Three Residues in HIV-1 Matrix Contribute to Protease Inhibitor Susceptibility and Replication Capacity

Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commerc...

Full description

Saved in:
Bibliographic Details
Published inAntimicrobial Agents and Chemotherapy Vol. 55; no. 3; pp. 1106 - 1113
Main Authors PARRY, Chris M, KOLLI, Madhavi, MYERS, Richard E, CANE, Patricia A, SCHIFFER, Celia, PILLAY, Deenan
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.03.2011
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AAC .asm.org, visit: AAC       
AbstractList Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag, particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type (WT) matrix resulted in an increase in the replication capacity of the protease mutant virus to a level similar to that achieved by all the changes within the mutant matrix and part of the capsid protein. Pairs of changes to wild-type matrix led to an increased replication capacity of the protease mutant (although less than with all three changes). Having only these three changes to matrix in a wild-type virus (with wild-type protease) resulted in a 5- to 7-fold change in protease inhibitor 50% effective concentration (EC₅₀). Individual changes did not have as great an effect on replication capacity or drug susceptibility, demonstrating an interaction between these positions, also confirmed by sequence covariation analysis. Molecular modeling predicts that each of the three mutations would result in a loss of hydrogen bonds within α-helix-4 of matrix, leading to the hypothesis that more flexibility within this region or altered matrix structure would account for our findings.
Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag, particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type (WT) matrix resulted in an increase in the replication capacity of the protease mutant virus to a level similar to that achieved by all the changes within the mutant matrix and part of the capsid protein. Pairs of changes to wild-type matrix led to an increased replication capacity of the protease mutant (although less than with all three changes). Having only these three changes to matrix in a wild-type virus (with wild-type protease) resulted in a 5- to 7-fold change in protease inhibitor 50% effective concentration (EC50). Individual changes did not have as great an effect on replication capacity or drug susceptibility, demonstrating an interaction between these positions, also confirmed by sequence covariation analysis. Molecular modeling predicts that each of the three mutations would result in a loss of hydrogen bonds within alpha -helix-4 of matrix, leading to the hypothesis that more flexibility within this region or altered matrix structure would account for our findings.
Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AAC .asm.org, visit: AAC       
Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag, particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type (WT) matrix resulted in an increase in the replication capacity of the protease mutant virus to a level similar to that achieved by all the changes within the mutant matrix and part of the capsid protein. Pairs of changes to wild-type matrix led to an increased replication capacity of the protease mutant (although less than with all three changes). Having only these three changes to matrix in a wild-type virus (with wild-type protease) resulted in a 5- to 7-fold change in protease inhibitor 50% effective concentration (EC50). Individual changes did not have as great an effect on replication capacity or drug susceptibility, demonstrating an interaction between these positions, also confirmed by sequence covariation analysis. Molecular modeling predicts that each of the three mutations would result in a loss of hydrogen bonds within α-helix-4 of matrix, leading to the hypothesis that more flexibility within this region or altered matrix structure would account for our findings.
Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag , particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type (WT) matrix resulted in an increase in the replication capacity of the protease mutant virus to a level similar to that achieved by all the changes within the mutant matrix and part of the capsid protein. Pairs of changes to wild-type matrix led to an increased replication capacity of the protease mutant (although less than with all three changes). Having only these three changes to matrix in a wild-type virus (with wild-type protease) resulted in a 5- to 7-fold change in protease inhibitor 50% effective concentration (EC 50 ). Individual changes did not have as great an effect on replication capacity or drug susceptibility, demonstrating an interaction between these positions, also confirmed by sequence covariation analysis. Molecular modeling predicts that each of the three mutations would result in a loss of hydrogen bonds within α-helix-4 of matrix, leading to the hypothesis that more flexibility within this region or altered matrix structure would account for our findings.
Author Patricia A. Cane
Richard E. Myers
Madhavi Kolli
Deenan Pillay
Celia Schiffer
Chris M. Parry
AuthorAffiliation Centre for Infections, Health Protection Agency, 61 Colindale Avenue, London NW9 5EQ, United Kingdom, 1 UCL/MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, UCL, Windeyer Institute, 46 Cleveland Street, London W1T 4JF, United Kingdom, 2 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 3
AuthorAffiliation_xml – name: Centre for Infections, Health Protection Agency, 61 Colindale Avenue, London NW9 5EQ, United Kingdom, 1 UCL/MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, UCL, Windeyer Institute, 46 Cleveland Street, London W1T 4JF, United Kingdom, 2 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 3
Author_xml – sequence: 1
  givenname: Chris M
  surname: PARRY
  fullname: PARRY, Chris M
  organization: UCL/MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, UCL, Windeyer Institute, 46 Cleveland Street, London W1T 4JF, United Kingdom
– sequence: 2
  givenname: Madhavi
  surname: KOLLI
  fullname: KOLLI, Madhavi
  organization: Centre for Infections, Health Protection Agency, 61 Colindale Avenue, London NW9 5EQ, United Kingdom
– sequence: 3
  givenname: Richard E
  surname: MYERS
  fullname: MYERS, Richard E
  organization: UCL/MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, UCL, Windeyer Institute, 46 Cleveland Street, London W1T 4JF, United Kingdom
– sequence: 4
  givenname: Patricia A
  surname: CANE
  fullname: CANE, Patricia A
  organization: UCL/MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, UCL, Windeyer Institute, 46 Cleveland Street, London W1T 4JF, United Kingdom
– sequence: 5
  givenname: Celia
  surname: SCHIFFER
  fullname: SCHIFFER, Celia
  organization: Centre for Infections, Health Protection Agency, 61 Colindale Avenue, London NW9 5EQ, United Kingdom
– sequence: 6
  givenname: Deenan
  surname: PILLAY
  fullname: PILLAY, Deenan
  organization: UCL/MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, UCL, Windeyer Institute, 46 Cleveland Street, London W1T 4JF, United Kingdom
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23919872$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21149628$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhi1URLeFG2dkDgghkWI7iR1fkFYR0JWKQFC4WhPH2bjK2qntAP33uOxS4MBpNJ5H7zsfPkFHzjuD0GNKzihlzSsAfUYoY01ByT20okQ2Ba8lP0IrQjgvqoZUx-gkxiuS81qSB-iYUVpJzpoV2l6OwRj8yUTbLyZi6_D55mtB8XtIwf7ArXc5dksyOHn8MfhkIBq8caPtbPIBf16iNnPK2WTTDQbXZ7F5shqS9Q63MIPOhYfo_gBTNI8O8RR9efvmsj0vLj6827TriwJqQVPRCUp4rzkVjMmeEqGpLGVHpex7qQEkl4JUnTad6HhO66rsOWG97PhQD40oT9Hrve68dDvTa5Pbh0nNwe4g3CgPVv1bcXZUW_9NlYRnb5YFnh8Egr_OG0lqZ_OE0wTO-CUqSQStOedNJl_uSR18jMEMdy6UqNvTqPW6Vb9Ok18y_mKPQ9wxdeWX4PIi_sc--XuKO-Hfd8vAswMAUcM0BHDaxj9cKalsxO00T_fcaLfjdxuMyu4qfxlV16rMzoSXPwFILLEY
CODEN AACHAX
CitedBy_id crossref_primary_10_1093_jac_dku365
crossref_primary_10_1099_jgv_0_000728
crossref_primary_10_1089_aid_2015_0138
crossref_primary_10_3390_microbiolres12040071
crossref_primary_10_3390_molecules24183243
crossref_primary_10_1186_1742_4690_9_63
crossref_primary_10_1093_jac_dkaa228
crossref_primary_10_1128_mbio_00269_22
crossref_primary_10_1186_1742_4690_10_161
crossref_primary_10_3390_v13102079
crossref_primary_10_1128_JVI_01211_12
crossref_primary_10_1002_cmdc_201200577
crossref_primary_10_1016_j_coviro_2012_08_006
crossref_primary_10_1097_QAI_0000000000000524
crossref_primary_10_1371_journal_pone_0137834
crossref_primary_10_3389_fmicb_2024_1388729
crossref_primary_10_1073_pnas_2122050119
crossref_primary_10_1093_jac_dku296
crossref_primary_10_1099_vir_0_055624_0
crossref_primary_10_1038_s41598_017_03260_4
crossref_primary_10_1093_jac_dkw493
crossref_primary_10_1371_journal_pcbi_1004249
crossref_primary_10_1021_bi4005232
crossref_primary_10_1016_j_antiviral_2013_01_007
crossref_primary_10_1089_aid_2014_0349
crossref_primary_10_1172_JCI67399
crossref_primary_10_1038_srep38153
crossref_primary_10_1073_pnas_1615342113
crossref_primary_10_1093_molbev_msx095
crossref_primary_10_1128_JCM_01636_12
crossref_primary_10_1128_AAC_02682_15
Cites_doi 10.1074/jbc.M108005200
10.1128/AAC.00194-10
10.1128/jvi.70.12.8270-8276.1996
10.1128/JVI.00317-09
10.1128/jvi.70.6.3763-3769.1996
10.1073/pnas.93.7.3099
10.1371/journal.pcbi.0030087
10.1099/vir.0.2008/000349-0
10.1038/374569a0
10.1128/JVI.73.5.3744-3752.1999
10.1126/science.272.5259.263
10.1128/JVI.72.4.3300-3306.1998
10.1016/j.virol.2010.06.003
10.1371/journal.pmed.0040036
10.1097/QAD.0b013e3283398216
10.1099/0022-1317-77-3-419
10.1128/jvi.71.2.1089-1096.1997
10.1038/nm0796-760
10.1093/nar/22.22.4673
10.1128/JVI.78.21.12030-12040.2004
10.1371/journal.ppat.1000345
10.1074/jbc.M109.027144
10.1097/QAI.0b013e3181b4b18c
10.1097/00002030-199912030-00006
10.1128/JVI.02356-08
10.1111/j.1468-1293.2008.00636.x
10.1128/JVI.78.22.12446-12454.2004
10.1128/AAC.01643-08
10.1006/jmbi.1994.1719
10.1128/AAC.48.2.444-452.2004
10.1038/sj.gt.3301574
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright © 2011, American Society for Microbiology
Copyright © 2011, American Society for Microbiology 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright © 2011, American Society for Microbiology
– notice: Copyright © 2011, American Society for Microbiology 2011
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7T7
7U9
8FD
C1K
FR3
H94
P64
5PM
DOI 10.1128/aac.01228-10
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE
Virology and AIDS Abstracts



CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
Biology
EISSN 1098-6596
EndPage 1113
ExternalDocumentID 10_1128_AAC_01228_10
1228-10
21149628
23919872
aac_55_3_1106
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM064347
GroupedDBID ---
.55
.GJ
08R
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
AAPBV
AAUGY
ACGFO
ADBBV
AENEX
AFMIJ
AGNAY
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
HZ~
H~9
IQODW
J5H
K-O
KQ8
L7B
LSO
MVM
NEJ
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TR2
UHB
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
X7N
XOL
Y6R
ZA5
ZGI
ZXP
~A~
AGVNZ
CGR
CUY
CVF
ECM
EIF
NPM
-
0R
55
A
ABFLS
ADACO
BXI
HZ
AAYXX
CITATION
7T7
7U9
8FD
C1K
FR3
H94
P64
5PM
ID FETCH-LOGICAL-a571t-b7106dc617229d107c1939b199dd9caa969704bceb7b6aa9543d602d9b6f5f873
IEDL.DBID RPM
ISSN 0066-4804
IngestDate Tue Sep 17 21:26:00 EDT 2024
Fri Oct 25 05:24:23 EDT 2024
Fri Dec 06 02:55:01 EST 2024
Tue Dec 28 13:59:18 EST 2021
Sat Sep 28 07:54:54 EDT 2024
Sun Oct 22 16:07:59 EDT 2023
Wed May 18 15:26:48 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Immunopathology
HIV-1 virus
Retroviridae
AIDS
Immune deficiency
Lentivirus
Infection
Virus
Sensitivity
Residue
Viral disease
Antiviral
Replication
Human immunodeficiency virus
Protease inhibitor
Matrix system
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a571t-b7106dc617229d107c1939b199dd9caa969704bceb7b6aa9543d602d9b6f5f873
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc3067102?pdf=render
PMID 21149628
PQID 907156668
PQPubID 23462
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3067102
pubmed_primary_21149628
highwire_asm_aac_55_3_1106
crossref_primary_10_1128_AAC_01228_10
pascalfrancis_primary_23919872
proquest_miscellaneous_907156668
asm2_journals_10_1128_AAC_01228_10
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Antimicrobial Agents and Chemotherapy
PublicationTitleAbbrev Antimicrob Agents Chemother
PublicationTitleAlternate Antimicrob Agents Chemother
PublicationYear 2011
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References 8601776 - J Gen Virol. 1996 Mar;77 ( Pt 3):419-26
10196268 - J Virol. 1999 May;73(5):3744-52
19727001 - J Acquir Immune Defic Syndr. 2009 Nov 1;52(3):320-8
9525657 - J Virol. 1998 Apr;72(4):3300-6
8648711 - J Virol. 1996 Jun;70(6):3763-9
19515760 - J Virol. 2009 Sep;83(17):8536-43
17500586 - PLoS Comput Biol. 2007 May;3(5):e87
12032547 - Nat Struct Biol. 2002 Jul;9(7):537-43
8610175 - Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3099-104
8970946 - J Virol. 1996 Dec;70(12):8270-6
10597776 - AIDS. 1999 Dec 3;13(17):2349-59
19451297 - Antimicrob Agents Chemother. 2009 Jul;53(7):2934-9
15507631 - J Virol. 2004 Nov;78(22):12446-54
18753230 - J Gen Virol. 2008 Sep;89(Pt 9):2204-13
8995629 - J Virol. 1997 Feb;71(2):1089-96
20439606 - Antimicrob Agents Chemother. 2010 Jul;54(7):2910-9
19587031 - J Virol. 2009 Sep;83(18):9094-101
7966331 - J Mol Biol. 1994 Nov 25;244(2):198-223
20597164 - AIDS. 2010 Jul 17;24(11):1651-5
18826546 - HIV Med. 2008 Oct;9(8):563-608
11741936 - J Biol Chem. 2002 Feb 22;277(8):5952-61
7700387 - Nature. 1995 Apr 6;374(6522):569-71
19666477 - J Biol Chem. 2009 Oct 23;284(43):29692-703
11895005 - Gene Ther. 2001 Nov;8(21):1665-8
8602510 - Science. 1996 Apr 12;272(5259):263-7
17227139 - PLoS Med. 2007 Jan;4(1):e36
14742193 - Antimicrob Agents Chemother. 2004 Feb;48(2):444-52
19300491 - PLoS Pathog. 2009 Mar;5(3):e1000345
8673921 - Nat Med. 1996 Jul;2(7):760-6
15479842 - J Virol. 2004 Nov;78(21):12030-40
20573365 - Virology. 2010 Sep 15;405(1):129-38
7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
(e_1_3_2_33_2) 2002; 9
e_1_3_2_9_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
(e_1_3_2_15_2) 1979; 6
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_11_2
  doi: 10.1074/jbc.M108005200
– ident: e_1_3_2_18_2
  doi: 10.1128/AAC.00194-10
– ident: e_1_3_2_4_2
  doi: 10.1128/jvi.70.12.8270-8276.1996
– ident: e_1_3_2_19_2
  doi: 10.1128/JVI.00317-09
– ident: e_1_3_2_10_2
  doi: 10.1128/jvi.70.6.3763-3769.1996
– volume: 6
  start-page: 65
  year: 1979
  ident: e_1_3_2_15_2
  publication-title: Scand. J. Stat.
– ident: e_1_3_2_14_2
  doi: 10.1073/pnas.93.7.3099
– ident: e_1_3_2_20_2
– ident: e_1_3_2_31_2
  doi: 10.1371/journal.pcbi.0030087
– ident: e_1_3_2_35_2
  doi: 10.1099/vir.0.2008/000349-0
– ident: e_1_3_2_5_2
  doi: 10.1038/374569a0
– ident: e_1_3_2_21_2
  doi: 10.1128/JVI.73.5.3744-3752.1999
– ident: e_1_3_2_26_2
  doi: 10.1126/science.272.5259.263
– volume: 9
  start-page: 537
  year: 2002
  ident: e_1_3_2_33_2
  publication-title: Nat. Struct. Biol.
– ident: e_1_3_2_36_2
  doi: 10.1128/JVI.72.4.3300-3306.1998
– ident: e_1_3_2_17_2
  doi: 10.1016/j.virol.2010.06.003
– ident: e_1_3_2_28_2
  doi: 10.1371/journal.pmed.0040036
– ident: e_1_3_2_13_2
  doi: 10.1097/QAD.0b013e3283398216
– ident: e_1_3_2_3_2
  doi: 10.1099/0022-1317-77-3-419
– ident: e_1_3_2_6_2
  doi: 10.1128/jvi.71.2.1089-1096.1997
– ident: e_1_3_2_8_2
– ident: e_1_3_2_23_2
  doi: 10.1038/nm0796-760
– ident: e_1_3_2_34_2
  doi: 10.1093/nar/22.22.4673
– ident: e_1_3_2_32_2
  doi: 10.1128/JVI.78.21.12030-12040.2004
– ident: e_1_3_2_7_2
  doi: 10.1371/journal.ppat.1000345
– ident: e_1_3_2_24_2
  doi: 10.1074/jbc.M109.027144
– ident: e_1_3_2_16_2
  doi: 10.1097/QAI.0b013e3181b4b18c
– ident: e_1_3_2_27_2
  doi: 10.1097/00002030-199912030-00006
– ident: e_1_3_2_29_2
  doi: 10.1128/JVI.02356-08
– ident: e_1_3_2_12_2
  doi: 10.1111/j.1468-1293.2008.00636.x
– ident: e_1_3_2_30_2
  doi: 10.1128/JVI.78.22.12446-12454.2004
– ident: e_1_3_2_9_2
  doi: 10.1128/AAC.01643-08
– ident: e_1_3_2_22_2
  doi: 10.1006/jmbi.1994.1719
– ident: e_1_3_2_25_2
  doi: 10.1128/AAC.48.2.444-452.2004
– ident: e_1_3_2_2_2
  doi: 10.1038/sj.gt.3301574
SSID ssj0006590
Score 2.215926
Snippet Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have...
SourceID pubmedcentral
proquest
crossref
asm2
pubmed
pascalfrancis
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1106
SubjectTerms Amino acid sequence
Antibiotics. Antiinfectious agents. Antiparasitic agents
Antiviral Agents
Biological and medical sciences
Capsid protein
Cell Line
Data processing
Drug resistance
Drug Resistance, Viral - genetics
Drugs
Enzyme-Linked Immunosorbent Assay
gag Gene Products, Human Immunodeficiency Virus - chemistry
gag Gene Products, Human Immunodeficiency Virus - genetics
Gag protein
HIV Antigens - chemistry
HIV Antigens - genetics
HIV Protease Inhibitors
HIV Protease Inhibitors - pharmacology
HIV-1
Human immunodeficiency virus 1
Human viral diseases
Humans
Hydrogen bonding
Immunodeficiencies
Immunodeficiencies. Immunoglobulinopathies
Immunopathology
Infectious diseases
matrix protein
Medical sciences
Molecular modelling
Mutagenesis, Site-Directed
Mutation
Pharmacology. Drug treatments
Proteinase inhibitors
Replication
Viral diseases
Viral diseases of the lymphoid tissue and the blood. Aids
Virus Replication - genetics
Title Three Residues in HIV-1 Matrix Contribute to Protease Inhibitor Susceptibility and Replication Capacity
URI http://aac.asm.org/content/55/3/1106.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21149628
https://journals.asm.org/doi/10.1128/AAC.01228-10
https://search.proquest.com/docview/907156668
https://pubmed.ncbi.nlm.nih.gov/PMC3067102
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tVgJxQVBeWaCyEOxp0yap48THqmLVgooq6KK9WX7uVqLpatNK9N8zzqOlCC4ckzhWkm-cmbE_fwPwXlnjYqNUKDl1IbUsDTlXccii3FCpI0cTvxt59oVNruin6_T6BNJ2L0xF2tdq2S9-rPrF8rbiVt6t9KDliQ3ms7EPc9ExDk7hFN1vm6I3v1-W1hMr6EtDmke0Zbsn-WA0Gvf9UpIXNK1UgDE9YL4Oe0eWq-TYM7VqwZ4sKUv8Xq4udPG3SPRPQuVvHuryCTxuQksyql_hKZzYogsP6mKTuy48nDXL6F04n9eC1bsLsjjsvyovyDmZH6Ssd8_gZoFQW_LVos3is5BlQSbT72FMZl7Z_yfx2lZVxSxLNmsy95oP6BXJtLhdKvxV3JNv27LizVQU3B2RhcHO9kvmZIyuWuOF53B1-XExnoRNaYZQplm8CRV-f2a0D38SbjCF1BgIIsacG8O1lJzxLKJKW5UphocpHRoWJYYr5lKXZ8MX0CnWhX0FhOfUZknqHGOWmlhzlw_zyGjJXOx4ZgJ459ERzdgqRZW2JLlANEWFJp4J4EOLnbirZTr-0e6sBVZgr0JKLdJUDLFlxALoHUG97ykZcj83kwRAWuwFjkK_tCILu96WgmOkhoExywN4WZvC4ebGygLIjoxk38ALfB9fQbuvhL4bOz_77ztfw6N6Dtxz5t5AZ3O_tW8xiNqoHqYP08-9auj8Ap-EGvc
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGEZcXBOWyDBgWgj0tbS62Ez9WFVML61RBh_Zm-coqrem0tBL99xzn0lIELzwmsa0k37HPsf35Owh9UNa42CgVSk5cSCyjIecqDlmUGyJ15EjiTyNPLtjokny-olcHiLZnYSrSvlbzXnGz6BXz64pbebvQ_ZYn1p9Ohj7MBcfYv4fu0zTjcTtJbwZgRuulFfCmIckj0vLdk7w_GAx7fjPJS5pWOsAwQWA-E3tHlotk3ze1esGeLilL-GOuTnXxt1j0T0rlbz7q7Cl60gSXeFB_xDN0YIsuelCnm9x00cNJs5HeRSfTWrJ6c4pnuxNY5Sk-wdOdmPXmOfoxA7At_mrBauFd8LzAo_H3MMYTr-3_E3t1qypnlsWrJZ561Qfwi3hcXM8VDBZ3-Nu6rJgzFQl3g2VhoLHtpjkegrPW8OAFujz7NBuOwiY5QyhpFq9CBQgwo30AlHADk0gNoSCgzLkxXEvJGc8iorRVmWJwSUlqWJQYrpijLs_Sl6hTLAt7iDDPic0S6hxjlphYc5eneWS0ZC52PDMBeu_REU3vKkU1cUlyAWiKCk24E6CPLXbithbq-Ee5oxZYAa0KKbWgVKRQMmIBOt6DettSknK_OpMECLfYC-iHfnNFFna5LgWHWA1CY5YH6FVtCrvKjZUFKNszkm0BL_G9_wQsv5L6biz96L9rvkOPRrPJuTgfX3x5jR7XK-KeQfcGdVZ3a_sWQqqVOq460C_5VR1T
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagiImXCcotA4aFYE9Lc3Oc-LEqVC3QqYIO7c3ylVVa02ppJfrvOc6lXRG88JjEtpJ8xz7H9ufvIPReGm0jLaUvGLE-MTT1GZORT8NcE6FCS2J3GnlyQUeX5PNVenUn1VdF2ldy3ituFr1ifl1xK1cLFbQ8sWA6GbgwFxxjsNI2uI8epAkYWTtRbwZhmtbLK-BRfZKHpOW8x3nQ7w96bkPJyZpWWsAwSaAuG3tHlIv40D-1msGOMilK-Gu2Tnfxt3j0T1rlHT81fIyOmwAT9-sPeYLumaKLHtYpJ7dddDRpNtO76Gxay1Zvz_FsfwqrPMdneLoXtN4-RT9nALjB3wxYLrwLnhd4NP7hR3ji9P1_YadwVeXNMni9xFOn_AC-EY-L67mEAeMWf9-UFXumIuJusSg0NLbbOMcDcNgKHjxDl8NPs8HIbxI0-CLNorUvAQWqlQuCYqZhIqkgHASkGdOaKSEYZVlIpDIykxQuU5JoGsaaSWpTm2fJc9QploV5iTDLicni1FpKDdGRYjZP8lArQW1kWaY99M6hw5seVvJq8hLnHNDkFZpwx0MfWuz4qhbr-Ee5kxZYDq1yIRRPU55AyZB66PQA6l1LccLcCk3sIdxiz6Evug0WUZjlpuQM4jUIj2nuoRe1KewrN1bmoezASHYFnMz34ROw_kruu7H2k_-u-RYdTT8O-dfxxZdX6FG9KO5IdK9RZ327MW8gqlrL06r__AYV2x5m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+Residues+in+HIV-1+Matrix+Contribute+to+Protease+Inhibitor+Susceptibility+and+Replication+Capacity&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Parry%2C+Chris+M&rft.au=Kolli%2C+Madhavi&rft.au=Myers%2C+Richard+E&rft.au=Cane%2C+Patricia+A&rft.date=2011-03-01&rft.pub=American+Society+for+Microbiology&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=55&rft.issue=3&rft.spage=1106&rft.epage=1113&rft_id=info:doi/10.1128%2FAAC.01228-10&rft.externalDocID=1228-10
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon