Feldspar minerals as efficient deposition ice nuclei
Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively exam...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 13; no. 22; pp. 11175 - 11185 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
18.11.2013
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at −40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals. |
---|---|
AbstractList | Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi ) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi ) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals. Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RH.sub.i) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RH.sub.i) 126.3 ± 3.4%) and ATD (RH.sub.i 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RH.sub.i values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals. Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at −40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals. |
Audience | Academic |
Author | Abbatt, J. P. D Ladino, L. A Yakobi-Hancock, J. D |
Author_xml | – sequence: 1 fullname: Yakobi-Hancock, J. D – sequence: 2 fullname: Ladino, L. A – sequence: 3 fullname: Abbatt, J. P. D |
BookMark | eNptkU9rHDEMxU1JoUmaD9DbQE89TGr5z3jmGELTLgQKbXM2GltevOyOp_YstN8-3mxJuhB0kBA_PZ54F-xsShMx9gH4tYZBfUY3tyBbADC6FRzkG3YOXc9bI4U6-29-xy5K2XAuNAd1ztQdbX2ZMTe7OFHGbWmwNBRCdJGmpfE0pxKXmKYmOmqmvdtSfM_ehkrS1b9-yR7uvvy6_dbef_-6ur25b1EbsVQbUvtAI-HgODc6BOKi06NQRuDghULN3RA8116M2ms_4gDaAaeOHwZ5yVZHXZ9wY-ccd5j_2oTRPi1SXlvMS6yWrBGm50Z6GYxSCiT2nqCnrhcEozdYtT4eteacfu-pLHaT9nmq9i2ojmsthDQv1BqraJxCWjK6XSzO3qgeFFcVq9T1K1QtT7voajAh1v3JwaeTg8os9GdZ474Uu_r545SFI-tyKiVTeH4cuD1kbWvWFqR9ytoespaPffSaJw |
CitedBy_id | crossref_primary_10_1016_j_atmosenv_2017_10_027 crossref_primary_10_5194_acp_16_9067_2016 crossref_primary_10_1016_j_atmosenv_2016_02_028 crossref_primary_10_1016_j_scitotenv_2022_160708 crossref_primary_10_5194_acp_16_13911_2016 crossref_primary_10_1063_1_5094645 crossref_primary_10_1175_AMSMONOGRAPHS_D_16_0006_1 crossref_primary_10_1175_JAS_D_15_0236_1 crossref_primary_10_1051_e3sconf_20199903001 crossref_primary_10_5194_acp_15_4161_2015 crossref_primary_10_5194_acp_24_7731_2024 crossref_primary_10_1021_jp509839x crossref_primary_10_1021_acsearthspacechem_9b00004 crossref_primary_10_1021_acs_jpclett_5b01326 crossref_primary_10_1029_2018JE005758 crossref_primary_10_5194_acp_17_7827_2017 crossref_primary_10_1039_C9NR08729J crossref_primary_10_1021_acs_jpca_8b12258 crossref_primary_10_3390_atmos11030269 crossref_primary_10_1002_2014JD022637 crossref_primary_10_5194_acp_16_10927_2016 crossref_primary_10_5194_amt_10_4639_2017 crossref_primary_10_5194_acp_16_11367_2016 crossref_primary_10_1039_C7CP04898J crossref_primary_10_5194_acp_18_13987_2018 crossref_primary_10_1021_jp507875q crossref_primary_10_1039_D1EA00071C crossref_primary_10_5194_acp_15_11593_2015 crossref_primary_10_5194_acp_15_7523_2015 crossref_primary_10_1021_acsearthspacechem_2c00370 crossref_primary_10_1098_rsif_2022_0682 crossref_primary_10_1126_science_aai8034 crossref_primary_10_5194_acp_19_10901_2019 crossref_primary_10_1021_acs_jpclett_3c03235 crossref_primary_10_1002_2014JD021578 crossref_primary_10_5194_acp_19_5451_2019 crossref_primary_10_1073_pnas_2022859118 crossref_primary_10_5194_tc_15_5717_2021 crossref_primary_10_5194_acp_16_11477_2016 crossref_primary_10_1021_acsearthspacechem_9b00304 crossref_primary_10_1016_j_aeolia_2021_100729 crossref_primary_10_5194_acp_15_12547_2015 crossref_primary_10_1021_cr500487s crossref_primary_10_1073_pnas_1617717114 crossref_primary_10_1063_5_0202573 crossref_primary_10_1038_nature14986 crossref_primary_10_5194_acp_15_12741_2015 crossref_primary_10_5194_amt_13_2785_2020 crossref_primary_10_1080_00268976_2024_2315308 crossref_primary_10_1039_D3FD00100H crossref_primary_10_1002_smtd_202300407 crossref_primary_10_3390_atmos9070238 crossref_primary_10_5194_acp_17_15199_2017 crossref_primary_10_1039_D3NR05585J crossref_primary_10_5194_acp_15_3703_2015 crossref_primary_10_1021_acs_jpcc_6b01155 crossref_primary_10_1002_2014JD021567 crossref_primary_10_1016_j_grj_2015_06_002 crossref_primary_10_1002_2014GL061317 crossref_primary_10_2151_jmsj_2019_032 crossref_primary_10_5194_acp_21_3491_2021 crossref_primary_10_5194_acp_19_1059_2019 crossref_primary_10_1021_acs_jpcc_9b05845 crossref_primary_10_1002_2015GL063270 crossref_primary_10_1038_s41570_022_00407_4 crossref_primary_10_5194_acp_17_11683_2017 crossref_primary_10_1175_JAS_D_15_0057_1 crossref_primary_10_5194_acp_16_4063_2016 crossref_primary_10_1126_science_aam5320 |
Cites_doi | 10.5194/acp-12-1189-2012 10.5194/acp-12-9817-2012 10.1086/622737 10.1029/2007JD008606 10.1098/rspa.1929.0195 10.1175/1520-0469(1971)028<0391:NIFNIS>2.0.CO;2 10.5194/acp-6-3315-2006 10.1346/CCMN.1998.0460307 10.5194/acp-6-3007-2006 10.1175/1520-0450(1968)007<0241:TPOPIN>2.0.CO;2 10.1029/2008JD010655 10.1175/1520-0469(1961)018<0139:SCATIO>2.0.CO;2 10.1002/qj.49709439904 10.5194/acp-10-8649-2010 10.1016/S1352-2310(99)00526-9 10.1016/0021-8502(76)90053-7 10.1038/35020537 10.1080/02786820902889861 10.1175/1520-0450(1970)009<0468:LMIUAA>2.0.CO;2 10.1029/2012JE004238 10.1038/213058a0 10.1080/02786820500444853 10.1016/0021-8502(85)90009-6 10.1016/S1093-0191(02)00140-5 10.1175/1520-0469(1963)020<0149:NOIOLI>2.0.CO;2 10.1073/pnas.0910818107 10.1175/JAS3662.1 10.1016/S0883-2927(01)00065-8 10.1063/1.1697813 10.1021/cr60289a004 10.1063/1.1744540 10.1126/science.1064034 10.1126/science.154.3756.1555-a 10.5194/acp-12-287-2012 10.1126/science.1234145 10.5194/acp-9-6705-2009 10.1524/zkri.1971.133.133.43 10.1029/RG014i001p00037 10.1016/0021-8502(91)90089-Z 10.1016/0004-6981(75)90106-7 10.1016/0021-8502(76)90002-1 10.1038/nature12278 10.1016/S1465-9972(00)00002-7 10.1029/2001GL014289 10.5194/acp-5-2617-2005 10.1038/nature06594 10.1175/1520-0469(1954)011<0417:SALKAI>2.0.CO;2 10.1029/2005JD006766 10.1256/qj.04.94 10.5194/acp-10-11955-2010 10.1029/2007JD008413 10.1016/j.icarus.2008.05.004 10.1126/science.1129726 10.1016/S0892-6875(02)00368-0 10.2151/jmsj1923.38.5_213 10.1029/2010JE003699 10.1016/S0016-7037(00)00455-5 10.1175/1520-0469(1974)031<1459:R>2.0.CO;2 10.1029/2004JD005073 10.1007/s12665-011-1445-6 10.1016/S0378-3820(99)00073-9 10.1029/2003GL018567 10.5194/acp-12-1121-2012 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 Copernicus GmbH Copyright Copernicus GmbH 2013 |
Copyright_xml | – notice: COPYRIGHT 2013 Copernicus GmbH – notice: Copyright Copernicus GmbH 2013 |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.5194/acp-13-11175-2013 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Agriculture & Environmental Science Database ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database ProQuest Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1680-7324 |
EndPage | 11185 |
ExternalDocumentID | oai_doaj_org_article_7278073d3f744413a8de18e682e1bd7a 3134308181 A481404223 10_5194_acp_13_11175_2013 |
GroupedDBID | 23N 2WC 3V. 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BBORY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA IPNFZ ISR ITC K6- KQ8 M~E OK1 P2P P62 PATMY PCBAR PIMPY PQQKQ PROAC PYCSY Q2X RIG RKB RNS TR2 XSB ~02 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-a572t-2035dfebea9c0075ffe0265b2472a9d24a50c9fd05d2b5d5dba915c10e60915c3 |
IEDL.DBID | 8FG |
ISSN | 1680-7324 1680-7316 |
IngestDate | Tue Oct 22 15:14:36 EDT 2024 Thu Oct 10 16:38:30 EDT 2024 Thu Feb 22 23:43:00 EST 2024 Tue Nov 12 22:56:49 EST 2024 Thu Aug 01 20:11:34 EDT 2024 Fri Aug 23 01:38:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a572t-2035dfebea9c0075ffe0265b2472a9d24a50c9fd05d2b5d5dba915c10e60915c3 |
ORCID | 0000-0002-3372-334X |
OpenAccessLink | https://www.proquest.com/docview/1460552237?pq-origsite=%requestingapplication% |
PQID | 1460552237 |
PQPubID | 105744 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7278073d3f744413a8de18e682e1bd7a proquest_journals_1460552237 gale_infotracmisc_A481404223 gale_infotracacademiconefile_A481404223 gale_incontextgauss_ISR_A481404223 crossref_primary_10_5194_acp_13_11175_2013 |
PublicationCentury | 2000 |
PublicationDate | 2013-11-18 |
PublicationDateYYYYMMDD | 2013-11-18 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2013 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref67 doi: 10.5194/acp-12-1189-2012 – ident: ref23 doi: 10.5194/acp-12-9817-2012 – ident: ref66 – ident: ref12 doi: 10.1086/622737 – ident: ref20 – ident: ref26 doi: 10.1029/2007JD008606 – ident: ref8 doi: 10.1098/rspa.1929.0195 – ident: ref52 doi: 10.1175/1520-0469(1971)028<0391:NIFNIS>2.0.CO;2 – ident: ref36 doi: 10.5194/acp-6-3315-2006 – ident: ref21 doi: 10.1346/CCMN.1998.0460307 – ident: ref9 – ident: ref39 doi: 10.5194/acp-6-3007-2006 – ident: ref41 doi: 10.1175/1520-0450(1968)007<0241:TPOPIN>2.0.CO;2 – ident: ref70 doi: 10.1029/2008JD010655 – ident: ref13 – ident: ref32 doi: 10.1175/1520-0469(1961)018<0139:SCATIO>2.0.CO;2 – ident: ref51 doi: 10.1002/qj.49709439904 – ident: ref68 doi: 10.5194/acp-10-8649-2010 – ident: ref2 doi: 10.1016/S1352-2310(99)00526-9 – ident: ref54 doi: 10.1016/0021-8502(76)90053-7 – ident: ref31 doi: 10.1038/35020537 – ident: ref28 doi: 10.1080/02786820902889861 – ident: ref44 doi: 10.1175/1520-0450(1970)009<0468:LMIUAA>2.0.CO;2 – ident: ref33 doi: 10.1029/2012JE004238 – ident: ref40 doi: 10.1038/213058a0 – ident: ref56 doi: 10.1080/02786820500444853 – ident: ref63 doi: 10.1016/0021-8502(85)90009-6 – ident: ref11 doi: 10.1016/S1093-0191(02)00140-5 – ident: ref22 doi: 10.1175/1520-0469(1963)020<0149:NOIOLI>2.0.CO;2 – ident: ref15 doi: 10.1073/pnas.0910818107 – ident: ref37 doi: 10.1175/JAS3662.1 – ident: ref35 doi: 10.1016/S0883-2927(01)00065-8 – ident: ref64 doi: 10.1063/1.1697813 – ident: ref62 doi: 10.1021/cr60289a004 – ident: ref19 doi: 10.1063/1.1744540 – ident: ref49 doi: 10.1126/science.1064034 – ident: ref58 doi: 10.1126/science.154.3756.1555-a – ident: ref10 doi: 10.5194/acp-12-287-2012 – ident: ref14 doi: 10.1126/science.1234145 – ident: ref65 doi: 10.5194/acp-9-6705-2009 – ident: ref47 doi: 10.1524/zkri.1971.133.133.43 – ident: ref43 doi: 10.1029/RG014i001p00037 – ident: ref48 – ident: ref7 doi: 10.1016/0021-8502(91)90089-Z – ident: ref50 doi: 10.1016/0004-6981(75)90106-7 – ident: ref53 doi: 10.1016/0021-8502(76)90002-1 – ident: ref4 doi: 10.1038/nature12278 – ident: ref17 doi: 10.1016/S1465-9972(00)00002-7 – ident: ref71 doi: 10.1029/2001GL014289 – ident: ref3 doi: 10.5194/acp-5-2617-2005 – ident: ref6 doi: 10.1038/nature06594 – ident: ref57 doi: 10.1175/1520-0469(1954)011<0417:SALKAI>2.0.CO;2 – ident: ref38 – ident: ref27 doi: 10.1029/2005JD006766 – ident: ref42 doi: 10.1256/qj.04.94 – ident: ref59 – ident: ref29 doi: 10.5194/acp-10-11955-2010 – ident: ref30 doi: 10.1029/2007JD008413 – ident: ref45 doi: 10.1016/j.icarus.2008.05.004 – ident: ref1 doi: 10.1126/science.1129726 – ident: ref24 doi: 10.1016/S0892-6875(02)00368-0 – ident: ref25 doi: 10.2151/jmsj1923.38.5_213 – ident: ref46 doi: 10.1029/2010JE003699 – ident: ref18 – ident: ref16 doi: 10.1016/S0016-7037(00)00455-5 – ident: ref55 doi: 10.1175/1520-0469(1974)031<1459:R>2.0.CO;2 – ident: ref60 doi: 10.1029/2004JD005073 – ident: ref5 doi: 10.1007/s12665-011-1445-6 – ident: ref61 doi: 10.1016/S0378-3820(99)00073-9 – ident: ref34 doi: 10.1029/2003GL018567 – ident: ref69 doi: 10.5194/acp-12-1121-2012 |
SSID | ssj0025014 |
Score | 2.4165363 |
Snippet | Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 11175 |
SubjectTerms | Clay Clay minerals Cloud seeding Rankings |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhp15Cv0KdpkWU0kDBRLIkSz6moUtaSA9JA7mJsT7KQuoN683_z4zsLd1D6KU32Z6D9EbSm7GkJ8Y-GgHOtcrWvQi21jFILBlVJyH6kBUyQktnhy9_tBc3-vutuf3rqi_aEzbJA0_AnSK_OuyGUWWrkboVuJikS61rkuyjnUIj0W2TqTnVotUySrVaJ2q6m2laz8RoRZ9CuK-lqiVpVGIfkWqHkYpw_1PTc-GcxXN2MAeL_Gyq5Au2l4aXrLrEOHe1Lr_D-Sd-frfEoLM8vWJ6ke4izhFr_ntZ5KRHDiNPRSYC2YXHtN2kxXGC4AOJGS9fs5vF15_nF_V8L0INxjYbrLQyMSP60AWi_JwTZlKmb7RtoIuNBiNCl6MwselNNLGHTpogRWoFFdQh2x9WQ3rDuAWwGjptAOHNresDslNGQFMwDrSp2OctNv5-kr_wmDYQkB6B9FL5AqQnICv2hdD7Y0jK1eUF-tPP_vT_8mfFPhD2nrQpBtr88gsextF_u77yZ5rkuTQGNBU7mY3yarOGAPNZAmwUyVntWB7vWOLgCbufty728-AdKRsSBuNSZY_-R4vesmeEDh1glO6Y7W_WD-kdRjKb_n3ptI-bter4 priority: 102 providerName: Directory of Open Access Journals |
Title | Feldspar minerals as efficient deposition ice nuclei |
URI | https://www.proquest.com/docview/1460552237 https://doaj.org/article/7278073d3f744413a8de18e682e1bd7a |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBUEAEysqqEEhIUePYjp0TaqumBWkrKFT0Zjl-VCuVZEm2_58Zb7ZoD_QUJxkp8Xg8D4_9DSHvZWG1rrjK28KpXHjHoCV5HoqidZGDRajw7PD8ojq_El-v5fW04DZO2yo3OjEpat87XCM_ZJjAA2eBq8_LPzlWjcLs6lRC4zHZZaVSGHzp5uw-4MKcGQZclS5yrNC0zmqCzyIOrVvmjOcMkSpBUhjfsksJvv9_SjpZnuYZeTq5jPRoPcbPyaPQ7ZFsDt5uP6RFcfqBntwuwPVMdy-IaMKtB00x0N-LBCo9UjvSkMAiwMZQHzZbtSioCdohpPHiJblqTn-enOdTdYTcSlWu4Ke59BHGwNYODX-MAeIp2ZZClbb2pbCycHX0hfRlK730ra2ZdKwIVYEN_orsdH0XXhOqrFXC1kLaqESsdOvARkUIBoOT2gqZkU8b3pjlGgTDQPCAjDTASMO4SYw0yMiMHCP37gkRvzo96IcbM00HA16TBuXiOXwQHDJutQ9Mh0qXgbVe2YwcIO8NIlR0uAXmxt6No_ny49IcCQTpEiAJGfk4EcV-NVhnpxMF0CkEtdqi3N-ihCnktl9vhthMU3g0_wTuzcOv35In2G88oMj0PtlZDXfhHXgqq3aWxHFGdo9PL75d4rWZf_81S3H_XyIX5zI |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAFlZcIFLAQAgkpahzbsXNCbdXVFrorVFqpN8uxnWqlNlmS7f_vjNdbtAe4JfFIST6P5-HHN4R8loXVuuIqbwqncuEdgyvJ81AUjWs5eIQKzw7P5tX0Uvy4kldpwm1M2yo3NjEaat87nCM_YLiAB8ECV9-Xf3KsGoWrq6mExmOyi1RVkHztHp3Mf50_pFy4aoYpV6WLHGs0rdc1IWoRB9Ytc8ZzhlyVoCuMb3mmSOD_LzMdfc9kjzxLQSM9XPfyc_IodC9INoN4tx_itDj9Qo9vFhB8xruXREzCjQdbMdDbRaSVHqkdaYh0EeBlqA-bzVoUDAXtkNR48YpcTk4ujqd5qo-QW6nKFXw0l76FXrC1Q9fftgEyKtmUQpW29qWwsnB16wvpy0Z66RtbM-lYEaoCL_hrstP1XXhDqLJWCVsLaVsl2ko3DrxUC-lgcFJbITPybYONWa5pMAykDwikASAN4yYCaRDIjBwheg-CyGAdH_TDtUkDwkDcpMG8eA4vhJCMW-0D06HSZWCNVzYjnxB7gxwVHW6CubZ342hOf5-bQ4E0XQJ0ISNfk1DbrwbrbDpTAD-FtFZbkvtbkjCI3HbzpotNGsSj-atyb__f_JE8mV7MzszZ6fznO_IUMcDjikzvk53VcBfeQ9yyaj4k5bwHI3znVA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbtBkovpU_qJm1FKS0UzFqWZMmnkqRZkrZZQtpAbkLWIywk9sbe_P_OeLUpe2hvtiWwPRrNfKORviHkoyys1hVXeVM4lQvvGFxJnoeiaFzk4BEqPDt8Oq-OL8T3S3mZ9j8NaVvlxiaOhtp3DtfIpwwTeAAWuJrGtC3i7Nvs6_I2xwpSmGlN5TQekh0lKl5MyM7B0fzs_D78wgwahl-VLnKs17TOcQKCEVPrljnjOUPeStAbxre81Ejm_y-TPfqh2VPyJAFIur8e8WfkQWifk-wUsG_Xj0vk9BM9vF4AEB3vXhAxC9ce7EZPbxYjxfRA7UDDSB0BHof6sNm4RcFo0BYJjhcvycXs6PfhcZ5qJeRWqnIFH82ljzAitnYIA2IMEF3JphSqtLUvhZWFq6MvpC8b6aVvbM2kY0WoCrzgr8ik7drwmlBlrRK2FtJGJWKlGwceK0JoGJzUVsiMfNnIxizXlBgGQgkUpAFBGsbNKEiDgszIAUrvviOyWY8Puv7KpMlhAENpMDWewwsBnnGrfWA6VLoMrPHKZuQDyt4gX0WLI39l74bBnPw6N_sCKbsE6EVGPqdOsVv11tl0vgB-CimutnrubfWECeW2mzdDbNKEHsxf9Xvz_-b35BHopfl5Mv-xSx6jCPDkItN7ZLLq78JbgDCr5l3SzT8T--uC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feldspar+minerals+as+efficient+deposition+ice+nuclei&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Yakobi-Hancock%2C+J+D&rft.au=Ladino%2C+L+A&rft.au=Abbatt%2C+J+P.+D&rft.date=2013-11-18&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=13&rft.issue=22&rft.spage=11175&rft_id=info:doi/10.5194%2Facp-13-11175-2013&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3134308181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |