Variability of the infrared complex refractive index of African mineral dust: experimental estimation and implications for radiative transfer and satellite remote sensing

Experimental estimations of the infrared refractive index of African mineral dust have been retrieved from laboratory measurements of particle transmission spectra in the wavelength range 2.5–25 μm. Five dust samples collected at Banizoumbou (Niger) and Tamanrasset (Algeria) during dust events origi...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 14; no. 20; pp. 11093 - 11116
Main Authors Di Biagio, C, Boucher, H, Caquineau, S, Chevaillier, S, Cuesta, J, Formenti, P
Format Journal Article
LanguageEnglish
Published Copernicus GmbH 22.10.2014
European Geosciences Union
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Experimental estimations of the infrared refractive index of African mineral dust have been retrieved from laboratory measurements of particle transmission spectra in the wavelength range 2.5–25 μm. Five dust samples collected at Banizoumbou (Niger) and Tamanrasset (Algeria) during dust events originated from different Western Saharan and Sahelian areas have been investigated. The real (n) and imaginary (k) parts of the refractive index obtained for the different dust samples vary in the range 1.1–2.7 and 0.05–1.0, respectively, and are strongly sensitive to the mineralogical composition of the particles, especially in the 8–12 and 17–25 μm spectral intervals. Dust absorption is controlled mainly by clays (kaolinite, illite, smectite) and, to a lesser extent, by quartz and calcium-rich minerals (e.g. calcite, gypsum). Significant differences are obtained when comparing our results with existing experimental estimations available in the literature, and with the values of the OPAC (Optical Properties of Aerosols and Clouds) database. The different data sets appear comparable in magnitude, with our values of n and k falling within the range of variability of past studies. However, literature data fail in accurately reproducing the spectral signatures of the main minerals, in particular clays, and they significantly overestimate the contribution of quartz. Furthermore, the real and the imaginary parts of the refractive index from some literature studies are found not to verify the Kramers–Kronig relations, thus being theoretically incorrect. The comparison between our results, from western Africa, and literature data, from different locations in Europe, Africa, and the Caribbean, nonetheless, confirms the expected large variability of the dust infrared refractive index. This highlights the necessity for an extended systematic investigation of dust properties at infrared wavelengths. For the five analysed dust samples, aerosol intensive optical properties relevant to radiative transfer (mass extinction efficiency, kext, single scattering albedo, ω, and asymmetry factor, g) have been calculated, by using the Mie theory, based on the estimated refractive index and measured particle size distribution. The optical properties show a large sample-to-sample variability, with kext, ω, and g varying in the range 0.05–0.35, 0.25–1.0, and 0.05–0.75. This variability is expected to significantly impact satellite retrievals of atmospheric and surface parameters (e.g. from the Infrared Atmospheric Sounding Interferometer, IASI) and estimates of the dust radiative forcing.
AbstractList Experimental estimations of the infrared refractive index of African mineral dust have been retrieved from laboratory measurements of particle transmission spectra in the wavelength range 2.5–25 μm. Five dust samples collected at Banizoumbou (Niger) and Tamanrasset (Algeria) during dust events originated from different Western Saharan and Sahelian areas have been investigated. The real (n) and imaginary (k) parts of the refractive index obtained for the different dust samples vary in the range 1.1–2.7 and 0.05–1.0, respectively, and are strongly sensitive to the mineralogical composition of the particles, especially in the 8–12 and 17–25 μm spectral intervals. Dust absorption is controlled mainly by clays (kaolinite, illite, smectite) and, to a lesser extent, by quartz and calcium-rich minerals (e.g. calcite, gypsum). Significant differences are obtained when comparing our results with existing experimental estimations available in the literature, and with the values of the OPAC (Optical Properties of Aerosols and Clouds) database. The different data sets appear comparable in magnitude, with our values of n and k falling within the range of variability of past studies. However, literature data fail in accurately reproducing the spectral signatures of the main minerals, in particular clays, and they significantly overestimate the contribution of quartz. Furthermore, the real and the imaginary parts of the refractive index from some literature studies are found not to verify the Kramers–Kronig relations, thus being theoretically incorrect. The comparison between our results, from western Africa, and literature data, from different locations in Europe, Africa, and the Caribbean, nonetheless, confirms the expected large variability of the dust infrared refractive index. This highlights the necessity for an extended systematic investigation of dust properties at infrared wavelengths. For the five analysed dust samples, aerosol intensive optical properties relevant to radiative transfer (mass extinction efficiency, kext, single scattering albedo, ω, and asymmetry factor, g) have been calculated, by using the Mie theory, based on the estimated refractive index and measured particle size distribution. The optical properties show a large sample-to-sample variability, with kext, ω, and g varying in the range 0.05–0.35, 0.25–1.0, and 0.05–0.75. This variability is expected to significantly impact satellite retrievals of atmospheric and surface parameters (e.g. from the Infrared Atmospheric Sounding Interferometer, IASI) and estimates of the dust radiative forcing.
Experimental estimations of the infrared refractive index of African mineral dust have been retrieved from laboratory measurements of particle transmission spectra in the wavelength range 2.5-25 μm. Five dust samples collected at Banizoumbou (Niger) and Tamanrasset (Algeria) during dust events originated from different Western Saharan and Sahelian areas have been investigated. The real (n) and imaginary (k) parts of the refractive index obtained for the different dust samples vary in the range 1.1-2.7 and 0.05-1.0, respectively, and are strongly sensitive to the mineralogical composition of the particles, especially in the 8-12 and 17-25 μm spectral intervals. Dust absorption is controlled mainly by clays (kaolinite, illite, smectite) and, to a lesser extent, by quartz and calcium-rich minerals (e.g. calcite, gypsum). Significant differences are obtained when comparing our results with existing experimental estimations available in the literature, and with the values of the OPAC (Optical Properties of Aerosols and Clouds) database. The different data sets appear comparable in magnitude, with our values of n and k falling within the range of variability of past studies. However, literature data fail in accurately reproducing the spectral signatures of the main minerals, in particular clays, and they significantly overestimate the contribution of quartz. Furthermore, the real and the imaginary parts of the refractive index from some literature studies are found not to verify the Kramers-Kronig relations, thus being theoretically incorrect. The comparison between our results, from western Africa, and literature data, from different locations in Europe, Africa, and the Caribbean, nonetheless, confirms the expected large variability of the dust infrared refractive index. This highlights the necessity for an extended systematic investigation of dust properties at infrared wavelengths. For the five analysed dust samples, aerosol intensive optical properties relevant to radiative transfer (mass extinction efficiency, k.sub.ext, single scattering albedo, ω, and asymmetry factor, g) have been calculated, by using the Mie theory, based on the estimated refractive index and measured particle size distribution. The optical properties show a large sample-to-sample variability, with k.sub.ext, ω, and g varying in the range 0.05-0.35, 0.25-1.0, and 0.05-0.75. This variability is expected to significantly impact satellite retrievals of atmospheric and surface parameters (e.g. from the Infrared Atmospheric Sounding Interferometer, IASI) and estimates of the dust radiative forcing.
Audience Academic
Author Boucher, H
Caquineau, S
Chevaillier, S
Di Biagio, C
Cuesta, J
Formenti, P
Author_xml – sequence: 1
  fullname: Di Biagio, C
– sequence: 2
  fullname: Boucher, H
– sequence: 3
  fullname: Caquineau, S
– sequence: 4
  fullname: Chevaillier, S
– sequence: 5
  fullname: Cuesta, J
– sequence: 6
  fullname: Formenti, P
BackLink https://hal.science/hal-01139582$$DView record in HAL
BookMark eNptks1q3DAUhU1JoUnaB-hO0FUWTiVLHsvdDaFtBgYC_duKa-l6omBLg6SEySv1KXtnppQMFGHJPv7u0d-5qM5CDFhV7wW_bkWvPoLd1kLVQvBe1g0X6lV1Lhaa151s1NmL9zfVRc4PnDctQefV71-QPAx-8uWZxZGVe2Q-jAkSOmbjvJ1wxxKSYIt_2v9zJBC4HJO3ENjsAyaYmHvM5RPD3RaTnzEUkjAXP0PxMTAIjnkyo5L9d2ZjTCyB83BwLQlCHjEduAwFJ1oP0rxzpCFjyD5s3lavR5gyvvs7XlY_v3z-cXNbr---rm6W6xraThfqLYAQoLBxspEwDF1rF9o2euCDbF0HA0oQDViFyvZdP-jWCddzR4-0vbysVkdfF-HBbGk7kJ5NBG8OQkwbA6l4O6EBiaih07LrtFqg65tBj8p2iqZbNFqR19XR6x6mE6vb5drsNS6E7FvdPAliPxzZDZA1XUKkY7Gzz9YslRZKdL3kRF3_h6LmcPaWQjF60k8Krk4KiCm4Kxt4zNmsvn87ZcWRtSnmTNf-b82Cm33ODOXMCGUOOTP7nMk_VkDKKg
CitedBy_id crossref_primary_10_1002_2014JD022406
crossref_primary_10_1007_s11270_016_2752_z
crossref_primary_10_5194_acp_15_13177_2015
crossref_primary_10_1007_s42461_022_00657_2
crossref_primary_10_2139_ssrn_4178248
crossref_primary_10_5194_acp_18_10089_2018
crossref_primary_10_1038_s41598_023_39336_7
crossref_primary_10_1016_j_jaerosci_2017_10_003
crossref_primary_10_1051_e3sconf_20199903001
crossref_primary_10_3390_rs9070675
crossref_primary_10_1016_j_atmosres_2022_106517
crossref_primary_10_5194_amt_11_2911_2018
crossref_primary_10_1016_j_atmosenv_2024_120608
crossref_primary_10_1016_j_aeolia_2022_100849
crossref_primary_10_1016_j_rse_2017_12_008
crossref_primary_10_1364_AO_59_000884
crossref_primary_10_1002_qj_3814
crossref_primary_10_5194_acp_18_4377_2018
crossref_primary_10_5194_amt_8_5213_2015
crossref_primary_10_4236_sgre_2024_151004
crossref_primary_10_5194_acp_21_11669_2021
crossref_primary_10_2139_ssrn_4155133
crossref_primary_10_1002_2014JD022312
crossref_primary_10_5194_acp_18_9681_2018
crossref_primary_10_1016_j_jaerosci_2022_106100
crossref_primary_10_1029_2018JD029701
crossref_primary_10_1109_LGRS_2018_2826446
crossref_primary_10_5194_acp_23_8623_2023
crossref_primary_10_1016_j_jqsrt_2017_03_005
crossref_primary_10_1016_j_optlaseng_2023_107822
crossref_primary_10_1021_acs_chemrev_5b00529
crossref_primary_10_3390_atmos14040675
crossref_primary_10_1029_2020GL089585
crossref_primary_10_3390_atmos10120728
crossref_primary_10_1016_j_rsase_2018_07_004
crossref_primary_10_1029_2022JD037666
crossref_primary_10_5194_acp_19_15503_2019
crossref_primary_10_1002_2016JD024758
crossref_primary_10_1002_2017JD026677
crossref_primary_10_1029_2021JD035629
crossref_primary_10_3390_atmos15050554
crossref_primary_10_5194_acp_17_1901_2017
Cites_doi 10.1016/0019-1035(91)90150-R
10.1016/0019-1035(85)90070-3
10.1029/2001JD002011
10.1029/2000RG000095
10.1029/2002GL015910
10.5194/acp-10-8899-2010
10.1109/LGRS.2005.846838
10.1002/asl.207
10.5194/acp-7-2839-2007
10.1029/JC084iC11p06941
10.1016/0960-1686(93)90021-P
10.1029/2007JD009551
10.1016/j.jaerosci.2008.07.006
10.1016/j.rse.2012.07.017
10.1016/j.atmosenv.2008.03.046
10.1029/2012JD017756
10.1038/381681a0
10.1029/2008GL035319
10.1175/1520-0469(2002)059<1959:LSEOMA>2.0.CO;2
10.1007/s00376-006-0431-5
10.5194/acp-10-1701-2010
10.1364/AO.11.000755
10.1029/96JD03066
10.1029/2011JD016238
10.5194/acp-10-3081-2010
10.1111/j.1600-0889.2008.00395.x
10.5194/acp-10-7533-2010
10.1029/2002JD002687
10.1029/1998JD200048
10.4236/jmp.2010.14031
10.5194/acp-11-8231-2011
10.1029/2004JD005232
10.1016/j.atmosenv.2012.02.011
10.1029/2000JD900749
10.1029/JC086iC04p03236
10.1029/2008JD009906
10.5194/acp-12-4585-2012
10.1103/PhysRev.121.1324
10.1046/j.1435-6935.2003.00072.x
10.1127/ejm/9/1/0157
10.1029/2002GL014947
10.1073/pnas.101122798
10.5194/amt-4-757-2011
10.1029/2009JD012697
10.1016/j.jqsrt.2009.03.002
10.1029/2007JD009417
10.1029/2000JD000247
10.1016/j.rse.2006.03.007
10.1029/1999JD900416
10.5194/acp-7-4887-2007
10.1034/j.1600-0889.1998.t01-2-00007.x
10.1175/1520-0450(1976)015<0225:AGAMOA>2.0.CO;2
10.1029/95JD00690
10.5194/acp-9-7867-2009
10.5194/acp-11-1527-2011
10.1029/2000JD900106
10.5194/acp-10-6901-2010
10.5194/acp-14-10663-2014
10.1016/S0021-8502(99)00573-X
10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
10.1016/j.atmosenv.2011.04.065
10.5194/acp-7-4489-2007
10.1029/2012RG000388
10.1111/j.1600-0889.2008.00385.x
10.1029/2007JD009484
10.1016/0020-0891(93)90008-U
10.1029/2005GL024364
10.1175/BAMS-87-12-1739
10.3402/tellusa.v28i3.10290
10.1029/2002JD002536
10.1190/1.2732552
10.1364/AO.17.000353
10.1130/SPE186-p87
10.5194/acp-4-1813-2004
10.1016/j.icarus.2007.07.002
10.1029/2008JD011635
10.1002/qj.889
10.5194/acp-7-81-2007
10.5194/acp-14-9343-2014
10.1016/S0032-0633(98)00046-4
10.1029/JC074i028p06947
10.1029/2006GL027869
10.1016/S0273-1177(03)00526-X
10.1016/j.icarus.2009.07.024
10.1029/2002JD002552
10.1111/j.1600-0889.2008.00383.x
10.1029/2000JD900150
10.1088/1742-6596/6/1/013
10.1029/91JC02987
10.1002/qj.439
10.1364/AO.12.000564
10.1016/j.jqsrt.2003.12.032
10.1029/2008JD009903
10.1175/1520-0450(1992)031<0223:REOADO>2.0.CO;2
10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2
10.1029/2007JD008791
10.1016/j.atmosenv.2003.11.006
10.1016/0960-1686(93)90027-V
10.1029/98JD00049
ContentType Journal Article
Copyright COPYRIGHT 2014 Copernicus GmbH
Attribution
Copyright_xml – notice: COPYRIGHT 2014 Copernicus GmbH
– notice: Attribution
DBID AAYXX
CITATION
ISR
1XC
VOOES
DOA
DOI 10.5194/acp-14-11093-2014
DatabaseName CrossRef
Science in Context
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Physics
EISSN 1680-7324
1680-7375
EndPage 11116
ExternalDocumentID oai_doaj_org_article_a3ee8a78377846ed92b8f4c748c26284
oai_HAL_hal_01139582v1
A481417930
10_5194_acp_14_11093_2014
GroupedDBID 23N
2WC
3V.
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
IPNFZ
ISR
ITC
K6-
KQ8
M~E
OK1
P2P
P62
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
1XC
C1A
VOOES
ID FETCH-LOGICAL-a578t-a5caa11a4e2d323abb75c68c28b0b35d7abe3a12ac4e4c979b85d1d90dd903c93
IEDL.DBID DOA
ISSN 1680-7324
1680-7316
1680-7367
IngestDate Tue Oct 22 15:16:57 EDT 2024
Tue Oct 15 15:10:10 EDT 2024
Thu Feb 22 23:43:02 EST 2024
Wed Oct 25 09:21:10 EDT 2023
Thu Aug 01 20:11:35 EDT 2024
Fri Aug 23 00:58:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a578t-a5caa11a4e2d323abb75c68c28b0b35d7abe3a12ac4e4c979b85d1d90dd903c93
ORCID 0000-0002-0372-1351
0000-0001-8273-6211
0000-0001-9330-6401
0000-0002-3957-1949
OpenAccessLink https://doaj.org/article/a3ee8a78377846ed92b8f4c748c26284
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_a3ee8a78377846ed92b8f4c748c26284
hal_primary_oai_HAL_hal_01139582v1
gale_infotracmisc_A481417930
gale_infotracacademiconefile_A481417930
gale_incontextgauss_ISR_A481417930
crossref_primary_10_5194_acp_14_11093_2014
PublicationCentury 2000
PublicationDate 2014-10-22
PublicationDateYYYYMMDD 2014-10-22
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-22
  day: 22
PublicationDecade 2010
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2014
Publisher Copernicus GmbH
European Geosciences Union
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: European Geosciences Union
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref67
ref69
ref64
ref63
ref66
ref113
ref65
ref60
ref62
ref61
References_xml – ident: ref95
  doi: 10.1016/0019-1035(91)90150-R
– ident: ref77
  doi: 10.1016/0019-1035(85)90070-3
– ident: ref99
– ident: ref48
  doi: 10.1029/2001JD002011
– ident: ref86
  doi: 10.1029/2000RG000095
– ident: ref101
  doi: 10.1029/2002GL015910
– ident: ref71
  doi: 10.5194/acp-10-8899-2010
– ident: ref53
– ident: ref113
– ident: ref16
  doi: 10.1109/LGRS.2005.846838
– ident: ref21
  doi: 10.1002/asl.207
– ident: ref32
  doi: 10.5194/acp-7-2839-2007
– ident: ref63
  doi: 10.1029/JC084iC11p06941
– ident: ref104
  doi: 10.1016/0960-1686(93)90021-P
– ident: ref80
  doi: 10.1029/2007JD009551
– ident: ref40
  doi: 10.1016/j.jaerosci.2008.07.006
– ident: ref4
  doi: 10.1016/j.rse.2012.07.017
– ident: ref46
  doi: 10.1016/j.atmosenv.2008.03.046
– ident: ref60
  doi: 10.1029/2012JD017756
– ident: ref102
  doi: 10.1038/381681a0
– ident: ref41
  doi: 10.1029/2008GL035319
– ident: ref26
  doi: 10.1175/1520-0469(2002)059<1959:LSEOMA>2.0.CO;2
– ident: ref111
  doi: 10.1007/s00376-006-0431-5
– ident: ref14
  doi: 10.5194/acp-10-1701-2010
– ident: ref109
  doi: 10.1364/AO.11.000755
– ident: ref1
  doi: 10.1029/96JD03066
– ident: ref25
  doi: 10.1029/2011JD016238
– ident: ref74
  doi: 10.5194/acp-10-3081-2010
– ident: ref7
  doi: 10.1111/j.1600-0889.2008.00395.x
– ident: ref58
– ident: ref6
  doi: 10.5194/acp-10-7533-2010
– ident: ref38
  doi: 10.1029/2002JD002687
– ident: ref103
  doi: 10.1029/1998JD200048
– ident: ref96
  doi: 10.4236/jmp.2010.14031
– ident: ref29
  doi: 10.5194/acp-11-8231-2011
– ident: ref39
  doi: 10.1029/2004JD005232
– ident: ref57
  doi: 10.1016/j.atmosenv.2012.02.011
– ident: ref62
  doi: 10.1029/2000JD900749
– ident: ref82
  doi: 10.1029/JC086iC04p03236
– ident: ref91
  doi: 10.1029/2008JD009906
– ident: ref47
  doi: 10.5194/acp-12-4585-2012
– ident: ref106
  doi: 10.1103/PhysRev.121.1324
– ident: ref52
  doi: 10.1046/j.1435-6935.2003.00072.x
– ident: ref11
  doi: 10.1127/ejm/9/1/0157
– ident: ref50
  doi: 10.1029/2002GL014947
– ident: ref94
  doi: 10.1073/pnas.101122798
– ident: ref56
  doi: 10.5194/amt-4-757-2011
– ident: ref88
– ident: ref24
  doi: 10.1029/2009JD012697
– ident: ref78
  doi: 10.1016/j.jqsrt.2009.03.002
– ident: ref19
  doi: 10.1029/2007JD009417
– ident: ref12
  doi: 10.1029/2000JD000247
– ident: ref75
  doi: 10.1016/j.rse.2006.03.007
– ident: ref18
  doi: 10.1029/1999JD900416
– ident: ref49
– ident: ref81
  doi: 10.5194/acp-7-4887-2007
– ident: ref8
– ident: ref17
  doi: 10.1034/j.1600-0889.1998.t01-2-00007.x
– ident: ref108
  doi: 10.1175/1520-0450(1976)015<0225:AGAMOA>2.0.CO;2
– ident: ref70
  doi: 10.1029/95JD00690
– ident: ref89
– ident: ref66
– ident: ref112
– ident: ref5
  doi: 10.5194/acp-9-7867-2009
– ident: ref37
  doi: 10.5194/acp-11-1527-2011
– ident: ref67
  doi: 10.1029/2000JD900106
– ident: ref55
  doi: 10.5194/acp-10-6901-2010
– ident: ref30
  doi: 10.5194/acp-14-10663-2014
– ident: ref64
  doi: 10.1016/S0021-8502(99)00573-X
– ident: ref42
  doi: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
– ident: ref15
  doi: 10.1016/j.atmosenv.2011.04.065
– ident: ref107
  doi: 10.5194/acp-7-4489-2007
– ident: ref33
  doi: 10.1029/2012RG000388
– ident: ref51
  doi: 10.1111/j.1600-0889.2008.00385.x
– ident: ref61
  doi: 10.1029/2007JD009484
– ident: ref65
  doi: 10.1016/0020-0891(93)90008-U
– ident: ref23
  doi: 10.1029/2005GL024364
– ident: ref92
  doi: 10.1175/BAMS-87-12-1739
– ident: ref27
  doi: 10.3402/tellusa.v28i3.10290
– ident: ref68
  doi: 10.1029/2002JD002536
– ident: ref87
  doi: 10.1190/1.2732552
– ident: ref90
  doi: 10.1364/AO.17.000353
– ident: ref97
  doi: 10.1130/SPE186-p87
– ident: ref85
  doi: 10.5194/acp-4-1813-2004
– ident: ref35
  doi: 10.1016/j.icarus.2007.07.002
– ident: ref9
  doi: 10.1029/2008JD011635
– ident: ref22
– ident: ref54
  doi: 10.1002/qj.889
– ident: ref3
  doi: 10.5194/acp-7-81-2007
– ident: ref93
– ident: ref10
  doi: 10.5194/acp-14-9343-2014
– ident: ref79
  doi: 10.1016/S0032-0633(98)00046-4
– ident: ref83
  doi: 10.1029/JC074i028p06947
– ident: ref100
  doi: 10.1029/2006GL027869
– ident: ref72
  doi: 10.1016/S0273-1177(03)00526-X
– ident: ref34
  doi: 10.1016/j.icarus.2009.07.024
– ident: ref43
  doi: 10.1029/2002JD002552
– ident: ref84
  doi: 10.1111/j.1600-0889.2008.00383.x
– ident: ref44
  doi: 10.1029/2000JD900150
– ident: ref69
  doi: 10.1088/1742-6596/6/1/013
– ident: ref73
  doi: 10.1029/91JC02987
– ident: ref20
  doi: 10.1002/qj.439
– ident: ref98
– ident: ref110
  doi: 10.1364/AO.12.000564
– ident: ref76
  doi: 10.1016/j.jqsrt.2003.12.032
– ident: ref28
  doi: 10.1029/2008JD009903
– ident: ref2
  doi: 10.1175/1520-0450(1992)031<0223:REOADO>2.0.CO;2
– ident: ref13
  doi: 10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2
– ident: ref45
  doi: 10.1029/2007JD008791
– ident: ref59
  doi: 10.1016/j.atmosenv.2003.11.006
– ident: ref31
– ident: ref36
  doi: 10.1016/0960-1686(93)90027-V
– ident: ref105
  doi: 10.1029/98JD00049
SSID ssj0025014
ssj0027722
Score 2.391322
Snippet Experimental estimations of the infrared refractive index of African mineral dust have been retrieved from laboratory measurements of particle transmission...
SourceID doaj
hal
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 11093
SubjectTerms Analysis
Fiber optic equipment
Geophysics
Mass extinction
Optical properties
Physics
Satellite remote sensing
Title Variability of the infrared complex refractive index of African mineral dust: experimental estimation and implications for radiative transfer and satellite remote sensing
URI https://hal.science/hal-01139582
https://doaj.org/article/a3ee8a78377846ed92b8f4c748c26284
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLig8hJLS2VVCCSkqEnsJDa3bcVqeSxSgUJv1viRshJkq2xawV_iVzLjZKvNiQuHjbTOKHE8Y_ubZOYbxp5j52oZKG9LiTpBSA2JAihxXoU6z31IoaIE58XHcn4m350X51ulvigmrKcH7gfuCEQICir0oyrcKoPXuVW1dJVULi9xbY2rb6o3ztTgatHXMnK1SpUmVJup_56JaEUegbtMMpkQ06ZAG8nkaEeKxP03y_Pt75vXq3G7me2yewNO5NO-f_fZrdA8YJMFQtxVG9-E8xf85McS8Wb895D9-Ypeb0-6_Zuvao7AjqP1tBRgzmPgePjF8eYxK-qaznlsQMG-UlDDfy4jATWnUh6v-TbzPycmjj7FkUPj-XIrCp0j6OUtERzEq3YRB4c2yq0h0n12Ae-LFhH4mqLlm4tH7Gz25svJPBkKMSSAE7rDowPIMpAh9yIXYG1VuBIVoGxqReErsEFAloOTQTpdaasKn3mdevwJp8VjttOsmvCEcUhdCTYLWQEBVRhUrWvlndIBZZW2E_Zqowxz2fNtGPRTSHMGNYeeiomaM6S5CTsmdd0IElV2bEADMoMBmX8Z0IQdkrINkWE0FG1zAVfrtXn7-ZOZSpVRhTaRTtjLQahe4Ug6GJIX8KGIP2skuT-SxNnqRqcP0aZGPZ5PPxhqw5VW6ELl19nT__Fce-wujRHts3m-z3a69io8QwDV2QN253i2OP12EOcMHt-fqr88UR1I
link.rule.ids 230,315,783,787,867,888,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variability+of+the+infrared+complex+refractive+index+of+African+mineral+dust%3A+experimental+estimation+and+implications+for+radiative+transfer+and+satellite+remote+sensing&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Di+Biagio%2C+C&rft.au=Boucher%2C+H&rft.au=Caquineau%2C+S&rft.au=Chevaillier%2C+S&rft.date=2014-10-22&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=14&rft.issue=20&rft.spage=11093&rft_id=info:doi/10.5194%2Facp-14-11093-2014&rft.externalDBID=ISR&rft.externalDocID=A481417930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon