Three Residues in HIV-1 Matrix Contribute to Protease Inhibitor Susceptibility and Replication Capacity
Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commerc...
Saved in:
Published in | Antimicrobial Agents and Chemotherapy Vol. 55; no. 3; pp. 1106 - 1113 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.03.2011
American Society for Microbiology (ASM) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classifications
Services
AAC
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
AAC
About
AAC
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
AAC
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0066-4804
Online ISSN:
1098-6596
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
AAC
.asm.org, visit:
AAC
|
---|---|
AbstractList | Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag, particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type (WT) matrix resulted in an increase in the replication capacity of the protease mutant virus to a level similar to that achieved by all the changes within the mutant matrix and part of the capsid protein. Pairs of changes to wild-type matrix led to an increased replication capacity of the protease mutant (although less than with all three changes). Having only these three changes to matrix in a wild-type virus (with wild-type protease) resulted in a 5- to 7-fold change in protease inhibitor 50% effective concentration (EC₅₀). Individual changes did not have as great an effect on replication capacity or drug susceptibility, demonstrating an interaction between these positions, also confirmed by sequence covariation analysis. Molecular modeling predicts that each of the three mutations would result in a loss of hydrogen bonds within α-helix-4 of matrix, leading to the hypothesis that more flexibility within this region or altered matrix structure would account for our findings. Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag, particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type (WT) matrix resulted in an increase in the replication capacity of the protease mutant virus to a level similar to that achieved by all the changes within the mutant matrix and part of the capsid protein. Pairs of changes to wild-type matrix led to an increased replication capacity of the protease mutant (although less than with all three changes). Having only these three changes to matrix in a wild-type virus (with wild-type protease) resulted in a 5- to 7-fold change in protease inhibitor 50% effective concentration (EC50). Individual changes did not have as great an effect on replication capacity or drug susceptibility, demonstrating an interaction between these positions, also confirmed by sequence covariation analysis. Molecular modeling predicts that each of the three mutations would result in a loss of hydrogen bonds within alpha -helix-4 of matrix, leading to the hypothesis that more flexibility within this region or altered matrix structure would account for our findings. Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2014 by the American Society for Microbiology. For an alternate route to AAC .asm.org, visit: AAC Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag, particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type (WT) matrix resulted in an increase in the replication capacity of the protease mutant virus to a level similar to that achieved by all the changes within the mutant matrix and part of the capsid protein. Pairs of changes to wild-type matrix led to an increased replication capacity of the protease mutant (although less than with all three changes). Having only these three changes to matrix in a wild-type virus (with wild-type protease) resulted in a 5- to 7-fold change in protease inhibitor 50% effective concentration (EC50). Individual changes did not have as great an effect on replication capacity or drug susceptibility, demonstrating an interaction between these positions, also confirmed by sequence covariation analysis. Molecular modeling predicts that each of the three mutations would result in a loss of hydrogen bonds within α-helix-4 of matrix, leading to the hypothesis that more flexibility within this region or altered matrix structure would account for our findings. Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag , particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type (WT) matrix resulted in an increase in the replication capacity of the protease mutant virus to a level similar to that achieved by all the changes within the mutant matrix and part of the capsid protein. Pairs of changes to wild-type matrix led to an increased replication capacity of the protease mutant (although less than with all three changes). Having only these three changes to matrix in a wild-type virus (with wild-type protease) resulted in a 5- to 7-fold change in protease inhibitor 50% effective concentration (EC 50 ). Individual changes did not have as great an effect on replication capacity or drug susceptibility, demonstrating an interaction between these positions, also confirmed by sequence covariation analysis. Molecular modeling predicts that each of the three mutations would result in a loss of hydrogen bonds within α-helix-4 of matrix, leading to the hypothesis that more flexibility within this region or altered matrix structure would account for our findings. |
Author | Patricia A. Cane Richard E. Myers Madhavi Kolli Deenan Pillay Celia Schiffer Chris M. Parry |
AuthorAffiliation | Centre for Infections, Health Protection Agency, 61 Colindale Avenue, London NW9 5EQ, United Kingdom, 1 UCL/MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, UCL, Windeyer Institute, 46 Cleveland Street, London W1T 4JF, United Kingdom, 2 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 3 |
AuthorAffiliation_xml | – name: Centre for Infections, Health Protection Agency, 61 Colindale Avenue, London NW9 5EQ, United Kingdom, 1 UCL/MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, UCL, Windeyer Institute, 46 Cleveland Street, London W1T 4JF, United Kingdom, 2 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 3 |
Author_xml | – sequence: 1 givenname: Chris M surname: PARRY fullname: PARRY, Chris M organization: UCL/MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, UCL, Windeyer Institute, 46 Cleveland Street, London W1T 4JF, United Kingdom – sequence: 2 givenname: Madhavi surname: KOLLI fullname: KOLLI, Madhavi organization: Centre for Infections, Health Protection Agency, 61 Colindale Avenue, London NW9 5EQ, United Kingdom – sequence: 3 givenname: Richard E surname: MYERS fullname: MYERS, Richard E organization: UCL/MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, UCL, Windeyer Institute, 46 Cleveland Street, London W1T 4JF, United Kingdom – sequence: 4 givenname: Patricia A surname: CANE fullname: CANE, Patricia A organization: UCL/MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, UCL, Windeyer Institute, 46 Cleveland Street, London W1T 4JF, United Kingdom – sequence: 5 givenname: Celia surname: SCHIFFER fullname: SCHIFFER, Celia organization: Centre for Infections, Health Protection Agency, 61 Colindale Avenue, London NW9 5EQ, United Kingdom – sequence: 6 givenname: Deenan surname: PILLAY fullname: PILLAY, Deenan organization: UCL/MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, UCL, Windeyer Institute, 46 Cleveland Street, London W1T 4JF, United Kingdom |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23919872$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21149628$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhi1URLeFG2dkDgghkWI7iR1fkFYR0JWKQFC4WhPH2bjK2qntAP33uOxS4MBpNJ5H7zsfPkFHzjuD0GNKzihlzSsAfUYoY01ByT20okQ2Ba8lP0IrQjgvqoZUx-gkxiuS81qSB-iYUVpJzpoV2l6OwRj8yUTbLyZi6_D55mtB8XtIwf7ArXc5dksyOHn8MfhkIBq8caPtbPIBf16iNnPK2WTTDQbXZ7F5shqS9Q63MIPOhYfo_gBTNI8O8RR9efvmsj0vLj6827TriwJqQVPRCUp4rzkVjMmeEqGpLGVHpex7qQEkl4JUnTad6HhO66rsOWG97PhQD40oT9Hrve68dDvTa5Pbh0nNwe4g3CgPVv1bcXZUW_9NlYRnb5YFnh8Egr_OG0lqZ_OE0wTO-CUqSQStOedNJl_uSR18jMEMdy6UqNvTqPW6Vb9Ok18y_mKPQ9wxdeWX4PIi_sc--XuKO-Hfd8vAswMAUcM0BHDaxj9cKalsxO00T_fcaLfjdxuMyu4qfxlV16rMzoSXPwFILLEY |
CODEN | AACHAX |
CitedBy_id | crossref_primary_10_1093_jac_dku365 crossref_primary_10_1099_jgv_0_000728 crossref_primary_10_1089_aid_2015_0138 crossref_primary_10_3390_microbiolres12040071 crossref_primary_10_3390_molecules24183243 crossref_primary_10_1186_1742_4690_9_63 crossref_primary_10_1093_jac_dkaa228 crossref_primary_10_1128_mbio_00269_22 crossref_primary_10_1186_1742_4690_10_161 crossref_primary_10_3390_v13102079 crossref_primary_10_1128_JVI_01211_12 crossref_primary_10_1002_cmdc_201200577 crossref_primary_10_1016_j_coviro_2012_08_006 crossref_primary_10_1097_QAI_0000000000000524 crossref_primary_10_1371_journal_pone_0137834 crossref_primary_10_3389_fmicb_2024_1388729 crossref_primary_10_1073_pnas_2122050119 crossref_primary_10_1093_jac_dku296 crossref_primary_10_1099_vir_0_055624_0 crossref_primary_10_1038_s41598_017_03260_4 crossref_primary_10_1093_jac_dkw493 crossref_primary_10_1371_journal_pcbi_1004249 crossref_primary_10_1021_bi4005232 crossref_primary_10_1016_j_antiviral_2013_01_007 crossref_primary_10_1089_aid_2014_0349 crossref_primary_10_1172_JCI67399 crossref_primary_10_1038_srep38153 crossref_primary_10_1073_pnas_1615342113 crossref_primary_10_1093_molbev_msx095 crossref_primary_10_1128_JCM_01636_12 crossref_primary_10_1128_AAC_02682_15 |
Cites_doi | 10.1074/jbc.M108005200 10.1128/AAC.00194-10 10.1128/jvi.70.12.8270-8276.1996 10.1128/JVI.00317-09 10.1128/jvi.70.6.3763-3769.1996 10.1073/pnas.93.7.3099 10.1371/journal.pcbi.0030087 10.1099/vir.0.2008/000349-0 10.1038/374569a0 10.1128/JVI.73.5.3744-3752.1999 10.1126/science.272.5259.263 10.1128/JVI.72.4.3300-3306.1998 10.1016/j.virol.2010.06.003 10.1371/journal.pmed.0040036 10.1097/QAD.0b013e3283398216 10.1099/0022-1317-77-3-419 10.1128/jvi.71.2.1089-1096.1997 10.1038/nm0796-760 10.1093/nar/22.22.4673 10.1128/JVI.78.21.12030-12040.2004 10.1371/journal.ppat.1000345 10.1074/jbc.M109.027144 10.1097/QAI.0b013e3181b4b18c 10.1097/00002030-199912030-00006 10.1128/JVI.02356-08 10.1111/j.1468-1293.2008.00636.x 10.1128/JVI.78.22.12446-12454.2004 10.1128/AAC.01643-08 10.1006/jmbi.1994.1719 10.1128/AAC.48.2.444-452.2004 10.1038/sj.gt.3301574 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright © 2011, American Society for Microbiology Copyright © 2011, American Society for Microbiology 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright © 2011, American Society for Microbiology – notice: Copyright © 2011, American Society for Microbiology 2011 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7T7 7U9 8FD C1K FR3 H94 P64 5PM |
DOI | 10.1128/aac.01228-10 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology Biology |
EISSN | 1098-6596 |
EndPage | 1113 |
ExternalDocumentID | 10_1128_AAC_01228_10 1228-10 21149628 23919872 aac_55_3_1106 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM064347 |
GroupedDBID | --- .55 .GJ 08R 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 AAPBV AAUGY ACGFO ADBBV AENEX AFMIJ AGNAY AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE HZ~ H~9 IQODW J5H K-O KQ8 L7B LSO MVM NEJ O9- OK1 P2P RHF RHI RNS RPM RSF TR2 UHB VH1 W2D W8F WH7 WHG WOQ X7M X7N XOL Y6R ZA5 ZGI ZXP ~A~ AGVNZ CGR CUY CVF ECM EIF NPM - 0R 55 A ABFLS ADACO BXI HZ AAYXX CITATION 7T7 7U9 8FD C1K FR3 H94 P64 5PM |
ID | FETCH-LOGICAL-a571t-b7106dc617229d107c1939b199dd9caa969704bceb7b6aa9543d602d9b6f5f873 |
IEDL.DBID | RPM |
ISSN | 0066-4804 |
IngestDate | Tue Sep 17 21:26:00 EDT 2024 Fri Oct 25 05:24:23 EDT 2024 Fri Dec 06 02:55:01 EST 2024 Tue Dec 28 13:59:18 EST 2021 Sat Sep 28 07:54:54 EDT 2024 Sun Oct 22 16:07:59 EDT 2023 Wed May 18 15:26:48 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Immunopathology HIV-1 virus Retroviridae AIDS Immune deficiency Lentivirus Infection Virus Sensitivity Residue Viral disease Antiviral Replication Human immunodeficiency virus Protease inhibitor Matrix system |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a571t-b7106dc617229d107c1939b199dd9caa969704bceb7b6aa9543d602d9b6f5f873 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc3067102?pdf=render |
PMID | 21149628 |
PQID | 907156668 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3067102 pubmed_primary_21149628 highwire_asm_aac_55_3_1106 crossref_primary_10_1128_AAC_01228_10 pascalfrancis_primary_23919872 proquest_miscellaneous_907156668 asm2_journals_10_1128_AAC_01228_10 |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Antimicrobial Agents and Chemotherapy |
PublicationTitleAbbrev | Antimicrob Agents Chemother |
PublicationTitleAlternate | Antimicrob Agents Chemother |
PublicationYear | 2011 |
Publisher | American Society for Microbiology American Society for Microbiology (ASM) |
Publisher_xml | – name: American Society for Microbiology – name: American Society for Microbiology (ASM) |
References | 8601776 - J Gen Virol. 1996 Mar;77 ( Pt 3):419-26 10196268 - J Virol. 1999 May;73(5):3744-52 19727001 - J Acquir Immune Defic Syndr. 2009 Nov 1;52(3):320-8 9525657 - J Virol. 1998 Apr;72(4):3300-6 8648711 - J Virol. 1996 Jun;70(6):3763-9 19515760 - J Virol. 2009 Sep;83(17):8536-43 17500586 - PLoS Comput Biol. 2007 May;3(5):e87 12032547 - Nat Struct Biol. 2002 Jul;9(7):537-43 8610175 - Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3099-104 8970946 - J Virol. 1996 Dec;70(12):8270-6 10597776 - AIDS. 1999 Dec 3;13(17):2349-59 19451297 - Antimicrob Agents Chemother. 2009 Jul;53(7):2934-9 15507631 - J Virol. 2004 Nov;78(22):12446-54 18753230 - J Gen Virol. 2008 Sep;89(Pt 9):2204-13 8995629 - J Virol. 1997 Feb;71(2):1089-96 20439606 - Antimicrob Agents Chemother. 2010 Jul;54(7):2910-9 19587031 - J Virol. 2009 Sep;83(18):9094-101 7966331 - J Mol Biol. 1994 Nov 25;244(2):198-223 20597164 - AIDS. 2010 Jul 17;24(11):1651-5 18826546 - HIV Med. 2008 Oct;9(8):563-608 11741936 - J Biol Chem. 2002 Feb 22;277(8):5952-61 7700387 - Nature. 1995 Apr 6;374(6522):569-71 19666477 - J Biol Chem. 2009 Oct 23;284(43):29692-703 11895005 - Gene Ther. 2001 Nov;8(21):1665-8 8602510 - Science. 1996 Apr 12;272(5259):263-7 17227139 - PLoS Med. 2007 Jan;4(1):e36 14742193 - Antimicrob Agents Chemother. 2004 Feb;48(2):444-52 19300491 - PLoS Pathog. 2009 Mar;5(3):e1000345 8673921 - Nat Med. 1996 Jul;2(7):760-6 15479842 - J Virol. 2004 Nov;78(21):12030-40 20573365 - Virology. 2010 Sep 15;405(1):129-38 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 (e_1_3_2_33_2) 2002; 9 e_1_3_2_9_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 (e_1_3_2_15_2) 1979; 6 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_11_2 doi: 10.1074/jbc.M108005200 – ident: e_1_3_2_18_2 doi: 10.1128/AAC.00194-10 – ident: e_1_3_2_4_2 doi: 10.1128/jvi.70.12.8270-8276.1996 – ident: e_1_3_2_19_2 doi: 10.1128/JVI.00317-09 – ident: e_1_3_2_10_2 doi: 10.1128/jvi.70.6.3763-3769.1996 – volume: 6 start-page: 65 year: 1979 ident: e_1_3_2_15_2 publication-title: Scand. J. Stat. – ident: e_1_3_2_14_2 doi: 10.1073/pnas.93.7.3099 – ident: e_1_3_2_20_2 – ident: e_1_3_2_31_2 doi: 10.1371/journal.pcbi.0030087 – ident: e_1_3_2_35_2 doi: 10.1099/vir.0.2008/000349-0 – ident: e_1_3_2_5_2 doi: 10.1038/374569a0 – ident: e_1_3_2_21_2 doi: 10.1128/JVI.73.5.3744-3752.1999 – ident: e_1_3_2_26_2 doi: 10.1126/science.272.5259.263 – volume: 9 start-page: 537 year: 2002 ident: e_1_3_2_33_2 publication-title: Nat. Struct. Biol. – ident: e_1_3_2_36_2 doi: 10.1128/JVI.72.4.3300-3306.1998 – ident: e_1_3_2_17_2 doi: 10.1016/j.virol.2010.06.003 – ident: e_1_3_2_28_2 doi: 10.1371/journal.pmed.0040036 – ident: e_1_3_2_13_2 doi: 10.1097/QAD.0b013e3283398216 – ident: e_1_3_2_3_2 doi: 10.1099/0022-1317-77-3-419 – ident: e_1_3_2_6_2 doi: 10.1128/jvi.71.2.1089-1096.1997 – ident: e_1_3_2_8_2 – ident: e_1_3_2_23_2 doi: 10.1038/nm0796-760 – ident: e_1_3_2_34_2 doi: 10.1093/nar/22.22.4673 – ident: e_1_3_2_32_2 doi: 10.1128/JVI.78.21.12030-12040.2004 – ident: e_1_3_2_7_2 doi: 10.1371/journal.ppat.1000345 – ident: e_1_3_2_24_2 doi: 10.1074/jbc.M109.027144 – ident: e_1_3_2_16_2 doi: 10.1097/QAI.0b013e3181b4b18c – ident: e_1_3_2_27_2 doi: 10.1097/00002030-199912030-00006 – ident: e_1_3_2_29_2 doi: 10.1128/JVI.02356-08 – ident: e_1_3_2_12_2 doi: 10.1111/j.1468-1293.2008.00636.x – ident: e_1_3_2_30_2 doi: 10.1128/JVI.78.22.12446-12454.2004 – ident: e_1_3_2_9_2 doi: 10.1128/AAC.01643-08 – ident: e_1_3_2_22_2 doi: 10.1006/jmbi.1994.1719 – ident: e_1_3_2_25_2 doi: 10.1128/AAC.48.2.444-452.2004 – ident: e_1_3_2_2_2 doi: 10.1038/sj.gt.3301574 |
SSID | ssj0006590 |
Score | 2.215926 |
Snippet | Classifications
Services
AAC
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit... Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have... |
SourceID | pubmedcentral proquest crossref asm2 pubmed pascalfrancis highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1106 |
SubjectTerms | Amino acid sequence Antibiotics. Antiinfectious agents. Antiparasitic agents Antiviral Agents Biological and medical sciences Capsid protein Cell Line Data processing Drug resistance Drug Resistance, Viral - genetics Drugs Enzyme-Linked Immunosorbent Assay gag Gene Products, Human Immunodeficiency Virus - chemistry gag Gene Products, Human Immunodeficiency Virus - genetics Gag protein HIV Antigens - chemistry HIV Antigens - genetics HIV Protease Inhibitors HIV Protease Inhibitors - pharmacology HIV-1 Human immunodeficiency virus 1 Human viral diseases Humans Hydrogen bonding Immunodeficiencies Immunodeficiencies. Immunoglobulinopathies Immunopathology Infectious diseases matrix protein Medical sciences Molecular modelling Mutagenesis, Site-Directed Mutation Pharmacology. Drug treatments Proteinase inhibitors Replication Viral diseases Viral diseases of the lymphoid tissue and the blood. Aids Virus Replication - genetics |
Title | Three Residues in HIV-1 Matrix Contribute to Protease Inhibitor Susceptibility and Replication Capacity |
URI | http://aac.asm.org/content/55/3/1106.abstract https://www.ncbi.nlm.nih.gov/pubmed/21149628 https://journals.asm.org/doi/10.1128/AAC.01228-10 https://search.proquest.com/docview/907156668 https://pubmed.ncbi.nlm.nih.gov/PMC3067102 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tVgJxQVBeWaCyEOxp0yap48THqmLVgooq6KK9WX7uVqLpatNK9N8zzqOlCC4ckzhWkm-cmbE_fwPwXlnjYqNUKDl1IbUsDTlXccii3FCpI0cTvxt59oVNruin6_T6BNJ2L0xF2tdq2S9-rPrF8rbiVt6t9KDliQ3ms7EPc9ExDk7hFN1vm6I3v1-W1hMr6EtDmke0Zbsn-WA0Gvf9UpIXNK1UgDE9YL4Oe0eWq-TYM7VqwZ4sKUv8Xq4udPG3SPRPQuVvHuryCTxuQksyql_hKZzYogsP6mKTuy48nDXL6F04n9eC1bsLsjjsvyovyDmZH6Ssd8_gZoFQW_LVos3is5BlQSbT72FMZl7Z_yfx2lZVxSxLNmsy95oP6BXJtLhdKvxV3JNv27LizVQU3B2RhcHO9kvmZIyuWuOF53B1-XExnoRNaYZQplm8CRV-f2a0D38SbjCF1BgIIsacG8O1lJzxLKJKW5UphocpHRoWJYYr5lKXZ8MX0CnWhX0FhOfUZknqHGOWmlhzlw_zyGjJXOx4ZgJ459ERzdgqRZW2JLlANEWFJp4J4EOLnbirZTr-0e6sBVZgr0JKLdJUDLFlxALoHUG97ykZcj83kwRAWuwFjkK_tCILu96WgmOkhoExywN4WZvC4ebGygLIjoxk38ALfB9fQbuvhL4bOz_77ztfw6N6Dtxz5t5AZ3O_tW8xiNqoHqYP08-9auj8Ap-EGvc |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGEZcXBOWyDBgWgj0tbS62Ez9WFVML61RBh_Zm-coqrem0tBL99xzn0lIELzwmsa0k37HPsf35Owh9UNa42CgVSk5cSCyjIecqDlmUGyJ15EjiTyNPLtjokny-olcHiLZnYSrSvlbzXnGz6BXz64pbebvQ_ZYn1p9Ohj7MBcfYv4fu0zTjcTtJbwZgRuulFfCmIckj0vLdk7w_GAx7fjPJS5pWOsAwQWA-E3tHlotk3ze1esGeLilL-GOuTnXxt1j0T0rlbz7q7Cl60gSXeFB_xDN0YIsuelCnm9x00cNJs5HeRSfTWrJ6c4pnuxNY5Sk-wdOdmPXmOfoxA7At_mrBauFd8LzAo_H3MMYTr-3_E3t1qypnlsWrJZ561Qfwi3hcXM8VDBZ3-Nu6rJgzFQl3g2VhoLHtpjkegrPW8OAFujz7NBuOwiY5QyhpFq9CBQgwo30AlHADk0gNoSCgzLkxXEvJGc8iorRVmWJwSUlqWJQYrpijLs_Sl6hTLAt7iDDPic0S6hxjlphYc5eneWS0ZC52PDMBeu_REU3vKkU1cUlyAWiKCk24E6CPLXbithbq-Ee5oxZYAa0KKbWgVKRQMmIBOt6DettSknK_OpMECLfYC-iHfnNFFna5LgWHWA1CY5YH6FVtCrvKjZUFKNszkm0BL_G9_wQsv5L6biz96L9rvkOPRrPJuTgfX3x5jR7XK-KeQfcGdVZ3a_sWQqqVOq460C_5VR1T |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagiImXCcotA4aFYE9Lc3Oc-LEqVC3QqYIO7c3ylVVa02ppJfrvOc6lXRG88JjEtpJ8xz7H9ufvIPReGm0jLaUvGLE-MTT1GZORT8NcE6FCS2J3GnlyQUeX5PNVenUn1VdF2ldy3ituFr1ifl1xK1cLFbQ8sWA6GbgwFxxjsNI2uI8epAkYWTtRbwZhmtbLK-BRfZKHpOW8x3nQ7w96bkPJyZpWWsAwSaAuG3tHlIv40D-1msGOMilK-Gu2Tnfxt3j0T1rlHT81fIyOmwAT9-sPeYLumaKLHtYpJ7dddDRpNtO76Gxay1Zvz_FsfwqrPMdneLoXtN4-RT9nALjB3wxYLrwLnhd4NP7hR3ji9P1_YadwVeXNMni9xFOn_AC-EY-L67mEAeMWf9-UFXumIuJusSg0NLbbOMcDcNgKHjxDl8NPs8HIbxI0-CLNorUvAQWqlQuCYqZhIqkgHASkGdOaKSEYZVlIpDIykxQuU5JoGsaaSWpTm2fJc9QploV5iTDLicni1FpKDdGRYjZP8lArQW1kWaY99M6hw5seVvJq8hLnHNDkFZpwx0MfWuz4qhbr-Ee5kxZYDq1yIRRPU55AyZB66PQA6l1LccLcCk3sIdxiz6Evug0WUZjlpuQM4jUIj2nuoRe1KewrN1bmoezASHYFnMz34ROw_kruu7H2k_-u-RYdTT8O-dfxxZdX6FG9KO5IdK9RZ327MW8gqlrL06r__AYV2x5m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+Residues+in+HIV-1+Matrix+Contribute+to+Protease+Inhibitor+Susceptibility+and+Replication+Capacity&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Parry%2C+Chris+M&rft.au=Kolli%2C+Madhavi&rft.au=Myers%2C+Richard+E&rft.au=Cane%2C+Patricia+A&rft.date=2011-03-01&rft.pub=American+Society+for+Microbiology&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=55&rft.issue=3&rft.spage=1106&rft.epage=1113&rft_id=info:doi/10.1128%2FAAC.01228-10&rft.externalDocID=1228-10 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon |