The naked planet Earth: Most essential pre-requisite for the origin and evolution of life

Our blue planet Earth has long been regarded to carry full of nutrients for hosting life since the birth of the planet. Here we speculate the processes that led to the birth of early life on Earth and its aftermath, finally leading to the evolution of metazoans. We evaluate: (1) the source of nutrie...

Full description

Saved in:
Bibliographic Details
Published inDi xue qian yuan. Vol. 4; no. 2; pp. 141 - 165
Main Authors Maruyama, S., Ikoma, M., Genda, H., Hirose, K., Yokoyama, T., Santosh, M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2013
Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan%Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan%School of Earth Sciences and Resources, China University of Geosciences(Beijing), 29 Xueyuan Road, Beijing 100083, China
Faculty of Science, Kochi University, Kochi 780-8520, Japan
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Our blue planet Earth has long been regarded to carry full of nutrients for hosting life since the birth of the planet. Here we speculate the processes that led to the birth of early life on Earth and its aftermath, finally leading to the evolution of metazoans. We evaluate: (1) the source of nutrients, (2) the chemistry of primordial ocean, (3) the initial mass of ocean, and (4) the size of planet. Among the life-building nutrients, phosphorus and potassium play a key role. Only three types of rocks can serve as an adequate source of nutrients: (a) continent-forming TTG (granite), enabling the evolution of primitive life to metazoans; (b) primordial continents carrying anorthosite with KREEP (Potassium, Rare Earth Elements, and Phosphorus) basalts, which is a key to bear life; (c) carbonatite magma, enriched in radiogenic elements such as U and Th, which can cause mutation to speed up evolution and promote the birth of new species in continental rift settings. The second important factor is ocean chemistry. The primordial ocean was extremely acidic (pH = 1–2) and enriched in halogens (Cl, F and others), S, N and metallic elements (Cd, Cu, Zn, and others), inhibiting the birth of life. Plate tectonics cleaned up these elements which interfered with RNA. Blue ocean finally appeared in the Phanerozoic with pH = 7 through extensive interaction with surface continental crust by weathering, erosion and transportation into ocean. The initial ocean mass was also important. The birth of life and aftermath of evolution was possible in the habitable zone with 3–5 km deep ocean which was able to supply sufficient nutrients. Without a huge landmass, nutrients cannot be supplied into the ocean only by ridge-hydrothermal circulation in the Hadean. Finally, the size of the planet plays a crucial role. Cooling of massive planets is less efficient than smaller ones, so that return-flow of seawater into mantle does not occur until central stars finish their main sequence. Due to the suitable size of Earth, the dawn of Phanerozoic witnessed the initiation of return-flow of seawater into the mantle, leading to the emergence of huge landmass above sea-level, and the distribution of nutrients on a global scale. Oxygen pump also played a critical role to keep high-PO2 in atmosphere since then, leading to the emergence of ozone layer and enabling animals and plants to invade the land. To satisfy the tight conditions to make the Earth habitable, the formation mechanism of primordial Earth is an important factor. At first, a ‘dry Earth’ must be made through giant impact, followed by magma ocean to float nutrient-enriched primordial continents (anorthosite + KREEP). Late bombardment from asteroid belt supplied water to make 3–5 km thick ocean, and not from icy meteorites from Kuiper belt beyond cool Jupiter. It was essential to meet the above conditions that enabled the Earth as a habitable planet with evolved life forms. The tight constraints that we evaluate for birth and evolution of life on Earth would provide important guidelines for planetary scientists hunting for life in the exo-solar planets. [Display omitted] ► Processes that led to the birth and evolution of early life on Earth evaluated. ► Source or nutrients, chemistry and initial mass of primordial ocean and size of rocky planet identified as critical. ► Guidelines for hunting life in the exo-solar planets proposed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-9871
DOI:10.1016/j.gsf.2012.11.001