The Weight of New York City: Possible Contributions to Subsidence From Anthropogenic Sources

New York City faces accelerating inundation risk from sea level rise, subsidence, and increasing storm intensity from natural and anthropogenic causes. Here we calculate a previously unquantified contribution to subsidence from the cumulative mass and downward pressure exerted by the built environme...

Full description

Saved in:
Bibliographic Details
Published inEarth's future Vol. 11; no. 5
Main Authors Parsons, Tom, Wu, Pei‐Chin, (Matt) Wei, Meng, D'Hondt, Steven
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.05.2023
Wiley
Subjects
Online AccessGet full text
ISSN2328-4277
2328-4277
DOI10.1029/2022EF003465

Cover

Loading…
Abstract New York City faces accelerating inundation risk from sea level rise, subsidence, and increasing storm intensity from natural and anthropogenic causes. Here we calculate a previously unquantified contribution to subsidence from the cumulative mass and downward pressure exerted by the built environment of the city. We enforce that load distribution in a multiphysics finite element model to calculate expected subsidence. Complex surface geology requires multiple rheological soil models to be applied; clay rich soils and artificial fill are calculated to have the highest post‐construction subsidence as compared with more elastic soils. Minimum and maximum calculated building subsidence ranges from 0 to 600 mm depending on soil/rock physical parameters and foundation modes. We compare modeled subsidence and surface geology to observed subsidence rates from satellite data (Interferometric Synthetic Aperture Radar and Global Positioning System). The comparison is complicated because the urban load has accumulated across a much longer period than measured subsidence rates, and there are multiple causes of subsidence. Geodetic measurements show a mean subsidence rate of 1–2 mm/year across the city that is consistent with regional post‐glacial deformation, though we find some areas of significantly greater subsidence rates. Some of this deformation is consistent with internal consolidation of artificial fill and other soft sediment that may be exacerbated by recent building loads, though there are many possible causes. New York is emblematic of growing coastal cities all over the world that are observed to be subsiding (Wu et al., 2022, https://doi.org/10.1029/2022GL098477), meaning there is a shared global challenge of mitigation against a growing inundation hazard. Plain Language Summary As coastal cities grow globally, the combination of construction densification and sea level rise imply increasing inundation hazard. The point of the paper is to raise awareness that every additional high‐rise building constructed at coastal, river, or lakefront settings could contribute to future flood risk, and that mitigation strategies may need to be included. The subsidence mapping concept helps to quantify the hazard and adds specificity to soil types and conditions. We present satellite data that show that the city is sinking 1–2 mm/tr with some areas subsiding much faster. Key Points More than 8 million people live in New York City, which is observed to be sinking 1–2 mm/year, while sea level rises We calculate the mass of all buildings in New York City and model the subsidence caused by the pressure they exert on the Earth We show detailed images of observed subsidence in New York City from satellite data
AbstractList New York City faces accelerating inundation risk from sea level rise, subsidence, and increasing storm intensity from natural and anthropogenic causes. Here we calculate a previously unquantified contribution to subsidence from the cumulative mass and downward pressure exerted by the built environment of the city. We enforce that load distribution in a multiphysics finite element model to calculate expected subsidence. Complex surface geology requires multiple rheological soil models to be applied; clay rich soils and artificial fill are calculated to have the highest post‐construction subsidence as compared with more elastic soils. Minimum and maximum calculated building subsidence ranges from 0 to 600 mm depending on soil/rock physical parameters and foundation modes. We compare modeled subsidence and surface geology to observed subsidence rates from satellite data (Interferometric Synthetic Aperture Radar and Global Positioning System). The comparison is complicated because the urban load has accumulated across a much longer period than measured subsidence rates, and there are multiple causes of subsidence. Geodetic measurements show a mean subsidence rate of 1–2 mm/year across the city that is consistent with regional post‐glacial deformation, though we find some areas of significantly greater subsidence rates. Some of this deformation is consistent with internal consolidation of artificial fill and other soft sediment that may be exacerbated by recent building loads, though there are many possible causes. New York is emblematic of growing coastal cities all over the world that are observed to be subsiding (Wu et al., 2022, ), meaning there is a shared global challenge of mitigation against a growing inundation hazard.
New York City faces accelerating inundation risk from sea level rise, subsidence, and increasing storm intensity from natural and anthropogenic causes. Here we calculate a previously unquantified contribution to subsidence from the cumulative mass and downward pressure exerted by the built environment of the city. We enforce that load distribution in a multiphysics finite element model to calculate expected subsidence. Complex surface geology requires multiple rheological soil models to be applied; clay rich soils and artificial fill are calculated to have the highest post-construction subsidence as compared with more elastic soils. Minimum and maximum calculated building subsidence ranges from 0 to 600 mm depending on soil/rock physical parameters and foundation modes. We compare modeled subsidence and surface geology to observed subsidence rates from satellite data (Interferometric Synthetic Aperture Radar and Global Positioning System). The comparison is complicated because the urban load has accumulated across a much longer period than measured subsidence rates, and there are multiple causes of subsidence. Geodetic measurements show a mean subsidence rate of 1–2 mm/year across the city that is consistent with regional post-glacial deformation, though we find some areas of significantly greater subsidence rates. Some of this deformation is consistent with internal consolidation of artificial fill and other soft sediment that may be exacerbated by recent building loads, though there are many possible causes. New York is emblematic of growing coastal cities all over the world that are observed to be subsiding (Wu et al., 2022, https://doi.org/10.1029/2022GL098477), meaning there is a shared global challenge of mitigation against a growing inundation hazard.
New York City faces accelerating inundation risk from sea level rise, subsidence, and increasing storm intensity from natural and anthropogenic causes. Here we calculate a previously unquantified contribution to subsidence from the cumulative mass and downward pressure exerted by the built environment of the city. We enforce that load distribution in a multiphysics finite element model to calculate expected subsidence. Complex surface geology requires multiple rheological soil models to be applied; clay rich soils and artificial fill are calculated to have the highest post‐construction subsidence as compared with more elastic soils. Minimum and maximum calculated building subsidence ranges from 0 to 600 mm depending on soil/rock physical parameters and foundation modes. We compare modeled subsidence and surface geology to observed subsidence rates from satellite data (Interferometric Synthetic Aperture Radar and Global Positioning System). The comparison is complicated because the urban load has accumulated across a much longer period than measured subsidence rates, and there are multiple causes of subsidence. Geodetic measurements show a mean subsidence rate of 1–2 mm/year across the city that is consistent with regional post‐glacial deformation, though we find some areas of significantly greater subsidence rates. Some of this deformation is consistent with internal consolidation of artificial fill and other soft sediment that may be exacerbated by recent building loads, though there are many possible causes. New York is emblematic of growing coastal cities all over the world that are observed to be subsiding (Wu et al., 2022, https://doi.org/10.1029/2022GL098477), meaning there is a shared global challenge of mitigation against a growing inundation hazard. Plain Language Summary As coastal cities grow globally, the combination of construction densification and sea level rise imply increasing inundation hazard. The point of the paper is to raise awareness that every additional high‐rise building constructed at coastal, river, or lakefront settings could contribute to future flood risk, and that mitigation strategies may need to be included. The subsidence mapping concept helps to quantify the hazard and adds specificity to soil types and conditions. We present satellite data that show that the city is sinking 1–2 mm/tr with some areas subsiding much faster. Key Points More than 8 million people live in New York City, which is observed to be sinking 1–2 mm/year, while sea level rises We calculate the mass of all buildings in New York City and model the subsidence caused by the pressure they exert on the Earth We show detailed images of observed subsidence in New York City from satellite data
New York City faces accelerating inundation risk from sea level rise, subsidence, and increasing storm intensity from natural and anthropogenic causes. Here we calculate a previously unquantified contribution to subsidence from the cumulative mass and downward pressure exerted by the built environment of the city. We enforce that load distribution in a multiphysics finite element model to calculate expected subsidence. Complex surface geology requires multiple rheological soil models to be applied; clay rich soils and artificial fill are calculated to have the highest post‐construction subsidence as compared with more elastic soils. Minimum and maximum calculated building subsidence ranges from 0 to 600 mm depending on soil/rock physical parameters and foundation modes. We compare modeled subsidence and surface geology to observed subsidence rates from satellite data (Interferometric Synthetic Aperture Radar and Global Positioning System). The comparison is complicated because the urban load has accumulated across a much longer period than measured subsidence rates, and there are multiple causes of subsidence. Geodetic measurements show a mean subsidence rate of 1–2 mm/year across the city that is consistent with regional post‐glacial deformation, though we find some areas of significantly greater subsidence rates. Some of this deformation is consistent with internal consolidation of artificial fill and other soft sediment that may be exacerbated by recent building loads, though there are many possible causes. New York is emblematic of growing coastal cities all over the world that are observed to be subsiding (Wu et al., 2022, https://doi.org/10.1029/2022GL098477 ), meaning there is a shared global challenge of mitigation against a growing inundation hazard. As coastal cities grow globally, the combination of construction densification and sea level rise imply increasing inundation hazard. The point of the paper is to raise awareness that every additional high‐rise building constructed at coastal, river, or lakefront settings could contribute to future flood risk, and that mitigation strategies may need to be included. The subsidence mapping concept helps to quantify the hazard and adds specificity to soil types and conditions. We present satellite data that show that the city is sinking 1–2 mm/tr with some areas subsiding much faster. More than 8 million people live in New York City, which is observed to be sinking 1–2 mm/year, while sea level rises We calculate the mass of all buildings in New York City and model the subsidence caused by the pressure they exert on the Earth We show detailed images of observed subsidence in New York City from satellite data
Abstract New York City faces accelerating inundation risk from sea level rise, subsidence, and increasing storm intensity from natural and anthropogenic causes. Here we calculate a previously unquantified contribution to subsidence from the cumulative mass and downward pressure exerted by the built environment of the city. We enforce that load distribution in a multiphysics finite element model to calculate expected subsidence. Complex surface geology requires multiple rheological soil models to be applied; clay rich soils and artificial fill are calculated to have the highest post‐construction subsidence as compared with more elastic soils. Minimum and maximum calculated building subsidence ranges from 0 to 600 mm depending on soil/rock physical parameters and foundation modes. We compare modeled subsidence and surface geology to observed subsidence rates from satellite data (Interferometric Synthetic Aperture Radar and Global Positioning System). The comparison is complicated because the urban load has accumulated across a much longer period than measured subsidence rates, and there are multiple causes of subsidence. Geodetic measurements show a mean subsidence rate of 1–2 mm/year across the city that is consistent with regional post‐glacial deformation, though we find some areas of significantly greater subsidence rates. Some of this deformation is consistent with internal consolidation of artificial fill and other soft sediment that may be exacerbated by recent building loads, though there are many possible causes. New York is emblematic of growing coastal cities all over the world that are observed to be subsiding (Wu et al., 2022, https://doi.org/10.1029/2022GL098477), meaning there is a shared global challenge of mitigation against a growing inundation hazard.
Audience General
Author Parsons, Tom
D'Hondt, Steven
Wu, Pei‐Chin
(Matt) Wei, Meng
Author_xml – sequence: 1
  givenname: Tom
  orcidid: 0000-0002-0582-4338
  surname: Parsons
  fullname: Parsons, Tom
  email: tparsons@usgs.gov
  organization: USGS Moffett Field
– sequence: 2
  givenname: Pei‐Chin
  orcidid: 0000-0001-5923-3149
  surname: Wu
  fullname: Wu, Pei‐Chin
  organization: University of Rhode Island
– sequence: 3
  givenname: Meng
  orcidid: 0000-0002-7405-3389
  surname: (Matt) Wei
  fullname: (Matt) Wei, Meng
  organization: University of Rhode Island
– sequence: 4
  givenname: Steven
  surname: D'Hondt
  fullname: D'Hondt, Steven
  organization: University of Rhode Island
BookMark eNp9kl2LEzEUhgdZwXXdO39AwCvBWfPRTDLelaFdF4orbEEEIWQyJ9PU6aQmKbv996Z2ha2oCSTh8LznI-e8LM5GP0JRvCb4imBav6eY0tkcYzap-LPinDIqywkV4uzJ-0VxGeMa51ULzLg4L74tV4C-gOtXCXmLPsE9-urDd9S4tP-APvsYXTsAavyYgmt3yfkxouTR3a6NroPRAJoHv0HTMa2C3_oeRmfQnd8FA_FV8dzqIcLl431RLOezZfOxXNxe3zTTRam5kLjksraUEcm51hMpeWWwptxKA5hhaLvK1LXIB5lgbLk1LWGcatIazVgnObsobo5uO6_XahvcRoe98tqpXwYfeqVDcmYAxbUVxgiiwfCJbHkLXOYAFbOWCcJZ9vXm6Gsb_I8dxKTWuZYxZ6-oJLJmlFYiU1dHqtfZqRutT0GbvDvYOJP7Yl22T0VFiMAVPgjenggyk-Ah9XoXo5LXi1O2_Btr_DBADyr_XHN7ytMjb0JuVwCrjEv60KmclBsUweowIOrpgGTRuz9Ev__tH_hjjPtc2P6_rJrNl5QwgtlP7AnHgw
CitedBy_id crossref_primary_10_1080_17499518_2025_2453930
crossref_primary_10_1038_s41558_024_02180_2
crossref_primary_10_3390_rs16040656
crossref_primary_10_1016_j_quascirev_2024_109053
crossref_primary_10_1016_j_oneear_2025_101198
crossref_primary_10_1080_10106049_2024_2391056
crossref_primary_10_1126_sciadv_adi8259
crossref_primary_10_3390_rs16122166
crossref_primary_10_1038_s43017_024_00551_z
crossref_primary_10_1016_j_ocecoaman_2025_107646
crossref_primary_10_1088_1755_1315_1388_1_012044
crossref_primary_10_1007_s40328_023_00417_8
crossref_primary_10_3390_resources13120167
crossref_primary_10_1016_j_ocecoaman_2024_107107
crossref_primary_10_1016_j_tust_2024_106190
crossref_primary_10_1029_2023EF004165
crossref_primary_10_1029_2023RG000817
crossref_primary_10_1038_s44304_024_00040_9
Cites_doi 10.1007/s10584-010-9977-4
10.1139/T02-069
10.1111/j.1467-8667.2005.00389.x
10.1088/1748-9326/ab4165
10.1016/j.inteco.2020.05.002
10.1016/j.joes.2020.05.00
10.1155/2021/8898814
10.1061/jsfeaq.0001760
10.1038/s41586-018-0787-6
10.1016/j.proeng.2016.11.728
10.1088/1742-2132/4/3/S02
10.1556/606.2021.00353
10.1061/jsfeaq.0001840
10.1061/(asce)1084-0702(2001)6:6(564)
10.1016/j.isprsjprs.2015.10.011
10.1016/j.sandf.2014.11.002
10.1038/s41598019-44252-w
10.1029/2020JB019500
10.1061/(ASCE)GM.1943-5622.0000279
10.3390/rs13163063
10.1007/978-3-642-15570-3
10.1007/978-981-15-0886-8_42
10.1038/nclimate1597
10.1017/S0022050711002245
10.1029/2022GL098477
10.1179/095066001101528420
10.1061/jsfeaq.0000463
10.1029/2020AV000277
10.1038/s41558-021-00993-z
10.1029/2018EO104623
10.18260/1-2--20280
10.1007/s41062-016-0010-2
10.1680/jgere.18.00020
10.2112/JCOASTRES-D-16A-00012
10.1061/(ASCE)1090-0241(2005)131:3(398)
10.7249/RR328
10.1016/j.earscirev.2017.04.001
10.1130/0-8137-5405-4.137
10.1130/2005.4016(08)
ContentType Journal Article
Copyright 2023 The Authors. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
COPYRIGHT 2023 John Wiley & Sons, Inc.
2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
– notice: COPYRIGHT 2023 John Wiley & Sons, Inc.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8GL
7ST
7TG
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
KL.
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
SOI
DOA
DOI 10.1029/2022EF003465
DatabaseName Wiley Online Library Open Access
CrossRef
Gale In Context: High School
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database



CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
Geology
EISSN 2328-4277
EndPage n/a
ExternalDocumentID oai_doaj_org_article_5af7cc71aec548b5be58bd663ff37153
A761170607
10_1029_2022EF003465
EFT21310
Genre researchArticle
GeographicLocations New York
United States--US
New York City New York
GeographicLocations_xml – name: New York
– name: New York City New York
– name: United States--US
GrantInformation_xml – fundername: U.S. Geological Survey Coastal and Marine Hazards and Resources Program
GroupedDBID 0R~
1OC
24P
5VS
7XC
8-1
8FE
8FH
8GL
AAHBH
AAHHS
AAZKR
ACCFJ
ACCMX
ACQOY
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EDH
EJD
GICCO
GODZA
GROUPED_DOAJ
HCIFZ
IEP
ISN
ITC
LK5
M7R
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PYCSY
SUPJJ
WIN
~OA
AAYXX
CITATION
PHGZM
PHGZT
PMFND
7ST
7TG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
GNUQQ
KL.
PKEHL
PQEST
PQQKQ
PQUKI
SOI
PUEGO
ID FETCH-LOGICAL-a5780-589f231855aa48856c0a25f8ce030ebd6c9976c91400f5fcb1352a1bca33d853
IEDL.DBID BENPR
ISSN 2328-4277
IngestDate Wed Aug 27 01:31:51 EDT 2025
Fri Jul 25 03:06:56 EDT 2025
Tue Jun 10 20:55:40 EDT 2025
Fri Jun 27 05:13:47 EDT 2025
Tue Jun 10 20:05:16 EDT 2025
Tue Jul 01 02:48:26 EDT 2025
Thu Apr 24 23:01:48 EDT 2025
Wed Jan 22 16:21:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5780-589f231855aa48856c0a25f8ce030ebd6c9976c91400f5fcb1352a1bca33d853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0582-4338
0000-0001-5923-3149
0000-0002-7405-3389
OpenAccessLink https://www.proquest.com/docview/2818932267?pq-origsite=%requestingapplication%
PQID 2818932267
PQPubID 2034575
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_5af7cc71aec548b5be58bd663ff37153
proquest_journals_2818932267
gale_infotracacademiconefile_A761170607
gale_incontextgauss_8GL_A761170607
gale_incontextcollege_GICCO_A761170607
crossref_citationtrail_10_1029_2022EF003465
crossref_primary_10_1029_2022EF003465
wiley_primary_10_1029_2022EF003465_EFT21310
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
20230501
2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earth's future
PublicationTitleAlternate Earth's Future
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2013; 3
2005; 131
1973; 99
2020; 163
2018; 564
1987; 5
2019; 14
2020; 16
2005; 20
1974
2020; 55
2004; 2
2020; 125
2001; 46
1936; 1
2018; 5
2000
2013; 13
2011; 71
2017; 33
1972; 98
2007; 4
2016; 115
1962; 88
2017; 168
2014; 54
2021; 2021
2002; 39
2021; 6
2019; 9
2021; 2
2011
2010
2016; 165
1995
2006
2004
2022; 49
2011; 104
2021; 13
2012; 2
2016; 1
2021; 11
2021
2020
2019
2018
2017
2016
2014
2013
2018; 99
2005; 16
2001; 2001
1968
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
Devi D. (e_1_2_9_13_1) 2013; 3
e_1_2_9_14_1
Griggs G. (e_1_2_9_17_1) 2017
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
American Society of Civil Engineers (e_1_2_9_4_1) 2010
Rujikiatkamjorn C. (e_1_2_9_49_1) 2006
e_1_2_9_24_1
e_1_2_9_43_1
Prat M. (e_1_2_9_46_1) 1995
e_1_2_9_6_1
United Nations, Department of Economic and Social Affairs, Population Division (e_1_2_9_56_1) 2019
e_1_2_9_2_1
Roscoe K. H. (e_1_2_9_48_1) 1968
e_1_2_9_26_1
e_1_2_9_47_1
Hoefsloot F. (e_1_2_9_23_1) 2020
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_32_1
e_1_2_9_55_1
Buisman A. S. K. (e_1_2_9_8_1) 1936
Kempfert H.‐G. (e_1_2_9_28_1) 2004
Tamaro G. J. (e_1_2_9_54_1) 2000
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Kodaka T. (e_1_2_9_30_1) 2013
e_1_2_9_42_1
e_1_2_9_21_1
e_1_2_9_44_1
Indraratna B. (e_1_2_9_25_1) 2004
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Kézdi A. (e_1_2_9_29_1) 1974
e_1_2_9_9_1
Nikolaou S. (e_1_2_9_40_1) 2004
e_1_2_9_27_1
References_xml – year: 2011
– volume: 20
  start-page: 221
  issue: 3
  year: 2005
  end-page: 229
  article-title: Assessing settlement of high‐rise structures by 3D simulations
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 1
  start-page: 103
  year: 1936
  end-page: 106
– volume: 13
  start-page: 745
  issue: 6
  year: 2013
  end-page: 753
  article-title: Interpretation of cone factor in undrained soils via full‐penetration finite‐element analysis
  publication-title: International Journal of Geomechanics
– volume: 2
  start-page: 884
  issue: 12
  year: 2012
  end-page: 888
  article-title: Hotspot of accelerated sea‐level rise on the Atlantic coast of North America
  publication-title: Nature Climate Change
– year: 2021
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 21
  article-title: Study on mechanical properties of gravelly sand under different stress paths
  publication-title: Advances in Civil Engineering
– year: 2018
– volume: 13
  issue: 16
  year: 2021
  article-title: Understanding the influence of building loads on surface settlement: A case study in the central business district of Beijing combining multi‐source data
  publication-title: Remote Sensing
– year: 2014
– volume: 55
  start-page: 515
  year: 2020
  end-page: 523
  article-title: Effect of interaction of nearby footings on settlement of foundation under building
  publication-title: Lecture Notes in Civil Engineering
– volume: 564
  start-page: 400
  issue: 7736
  year: 2018
  end-page: 404
  article-title: Origin of spatial variation in US East Coast sea‐level trends during 1900–2017
  publication-title: Nature
– volume: 125
  issue: 12
  year: 2020
  article-title: Modified Cam‐Clay model for large stress ranges and its predictions for geological and drilling processes
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 16
  start-page: 87
  year: 2005
  end-page: 99
– volume: 33
  start-page: 273
  year: 2017
  end-page: 285
  article-title: Anthropogenic land changes and sedimentation response in the tidal straits of New York City
  publication-title: Journal of Coastal Research
– volume: 88
  start-page: 207
  issue: SM6
  year: 1962
  end-page: 234
  article-title: Analysis of primary and secondary consolidation
  publication-title: ASCE Journal of Soil Mechanics and Foundation Division
– volume: 5
  start-page: 137
  year: 1987
  end-page: 140
– volume: 5
  start-page: 262
  issue: 4
  year: 2018
  end-page: 277
  article-title: The engineering properties of glacial tills
  publication-title: Geotechnical Research
– year: 2004
– volume: 14
  issue: 11
  year: 2019
  article-title: Developed river deltas: Are they sustainable?
  publication-title: Environmental Research Letters
– volume: 168
  start-page: 73
  issue: 2017
  year: 2017
  end-page: 80
  article-title: Global sediment yields from urban and urbanizing watersheds
  publication-title: Earth‐Science Reviews
– volume: 11
  start-page: 338
  issue: 4
  year: 2021
  end-page: 342
  article-title: A global analysis of subsidence, relative sea‐level change and coastal flood exposure
  publication-title: Nature Climate Change
– volume: 115
  start-page: 78
  year: 2016
  end-page: 89
  article-title: Persistent scatterer interferometry: A review
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 39
  start-page: 1313
  issue: 6
  year: 2002
  end-page: 1332
  article-title: A structured Cam Clay model
  publication-title: Canadian Geotechnical Journal
– start-page: 535
  year: 1968
  end-page: 609
– start-page: 79
  year: 2020
  end-page: 91
– year: 2019
– volume: 9
  issue: 1
  year: 2019
  article-title: Past and future hurricane intensity change along the U.S. East Coast
  publication-title: Scientific Reports
– volume: 46
  start-page: 117
  issue: 3
  year: 2001
  end-page: 144
  article-title: Concrete deterioration: Causes, diagnosis, and minimising risk
  publication-title: International Materials Reviews
– year: 2000
– volume: 104
  start-page: 89
  issue: 1
  year: 2011
  end-page: 111
  article-title: A global ranking of port cities with high exposure to climate extremes
  publication-title: Climatic Change
– volume: 3
  start-page: 250
  issue: Special Issue 4
  year: 2013
  end-page: 253
  article-title: On the determination of modified cam clay model parameters
  publication-title: International Journal of Innovative Research in Science, Engineering and Technology
– volume: 71
  start-page: 1060
  issue: 4
  year: 2011
  end-page: 1077
  article-title: Depth to bedrock and the formation of the Manhattan Skyline, 1890–1915
  publication-title: The Journal of Economic History
– year: 2016
– volume: 2
  year: 2004
– volume: 99
  year: 2018
  article-title: Harnessing the GPS data explosion for interdisciplinary science
  publication-title: Eos
– year: 2010
– volume: 163
  start-page: 114
  year: 2020
  end-page: 133
  article-title: The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios
  publication-title: International Economics
– volume: 49
  issue: 7
  year: 2022
  article-title: Subsidence in coastal cities throughout the world observed by InSAR
  publication-title: Geophysical Research Letters
– volume: 2
  issue: 1
  year: 2021
  article-title: The weight of cities: Urbanization effects on Earth's subsurface
  publication-title: AGU Advances
– volume: 4
  start-page: 245
  issue: 3
  year: 2007
  end-page: 252
  article-title: Geohydrologic assessment of fractured crystalline bedrock on the southern part of Manhattan, New York, through the use of advanced borehole geophysical methods
  publication-title: Journal of Geophysics and Engineering
– volume: 99
  start-page: 123
  issue: 1
  year: 1973
  end-page: 137
  article-title: Coefficient of secondary compression
  publication-title: ASCE Journal of Soil Mechanics and Foundation Division
– volume: 165
  start-page: 519
  year: 2016
  end-page: 527
  article-title: Long‐term settlements assessment of high‐rise building groundbase based on analytical ground deformation diagram
  publication-title: Procedia Engineering
– volume: 54
  start-page: 1054
  issue: 6
  year: 2014
  end-page: 1069
  article-title: Displacements of column supported embankments over soft clay after widening considering soil consolidation and column layout: Numerical analysis
  publication-title: Soils and Foundations
– volume: 131
  start-page: 398
  issue: 3
  year: 2005
  end-page: 401
  article-title: Secondary compression
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
– volume: 16
  start-page: 52
  issue: 3
  year: 2020
  end-page: 57
  article-title: Comparison between Ramberg‐Osgood and Hardin‐Drnevich soil models in Midas GTS NX
  publication-title: Pollack Periodica
– start-page: 161
  year: 2006
  end-page: 168
– volume: 2001
  start-page: 564
  issue: 6
  year: 2001
  end-page: 577
  article-title: Evaluation of site factors for seismic bridge design in New York City area
  publication-title: Journal of Bridge Engineering
– year: 1974
– year: 1995
– volume: 1
  year: 2016
  article-title: Tall building foundations: Design methods and applications
  publication-title: Innovative Infrastructure Solutions
– volume: 6
  start-page: 54
  issue: 1
  year: 2021
  end-page: 61
  article-title: Absolute and relative sea‐level rise in the New York City area by measurements from tide gauges and satellite global positioning system
  publication-title: Journal of Ocean Engineering and Science
– year: 2017
– volume: 98
  start-page: 667
  issue: SM7
  year: 1972
  end-page: 692
  article-title: Shear modulus and damping in soils: Design equations and curves
  publication-title: Journal of the Soil Mechanics and Foundations Division
– year: 2013
– ident: e_1_2_9_42_1
– ident: e_1_2_9_19_1
  doi: 10.1007/s10584-010-9977-4
– volume-title: World urbanization prospects: The 2018 revision (ST/ESA/SER.A/420)
  year: 2019
  ident: e_1_2_9_56_1
– ident: e_1_2_9_33_1
  doi: 10.1139/T02-069
– start-page: 103
  volume-title: Proceedings of the 1st international conference on soil mechanics and foundation engineering
  year: 1936
  ident: e_1_2_9_8_1
– volume-title: Minimum design loads for buildings and other structures
  year: 2010
  ident: e_1_2_9_4_1
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1467-8667.2005.00389.x
– ident: e_1_2_9_34_1
  doi: 10.1088/1748-9326/ab4165
– ident: e_1_2_9_18_1
  doi: 10.1016/j.inteco.2020.05.002
– ident: e_1_2_9_7_1
  doi: 10.1016/j.joes.2020.05.00
– ident: e_1_2_9_59_1
  doi: 10.1155/2021/8898814
– ident: e_1_2_9_47_1
– ident: e_1_2_9_20_1
  doi: 10.1061/jsfeaq.0001760
– ident: e_1_2_9_44_1
  doi: 10.1038/s41586-018-0787-6
– volume-title: Proceedings of the Deep Foundations Institute. 25th Annual meeting and 8th international conference
  year: 2000
  ident: e_1_2_9_54_1
– volume-title: 18th International conference on soil mechanics and geotechnical engineering (Paris)
  year: 2013
  ident: e_1_2_9_30_1
– ident: e_1_2_9_38_1
  doi: 10.1016/j.proeng.2016.11.728
– volume-title: International conference on case histories in geotechnical engineering
  year: 2004
  ident: e_1_2_9_40_1
– ident: e_1_2_9_53_1
  doi: 10.1088/1742-2132/4/3/S02
– volume-title: Rising seas in California: An update on sea‐level rise science
  year: 2017
  ident: e_1_2_9_17_1
– ident: e_1_2_9_2_1
  doi: 10.1556/606.2021.00353
– ident: e_1_2_9_36_1
  doi: 10.1061/jsfeaq.0001840
– start-page: 535
  volume-title: Engineering plasticity
  year: 1968
  ident: e_1_2_9_48_1
– ident: e_1_2_9_41_1
  doi: 10.1061/(asce)1084-0702(2001)6:6(564)
– ident: e_1_2_9_12_1
  doi: 10.1016/j.isprsjprs.2015.10.011
– ident: e_1_2_9_16_1
  doi: 10.1016/j.sandf.2014.11.002
– ident: e_1_2_9_55_1
  doi: 10.1038/s41598019-44252-w
– ident: e_1_2_9_21_1
  doi: 10.1029/2020JB019500
– volume-title: Handbook of soil mechanics
  year: 1974
  ident: e_1_2_9_29_1
– ident: e_1_2_9_52_1
  doi: 10.1061/(ASCE)GM.1943-5622.0000279
– start-page: 161
  volume-title: ASCE special geotechnical publication no. 152, Proceedings of Geo‐Shanghai 2006, Shanghai, China, 6–8 June 2006
  year: 2006
  ident: e_1_2_9_49_1
– ident: e_1_2_9_31_1
  doi: 10.3390/rs13163063
– ident: e_1_2_9_9_1
  doi: 10.1007/978-3-642-15570-3
– ident: e_1_2_9_3_1
  doi: 10.1007/978-981-15-0886-8_42
– volume: 3
  start-page: 250
  issue: 4
  year: 2013
  ident: e_1_2_9_13_1
  article-title: On the determination of modified cam clay model parameters
  publication-title: International Journal of Innovative Research in Science, Engineering and Technology
– ident: e_1_2_9_51_1
  doi: 10.1038/nclimate1597
– ident: e_1_2_9_5_1
  doi: 10.1017/S0022050711002245
– ident: e_1_2_9_58_1
  doi: 10.1029/2022GL098477
– ident: e_1_2_9_22_1
  doi: 10.1179/095066001101528420
– volume-title: International conference on case histories in geotechnical engineering. 17
  year: 2004
  ident: e_1_2_9_28_1
– ident: e_1_2_9_57_1
  doi: 10.1061/jsfeaq.0000463
– start-page: 79
  volume-title: Tagungsband geomonitoring 2020
  year: 2020
  ident: e_1_2_9_23_1
– ident: e_1_2_9_43_1
  doi: 10.1029/2020AV000277
– ident: e_1_2_9_39_1
  doi: 10.1038/s41558-021-00993-z
– ident: e_1_2_9_6_1
  doi: 10.1029/2018EO104623
– ident: e_1_2_9_15_1
  doi: 10.18260/1-2--20280
– ident: e_1_2_9_32_1
– ident: e_1_2_9_45_1
  doi: 10.1007/s41062-016-0010-2
– ident: e_1_2_9_10_1
  doi: 10.1680/jgere.18.00020
– ident: e_1_2_9_11_1
  doi: 10.2112/JCOASTRES-D-16A-00012
– volume-title: Proceedings, fifth international conference on case histories in geotechnical Engineering, New York, NY, April 13–17, 2004
  year: 2004
  ident: e_1_2_9_25_1
– ident: e_1_2_9_37_1
  doi: 10.1061/(ASCE)1090-0241(2005)131:3(398)
– ident: e_1_2_9_26_1
– ident: e_1_2_9_14_1
  doi: 10.7249/RR328
– ident: e_1_2_9_50_1
  doi: 10.1016/j.earscirev.2017.04.001
– ident: e_1_2_9_35_1
  doi: 10.1130/0-8137-5405-4.137
– volume-title: La modelisation des ouvrages
  year: 1995
  ident: e_1_2_9_46_1
– ident: e_1_2_9_24_1
  doi: 10.1130/2005.4016(08)
SSID ssj0000970357
Score 2.3311002
Snippet New York City faces accelerating inundation risk from sea level rise, subsidence, and increasing storm intensity from natural and anthropogenic causes. Here we...
Abstract New York City faces accelerating inundation risk from sea level rise, subsidence, and increasing storm intensity from natural and anthropogenic...
SourceID doaj
proquest
gale
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anthropogenic factors
building mass
Buildings
Built environment
Cities
Clay soils
Coasts
Construction
Deformation
Environmental aspects
Finite element method
finite element modeling
Floods
Flooring
Geodetic measurements
Geology
Global positioning systems
GPS
Human beings
Human-environment interactions
Influence on nature
InSAR
Interferometric synthetic aperture radar
Land subsidences
Load
Load distribution
Load distribution (forces)
Mathematical models
Mitigation
New York City
Physical properties
Radar data
Rheological properties
Satellite data
Satellite observation
Sea level
Sea level rise
Soils
Subsidence
Subsidences (Earth movements)
Synthetic aperture radar
Urban environments
urbanization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA_Fp74UtZWeWgmlrQ-yuF_ZbPpmj1ultLXQK_oghOwkEUFvi3v-_53J5uwdRX3xNRmW3cl8_JKd_IaxD5DlYE3pE1VYiRsU4xJVK5ukkFmb1S3Iku4Of_9Rnfwuv56L86VWX1QTNtADD4o7FMZLAJkZBwiuW9E6UbcW86T3hUR3peiLOW9pMxVisEJLFjJWuqe5ok1-PmmIjoXyyFIOClT9_wfkVbAask2zzl5FmMiPhtfbYC_cbJNtTf7dSsPJ6Jb9a3aBi83PwiEn7zzHwMWJiomPEWJ_5j87svtrx4mJatHfqufzjlPUGJqK8ua2u-GLrgloVFfAf4Vz_f4NmzaT6fgkiW0TEoPulyaiVj6nS9HCGHRPUUFqcuFr6gyWOtQdKMQgoHBrlXrhoc0QhJmsBVMUFrP3FlubdTP3lvG2VmllC0RUVVFaAUb4EqQrcdg4L6oRO1joUUOkFKfOFtc6_NrOlV7W-oh9vJf-M1BpPCD3hZbkXoYIsMMAmoWOZqGfMosR-0QLqoniYkY1NDCcw2jU1PhUH8kqC8RBcsTerwpemru-1_XxtxWh_SjkO_xAMPHuAqqJ6LNWJHcXFqRjNOg1MW4hTs4rnD4IVvWoAvSkmeYZ4u7t59DEDnuJD49FmrtsbX57594hkJq3e8Fn_gLVJxZ9
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9aX3yR-lE8rRLEj4eyuJvdJBvf6nFrET8KntgHIeSzCPW23F7_f2eyubOLKPiaHQKZzEx-mc38hpDnrmLOmyYWqvYSLigmFKpVvihd5X3VWicbrB3--EmcfG3en_GznHDDWpiRH2KXcEPPSPEaHdzYIZMNIEcm3NrZokN-FcFvkltYXYvc-aw53eVYSgX2nMg-ATe0RcOkzG_fYYrX1yeYnEqJvP_PED2Fr-n86fbJnQwc6fG403fJjbC6Rw4Wv-vU4GN21OE--Q7bT7-ltCftI4VQRpGcic4BdL-hpz16wkWgyE217Xg10E1PMY6MbUZpt-5_0m0fBTCzH45-SZn-4QFZdovl_KTIjRQKAw5ZFrxVkWGZNDcGHJYLVxrGY4u9wspgvXAKUIlTcNkqI4_OVgDLTGWdqWsP5_kB2Vv1q_CQUNuqUvgaMJaoG8-d4bFxMjQwbELkYkaOtnrULpOMY6-LC51-djOlr2t9Rl7spC9Hco2_yL3FLdnJICV2GujX5zp7mOYmSudkZYKDW5jlNvAWlibqGGsJcX1GXuKGaiS9WOGrGjdmZjRoav5ZH0tRJSohOSPPpoLn5moYdPvuw0ToVRaKPSzQmVzNAGpCQq2J5OHWgnSOD4NGDi5AzkzA56NkVf9UgF50S1YBEn_0X9KPyW0Yz-8zD8neZn0VngCG2tinyVF-Aaq3DwI
  priority: 102
  providerName: Wiley-Blackwell
Title The Weight of New York City: Possible Contributions to Subsidence From Anthropogenic Sources
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022EF003465
https://www.proquest.com/docview/2818932267
https://doaj.org/article/5af7cc71aec548b5be58bd663ff37153
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoKyQuCAoVC2VlIR4HFJE4cRxzQe0qaYWgrGARPSBZjh9VpbIpm-2Bf8-M19l2hejVmUTKeGY8M7a_j5CXJmPG6sInMrcCChTtEllJm6QmszarWiMKvDv8-aQ8_l58POWnseHWx2OVQ0wMgdp2Bnvk7xC1CHINVooPl78TZI3C3dVIobFFdiAEV1B87RzWJ9Ov6y5LKsGiuYgn3lMmsdhndYOwLLie3FiLAmT_v4F5M2kNq07zgNyP6SI9WM3vQ3LHzXfJXn19Ow0eRvfsd8ndo8DT--cR-QnTT3-EtiftPIVQRhGciU4g6X5Ppx16woWjiE01MF71dNlRjCMrmlHaLLpfdOBRADM7N_Rb6PT3j8msqWeT4yQSKSQaHDJNeCU9w2vSXGtwWF6aVDPuK-QKS11rSyMhKzESiq3Uc2_aDNIynbVG57mF9XyPbM-7uXtCaFvJtLQ55FhlXlhuNPeFEa6AYe08L0fk7aBRZSLIOHJdXKiw2c2kuqn_EXm1lr5cgWv8R-4QJ2ctg5DYYaBbnKnoYYprL4wRmXYGqrCWt45X8Gtl7n0uIK6PyGucWoWgF3M8VWNWnRkFmpp8UQeizAKUkBiRF5uCZ_qq71V19GlD6E0U8h38oNHxNgOoCQG1NiT3B1tSMT706tqaQWPBvm5VgKqbGcsgE396-8eekXvwWjyQuU-2l4sr9xySpmU7JlusmI6jf4xD6-Ev8RcTQg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB7KFtEX0WpxbdVBrD5IMLfJJIJIuybd2u1adIt9EIbJXEqhbupmi_RH-R89J5lsu4h962tyCOTMuc7M-T5CXqkgVFrG1ssizaFBkcbL0kx7vgq0DtJS8Rhnhw_GyfAo_nzMjlfIn24WBq9VdjGxCdS6UrhH_g5Ri6DWCBP-8fyXh6xReLraUWi0ZrFvLn9Dy1Z_2PsE67sVhkU-GQw9xyrgSbBO32NpZkOcGWZSgvWyRPkyZDZF4izflDpRGaRolUHn4VtmVRlAjSKDUsko0imSREDEX40j6GR6ZHUnHx9-XWzq-Bk4EOPugr0fZri3EOYFosBg-rqW-hqGgH_zwHKN3CS54gG576pTut2a00OyYqZrZD2_GoaDly4a1Gvkzm5DC3z5iPwAa6Pfm11WWlkKkZMiFhQdQI3_nh5W6HhnhiIUVkewVdN5RTFstaymtJhVP2lH2wBWfarot-ZgoX5MJreh4XXSm1ZT84TQMs38REdQ0iVRrJmSzMaKmxgeS2NZ0idvO40K5TDNkVrjTDRn62Emruu_T7YW0uctlsd_5HZwcRYyiMDdPKhmJ8I5tGDScqV4II2Cpq9kpWEp_FoSWRtxSCN98hqXViDGxhQv8ah2I0iApgZfxDZPgga5iPfJy2XBE3lR1yLdHS0JvXFCtoIfVNINT4CaEL9rSXKzsyXhwlEtrpwHNNbY140KEHkxCQMo_J_e_LEX5O5wcjASo73x_ga5B59wd0E3SW8-uzDPoF6bl8-dl1Aibtkv_wLuJ0xr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA5li-KLaLW4WjWI1QcZOrdMJoJIu91pa-u66Ip9EEImkxSh7tSdLdKf5r_znExm20XsW19nDgNzcq5JzvcR8lJHsa5UagORVBwaFGUCkYsqCHVUVVFeap7i7PDHUbb_Nf1wzI5XyJ9uFgavVXYx0QXqqta4R76FqEVQa8QZ37L-WsR4t3h_9itABik8ae3oNFoTOTQXv6F9a94d7MJab8ZxMZwM9gPPMBAosNQwYLmwMc4PM6XAklmmQxUzmyOJVmjKKtMC0rUW0IWEllldRlCvqKjUKkmqHAkjIPqvcmiKwh5Z3RmOxp8XGzyhAGdi3F-2D2OB-wzxsEBEGExlV9KgYwv4Nycs18su4RX3yF1fqdLt1rTukxUzXSPrw8vBOHjpI0OzRm7tOYrgiwfkO1ge_eZ2XGltKURRirhQdAD1_ls6rtEJTw1FWKyObKuh85piCGsZTmkxq3_SjsIBLPyHpl_cIUPzkExuQsPrpDetp-YRoWUuwqxKoLzLkrRiWjGbam5SeKyMZVmfvOk0KrXHN0eajVPpztljIa_qv082F9JnLa7Hf-R2cHEWMojG7R7UsxPpnVsyZbnWPFJGQwNYstKwHH4tS6xNOKSUPnmFSysRb2OKlqvbTSEJmhp8kts8ixyKEe-TF8uCJ-q8aWS-d7Qk9NoL2Rp-UCs_SAFqQiyvJcmNzpakD02NvHQk0Jizr2sVIIfFJI6gCXh8_ceek9vgj_LoYHT4hNyBL_hroRukN5-dm6dQus3LZ95JKJE37JZ_AbvqUKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Weight+of+New+York+City%3A+Possible+Contributions+to+Subsidence+From+Anthropogenic+Sources&rft.jtitle=Earth%27s+future&rft.au=Parsons%2C+Tom&rft.au=Wu%2C+Pei-Chin&rft.au=Wei%2C+Meng+%28Matt%29&rft.au=D%27+Hondt%2C+Steven&rft.date=2023-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2328-4277&rft.eissn=2328-4277&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1029%2F2022EF003465&rft.externalDocID=A761170607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon