Variability of the infrared complex refractive index of African mineral dust: experimental estimation and implications for radiative transfer and satellite remote sensing
Experimental estimations of the infrared refractive index of African mineral dust have been retrieved from laboratory measurements of particle transmission spectra in the wavelength range 2.5–25 μm. Five dust samples collected at Banizoumbou (Niger) and Tamanrasset (Algeria) during dust events origi...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 14; no. 20; pp. 11093 - 11116 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Copernicus GmbH
22.10.2014
European Geosciences Union Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Experimental estimations of the infrared refractive index of African mineral dust have been retrieved from laboratory measurements of particle transmission spectra in the wavelength range 2.5–25 μm. Five dust samples collected at Banizoumbou (Niger) and Tamanrasset (Algeria) during dust events originated from different Western Saharan and Sahelian areas have been investigated. The real (n) and imaginary (k) parts of the refractive index obtained for the different dust samples vary in the range 1.1–2.7 and 0.05–1.0, respectively, and are strongly sensitive to the mineralogical composition of the particles, especially in the 8–12 and 17–25 μm spectral intervals. Dust absorption is controlled mainly by clays (kaolinite, illite, smectite) and, to a lesser extent, by quartz and calcium-rich minerals (e.g. calcite, gypsum). Significant differences are obtained when comparing our results with existing experimental estimations available in the literature, and with the values of the OPAC (Optical Properties of Aerosols and Clouds) database. The different data sets appear comparable in magnitude, with our values of n and k falling within the range of variability of past studies. However, literature data fail in accurately reproducing the spectral signatures of the main minerals, in particular clays, and they significantly overestimate the contribution of quartz. Furthermore, the real and the imaginary parts of the refractive index from some literature studies are found not to verify the Kramers–Kronig relations, thus being theoretically incorrect. The comparison between our results, from western Africa, and literature data, from different locations in Europe, Africa, and the Caribbean, nonetheless, confirms the expected large variability of the dust infrared refractive index. This highlights the necessity for an extended systematic investigation of dust properties at infrared wavelengths. For the five analysed dust samples, aerosol intensive optical properties relevant to radiative transfer (mass extinction efficiency, kext, single scattering albedo, ω, and asymmetry factor, g) have been calculated, by using the Mie theory, based on the estimated refractive index and measured particle size distribution. The optical properties show a large sample-to-sample variability, with kext, ω, and g varying in the range 0.05–0.35, 0.25–1.0, and 0.05–0.75. This variability is expected to significantly impact satellite retrievals of atmospheric and surface parameters (e.g. from the Infrared Atmospheric Sounding Interferometer, IASI) and estimates of the dust radiative forcing. |
---|---|
AbstractList | Experimental estimations of the infrared refractive index of African mineral dust have been retrieved from laboratory measurements of particle transmission spectra in the wavelength range 2.5–25 μm. Five dust samples collected at Banizoumbou (Niger) and Tamanrasset (Algeria) during dust events originated from different Western Saharan and Sahelian areas have been investigated. The real (n) and imaginary (k) parts of the refractive index obtained for the different dust samples vary in the range 1.1–2.7 and 0.05–1.0, respectively, and are strongly sensitive to the mineralogical composition of the particles, especially in the 8–12 and 17–25 μm spectral intervals. Dust absorption is controlled mainly by clays (kaolinite, illite, smectite) and, to a lesser extent, by quartz and calcium-rich minerals (e.g. calcite, gypsum). Significant differences are obtained when comparing our results with existing experimental estimations available in the literature, and with the values of the OPAC (Optical Properties of Aerosols and Clouds) database. The different data sets appear comparable in magnitude, with our values of n and k falling within the range of variability of past studies. However, literature data fail in accurately reproducing the spectral signatures of the main minerals, in particular clays, and they significantly overestimate the contribution of quartz. Furthermore, the real and the imaginary parts of the refractive index from some literature studies are found not to verify the Kramers–Kronig relations, thus being theoretically incorrect. The comparison between our results, from western Africa, and literature data, from different locations in Europe, Africa, and the Caribbean, nonetheless, confirms the expected large variability of the dust infrared refractive index. This highlights the necessity for an extended systematic investigation of dust properties at infrared wavelengths. For the five analysed dust samples, aerosol intensive optical properties relevant to radiative transfer (mass extinction efficiency, kext, single scattering albedo, ω, and asymmetry factor, g) have been calculated, by using the Mie theory, based on the estimated refractive index and measured particle size distribution. The optical properties show a large sample-to-sample variability, with kext, ω, and g varying in the range 0.05–0.35, 0.25–1.0, and 0.05–0.75. This variability is expected to significantly impact satellite retrievals of atmospheric and surface parameters (e.g. from the Infrared Atmospheric Sounding Interferometer, IASI) and estimates of the dust radiative forcing. Experimental estimations of the infrared refractive index of African mineral dust have been retrieved from laboratory measurements of particle transmission spectra in the wavelength range 2.5-25 μm. Five dust samples collected at Banizoumbou (Niger) and Tamanrasset (Algeria) during dust events originated from different Western Saharan and Sahelian areas have been investigated. The real (n) and imaginary (k) parts of the refractive index obtained for the different dust samples vary in the range 1.1-2.7 and 0.05-1.0, respectively, and are strongly sensitive to the mineralogical composition of the particles, especially in the 8-12 and 17-25 μm spectral intervals. Dust absorption is controlled mainly by clays (kaolinite, illite, smectite) and, to a lesser extent, by quartz and calcium-rich minerals (e.g. calcite, gypsum). Significant differences are obtained when comparing our results with existing experimental estimations available in the literature, and with the values of the OPAC (Optical Properties of Aerosols and Clouds) database. The different data sets appear comparable in magnitude, with our values of n and k falling within the range of variability of past studies. However, literature data fail in accurately reproducing the spectral signatures of the main minerals, in particular clays, and they significantly overestimate the contribution of quartz. Furthermore, the real and the imaginary parts of the refractive index from some literature studies are found not to verify the Kramers-Kronig relations, thus being theoretically incorrect. The comparison between our results, from western Africa, and literature data, from different locations in Europe, Africa, and the Caribbean, nonetheless, confirms the expected large variability of the dust infrared refractive index. This highlights the necessity for an extended systematic investigation of dust properties at infrared wavelengths. For the five analysed dust samples, aerosol intensive optical properties relevant to radiative transfer (mass extinction efficiency, k.sub.ext, single scattering albedo, Ï, and asymmetry factor, g) have been calculated, by using the Mie theory, based on the estimated refractive index and measured particle size distribution. The optical properties show a large sample-to-sample variability, with k.sub.ext, Ï, and g varying in the range 0.05-0.35, 0.25-1.0, and 0.05-0.75. This variability is expected to significantly impact satellite retrievals of atmospheric and surface parameters (e.g. from the Infrared Atmospheric Sounding Interferometer, IASI) and estimates of the dust radiative forcing. |
Audience | Academic |
Author | Boucher, H Caquineau, S Chevaillier, S Di Biagio, C Cuesta, J Formenti, P |
Author_xml | – sequence: 1 fullname: Di Biagio, C – sequence: 2 fullname: Boucher, H – sequence: 3 fullname: Caquineau, S – sequence: 4 fullname: Chevaillier, S – sequence: 5 fullname: Cuesta, J – sequence: 6 fullname: Formenti, P |
BackLink | https://hal.science/hal-01139582$$DView record in HAL |
BookMark | eNptks1q3DAUhU1JoUnaB-hO0FUWTiVLHsvdDaFtBgYC_duKa-l6omBLg6SEySv1KXtnppQMFGHJPv7u0d-5qM5CDFhV7wW_bkWvPoLd1kLVQvBe1g0X6lV1Lhaa151s1NmL9zfVRc4PnDctQefV71-QPAx-8uWZxZGVe2Q-jAkSOmbjvJ1wxxKSYIt_2v9zJBC4HJO3ENjsAyaYmHvM5RPD3RaTnzEUkjAXP0PxMTAIjnkyo5L9d2ZjTCyB83BwLQlCHjEduAwFJ1oP0rxzpCFjyD5s3lavR5gyvvs7XlY_v3z-cXNbr---rm6W6xraThfqLYAQoLBxspEwDF1rF9o2euCDbF0HA0oQDViFyvZdP-jWCddzR4-0vbysVkdfF-HBbGk7kJ5NBG8OQkwbA6l4O6EBiaih07LrtFqg65tBj8p2iqZbNFqR19XR6x6mE6vb5drsNS6E7FvdPAliPxzZDZA1XUKkY7Gzz9YslRZKdL3kRF3_h6LmcPaWQjF60k8Krk4KiCm4Kxt4zNmsvn87ZcWRtSnmTNf-b82Cm33ODOXMCGUOOTP7nMk_VkDKKg |
CitedBy_id | crossref_primary_10_1002_2014JD022406 crossref_primary_10_1007_s11270_016_2752_z crossref_primary_10_5194_acp_15_13177_2015 crossref_primary_10_1007_s42461_022_00657_2 crossref_primary_10_2139_ssrn_4178248 crossref_primary_10_5194_acp_18_10089_2018 crossref_primary_10_1038_s41598_023_39336_7 crossref_primary_10_1016_j_jaerosci_2017_10_003 crossref_primary_10_1051_e3sconf_20199903001 crossref_primary_10_3390_rs9070675 crossref_primary_10_1016_j_atmosres_2022_106517 crossref_primary_10_5194_amt_11_2911_2018 crossref_primary_10_1016_j_atmosenv_2024_120608 crossref_primary_10_1016_j_aeolia_2022_100849 crossref_primary_10_1016_j_rse_2017_12_008 crossref_primary_10_1364_AO_59_000884 crossref_primary_10_1002_qj_3814 crossref_primary_10_5194_acp_18_4377_2018 crossref_primary_10_5194_amt_8_5213_2015 crossref_primary_10_4236_sgre_2024_151004 crossref_primary_10_5194_acp_21_11669_2021 crossref_primary_10_2139_ssrn_4155133 crossref_primary_10_1002_2014JD022312 crossref_primary_10_5194_acp_18_9681_2018 crossref_primary_10_1016_j_jaerosci_2022_106100 crossref_primary_10_1029_2018JD029701 crossref_primary_10_1109_LGRS_2018_2826446 crossref_primary_10_5194_acp_23_8623_2023 crossref_primary_10_1016_j_jqsrt_2017_03_005 crossref_primary_10_1016_j_optlaseng_2023_107822 crossref_primary_10_1021_acs_chemrev_5b00529 crossref_primary_10_3390_atmos14040675 crossref_primary_10_1029_2020GL089585 crossref_primary_10_3390_atmos10120728 crossref_primary_10_1016_j_rsase_2018_07_004 crossref_primary_10_1029_2022JD037666 crossref_primary_10_5194_acp_19_15503_2019 crossref_primary_10_1002_2016JD024758 crossref_primary_10_1002_2017JD026677 crossref_primary_10_1029_2021JD035629 crossref_primary_10_3390_atmos15050554 crossref_primary_10_5194_acp_17_1901_2017 |
Cites_doi | 10.1016/0019-1035(91)90150-R 10.1016/0019-1035(85)90070-3 10.1029/2001JD002011 10.1029/2000RG000095 10.1029/2002GL015910 10.5194/acp-10-8899-2010 10.1109/LGRS.2005.846838 10.1002/asl.207 10.5194/acp-7-2839-2007 10.1029/JC084iC11p06941 10.1016/0960-1686(93)90021-P 10.1029/2007JD009551 10.1016/j.jaerosci.2008.07.006 10.1016/j.rse.2012.07.017 10.1016/j.atmosenv.2008.03.046 10.1029/2012JD017756 10.1038/381681a0 10.1029/2008GL035319 10.1175/1520-0469(2002)059<1959:LSEOMA>2.0.CO;2 10.1007/s00376-006-0431-5 10.5194/acp-10-1701-2010 10.1364/AO.11.000755 10.1029/96JD03066 10.1029/2011JD016238 10.5194/acp-10-3081-2010 10.1111/j.1600-0889.2008.00395.x 10.5194/acp-10-7533-2010 10.1029/2002JD002687 10.1029/1998JD200048 10.4236/jmp.2010.14031 10.5194/acp-11-8231-2011 10.1029/2004JD005232 10.1016/j.atmosenv.2012.02.011 10.1029/2000JD900749 10.1029/JC086iC04p03236 10.1029/2008JD009906 10.5194/acp-12-4585-2012 10.1103/PhysRev.121.1324 10.1046/j.1435-6935.2003.00072.x 10.1127/ejm/9/1/0157 10.1029/2002GL014947 10.1073/pnas.101122798 10.5194/amt-4-757-2011 10.1029/2009JD012697 10.1016/j.jqsrt.2009.03.002 10.1029/2007JD009417 10.1029/2000JD000247 10.1016/j.rse.2006.03.007 10.1029/1999JD900416 10.5194/acp-7-4887-2007 10.1034/j.1600-0889.1998.t01-2-00007.x 10.1175/1520-0450(1976)015<0225:AGAMOA>2.0.CO;2 10.1029/95JD00690 10.5194/acp-9-7867-2009 10.5194/acp-11-1527-2011 10.1029/2000JD900106 10.5194/acp-10-6901-2010 10.5194/acp-14-10663-2014 10.1016/S0021-8502(99)00573-X 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2 10.1016/j.atmosenv.2011.04.065 10.5194/acp-7-4489-2007 10.1029/2012RG000388 10.1111/j.1600-0889.2008.00385.x 10.1029/2007JD009484 10.1016/0020-0891(93)90008-U 10.1029/2005GL024364 10.1175/BAMS-87-12-1739 10.3402/tellusa.v28i3.10290 10.1029/2002JD002536 10.1190/1.2732552 10.1364/AO.17.000353 10.1130/SPE186-p87 10.5194/acp-4-1813-2004 10.1016/j.icarus.2007.07.002 10.1029/2008JD011635 10.1002/qj.889 10.5194/acp-7-81-2007 10.5194/acp-14-9343-2014 10.1016/S0032-0633(98)00046-4 10.1029/JC074i028p06947 10.1029/2006GL027869 10.1016/S0273-1177(03)00526-X 10.1016/j.icarus.2009.07.024 10.1029/2002JD002552 10.1111/j.1600-0889.2008.00383.x 10.1029/2000JD900150 10.1088/1742-6596/6/1/013 10.1029/91JC02987 10.1002/qj.439 10.1364/AO.12.000564 10.1016/j.jqsrt.2003.12.032 10.1029/2008JD009903 10.1175/1520-0450(1992)031<0223:REOADO>2.0.CO;2 10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2 10.1029/2007JD008791 10.1016/j.atmosenv.2003.11.006 10.1016/0960-1686(93)90027-V 10.1029/98JD00049 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Copernicus GmbH Attribution |
Copyright_xml | – notice: COPYRIGHT 2014 Copernicus GmbH – notice: Attribution |
DBID | AAYXX CITATION ISR 1XC VOOES DOA |
DOI | 10.5194/acp-14-11093-2014 |
DatabaseName | CrossRef Science in Context Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Physics |
EISSN | 1680-7324 1680-7375 |
EndPage | 11116 |
ExternalDocumentID | oai_doaj_org_article_a3ee8a78377846ed92b8f4c748c26284 oai_HAL_hal_01139582v1 A481417930 10_5194_acp_14_11093_2014 |
GroupedDBID | 23N 2WC 3V. 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BBORY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA IPNFZ ISR ITC K6- KQ8 M~E OK1 P2P P62 PATMY PCBAR PIMPY PQQKQ PROAC PYCSY Q2X RIG RKB RNS TR2 XSB ~02 1XC C1A VOOES |
ID | FETCH-LOGICAL-a578t-a5caa11a4e2d323abb75c68c28b0b35d7abe3a12ac4e4c979b85d1d90dd903c93 |
IEDL.DBID | DOA |
ISSN | 1680-7324 1680-7316 1680-7367 |
IngestDate | Tue Oct 22 15:16:57 EDT 2024 Tue Oct 15 15:10:10 EDT 2024 Thu Feb 22 23:43:02 EST 2024 Wed Oct 25 09:21:10 EDT 2023 Thu Aug 01 20:11:35 EDT 2024 Fri Aug 23 00:58:15 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a578t-a5caa11a4e2d323abb75c68c28b0b35d7abe3a12ac4e4c979b85d1d90dd903c93 |
ORCID | 0000-0002-0372-1351 0000-0001-8273-6211 0000-0001-9330-6401 0000-0002-3957-1949 |
OpenAccessLink | https://doaj.org/article/a3ee8a78377846ed92b8f4c748c26284 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a3ee8a78377846ed92b8f4c748c26284 hal_primary_oai_HAL_hal_01139582v1 gale_infotracmisc_A481417930 gale_infotracacademiconefile_A481417930 gale_incontextgauss_ISR_A481417930 crossref_primary_10_5194_acp_14_11093_2014 |
PublicationCentury | 2000 |
PublicationDate | 2014-10-22 |
PublicationDateYYYYMMDD | 2014-10-22 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-22 day: 22 |
PublicationDecade | 2010 |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2014 |
Publisher | Copernicus GmbH European Geosciences Union Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: European Geosciences Union – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref67 ref69 ref64 ref63 ref66 ref113 ref65 ref60 ref62 ref61 |
References_xml | – ident: ref95 doi: 10.1016/0019-1035(91)90150-R – ident: ref77 doi: 10.1016/0019-1035(85)90070-3 – ident: ref99 – ident: ref48 doi: 10.1029/2001JD002011 – ident: ref86 doi: 10.1029/2000RG000095 – ident: ref101 doi: 10.1029/2002GL015910 – ident: ref71 doi: 10.5194/acp-10-8899-2010 – ident: ref53 – ident: ref113 – ident: ref16 doi: 10.1109/LGRS.2005.846838 – ident: ref21 doi: 10.1002/asl.207 – ident: ref32 doi: 10.5194/acp-7-2839-2007 – ident: ref63 doi: 10.1029/JC084iC11p06941 – ident: ref104 doi: 10.1016/0960-1686(93)90021-P – ident: ref80 doi: 10.1029/2007JD009551 – ident: ref40 doi: 10.1016/j.jaerosci.2008.07.006 – ident: ref4 doi: 10.1016/j.rse.2012.07.017 – ident: ref46 doi: 10.1016/j.atmosenv.2008.03.046 – ident: ref60 doi: 10.1029/2012JD017756 – ident: ref102 doi: 10.1038/381681a0 – ident: ref41 doi: 10.1029/2008GL035319 – ident: ref26 doi: 10.1175/1520-0469(2002)059<1959:LSEOMA>2.0.CO;2 – ident: ref111 doi: 10.1007/s00376-006-0431-5 – ident: ref14 doi: 10.5194/acp-10-1701-2010 – ident: ref109 doi: 10.1364/AO.11.000755 – ident: ref1 doi: 10.1029/96JD03066 – ident: ref25 doi: 10.1029/2011JD016238 – ident: ref74 doi: 10.5194/acp-10-3081-2010 – ident: ref7 doi: 10.1111/j.1600-0889.2008.00395.x – ident: ref58 – ident: ref6 doi: 10.5194/acp-10-7533-2010 – ident: ref38 doi: 10.1029/2002JD002687 – ident: ref103 doi: 10.1029/1998JD200048 – ident: ref96 doi: 10.4236/jmp.2010.14031 – ident: ref29 doi: 10.5194/acp-11-8231-2011 – ident: ref39 doi: 10.1029/2004JD005232 – ident: ref57 doi: 10.1016/j.atmosenv.2012.02.011 – ident: ref62 doi: 10.1029/2000JD900749 – ident: ref82 doi: 10.1029/JC086iC04p03236 – ident: ref91 doi: 10.1029/2008JD009906 – ident: ref47 doi: 10.5194/acp-12-4585-2012 – ident: ref106 doi: 10.1103/PhysRev.121.1324 – ident: ref52 doi: 10.1046/j.1435-6935.2003.00072.x – ident: ref11 doi: 10.1127/ejm/9/1/0157 – ident: ref50 doi: 10.1029/2002GL014947 – ident: ref94 doi: 10.1073/pnas.101122798 – ident: ref56 doi: 10.5194/amt-4-757-2011 – ident: ref88 – ident: ref24 doi: 10.1029/2009JD012697 – ident: ref78 doi: 10.1016/j.jqsrt.2009.03.002 – ident: ref19 doi: 10.1029/2007JD009417 – ident: ref12 doi: 10.1029/2000JD000247 – ident: ref75 doi: 10.1016/j.rse.2006.03.007 – ident: ref18 doi: 10.1029/1999JD900416 – ident: ref49 – ident: ref81 doi: 10.5194/acp-7-4887-2007 – ident: ref8 – ident: ref17 doi: 10.1034/j.1600-0889.1998.t01-2-00007.x – ident: ref108 doi: 10.1175/1520-0450(1976)015<0225:AGAMOA>2.0.CO;2 – ident: ref70 doi: 10.1029/95JD00690 – ident: ref89 – ident: ref66 – ident: ref112 – ident: ref5 doi: 10.5194/acp-9-7867-2009 – ident: ref37 doi: 10.5194/acp-11-1527-2011 – ident: ref67 doi: 10.1029/2000JD900106 – ident: ref55 doi: 10.5194/acp-10-6901-2010 – ident: ref30 doi: 10.5194/acp-14-10663-2014 – ident: ref64 doi: 10.1016/S0021-8502(99)00573-X – ident: ref42 doi: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2 – ident: ref15 doi: 10.1016/j.atmosenv.2011.04.065 – ident: ref107 doi: 10.5194/acp-7-4489-2007 – ident: ref33 doi: 10.1029/2012RG000388 – ident: ref51 doi: 10.1111/j.1600-0889.2008.00385.x – ident: ref61 doi: 10.1029/2007JD009484 – ident: ref65 doi: 10.1016/0020-0891(93)90008-U – ident: ref23 doi: 10.1029/2005GL024364 – ident: ref92 doi: 10.1175/BAMS-87-12-1739 – ident: ref27 doi: 10.3402/tellusa.v28i3.10290 – ident: ref68 doi: 10.1029/2002JD002536 – ident: ref87 doi: 10.1190/1.2732552 – ident: ref90 doi: 10.1364/AO.17.000353 – ident: ref97 doi: 10.1130/SPE186-p87 – ident: ref85 doi: 10.5194/acp-4-1813-2004 – ident: ref35 doi: 10.1016/j.icarus.2007.07.002 – ident: ref9 doi: 10.1029/2008JD011635 – ident: ref22 – ident: ref54 doi: 10.1002/qj.889 – ident: ref3 doi: 10.5194/acp-7-81-2007 – ident: ref93 – ident: ref10 doi: 10.5194/acp-14-9343-2014 – ident: ref79 doi: 10.1016/S0032-0633(98)00046-4 – ident: ref83 doi: 10.1029/JC074i028p06947 – ident: ref100 doi: 10.1029/2006GL027869 – ident: ref72 doi: 10.1016/S0273-1177(03)00526-X – ident: ref34 doi: 10.1016/j.icarus.2009.07.024 – ident: ref43 doi: 10.1029/2002JD002552 – ident: ref84 doi: 10.1111/j.1600-0889.2008.00383.x – ident: ref44 doi: 10.1029/2000JD900150 – ident: ref69 doi: 10.1088/1742-6596/6/1/013 – ident: ref73 doi: 10.1029/91JC02987 – ident: ref20 doi: 10.1002/qj.439 – ident: ref98 – ident: ref110 doi: 10.1364/AO.12.000564 – ident: ref76 doi: 10.1016/j.jqsrt.2003.12.032 – ident: ref28 doi: 10.1029/2008JD009903 – ident: ref2 doi: 10.1175/1520-0450(1992)031<0223:REOADO>2.0.CO;2 – ident: ref13 doi: 10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2 – ident: ref45 doi: 10.1029/2007JD008791 – ident: ref59 doi: 10.1016/j.atmosenv.2003.11.006 – ident: ref31 – ident: ref36 doi: 10.1016/0960-1686(93)90027-V – ident: ref105 doi: 10.1029/98JD00049 |
SSID | ssj0025014 ssj0027722 |
Score | 2.391322 |
Snippet | Experimental estimations of the infrared refractive index of African mineral dust have been retrieved from laboratory measurements of particle transmission... |
SourceID | doaj hal gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 11093 |
SubjectTerms | Analysis Fiber optic equipment Geophysics Mass extinction Optical properties Physics Satellite remote sensing |
Title | Variability of the infrared complex refractive index of African mineral dust: experimental estimation and implications for radiative transfer and satellite remote sensing |
URI | https://hal.science/hal-01139582 https://doaj.org/article/a3ee8a78377846ed92b8f4c748c26284 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLig8hJLS2VVCCSkqEnsJDa3bcVqeSxSgUJv1viRshJkq2xawV_iVzLjZKvNiQuHjbTOKHE8Y_ubZOYbxp5j52oZKG9LiTpBSA2JAihxXoU6z31IoaIE58XHcn4m350X51ulvigmrKcH7gfuCEQICir0oyrcKoPXuVW1dJVULi9xbY2rb6o3ztTgatHXMnK1SpUmVJup_56JaEUegbtMMpkQ06ZAG8nkaEeKxP03y_Pt75vXq3G7me2yewNO5NO-f_fZrdA8YJMFQtxVG9-E8xf85McS8Wb895D9-Ypeb0-6_Zuvao7AjqP1tBRgzmPgePjF8eYxK-qaznlsQMG-UlDDfy4jATWnUh6v-TbzPycmjj7FkUPj-XIrCp0j6OUtERzEq3YRB4c2yq0h0n12Ae-LFhH4mqLlm4tH7Gz25svJPBkKMSSAE7rDowPIMpAh9yIXYG1VuBIVoGxqReErsEFAloOTQTpdaasKn3mdevwJp8VjttOsmvCEcUhdCTYLWQEBVRhUrWvlndIBZZW2E_Zqowxz2fNtGPRTSHMGNYeeiomaM6S5CTsmdd0IElV2bEADMoMBmX8Z0IQdkrINkWE0FG1zAVfrtXn7-ZOZSpVRhTaRTtjLQahe4Ug6GJIX8KGIP2skuT-SxNnqRqcP0aZGPZ5PPxhqw5VW6ELl19nT__Fce-wujRHts3m-z3a69io8QwDV2QN253i2OP12EOcMHt-fqr88UR1I |
link.rule.ids | 230,315,783,787,867,888,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variability+of+the+infrared+complex+refractive+index+of+African+mineral+dust%3A+experimental+estimation+and+implications+for+radiative+transfer+and+satellite+remote+sensing&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Di+Biagio%2C+C&rft.au=Boucher%2C+H&rft.au=Caquineau%2C+S&rft.au=Chevaillier%2C+S&rft.date=2014-10-22&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=14&rft.issue=20&rft.spage=11093&rft_id=info:doi/10.5194%2Facp-14-11093-2014&rft.externalDBID=ISR&rft.externalDocID=A481417930 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |