Feldspar minerals as efficient deposition ice nuclei

Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively exam...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 13; no. 22; pp. 11175 - 11185
Main Authors Yakobi-Hancock, J. D, Ladino, L. A, Abbatt, J. P. D
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 18.11.2013
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at −40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.
AbstractList Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi ) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi ) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.
Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RH.sub.i) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RH.sub.i) 126.3 ± 3.4%) and ATD (RH.sub.i 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RH.sub.i values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.
Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at −40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.
Audience Academic
Author Abbatt, J. P. D
Ladino, L. A
Yakobi-Hancock, J. D
Author_xml – sequence: 1
  fullname: Yakobi-Hancock, J. D
– sequence: 2
  fullname: Ladino, L. A
– sequence: 3
  fullname: Abbatt, J. P. D
BookMark eNptkU9rHDEMxU1JoUmaD9DbQE89TGr5z3jmGELTLgQKbXM2GltevOyOp_YstN8-3mxJuhB0kBA_PZ54F-xsShMx9gH4tYZBfUY3tyBbADC6FRzkG3YOXc9bI4U6-29-xy5K2XAuNAd1ztQdbX2ZMTe7OFHGbWmwNBRCdJGmpfE0pxKXmKYmOmqmvdtSfM_ehkrS1b9-yR7uvvy6_dbef_-6ur25b1EbsVQbUvtAI-HgODc6BOKi06NQRuDghULN3RA8116M2ms_4gDaAaeOHwZ5yVZHXZ9wY-ccd5j_2oTRPi1SXlvMS6yWrBGm50Z6GYxSCiT2nqCnrhcEozdYtT4eteacfu-pLHaT9nmq9i2ojmsthDQv1BqraJxCWjK6XSzO3qgeFFcVq9T1K1QtT7voajAh1v3JwaeTg8os9GdZ474Uu_r545SFI-tyKiVTeH4cuD1kbWvWFqR9ytoespaPffSaJw
CitedBy_id crossref_primary_10_1016_j_atmosenv_2017_10_027
crossref_primary_10_5194_acp_16_9067_2016
crossref_primary_10_1016_j_atmosenv_2016_02_028
crossref_primary_10_1016_j_scitotenv_2022_160708
crossref_primary_10_5194_acp_16_13911_2016
crossref_primary_10_1063_1_5094645
crossref_primary_10_1175_AMSMONOGRAPHS_D_16_0006_1
crossref_primary_10_1175_JAS_D_15_0236_1
crossref_primary_10_1051_e3sconf_20199903001
crossref_primary_10_5194_acp_15_4161_2015
crossref_primary_10_5194_acp_24_7731_2024
crossref_primary_10_1021_jp509839x
crossref_primary_10_1021_acsearthspacechem_9b00004
crossref_primary_10_1021_acs_jpclett_5b01326
crossref_primary_10_1029_2018JE005758
crossref_primary_10_5194_acp_17_7827_2017
crossref_primary_10_1039_C9NR08729J
crossref_primary_10_1021_acs_jpca_8b12258
crossref_primary_10_3390_atmos11030269
crossref_primary_10_1002_2014JD022637
crossref_primary_10_5194_acp_16_10927_2016
crossref_primary_10_5194_amt_10_4639_2017
crossref_primary_10_5194_acp_16_11367_2016
crossref_primary_10_1039_C7CP04898J
crossref_primary_10_5194_acp_18_13987_2018
crossref_primary_10_1021_jp507875q
crossref_primary_10_1039_D1EA00071C
crossref_primary_10_5194_acp_15_11593_2015
crossref_primary_10_5194_acp_15_7523_2015
crossref_primary_10_1021_acsearthspacechem_2c00370
crossref_primary_10_1098_rsif_2022_0682
crossref_primary_10_1126_science_aai8034
crossref_primary_10_5194_acp_19_10901_2019
crossref_primary_10_1021_acs_jpclett_3c03235
crossref_primary_10_1002_2014JD021578
crossref_primary_10_5194_acp_19_5451_2019
crossref_primary_10_1073_pnas_2022859118
crossref_primary_10_5194_tc_15_5717_2021
crossref_primary_10_5194_acp_16_11477_2016
crossref_primary_10_1021_acsearthspacechem_9b00304
crossref_primary_10_1016_j_aeolia_2021_100729
crossref_primary_10_5194_acp_15_12547_2015
crossref_primary_10_1021_cr500487s
crossref_primary_10_1073_pnas_1617717114
crossref_primary_10_1063_5_0202573
crossref_primary_10_1038_nature14986
crossref_primary_10_5194_acp_15_12741_2015
crossref_primary_10_5194_amt_13_2785_2020
crossref_primary_10_1080_00268976_2024_2315308
crossref_primary_10_1039_D3FD00100H
crossref_primary_10_1002_smtd_202300407
crossref_primary_10_3390_atmos9070238
crossref_primary_10_5194_acp_17_15199_2017
crossref_primary_10_1039_D3NR05585J
crossref_primary_10_5194_acp_15_3703_2015
crossref_primary_10_1021_acs_jpcc_6b01155
crossref_primary_10_1002_2014JD021567
crossref_primary_10_1016_j_grj_2015_06_002
crossref_primary_10_1002_2014GL061317
crossref_primary_10_2151_jmsj_2019_032
crossref_primary_10_5194_acp_21_3491_2021
crossref_primary_10_5194_acp_19_1059_2019
crossref_primary_10_1021_acs_jpcc_9b05845
crossref_primary_10_1002_2015GL063270
crossref_primary_10_1038_s41570_022_00407_4
crossref_primary_10_5194_acp_17_11683_2017
crossref_primary_10_1175_JAS_D_15_0057_1
crossref_primary_10_5194_acp_16_4063_2016
crossref_primary_10_1126_science_aam5320
Cites_doi 10.5194/acp-12-1189-2012
10.5194/acp-12-9817-2012
10.1086/622737
10.1029/2007JD008606
10.1098/rspa.1929.0195
10.1175/1520-0469(1971)028<0391:NIFNIS>2.0.CO;2
10.5194/acp-6-3315-2006
10.1346/CCMN.1998.0460307
10.5194/acp-6-3007-2006
10.1175/1520-0450(1968)007<0241:TPOPIN>2.0.CO;2
10.1029/2008JD010655
10.1175/1520-0469(1961)018<0139:SCATIO>2.0.CO;2
10.1002/qj.49709439904
10.5194/acp-10-8649-2010
10.1016/S1352-2310(99)00526-9
10.1016/0021-8502(76)90053-7
10.1038/35020537
10.1080/02786820902889861
10.1175/1520-0450(1970)009<0468:LMIUAA>2.0.CO;2
10.1029/2012JE004238
10.1038/213058a0
10.1080/02786820500444853
10.1016/0021-8502(85)90009-6
10.1016/S1093-0191(02)00140-5
10.1175/1520-0469(1963)020<0149:NOIOLI>2.0.CO;2
10.1073/pnas.0910818107
10.1175/JAS3662.1
10.1016/S0883-2927(01)00065-8
10.1063/1.1697813
10.1021/cr60289a004
10.1063/1.1744540
10.1126/science.1064034
10.1126/science.154.3756.1555-a
10.5194/acp-12-287-2012
10.1126/science.1234145
10.5194/acp-9-6705-2009
10.1524/zkri.1971.133.133.43
10.1029/RG014i001p00037
10.1016/0021-8502(91)90089-Z
10.1016/0004-6981(75)90106-7
10.1016/0021-8502(76)90002-1
10.1038/nature12278
10.1016/S1465-9972(00)00002-7
10.1029/2001GL014289
10.5194/acp-5-2617-2005
10.1038/nature06594
10.1175/1520-0469(1954)011<0417:SALKAI>2.0.CO;2
10.1029/2005JD006766
10.1256/qj.04.94
10.5194/acp-10-11955-2010
10.1029/2007JD008413
10.1016/j.icarus.2008.05.004
10.1126/science.1129726
10.1016/S0892-6875(02)00368-0
10.2151/jmsj1923.38.5_213
10.1029/2010JE003699
10.1016/S0016-7037(00)00455-5
10.1175/1520-0469(1974)031<1459:R>2.0.CO;2
10.1029/2004JD005073
10.1007/s12665-011-1445-6
10.1016/S0378-3820(99)00073-9
10.1029/2003GL018567
10.5194/acp-12-1121-2012
ContentType Journal Article
Copyright COPYRIGHT 2013 Copernicus GmbH
Copyright Copernicus GmbH 2013
Copyright_xml – notice: COPYRIGHT 2013 Copernicus GmbH
– notice: Copyright Copernicus GmbH 2013
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/acp-13-11175-2013
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Agriculture & Environmental Science Database
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
ProQuest Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 11185
ExternalDocumentID oai_doaj_org_article_7278073d3f744413a8de18e682e1bd7a
3134308181
A481404223
10_5194_acp_13_11175_2013
GroupedDBID 23N
2WC
3V.
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
IPNFZ
ISR
ITC
K6-
KQ8
M~E
OK1
P2P
P62
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-a572t-2035dfebea9c0075ffe0265b2472a9d24a50c9fd05d2b5d5dba915c10e60915c3
IEDL.DBID 8FG
ISSN 1680-7324
1680-7316
IngestDate Tue Oct 22 15:14:36 EDT 2024
Thu Oct 10 16:38:30 EDT 2024
Thu Feb 22 23:43:00 EST 2024
Tue Nov 12 22:56:49 EST 2024
Thu Aug 01 20:11:34 EDT 2024
Fri Aug 23 01:38:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a572t-2035dfebea9c0075ffe0265b2472a9d24a50c9fd05d2b5d5dba915c10e60915c3
ORCID 0000-0002-3372-334X
OpenAccessLink https://www.proquest.com/docview/1460552237?pq-origsite=%requestingapplication%
PQID 1460552237
PQPubID 105744
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_7278073d3f744413a8de18e682e1bd7a
proquest_journals_1460552237
gale_infotracmisc_A481404223
gale_infotracacademiconefile_A481404223
gale_incontextgauss_ISR_A481404223
crossref_primary_10_5194_acp_13_11175_2013
PublicationCentury 2000
PublicationDate 2013-11-18
PublicationDateYYYYMMDD 2013-11-18
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-18
  day: 18
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2013
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref67
  doi: 10.5194/acp-12-1189-2012
– ident: ref23
  doi: 10.5194/acp-12-9817-2012
– ident: ref66
– ident: ref12
  doi: 10.1086/622737
– ident: ref20
– ident: ref26
  doi: 10.1029/2007JD008606
– ident: ref8
  doi: 10.1098/rspa.1929.0195
– ident: ref52
  doi: 10.1175/1520-0469(1971)028<0391:NIFNIS>2.0.CO;2
– ident: ref36
  doi: 10.5194/acp-6-3315-2006
– ident: ref21
  doi: 10.1346/CCMN.1998.0460307
– ident: ref9
– ident: ref39
  doi: 10.5194/acp-6-3007-2006
– ident: ref41
  doi: 10.1175/1520-0450(1968)007<0241:TPOPIN>2.0.CO;2
– ident: ref70
  doi: 10.1029/2008JD010655
– ident: ref13
– ident: ref32
  doi: 10.1175/1520-0469(1961)018<0139:SCATIO>2.0.CO;2
– ident: ref51
  doi: 10.1002/qj.49709439904
– ident: ref68
  doi: 10.5194/acp-10-8649-2010
– ident: ref2
  doi: 10.1016/S1352-2310(99)00526-9
– ident: ref54
  doi: 10.1016/0021-8502(76)90053-7
– ident: ref31
  doi: 10.1038/35020537
– ident: ref28
  doi: 10.1080/02786820902889861
– ident: ref44
  doi: 10.1175/1520-0450(1970)009<0468:LMIUAA>2.0.CO;2
– ident: ref33
  doi: 10.1029/2012JE004238
– ident: ref40
  doi: 10.1038/213058a0
– ident: ref56
  doi: 10.1080/02786820500444853
– ident: ref63
  doi: 10.1016/0021-8502(85)90009-6
– ident: ref11
  doi: 10.1016/S1093-0191(02)00140-5
– ident: ref22
  doi: 10.1175/1520-0469(1963)020<0149:NOIOLI>2.0.CO;2
– ident: ref15
  doi: 10.1073/pnas.0910818107
– ident: ref37
  doi: 10.1175/JAS3662.1
– ident: ref35
  doi: 10.1016/S0883-2927(01)00065-8
– ident: ref64
  doi: 10.1063/1.1697813
– ident: ref62
  doi: 10.1021/cr60289a004
– ident: ref19
  doi: 10.1063/1.1744540
– ident: ref49
  doi: 10.1126/science.1064034
– ident: ref58
  doi: 10.1126/science.154.3756.1555-a
– ident: ref10
  doi: 10.5194/acp-12-287-2012
– ident: ref14
  doi: 10.1126/science.1234145
– ident: ref65
  doi: 10.5194/acp-9-6705-2009
– ident: ref47
  doi: 10.1524/zkri.1971.133.133.43
– ident: ref43
  doi: 10.1029/RG014i001p00037
– ident: ref48
– ident: ref7
  doi: 10.1016/0021-8502(91)90089-Z
– ident: ref50
  doi: 10.1016/0004-6981(75)90106-7
– ident: ref53
  doi: 10.1016/0021-8502(76)90002-1
– ident: ref4
  doi: 10.1038/nature12278
– ident: ref17
  doi: 10.1016/S1465-9972(00)00002-7
– ident: ref71
  doi: 10.1029/2001GL014289
– ident: ref3
  doi: 10.5194/acp-5-2617-2005
– ident: ref6
  doi: 10.1038/nature06594
– ident: ref57
  doi: 10.1175/1520-0469(1954)011<0417:SALKAI>2.0.CO;2
– ident: ref38
– ident: ref27
  doi: 10.1029/2005JD006766
– ident: ref42
  doi: 10.1256/qj.04.94
– ident: ref59
– ident: ref29
  doi: 10.5194/acp-10-11955-2010
– ident: ref30
  doi: 10.1029/2007JD008413
– ident: ref45
  doi: 10.1016/j.icarus.2008.05.004
– ident: ref1
  doi: 10.1126/science.1129726
– ident: ref24
  doi: 10.1016/S0892-6875(02)00368-0
– ident: ref25
  doi: 10.2151/jmsj1923.38.5_213
– ident: ref46
  doi: 10.1029/2010JE003699
– ident: ref18
– ident: ref16
  doi: 10.1016/S0016-7037(00)00455-5
– ident: ref55
  doi: 10.1175/1520-0469(1974)031<1459:R>2.0.CO;2
– ident: ref60
  doi: 10.1029/2004JD005073
– ident: ref5
  doi: 10.1007/s12665-011-1445-6
– ident: ref61
  doi: 10.1016/S0378-3820(99)00073-9
– ident: ref34
  doi: 10.1029/2003GL018567
– ident: ref69
  doi: 10.5194/acp-12-1121-2012
SSID ssj0025014
Score 2.4165363
Snippet Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 11175
SubjectTerms Clay
Clay minerals
Cloud seeding
Rankings
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhp15Cv0KdpkWU0kDBRLIkSz6moUtaSA9JA7mJsT7KQuoN683_z4zsLd1D6KU32Z6D9EbSm7GkJ8Y-GgHOtcrWvQi21jFILBlVJyH6kBUyQktnhy9_tBc3-vutuf3rqi_aEzbJA0_AnSK_OuyGUWWrkboVuJikS61rkuyjnUIj0W2TqTnVotUySrVaJ2q6m2laz8RoRZ9CuK-lqiVpVGIfkWqHkYpw_1PTc-GcxXN2MAeL_Gyq5Au2l4aXrLrEOHe1Lr_D-Sd-frfEoLM8vWJ6ke4izhFr_ntZ5KRHDiNPRSYC2YXHtN2kxXGC4AOJGS9fs5vF15_nF_V8L0INxjYbrLQyMSP60AWi_JwTZlKmb7RtoIuNBiNCl6MwselNNLGHTpogRWoFFdQh2x9WQ3rDuAWwGjptAOHNresDslNGQFMwDrSp2OctNv5-kr_wmDYQkB6B9FL5AqQnICv2hdD7Y0jK1eUF-tPP_vT_8mfFPhD2nrQpBtr88gsextF_u77yZ5rkuTQGNBU7mY3yarOGAPNZAmwUyVntWB7vWOLgCbufty728-AdKRsSBuNSZY_-R4vesmeEDh1glO6Y7W_WD-kdRjKb_n3ptI-bter4
  priority: 102
  providerName: Directory of Open Access Journals
Title Feldspar minerals as efficient deposition ice nuclei
URI https://www.proquest.com/docview/1460552237
https://doaj.org/article/7278073d3f744413a8de18e682e1bd7a
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBUEAEysqqEEhIUePYjp0TaqumBWkrKFT0Zjl-VCuVZEm2_58Zb7ZoD_QUJxkp8Xg8D4_9DSHvZWG1rrjK28KpXHjHoCV5HoqidZGDRajw7PD8ojq_El-v5fW04DZO2yo3OjEpat87XCM_ZJjAA2eBq8_LPzlWjcLs6lRC4zHZZaVSGHzp5uw-4MKcGQZclS5yrNC0zmqCzyIOrVvmjOcMkSpBUhjfsksJvv9_SjpZnuYZeTq5jPRoPcbPyaPQ7ZFsDt5uP6RFcfqBntwuwPVMdy-IaMKtB00x0N-LBCo9UjvSkMAiwMZQHzZbtSioCdohpPHiJblqTn-enOdTdYTcSlWu4Ke59BHGwNYODX-MAeIp2ZZClbb2pbCycHX0hfRlK730ra2ZdKwIVYEN_orsdH0XXhOqrFXC1kLaqESsdOvARkUIBoOT2gqZkU8b3pjlGgTDQPCAjDTASMO4SYw0yMiMHCP37gkRvzo96IcbM00HA16TBuXiOXwQHDJutQ9Mh0qXgbVe2YwcIO8NIlR0uAXmxt6No_ny49IcCQTpEiAJGfk4EcV-NVhnpxMF0CkEtdqi3N-ihCnktl9vhthMU3g0_wTuzcOv35In2G88oMj0PtlZDXfhHXgqq3aWxHFGdo9PL75d4rWZf_81S3H_XyIX5zI
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAFlZcIFLAQAgkpahzbsXNCbdXVFrorVFqpN8uxnWqlNlmS7f_vjNdbtAe4JfFIST6P5-HHN4R8loXVuuIqbwqncuEdgyvJ81AUjWs5eIQKzw7P5tX0Uvy4kldpwm1M2yo3NjEaat87nCM_YLiAB8ECV9-Xf3KsGoWrq6mExmOyi1RVkHztHp3Mf50_pFy4aoYpV6WLHGs0rdc1IWoRB9Ytc8ZzhlyVoCuMb3mmSOD_LzMdfc9kjzxLQSM9XPfyc_IodC9INoN4tx_itDj9Qo9vFhB8xruXREzCjQdbMdDbRaSVHqkdaYh0EeBlqA-bzVoUDAXtkNR48YpcTk4ujqd5qo-QW6nKFXw0l76FXrC1Q9fftgEyKtmUQpW29qWwsnB16wvpy0Z66RtbM-lYEaoCL_hrstP1XXhDqLJWCVsLaVsl2ko3DrxUC-lgcFJbITPybYONWa5pMAykDwikASAN4yYCaRDIjBwheg-CyGAdH_TDtUkDwkDcpMG8eA4vhJCMW-0D06HSZWCNVzYjnxB7gxwVHW6CubZ342hOf5-bQ4E0XQJ0ISNfk1DbrwbrbDpTAD-FtFZbkvtbkjCI3HbzpotNGsSj-atyb__f_JE8mV7MzszZ6fznO_IUMcDjikzvk53VcBfeQ9yyaj4k5bwHI3znVA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbtBkovpU_qJm1FKS0UzFqWZMmnkqRZkrZZQtpAbkLWIywk9sbe_P_OeLUpe2hvtiWwPRrNfKORviHkoyys1hVXeVM4lQvvGFxJnoeiaFzk4BEqPDt8Oq-OL8T3S3mZ9j8NaVvlxiaOhtp3DtfIpwwTeAAWuJrGtC3i7Nvs6_I2xwpSmGlN5TQekh0lKl5MyM7B0fzs_D78wgwahl-VLnKs17TOcQKCEVPrljnjOUPeStAbxre81Ejm_y-TPfqh2VPyJAFIur8e8WfkQWifk-wUsG_Xj0vk9BM9vF4AEB3vXhAxC9ce7EZPbxYjxfRA7UDDSB0BHof6sNm4RcFo0BYJjhcvycXs6PfhcZ5qJeRWqnIFH82ljzAitnYIA2IMEF3JphSqtLUvhZWFq6MvpC8b6aVvbM2kY0WoCrzgr8ik7drwmlBlrRK2FtJGJWKlGwceK0JoGJzUVsiMfNnIxizXlBgGQgkUpAFBGsbNKEiDgszIAUrvviOyWY8Puv7KpMlhAENpMDWewwsBnnGrfWA6VLoMrPHKZuQDyt4gX0WLI39l74bBnPw6N_sCKbsE6EVGPqdOsVv11tl0vgB-CimutnrubfWECeW2mzdDbNKEHsxf9Xvz_-b35BHopfl5Mv-xSx6jCPDkItN7ZLLq78JbgDCr5l3SzT8T--uC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feldspar+minerals+as+efficient+deposition+ice+nuclei&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Yakobi-Hancock%2C+J+D&rft.au=Ladino%2C+L+A&rft.au=Abbatt%2C+J+P.+D&rft.date=2013-11-18&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=13&rft.issue=22&rft.spage=11175&rft_id=info:doi/10.5194%2Facp-13-11175-2013&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3134308181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon