8WZ A6W ABDEX ABDTD ACDCL ACKIV AETEA AFDAS AFMIJ HR MVM OHT QVL RNS TAE UBX UBY VJK VOH ZY4 |
ID | FETCH-LOGICAL-a580t-59c20b5548d2516811bed8c8255c8a2f76de7bd358bc8676bce748a0cbc7e9d83 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Fri Feb 05 18:08:15 EST 2021 Thu Jul 10 17:56:30 EDT 2025 Mon Jul 21 10:10:59 EDT 2025 Thu Jul 10 18:47:06 EDT 2025 Fri Jul 25 06:33:21 EDT 2025 Wed Feb 19 02:35:46 EST 2025 Tue Jul 01 04:04:46 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Wed Oct 30 09:35:03 EDT 2024 Thu Aug 27 13:42:37 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a580t-59c20b5548d2516811bed8c8255c8a2f76de7bd358bc8676bce748a0cbc7e9d83 |
Notes | This article is part of the Modeling Natural Organic Matter Focus Group. istex:E93891D5DC232C2501924841B34D72DB3381FF74 ark:/67375/TPS-9FMT1K6Q-4 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PMID | 17256486 |
PQID | 230145299 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_362630 proquest_miscellaneous_68300858 proquest_miscellaneous_20555458 proquest_miscellaneous_14793144 proquest_journals_230145299 pubmed_primary_17256486 crossref_citationtrail_10_1021_es060777d crossref_primary_10_1021_es060777d istex_primary_ark_67375_TPS_9FMT1K6Q_4 acs_journals_10_1021_es060777d |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2006-12-15 |
PublicationDateYYYYMMDD | 2006-12-15 |
PublicationDate_xml | – month: 12 year: 2006 text: 2006-12-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2006 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kinniburgh D. G. (es060777db00025/es060777db00025_1) 1995; 59 Meeussen J. C. L. (es060777db00032/es060777db00032_1) 2003; 37 Ko I. (es060777db00013/es060777db00013_1) 2005; 17 Aiken G. R. (es060777db00022/es060777db00022_1) 1979; 51 Saito T. (es060777db00005/es060777db00005_1) 2004; 20 Koopal L. K. (es060777db00028/es060777db00028_1) 1994; 166 Vermeer A. W. P. (es060777db00007/es060777db00007_1) 1998; 14 Hiemstra T. (es060777db00026/es060777db00026_1) 1996; 179 Parfitt R. L. (es060777db00004/es060777db00004_1) 1977; 28 Schlautman M. A. (es060777db00011/es060777db00011_1) 1994; 58 Tipping E (es060777db00006/es060777db00006_1) 1981; 45 Specht C. H. (es060777db00033/es060777db00033_1) 2000; 34 Namjesnik-Dejanovic K. (es060777db00034/es060777db00034_1) 2000; 165 Rietra R. (es060777db00019/es060777db00019_1) 2000; 229 Vreysen S. (es060777db00008/es060777db00008_1) 2006; 32 Koopal L. K. (es060777db00030/es060777db00030_1) 2005; 265 Weng L. P. (es060777db00031/es060777db00031_1) Kinniburgh D. G. (es060777db00029/es060777db00029_1) 1999; 151 Hur J. (es060777db00012/es060777db00012_1) 2006; 41 De Wit J. C. M. (es060777db00027/es060777db00027_1) 1990; 232 Filius J. D. (es060777db00020/es060777db00020_1) 2003; 67 Weng L. P. (es060777db00009/es060777db00009_1) 2005; 69 Schulthess C. P. (es060777db00010/es060777db00010_1) 1991; 55 Hiemstra T. (es060777db00017/es060777db00017_1) 2002 Milne C. J. (es060777db00015/es060777db00015_1) 2001; 35 Perona M. J. (es060777db00018/es060777db00018_1) 1985; 106 Gu B. H. (es060777db00003/es060777db00003_1) 1994; 28 Davis J. A. (es060777db00016/es060777db00016_1) 1981; 15 Reiller P. (es060777db00014/es060777db00014_1) 2006; 40 Davis J. A (es060777db00001/es060777db00001_1) 1982; 46 Filius J. D. (es060777db00002/es060777db00002_1) 2000; 64 Van Zomeren A. (es060777db00024/es060777db00024_1) 2004; 38 Swift R. (es060777db00023/es060777db00023_1) 1996 Hiemstra T. (es060777db00021/es060777db00021_1) 1989; 133 |
References_xml | – volume: 58 start-page: 4303 year: 1994 ident: es060777db00011/es060777db00011_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)90334-4 – volume: 15 start-page: 1229 year: 1981 ident: es060777db00016/es060777db00016_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00092a012 – volume-title: Methods of Soil Analysis. Part 3. Chemical Methods year: 1996 ident: es060777db00023/es060777db00023_1 – volume: 32 start-page: 196 year: 2006 ident: es060777db00008/es060777db00008_1 publication-title: Appl. Clay Sci. – volume: 35 start-page: 2059 year: 2001 ident: es060777db00015/es060777db00015_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es000123j – volume: 59 start-page: 422 year: 1995 ident: es060777db00025/es060777db00025_1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1995.03615995005900020021x – volume: 40 start-page: 2241 year: 2006 ident: es060777db00014/es060777db00014_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es0520518 – volume: 133 start-page: 104 year: 1989 ident: es060777db00021/es060777db00021_1 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(89)90285-3 – volume: 151 start-page: 166 year: 1999 ident: es060777db00029/es060777db00029_1 publication-title: Colloids Surf. A doi: 10.1016/S0927-7757(98)00637-2 – volume: 37 start-page: 1182 year: 2003 ident: es060777db00032/es060777db00032_1 publication-title: Environ. Sci. Technol. – volume: 232 start-page: 207 year: 1990 ident: es060777db00027/es060777db00027_1 publication-title: Anal. Chim. Acta – volume: 45 start-page: 199 year: 1981 ident: es060777db00006/es060777db00006_1 publication-title: Geochim. Cosmochim. Acta – volume: 179 start-page: 508 year: 1996 ident: es060777db00026/es060777db00026_1 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0242 – volume: 41 start-page: 358 year: 2006 ident: es060777db00012/es060777db00012_1 publication-title: J. Environ. Sci. Health Part A – volume: 67 start-page: 1474 year: 2003 ident: es060777db00020/es060777db00020_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(02)01042-6 – volume: 166 start-page: 60 year: 1994 ident: es060777db00028/es060777db00028_1 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1994.1270 – volume: 265 start-page: 54 year: 2005 ident: es060777db00030/es060777db00030_1 publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2004.11.050 – volume: 28 start-page: 296 year: 1977 ident: es060777db00004/es060777db00004_1 publication-title: J. Soil Sci. – ident: es060777db00031/es060777db00031_1 publication-title: J. Colloid Interface Sci. (in press). – volume: 106 start-page: 69 year: 1985 ident: es060777db00018/es060777db00018_1 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(85)90381-9 – volume: 17 start-page: 48 year: 2005 ident: es060777db00013/es060777db00013_1 publication-title: Chem. Speciation Bioavailability – volume: 34 start-page: 4069 year: 2000 ident: es060777db00033/es060777db00033_1 publication-title: Water Res. doi: 10.1016/S0043-1354(00)00148-2 – volume: 64 start-page: 60 year: 2000 ident: es060777db00002/es060777db00002_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00176-3 – volume-title: Encyclopaedia of Surface Colloid Science year: 2002 ident: es060777db00017/es060777db00017_1 – volume: 165 start-page: 559 year: 2000 ident: es060777db00034/es060777db00034_1 publication-title: Soil Sci. doi: 10.1097/00010694-200007000-00003 – volume: 46 start-page: 2393 year: 1982 ident: es060777db00001/es060777db00001_1 publication-title: Geochim. Cosmochim. Acta – volume: 14 start-page: 2819 year: 1998 ident: es060777db00007/es060777db00007_1 publication-title: Langmuir – volume: 69 start-page: 339 year: 2005 ident: es060777db00009/es060777db00009_1 publication-title: Geochim. Cosmochim. Acta – volume: 20 start-page: 700 year: 2004 ident: es060777db00005/es060777db00005_1 publication-title: Langmuir – volume: 51 start-page: 1803 year: 1979 ident: es060777db00022/es060777db00022_1 publication-title: Anal. Chim. Acta doi: 10.1021/ac50047a045 – volume: 55 start-page: 42 year: 1991 ident: es060777db00010/es060777db00010_1 publication-title: Soil Sci. Soc. Am. J. – volume: 28 start-page: 46 year: 1994 ident: es060777db00003/es060777db00003_1 publication-title: Environ. Sci. Technol. – volume: 38 start-page: 3932 year: 2004 ident: es060777db00024/es060777db00024_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es035266v – volume: 229 start-page: 206 year: 2000 ident: es060777db00019/es060777db00019_1 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2000.6982 |
SSID | ssj0002308 |
Score | 2.3437798 |
Snippet | The adsorption of humic acids (HA) to goethite (at pH 3−11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared... The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared... The adsorption of humic acids (HA) to goethite and the proton co-adsorption is measured. Compared to fulvic acid (FA), the adsorption of HA is stronger and... |
SourceID | wageningen proquest pubmed crossref istex acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7494 |
SubjectTerms | Acids Adsorption aluminum-oxide Benzopyrans - chemistry clay-minerals Comparative analysis fractionation fulvic acids Humic acids Humic Substances Hydrogen-Ion Concentration ion-binding Ions Iron Compounds - chemistry isotherms Measurement Minerals Models, Chemical natural organic-matter nica-donnan model Particulates Protons Q1 stoichiometry surfaces water interface |
Title | Adsorption of Humic Substances on Goethite: Comparison between Humic Acids and Fulvic Acids |
URI | http://dx.doi.org/10.1021/es060777d https://api.istex.fr/ark:/67375/TPS-9FMT1K6Q-4/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/17256486 https://www.proquest.com/docview/230145299 https://www.proquest.com/docview/14793144 https://www.proquest.com/docview/20555458 https://www.proquest.com/docview/68300858 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F362630 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9tIeeBQKaaFEgBCXFMdJbIfbaulSgYpA3Up7woofkapWSbXJUsSJK3-TX8I4m2QXsQunSM44iu0Z-xvPC-CFykNiWEqDSJgoiCnRgcgjjToPDS1hJhPaxQ6ffmQn5_H7STLZgOdrLPg0fG0rwgjn3NyCLcpQeB3-GZ712y1iaNGVKUgjNunSBy13dUePrv44erbcLH5bhSt3YPsGZblogpuWDpvRHXjbhezMfUwuj2a1OtLf_87g-K9x3IXbLdj0B3PuuAcbttiFnaUUhLuwd7yIdEPSVtSr-_BlYKpy2mwofpn7uOwX2nfbTO34pPKx-V1pneuiffPrx09_2Bc09Fvfr7bPQF-Yys8K46O6-7VreADno-Px8CRoizEEWSJIHSSppkQh-BAGIRETYaisERoVzESLjOacGcuViRKhtGCcKW15LDKileY2NSLag82iLOwj8EOVWEW0dRbMOFI8TbWI85hE2C7iUHhwiKslW2GqZGMnp6HsZ9CDV91CSt2mMncVNa5WkT7rSa_n-TtWEb1suKGnyKaXzuGNJ3L86Uymo9Nx-IF9lrEHBx27LH6POq00wWPdg6f9WxRSZ3nJClvOcATu_hJV1_UU1CVeixOxnoKJyOFjpHg459PFeDji1lgwD6IF48rC1aKqpEsf3l4IypvZVBZX7oFfqGSTiYjs_2-2D2CbttWawuQxbNbTmX2CSKxWh40k_gY1tC6o |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgPdAe-CgUQqGNEEJcUpzEsR1uq1WXhXYrULfSnrDij0hVqwRtshRx4srf5JcwzjrJgraCUyRnEtnOG_tNbL9B6KXMQ6xpGgUx13FAIqwCnscKYp4oNJjqjCt7dnhySsfn5MMsmTmZHHsWBipRwZuqZhG_VxcI35gKU8wY07fRJpCQyKJ5MDzrRl2g0rzNVpDGdNaqCK0-amcgVf0xA23azvy2jl5uo61rcOmiOeO0MueM7i2TFzW1bbaaXB4uanmovv8l5Ph_zbmP7jrq6Q-WWHmAbpliB22vCBLuoN2j_twbmDrHrx6izwNdlfNmePHL3AcQXCjfDjq1RU3lQ_G70tiNjObtrx8__WGX3tB3O8HcMwN1oSs_K7QPwe_XtuAROh8dTYfjwKVmCLKE4zpIUhVhCVSEayBIlIehNJorCDcTxbMoZ1QbJnWccKk4ZVQqwwjPsJKKmVTzeBdtFGVhniA_lImRWBm7nkliydJUcZITHEM5JyH30D50oHCuVYlm1TwKRdeDHnrdfk-hnLC5za9xtc70RWf6Zanmsc7oVQOKziKbX9rtbywR049nIh1NpuEx_SSIh_Za1PTVi2yMmsAk76GD7i64rF2HyQpTLqAF9m8mBLI3W0RWho0k_GYLymPLlsHi8RKufXsYsFjCqYfiHr-isJmpKmHFxN3vQXG9mIviyl4sSkWjS4Sf_qu3D9Cd8XRyIk7enx7voa3I5XEKk2doo54vzHPgaLXcb5zzN0r2Nwk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaglVB74FEohEIbIYS4pDgv2-G2WroUSktRt9KeasWPSFWrpNrsUsSJK3-TX8JM1skuaCs4RXLGke18Y8947G8IeamKkBqWRUEsTBwkEdWBKGINPk8UWspMLjTeHT48YvunycdROnKOIt6FgUbU8KW6CeKjVl-ZwjEMhG9sTRnlnJvbZBXDdYjoXv-km3nBnBZtxoIsZqOWSWixKq5Cuv5jFVrFAf22zMRcJ2vXoNZlc89pYd0Z3COfuxY3x00udqcTtau__0Xm-P9duk_uOhPU780w84DcsuUGWV8gJtwgm3vz-28g6iaA-iE565m6GjfTjF8VPoDhXPs4-UwQPbUPxe8riwca7dtfP376_S7Noe9OhLk6PX1uaj8vjQ9O8Ne24BE5HewN-_uBS9EQ5KmgkyDNdEQVmCTCgKHERBgqa4QGtzPVIo8KzozlysSpUFowzpS2PBE51UpzmxkRb5KVsirtE-KHKrWKaotxzSRWPMu0SIqExlAuklB4ZBsGUToVq2UTPY9C2Y2gR163_1RqR3COeTYul4m-6ESvZqwey4ReNcDoJPLxBR6D46kcHp_IbHA4DA_YF5l4ZKtFzrx5EfqqKSz2Htnp3oLqYjwmL201hR7griY4tDdLREjHlqTiZgkmYrSaQeLxDLLz_nCwZhPBPBLPMSxLzFBVSyQVd9uE8no6luUlPhCpsuEnok__Ndo75M7xu4H89OHoYIusRS6dU5g-IyuT8dQ-B1NtorYb_fwNMpw5jA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+humic+substances+on+goethite%3A+Comparison+between+humic+acids+and+fulvic+acids&rft.jtitle=Environmental+science+%26+technology&rft.au=Weng%2C+L.P&rft.au=Riemsdijk%2C+W.H.%2C+van&rft.au=Koopal%2C+L.K&rft.au=Hiemstra%2C+T&rft.date=2006-12-15&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=40&rft.issue=24&rft_id=info:doi/10.1021%2Fes060777d&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_362630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |