Considerations for the Analysis of Bacterial Membrane Vesicles: Methods of Vesicle Production and Quantification Can Influence Biological and Experimental Outcomes
Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified...
Saved in:
Published in | Microbiology spectrum Vol. 9; no. 3; p. e0127321 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
22.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori, Pseudomonas aeruginosa, and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs.
Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions. |
---|---|
AbstractList | Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori, Pseudomonas aeruginosa, and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. IMPORTANCE Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions. Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori , Pseudomonas aeruginosa , and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. IMPORTANCE Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions. ABSTRACT Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori, Pseudomonas aeruginosa, and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. IMPORTANCE Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions. Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori , Pseudomonas aeruginosa , and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. IMPORTANCE Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions. Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori, Pseudomonas aeruginosa, and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions. |
Author | Johnston, Ella L Stinear, Timothy P Zavan, Lauren Kaparakis-Liaskos, Maria Bitto, Natalie J Hill, Andrew F |
Author_xml | – sequence: 1 givenname: Natalie J orcidid: 0000-0003-3533-9824 surname: Bitto fullname: Bitto, Natalie J organization: Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe Universitygrid.1018.8, Melbourne, Victoria, Australia – sequence: 2 givenname: Lauren orcidid: 0000-0003-4700-3033 surname: Zavan fullname: Zavan, Lauren organization: Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe Universitygrid.1018.8, Melbourne, Victoria, Australia – sequence: 3 givenname: Ella L orcidid: 0000-0003-2880-5719 surname: Johnston fullname: Johnston, Ella L organization: Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe Universitygrid.1018.8, Melbourne, Victoria, Australia – sequence: 4 givenname: Timothy P orcidid: 0000-0003-0150-123X surname: Stinear fullname: Stinear, Timothy P organization: Department of Microbiology and Immunology, Doherty Institute, University of Melbournegrid.1008.9, Parkville, Victoria, Australia – sequence: 5 givenname: Andrew F orcidid: 0000-0001-5581-2354 surname: Hill fullname: Hill, Andrew F organization: Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe Universitygrid.1018.8, Melbourne, Victoria, Australia – sequence: 6 givenname: Maria orcidid: 0000-0002-8964-4456 surname: Kaparakis-Liaskos fullname: Kaparakis-Liaskos, Maria organization: Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe Universitygrid.1018.8, Melbourne, Victoria, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34937167$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaU_gAvykUsWfyR2zAGpXRVYqaggPq6WYzu7Xjn2YjuI_h7-KN7sUrUXTh69mXlvxvOeVyc-eFNVLxFcIIS7N2lnVI7TuIAIM1Jj9KQ6w4i2NWw4O3kQn1YXKW0hhAjBFrf4WXVKGk4Youys-rMMPlltosy2RGAIEeSNAZdeurtkEwgDuJIqm2ilA5_M2EfpDfhhklXOpLcFypug57ojCD7HoCe15wPSa_Blkj7bwapZAiylBys_uMl4ZcCVDS6sS87Ntde_d0VpND4X4HbKKowmvaieDtIlc3F8z6vv76-_LT_WN7cfVsvLm1q2DOaaMMgU56ohmrGWsoHCHndYY9T2muEOyYFTQjinhhjdEoU5aZDmpGOS9j0h59XqwKuD3IpdmUPGOxGkFTMQ4lrImPcrCqgG0kIGOerappO0awZOWkKgRLSHuitc7w5cu6kfjVZloyjdI9LHGW83Yh1-iY7yptypELw-EsTwczIpi9EmZZwr3x-mJDBFBHME8X5udChVMaQUzXAvg6DYe0V8PXpFzF4RGJWexaFHphGLbZhiOXj6b8OrhwvdS_yzEvkL81XPZA |
CitedBy_id | crossref_primary_10_1080_19490976_2024_2341670 crossref_primary_10_3389_fimmu_2024_1296061 crossref_primary_10_3389_fimmu_2023_1274295 crossref_primary_10_4049_jimmunol_2200892 crossref_primary_10_1007_s11274_024_03963_7 crossref_primary_10_1186_s13568_022_01499_3 crossref_primary_10_1016_j_tibtech_2022_03_005 crossref_primary_10_1016_j_jconrel_2023_10_027 crossref_primary_10_3389_fchem_2023_1284292 crossref_primary_10_1002_elps_202200133 crossref_primary_10_1080_19490976_2024_2359515 crossref_primary_10_3389_fcimb_2023_1193198 crossref_primary_10_1002_pmic_202300269 crossref_primary_10_3389_fimmu_2022_970725 crossref_primary_10_3390_pharmaceutics15020522 crossref_primary_10_1038_s41579_023_00875_5 crossref_primary_10_1002_jev2_12404 crossref_primary_10_1128_spectrum_05179_22 crossref_primary_10_3389_fmicb_2023_1254367 crossref_primary_10_3390_ijms23179742 crossref_primary_10_1111_1751_7915_14312 crossref_primary_10_1093_femsml_uqad029 crossref_primary_10_1016_j_cej_2022_138309 crossref_primary_10_1016_j_actbio_2024_04_022 crossref_primary_10_3389_fmicb_2024_1361270 crossref_primary_10_3390_cells12232674 crossref_primary_10_3390_ph16030421 crossref_primary_10_1016_j_pharmthera_2023_108443 crossref_primary_10_1128_aem_01346_22 |
Cites_doi | 10.1080/20013078.2018.1535750 10.1111/cmi.12658 10.1371/journal.pone.0212275 10.1038/s41579-018-0112-2 10.1371/journal.pone.0160374 10.1038/s41598-020-75108-3 10.1038/s41598-019-48181-6 10.1139/w02-077 10.1002/pmic.201970004 10.1007/s00284-021-02414-y 10.1111/cmi.12814 10.1016/j.micpath.2016.02.014 10.1016/j.bios.2016.08.100 10.1016/j.molimm.2021.02.027 10.1038/s41467-018-03847-z 10.1128/JB.01493-14 10.1038/ni1028 10.1371/journal.pone.0160440 10.3389/fmicb.2019.03026 10.1016/0165-022x(94)90078-7 10.1021/pr301208g 10.3389/fmicb.2021.628801 10.1016/j.jconrel.2019.11.017 10.1038/nri3837 10.3389/fcimb.2017.00308 10.1111/jth.12554 10.2217/nnm.12.173 10.1111/cmi.12525 10.1080/20013078.2019.1632099 10.4155/tde.15.40 10.1128/mBio.00609-12 10.1128/JB.181.16.4725-4733.1999 10.1007/s12013-016-0770-5 10.1126/science.1243457 10.1099/mic.0.060343-0 10.1371/journal.pone.0054661 10.1016/j.cell.2016.04.015 10.1002/pmic.200700196 10.1111/j.1462-5822.2009.01404.x 10.1038/ncomms10515 10.3389/fimmu.2018.01466 10.1096/fj.201901575R 10.1038/s41598-017-07288-4 10.1371/journal.pone.0151967 10.1021/nn405724x 10.1371/journal.pone.0116896 10.1006/abio.1976.9999 10.1016/j.micres.2014.09.006 10.1128/IAI.00699-20 10.1073/pnas.1915829117 10.1128/AEM.04248-13 10.1128/JB.180.20.5478-5483.1998 10.3390/ijms18061287 10.1016/S0021-9258(19)52451-6 10.1038/ni0602-499 10.1128/JB.00319-19 10.1016/j.chom.2014.04.001 10.1007/s12033-007-0038-9 10.1038/s41598-018-23029-7 10.3390/bioengineering6010007 10.1002/jev2.12080 10.3389/fmicb.2020.00432 10.1038/ncomms11220 10.1016/j.vaccine.2012.03.028 10.1080/20013078.2017.1333883 10.1002/pmic.200900338 10.1128/JB.01322-09 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Bitto et al. Copyright © 2021 Bitto et al. 2021 Bitto et al. |
Copyright_xml | – notice: Copyright © 2021 Bitto et al. – notice: Copyright © 2021 Bitto et al. 2021 Bitto et al. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1128/spectrum.01273-21 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2165-0497 |
Editor | Edelmann, Mariola J |
Editor_xml | – sequence: 1 givenname: Mariola J surname: Edelmann fullname: Edelmann, Mariola J – sequence: 1 givenname: Mariola J. surname: Edelmann fullname: Edelmann, Mariola J. |
EndPage | e0127321 |
ExternalDocumentID | oai_doaj_org_article_0cf35070918548a684f935330a16b0d8 10_1128_Spectrum_01273_21 01273-21 34937167 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Australian Research Council grantid: DP190101655 funderid: http://doi.org/10.13039/501100000923 – fundername: Veski grantid: Inspiring Women Fellowship funderid: https://doi.org/10.13039/100012789 – fundername: Department of Health | National Health and Medical Research Council (NHMRC) grantid: 1107800 funderid: https://doi.org/10.13039/501100000925 – fundername: La Trobe University grantid: RFA Understanding Diseases Grant funderid: https://doi.org/10.13039/501100001215 – fundername: ; grantid: RFA Understanding Diseases Grant – fundername: ; grantid: DP190101655 – fundername: ; grantid: Inspiring Women Fellowship – fundername: ; grantid: 1107800 |
GroupedDBID | 53G AAUOK ADBBV AGVNZ ALMA_UNASSIGNED_HOLDINGS CGR CUY CVF EBS ECM EIF EJD FF~ FRP GROUPED_DOAJ H13 M~E NPM OK1 RPM RSF UCJ BXI FF AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a570t-3707c99c43d77567f60b282d215bd7281af9633996e3ed53c29341d9387a6bb33 |
IEDL.DBID | RPM |
ISSN | 2165-0497 |
IngestDate | Tue Dec 17 15:17:24 EST 2024 Tue Sep 17 20:43:31 EDT 2024 Fri Oct 25 08:54:07 EDT 2024 Fri Dec 06 03:57:51 EST 2024 Thu Jan 20 01:29:34 EST 2022 Sat Sep 28 08:21:26 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | quantification RNA outer membrane vesicles (OMVs) membrane vesicles (MVs) DNA protein NTA bacterial membrane vesicles (BMVs) TLRs |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a570t-3707c99c43d77567f60b282d215bd7281af9633996e3ed53c29341d9387a6bb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0002-8964-4456 0000-0003-2880-5719 0000-0003-4700-3033 0000-0001-5581-2354 0000-0003-3533-9824 0000-0003-0150-123X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694105/ |
PMID | 34937167 |
PQID | 2613291023 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0cf35070918548a684f935330a16b0d8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8694105 proquest_miscellaneous_2613291023 crossref_primary_10_1128_Spectrum_01273_21 asm2_journals_10_1128_Spectrum_01273_21 pubmed_primary_34937167 |
PublicationCentury | 2000 |
PublicationDate | 20211222 |
PublicationDateYYYYMMDD | 2021-12-22 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211222 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Microbiology spectrum |
PublicationTitleAbbrev | Microbiol Spectr |
PublicationTitleAlternate | Microbiol Spectr |
PublicationYear | 2021 |
Publisher | American Society for Microbiology |
Publisher_xml | – sequence: 0 name: American Society for Microbiology – name: American Society for Microbiology |
References | Caruana, JC, Walper, SA (B14) 2020; 11 Lynch, JB, Schwartzman, JA, Bennett, BD, McAnulty, SJ, Knop, M, Nyholm, SV, Ruby, EG (B36) 2019; 201 Jurk, M, Heil, F, Vollmer, J, Schetter, C, Krieg, AM, Wagner, H, Lipford, G, Bauer, S (B48) 2002; 3 Gujrati, V, Kim, S, Kim, S-H, Min, JJ, Choy, HE, Kim, SC, Jon, S (B62) 2014; 8 Latz, E, Schoenemeyer, A, Visintin, A, Fitzgerald, KA, Monks, BG, Knetter, CF, Lien, E, Nilsen, NJ, Espevik, T, Golenbock, DT (B49) 2004; 5 Gilmore, WJ, Johnston, EL, Zavan, L, Bitto, NJ, Kaparakis-Liaskos, M (B25) 2021; 134 Perez-Cruz, C, Delgado, L, Lopez-Iglesias, C, Mercade, E (B58) 2015; 10 Evans, AGL, Davey, HM, Cookson, A, Currinn, H, Cooke-Fox, G, Stanczyk, PJ, Whitworth, DE (B18) 2012; 158 Vanaja, SK, Russo, AJ, Behl, B, Banerjee, I, Yankova, M, Deshmukh, SD, Rathinam, VAK (B12) 2016; 165 Bradford, MM (B43) 1976; 72 de Vrij, J, Maas, SL, van Nispen, M, Sena-Esteves, M, Limpens, RW, Koster, AJ, Leenstra, S, Lamfers, ML, Broekman, ML (B55) 2013; 8 Nagakubo, T, Nomura, N, Toyofuku, M (B50) 2019; 10 Hong, J, Dauros-Singorenko, P, Whitcombe, A, Payne, L, Blenkiron, C, Phillips, A, Swift, S (B46) 2019; 8 Wang, X, Thompson, CD, Weidenmaier, C, Lee, JC (B61) 2018; 9 Alves, NJ, Turner, KB, Medintz, IL, Walper, SA (B64) 2015; 6 Arraud, N, Linares, R, Tan, S, Gounou, C, Pasquet, J-M, Mornet, S, Brisson, AR (B56) 2014; 12 Blenkiron, C, Simonov, D, Muthukaruppan, A, Tsai, P, Dauros, P, Green, S, Hong, J, Print, CG, Swift, S, Phillips, AR (B9) 2016; 11 Elmi, A, Dorey, A, Watson, E, Jagatia, H, Inglis, NF, Gundogdu, O, Bajaj-Elliott, M, Wren, BW, Smith, DGE, Dorrell, N (B23) 2018; 20 Thane, KE, Davis, AM, Hoffman, AM (B54) 2019; 9 Choi, J-W, Kwon, T-Y, Hong, S-H, Lee, H-J (B8) 2018; 76 Gerritzen, MJH, Martens, DE, Wijffels, RH, Stork, M (B39) 2017; 6 Liao, S, Klein, MI, Heim, KP, Fan, Y, Bitoun, JP, Ahn, S-J, Burne, RA, Koo, H, Brady, LJ, Wen, ZT (B10) 2014; 196 Li, Z, Clarke, AJ, Beveridge, TJ (B19) 1998; 180 Weiss, G, Forster, S, Irving, A, Tate, M, Ferrero, RL, Hertzog, P, Frøkiær, H, Kaparakis-Liaskos, M (B66) 2013; 4 Noble, JE, Knight, AE, Reason, AJ, Di Matola, A, Bailey, MJ (B52) 2007; 37 Jeon, H, Oh, MH, Jun, SH, Kim, SI, Choi, CW, Kwon, HI, Na, SH, Kim, YJ, Nicholas, A, Selasi, GN, Lee, JC (B35) 2016; 93 MacDonald, KL, Beveridge, TJ (B27) 2002; 48 Lee, E-Y, Bang, JY, Park, GW, Choi, D-S, Kang, JS, Kim, H-J, Park, K-S, Lee, J-O, Kim, Y-K, Kwon, K-H, Kim, K-P, Gho, YS (B53) 2007; 7 Wang, X, Eagen, WJ, Lee, JC (B13) 2020; 117 Turnbull, L, Toyofuku, M, Hynen, AL, Kurosawa, M, Pessi, G, Petty, NK, Osvath, SR, Cárcamo-Oyarce, G, Gloag, ES, Shimoni, R, Omasits, U, Ito, S, Yap, X, Monahan, LG, Cavaliere, R, Ahrens, CH, Charles, IG, Nomura, N, Eberl, L, Whitchurch, CB (B59) 2016; 7 Turner, L, Bitto, NJ, Steer, DL, Lo, C, D'Costa, K, Ramm, G, Shambrook, M, Hill, AF, Ferrero, RL, Kaparakis-Liaskos, M (B29) 2018; 9 Biller, SJ, Schubotz, F, Roggensack, SE, Thompson, AW, Summons, RE, Chisholm, SW (B40) 2014; 343 Fulsundar, S, Harms, K, Flaten, GE, Johnsen, PJ, Chopade, BA, Nielsen, KM (B15) 2014; 80 Roier, S, Zingl, FG, Cakar, F, Durakovic, S, Kohl, P, Eichmann, TO, Klug, L, Gadermaier, B, Weinzerl, K, Prassl, R, Lass, A, Daum, G, Reidl, J, Feldman, MF, Schild, S (B28) 2016; 7 Beveridge, TJ (B2) 1999; 181 Petrovski, S, Stanisich, VA (B67) 2010; 192 Klimentová, J, Stulík, J (B26) 2015; 170 Bitto, NJ, Cheng, L, Johnston, EL, Pathirana, R, Phan, TK, Poon, IKH, O’Brien-Simpson, NM, Hill, AF, Stinear, TP, Kaparakis-Liaskos, M (B7) 2021; 10 Zavan, L, Bitto, NJ, Johnston, EL, Greening, DW, Kaparakis-Liaskos, M (B4) 2019; 19 Thay, B, Wai, SN, Oscarsson, J (B21) 2013; 8 Cooke, AC, Nello, AV, Ernst, RK, Schertzer, JW (B42) 2019; 14 Han, E-C, Choi, S-Y, Lee, Y, Park, J-W, Hong, S-H, Lee, H-J (B16) 2019; 33 Kaparakis, M, Turnbull, L, Carneiro, L, Firth, S, Coleman, HA, Parkington, HC, Le Bourhis, L, Karrar, A, Viala, J, Mak, J, Hutton, ML, Davies, JK, Crack, PJ, Hertzog, PJ, Philpott, DJ, Girardin, SE, Whitchurch, CB, Ferrero, RL (B5) 2010; 12 Lee, E-Y, Choi, D-Y, Kim, D-K, Kim, J-W, Park, JO, Kim, S, Kim, S-H, Desiderio, DM, Kim, Y-K, Kim, K-P, Gho, YS (B3) 2009; 9 Kaparakis-Liaskos, M, Ferrero, RL (B20) 2015; 15 Huang, W, Zhang, Q, Li, W, Yuan, M, Zhou, J, Hua, L, Chen, Y, Ye, C, Ma, Y (B63) 2020; 317 Sharif, E, Eftekhari, Z, Mohit, E (B45) 2021; 78 Théry, C, Witwer, KW, Aikawa, E, Alcaraz, MJ, Anderson, JD, Andriantsitohaina, R, Antoniou, A, Arab, T, Archer, F, Atkin-Smith, GK, Ayre, DC, Bach, J-M, Bachurski, D, Baharvand, H, Balaj, L, Baldacchino, S, Bauer, NN, Baxter, AA, Bebawy, M, Beckham, C, Bedina Zavec, A, Benmoussa, A, Berardi, AC, Bergese, P, Bielska, E, Blenkiron, C, Bobis-Wozowicz, S, Boilard, E, Boireau, W, Bongiovanni, A, Borràs, FE, Bosch, S, Boulanger, CM, Breakefield, X, Breglio, AM, Brennan, MÁ, Brigstock, DR, Brisson, A, Broekman, ML, Bromberg, JF, Bryl-Górecka, P, Buch, S, Buck, AH, Burger, D, Busatto, S, Buschmann, D, Bussolati, B, Buzás, EI, Byrd, JB, Camussi, G (B37) 2018; 7 Cecil, JD, O’Brien-Simpson, NM, Lenzo, JC, Holden, JA, Chen, Y-Y, Singleton, W, Gause, KT, Yan, Y, Caruso, F, Reynolds, EC (B17) 2016; 11 Gasperini, G, Alfini, R, Arato, V, Mancini, F, Aruta, MG, Kanvatirth, P, Pickard, D, Necchi, F, Saul, A, Rossi, O, Micoli, F, Mastroeni, P (B30) 2021; 89 Rodriguez, BV, Kuehn, MJ (B41) 2020; 10 Cañas, M-A, Giménez, R, Fábrega, M-J, Toloza, L, Baldomà, L, Badia, J (B31) 2016; 11 Reimer, SL, Beniac, DR, Hiebert, SL, Booth, TF, Chong, PM, Westmacott, GR, Zhanel, GG, Bay, DC (B34) 2021; 12 Pathirana, RD, Kaparakis-Liaskos, M (B65) 2016; 18 Augustyniak, D, Seredyński, R, McClean, S, Roszkowiak, J, Roszniowski, B, Smith, DL, Drulis-Kawa, Z, Mackiewicz, P (B32) 2018; 8 van de Waterbeemd, B, Streefland, M, van Keulen, L, van den Ijssel, J, de Haan, A, Eppink, MH, van der Pol, LA (B60) 2012; 30 Lowry, OH, Rosebrough, NJ, Farr, AL, Randall, RJ (B44) 1951; 193 Obeid, S, Ceroi, A, Mourey, G, Saas, P, Elie-Caille, C, Boireau, W (B57) 2017; 93 Zakharzhevskaya, NB, Tsvetkov, VB, Vanyushkina, AA, Varizhuk, AM, Rakitina, DV, Podgorsky, VV, Vishnyakov, IE, Kharlampieva, DD, Manuvera, VA, Lisitsyn, FV, Gushina, EA, Lazarev, VN, Govorun, VM (B22) 2017; 7 Aschtgen, M-S, Wetzel, K, Goldman, W, McFall-Ngai, M, Ruby, E (B33) 2016; 18 Bitto, NJ, Chapman, R, Pidot, S, Costin, A, Lo, C, Choi, J, D'Cruze, T, Reynolds, EC, Dashper, SG, Turnbull, L, Whitchurch, CB, Stinear, TP, Stacey, KJ, Ferrero, RL (B11) 2017; 7 Bitto, NJ, Kaparakis-Liaskos, M (B24) 2017; 18 van de Waterbeemd, B, Mommen, GPM, Pennings, JLA, Eppink, MH, Wijffels, RH, van der Pol, LA, de Jong, APJM (B47) 2013; 12 Irving, AT, Mimuro, H, Kufer, TA, Lo, C, Wheeler, R, Turner, LJ, Thomas, BJ, Malosse, C, Gantier, MP, Casillas, LN, Votta, BJ, Bertin, J, Boneca, IG, Sasakawa, C, Philpott, DJ, Ferrero, RL, Kaparakis-Liaskos, M (B6) 2014; 15 Fountoulakis, M, Juranville, JF, Manneberg, M (B51) 1992; 24 Hartjes, TA, Mytnyk, S, Jenster, GW, van Steijn, V, van Royen, ME (B38) 2019; 6 Toyofuku, M, Nomura, N, Eberl, L (B1) 2019; 17 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
References_xml | – volume: 7 start-page: 1535750 year: 2018 ident: B37 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J Extracell Vesicles doi: 10.1080/20013078.2018.1535750 contributor: fullname: Camussi, G – volume: 18 start-page: 1518 year: 2016 end-page: 1524 ident: B65 article-title: Bacterial membrane vesicles: biogenesis, immune regulation and pathogenesis publication-title: Cell Microbiol doi: 10.1111/cmi.12658 contributor: fullname: Kaparakis-Liaskos, M – volume: 14 start-page: e0212275 year: 2019 end-page: e0212295 ident: B42 article-title: Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis publication-title: PLoS One doi: 10.1371/journal.pone.0212275 contributor: fullname: Schertzer, JW – volume: 17 start-page: 13 year: 2019 end-page: 24 ident: B1 article-title: Types and origins of bacterial membrane vesicles publication-title: Nat Rev Microbiol doi: 10.1038/s41579-018-0112-2 contributor: fullname: Eberl, L – volume: 11 start-page: e0160374 year: 2016 end-page: e0160396 ident: B31 article-title: Outer membrane vesicles from the probiotic Escherichia coli Nissle 1917 and the commensal ECOR12 enter intestinal epithelial cells via clathrin-dependent endocytosis and elicit differential effects on DNA damage publication-title: PLoS One doi: 10.1371/journal.pone.0160374 contributor: fullname: Badia, J – volume: 10 start-page: 18293 year: 2020 ident: B41 article-title: Staphylococcus aureus secretes immunomodulatory RNA and DNA via membrane vesicles publication-title: Sci Rep doi: 10.1038/s41598-020-75108-3 contributor: fullname: Kuehn, MJ – volume: 9 start-page: 12295 year: 2019 ident: B54 article-title: Improved methods for fluorescent labeling and detection of single extracellular vesicles using nanoparticle tracking analysis publication-title: Sci Rep doi: 10.1038/s41598-019-48181-6 contributor: fullname: Hoffman, AM – volume: 48 start-page: 810 year: 2002 end-page: 820 ident: B27 article-title: Bactericidal effect of gentamicin-induced membrane vesicles derived from Pseudomonas aeruginosa PAO1 on Gram-positive bacteria publication-title: Can J Microbiol doi: 10.1139/w02-077 contributor: fullname: Beveridge, TJ – volume: 19 start-page: e1800209 year: 2019 end-page: e1800223 ident: B4 article-title: Helicobacter pylori growth stage determines the size, protein composition, and preferential cargo packaging of outer membrane vesicles publication-title: Proteomics doi: 10.1002/pmic.201970004 contributor: fullname: Kaparakis-Liaskos, M – volume: 78 start-page: 1602 year: 2021 end-page: 1614 ident: B45 article-title: The effect of growth stage and isolation method on properties of ClearColi™ outer membrane vesicles (OMVs) publication-title: Curr Microbiol doi: 10.1007/s00284-021-02414-y contributor: fullname: Mohit, E – volume: 20 start-page: e12814 year: 2018 end-page: e12827 ident: B23 article-title: The bile salt sodium taurocholate induces Campylobacter jejuni outer membrane vesicle production and increases OMV-associated proteolytic activity publication-title: Cell Microbiol doi: 10.1111/cmi.12814 contributor: fullname: Dorrell, N – volume: 93 start-page: 185 year: 2016 end-page: 193 ident: B35 article-title: Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells publication-title: Microb Pathog doi: 10.1016/j.micpath.2016.02.014 contributor: fullname: Lee, JC – volume: 93 start-page: 250 year: 2017 end-page: 259 ident: B57 article-title: Development of a NanoBioAnalytical platform for “on-chip” qualification and quantification of platelet-derived microparticles publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2016.08.100 contributor: fullname: Boireau, W – volume: 134 start-page: 72 year: 2021 end-page: 85 ident: B25 article-title: Immunomodulatory roles and novel applications of bacterial membrane vesicles publication-title: Mol Immunol doi: 10.1016/j.molimm.2021.02.027 contributor: fullname: Kaparakis-Liaskos, M – volume: 9 start-page: 1379 year: 2018 ident: B61 article-title: Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform publication-title: Nat Commun doi: 10.1038/s41467-018-03847-z contributor: fullname: Lee, JC – volume: 196 start-page: 2355 year: 2014 end-page: 2366 ident: B10 article-title: Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery publication-title: J Bacteriol doi: 10.1128/JB.01493-14 contributor: fullname: Wen, ZT – volume: 5 start-page: 190 year: 2004 end-page: 198 ident: B49 article-title: TLR9 signals after translocating from the ER to CpG DNA in the lysosome publication-title: Nat Immunol doi: 10.1038/ni1028 contributor: fullname: Golenbock, DT – volume: 11 start-page: e0160440 year: 2016 end-page: e0160456 ident: B9 article-title: Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA publication-title: PLoS One doi: 10.1371/journal.pone.0160440 contributor: fullname: Phillips, AR – volume: 10 start-page: 3026 year: 2019 ident: B50 article-title: Cracking open bacterial membrane vesicles publication-title: Front Microbiol doi: 10.3389/fmicb.2019.03026 contributor: fullname: Toyofuku, M – volume: 24 start-page: 265 year: 1992 end-page: 274 ident: B51 article-title: Comparison of the Coomassie brilliant blue, bicinchoninic acid and Lowry quantitation assays, using non-glycosylated and glycosylated proteins publication-title: J Biochem Biophys Methods doi: 10.1016/0165-022x(94)90078-7 contributor: fullname: Manneberg, M – volume: 12 start-page: 1898 year: 2013 end-page: 1908 ident: B47 article-title: Quantitative proteomics reveals distinct differences in the protein content of outer membrane vesicle vaccines publication-title: J Proteome Res doi: 10.1021/pr301208g contributor: fullname: de Jong, APJM – volume: 12 start-page: 628801 year: 2021 ident: B34 article-title: Comparative analysis of outer membrane vesicle isolation methods with an Escherichia coli tolA mutant reveals a hypervesiculating phenotype with outer-inner membrane vesicle content publication-title: Front Microbiol doi: 10.3389/fmicb.2021.628801 contributor: fullname: Bay, DC – volume: 317 start-page: 1 year: 2020 end-page: 22 ident: B63 article-title: Development of novel nanoantibiotics using an outer membrane vesicle-based drug efflux mechanism publication-title: J Control Release doi: 10.1016/j.jconrel.2019.11.017 contributor: fullname: Ma, Y – volume: 15 start-page: 375 year: 2015 end-page: 387 ident: B20 article-title: Immune modulation by bacterial outer membrane vesicles publication-title: Nat Rev Immunol doi: 10.1038/nri3837 contributor: fullname: Ferrero, RL – volume: 7 start-page: 308 year: 2017 end-page: 323 ident: B22 article-title: Interaction of Bacteroides fragilis toxin with outer membrane vesicles reveals new mechanism of its secretion and delivery publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2017.00308 contributor: fullname: Govorun, VM – volume: 12 start-page: 614 year: 2014 end-page: 627 ident: B56 article-title: Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration publication-title: J Thromb Haemost doi: 10.1111/jth.12554 contributor: fullname: Brisson, AR – volume: 8 start-page: 1443 year: 2013 end-page: 1458 ident: B55 article-title: Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing publication-title: Nanomedicine (Lond) doi: 10.2217/nnm.12.173 contributor: fullname: Broekman, ML – volume: 18 start-page: 488 year: 2016 end-page: 499 ident: B33 article-title: Vibrio fischeri-derived outer membrane vesicles trigger host development publication-title: Cell Microbiol doi: 10.1111/cmi.12525 contributor: fullname: Ruby, E – volume: 8 start-page: 1632099 year: 2019 ident: B46 article-title: Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions publication-title: J Extracell Vesicles doi: 10.1080/20013078.2019.1632099 contributor: fullname: Swift, S – volume: 6 start-page: 873 year: 2015 end-page: 887 ident: B64 article-title: Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles publication-title: Ther Deliv doi: 10.4155/tde.15.40 contributor: fullname: Walper, SA – volume: 4 year: 2013 ident: B66 article-title: Helicobacter pylori VacA suppresses Lactobacillus acidophilus-induced interferon beta signaling in macrophages via alterations in the endocytic pathway publication-title: mBio doi: 10.1128/mBio.00609-12 contributor: fullname: Kaparakis-Liaskos, M – volume: 181 start-page: 4725 year: 1999 end-page: 4733 ident: B2 article-title: Structures of Gram-negative cell walls and their derived membrane vesicles publication-title: J Bacteriol doi: 10.1128/JB.181.16.4725-4733.1999 contributor: fullname: Beveridge, TJ – volume: 76 start-page: 293 year: 2018 end-page: 301 ident: B8 article-title: Isolation and characterization of a microRNA-size secretable small RNA in Streptococcus sanguinis publication-title: Cell Biochem Biophys doi: 10.1007/s12013-016-0770-5 contributor: fullname: Lee, H-J – volume: 343 start-page: 183 year: 2014 end-page: 186 ident: B40 article-title: Bacterial vesicles in marine ecosystems publication-title: Science doi: 10.1126/science.1243457 contributor: fullname: Chisholm, SW – volume: 158 start-page: 2742 year: 2012 end-page: 2752 ident: B18 article-title: Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo publication-title: Microbiology (Reading) doi: 10.1099/mic.0.060343-0 contributor: fullname: Whitworth, DE – volume: 8 start-page: e54661 year: 2013 end-page: e54671 ident: B21 article-title: Staphylococcus aureus alpha-toxin-dependent induction of host cell death by membrane-derived vesicles publication-title: PLoS One doi: 10.1371/journal.pone.0054661 contributor: fullname: Oscarsson, J – volume: 165 start-page: 1106 year: 2016 end-page: 1119 ident: B12 article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation publication-title: Cell doi: 10.1016/j.cell.2016.04.015 contributor: fullname: Rathinam, VAK – volume: 7 start-page: 3143 year: 2007 end-page: 3153 ident: B53 article-title: Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli publication-title: PROTEOMICS doi: 10.1002/pmic.200700196 contributor: fullname: Gho, YS – volume: 12 start-page: 372 year: 2010 end-page: 385 ident: B5 article-title: Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2009.01404.x contributor: fullname: Ferrero, RL – volume: 7 start-page: 10515 year: 2016 end-page: 10527 ident: B28 article-title: A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria publication-title: Nat Commun doi: 10.1038/ncomms10515 contributor: fullname: Schild, S – volume: 9 start-page: 1466 year: 2018 end-page: 1476 ident: B29 article-title: Helicobacter pylori outer membrane vesicle size determines their mechanisms of host cell entry and protein content publication-title: Front Immunol doi: 10.3389/fimmu.2018.01466 contributor: fullname: Kaparakis-Liaskos, M – volume: 33 start-page: 13412 year: 2019 end-page: 13422 ident: B16 article-title: Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood–brain barrier in mice publication-title: FASEB J doi: 10.1096/fj.201901575R contributor: fullname: Lee, H-J – volume: 7 start-page: 7072 year: 2017 end-page: 7086 ident: B11 article-title: Bacterial membrane vesicles transport their DNA cargo into host cells publication-title: Sci Rep doi: 10.1038/s41598-017-07288-4 contributor: fullname: Ferrero, RL – volume: 11 start-page: e0151967 year: 2016 end-page: e0151987 ident: B17 article-title: Differential responses of pattern recognition receptors to outer membrane vesicles of three periodontal pathogens publication-title: PLoS One doi: 10.1371/journal.pone.0151967 contributor: fullname: Reynolds, EC – volume: 8 start-page: 1525 year: 2014 end-page: 1537 ident: B62 article-title: Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy publication-title: ACS Nano doi: 10.1021/nn405724x contributor: fullname: Jon, S – volume: 10 year: 2015 ident: B58 article-title: Outer-inner membrane vesicles naturally secreted by Gram-negative pathogenic bacteria publication-title: PLoS One doi: 10.1371/journal.pone.0116896 contributor: fullname: Mercade, E – volume: 72 start-page: 248 year: 1976 end-page: 254 ident: B43 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal Biochem doi: 10.1006/abio.1976.9999 contributor: fullname: Bradford, MM – volume: 170 start-page: 1 year: 2015 end-page: 9 ident: B26 article-title: Methods of isolation and purification of outer membrane vesicles from Gram-negative bacteria publication-title: Microbiol Res doi: 10.1016/j.micres.2014.09.006 contributor: fullname: Stulík, J – volume: 89 year: 2021 ident: B30 article-title: Salmonella Paratyphi A outer membrane vesicles displaying Vi polysaccharide as a multivalent vaccine against enteric fever publication-title: Infect Immun doi: 10.1128/IAI.00699-20 contributor: fullname: Mastroeni, P – volume: 117 start-page: 3174 year: 2020 end-page: 3184 ident: B13 article-title: Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1915829117 contributor: fullname: Lee, JC – volume: 80 start-page: 3469 year: 2014 end-page: 3483 ident: B15 article-title: Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation publication-title: Appl Environ Microbiol doi: 10.1128/AEM.04248-13 contributor: fullname: Nielsen, KM – volume: 180 start-page: 5478 year: 1998 end-page: 5483 ident: B19 article-title: Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria publication-title: J Bacteriol doi: 10.1128/JB.180.20.5478-5483.1998 contributor: fullname: Beveridge, TJ – volume: 18 start-page: e1287 year: 2017 end-page: e1301 ident: B24 article-title: The therapeutic benefit of bacterial membrane vesicles publication-title: Int J Mol Sci doi: 10.3390/ijms18061287 contributor: fullname: Kaparakis-Liaskos, M – volume: 193 start-page: 265 year: 1951 end-page: 275 ident: B44 article-title: Protein measurement with the Folin phenol reagent publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)52451-6 contributor: fullname: Randall, RJ – volume: 3 start-page: 499 year: 2002 ident: B48 article-title: Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848 publication-title: Nat Immunol doi: 10.1038/ni0602-499 contributor: fullname: Bauer, S – volume: 201 year: 2019 ident: B36 article-title: Ambient pH alters the protein content of outer membrane vesicles, driving host development in a beneficial symbiosis publication-title: J Bacteriol doi: 10.1128/JB.00319-19 contributor: fullname: Ruby, EG – volume: 15 start-page: 623 year: 2014 end-page: 635 ident: B6 article-title: The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.04.001 contributor: fullname: Kaparakis-Liaskos, M – volume: 37 start-page: 99 year: 2007 end-page: 111 ident: B52 article-title: A comparison of protein quantitation assays for biopharmaceutical applications publication-title: Mol Biotechnol doi: 10.1007/s12033-007-0038-9 contributor: fullname: Bailey, MJ – volume: 8 start-page: 4955 year: 2018 end-page: 4969 ident: B32 article-title: Virulence factors of Moraxella catarrhalis outer membrane vesicles are major targets for cross-reactive antibodies and have adapted during evolution publication-title: Sci Rep doi: 10.1038/s41598-018-23029-7 contributor: fullname: Mackiewicz, P – volume: 6 start-page: 7 year: 2019 end-page: 32 ident: B38 article-title: Extracellular vesicle quantification and characterization: common methods and emerging approaches publication-title: Bioengineering doi: 10.3390/bioengineering6010007 contributor: fullname: van Royen, ME – volume: 10 issue: 6 year: 2021 ident: B7 article-title: Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune signaling pathways and induce autophagy publication-title: J Extracell Vesicles doi: 10.1002/jev2.12080 contributor: fullname: Kaparakis-Liaskos, M – volume: 11 start-page: 432 year: 2020 ident: B14 article-title: Bacterial membrane vesicles as mediators of microbe – microbe and microbe – host community interactions publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00432 contributor: fullname: Walper, SA – volume: 7 start-page: 11220 year: 2016 end-page: 11232 ident: B59 article-title: Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms publication-title: Nat Commun doi: 10.1038/ncomms11220 contributor: fullname: Whitchurch, CB – volume: 30 start-page: 3683 year: 2012 end-page: 3690 ident: B60 article-title: Identification and optimization of critical process parameters for the production of NOMV vaccine against Neisseria meningitidis publication-title: Vaccine doi: 10.1016/j.vaccine.2012.03.028 contributor: fullname: van der Pol, LA – volume: 6 start-page: 1333883 year: 2017 end-page: 1333892 ident: B39 article-title: High throughput nanoparticle tracking analysis for monitoring outer membrane vesicle production publication-title: J Extracell Vesicles doi: 10.1080/20013078.2017.1333883 contributor: fullname: Stork, M – volume: 9 start-page: 5425 year: 2009 end-page: 5436 ident: B3 article-title: Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles publication-title: Proteomics doi: 10.1002/pmic.200900338 contributor: fullname: Gho, YS – volume: 192 start-page: 1865 year: 2010 end-page: 1874 ident: B67 article-title: Tn502 and Tn512 are res site hunters that provide evidence of resolvase-independent transposition to random sites publication-title: J Bacteriol doi: 10.1128/JB.01322-09 contributor: fullname: Stanisich, VA – ident: e_1_3_2_26_2 doi: 10.1016/j.molimm.2021.02.027 – ident: e_1_3_2_44_2 doi: 10.1006/abio.1976.9999 – ident: e_1_3_2_28_2 doi: 10.1139/w02-077 – ident: e_1_3_2_6_2 doi: 10.1111/j.1462-5822.2009.01404.x – ident: e_1_3_2_16_2 doi: 10.1128/AEM.04248-13 – ident: e_1_3_2_60_2 doi: 10.1038/ncomms11220 – ident: e_1_3_2_8_2 doi: 10.1002/jev2.12080 – ident: e_1_3_2_20_2 doi: 10.1128/JB.180.20.5478-5483.1998 – ident: e_1_3_2_41_2 doi: 10.1126/science.1243457 – ident: e_1_3_2_10_2 doi: 10.1371/journal.pone.0160440 – ident: e_1_3_2_65_2 doi: 10.4155/tde.15.40 – ident: e_1_3_2_58_2 doi: 10.1016/j.bios.2016.08.100 – ident: e_1_3_2_21_2 doi: 10.1038/nri3837 – ident: e_1_3_2_52_2 doi: 10.1016/0165-022x(94)90078-7 – ident: e_1_3_2_59_2 doi: 10.1371/journal.pone.0116896 – ident: e_1_3_2_40_2 doi: 10.1080/20013078.2017.1333883 – ident: e_1_3_2_66_2 doi: 10.1111/cmi.12658 – ident: e_1_3_2_56_2 doi: 10.2217/nnm.12.173 – ident: e_1_3_2_47_2 doi: 10.1080/20013078.2019.1632099 – ident: e_1_3_2_18_2 doi: 10.1371/journal.pone.0151967 – ident: e_1_3_2_23_2 doi: 10.3389/fcimb.2017.00308 – ident: e_1_3_2_50_2 doi: 10.1038/ni1028 – ident: e_1_3_2_14_2 doi: 10.1073/pnas.1915829117 – ident: e_1_3_2_68_2 doi: 10.1128/JB.01322-09 – ident: e_1_3_2_35_2 doi: 10.3389/fmicb.2021.628801 – ident: e_1_3_2_33_2 doi: 10.1038/s41598-018-23029-7 – ident: e_1_3_2_11_2 doi: 10.1128/JB.01493-14 – ident: e_1_3_2_57_2 doi: 10.1111/jth.12554 – ident: e_1_3_2_61_2 doi: 10.1016/j.vaccine.2012.03.028 – ident: e_1_3_2_62_2 doi: 10.1038/s41467-018-03847-z – ident: e_1_3_2_2_2 doi: 10.1038/s41579-018-0112-2 – ident: e_1_3_2_55_2 doi: 10.1038/s41598-019-48181-6 – ident: e_1_3_2_19_2 doi: 10.1099/mic.0.060343-0 – ident: e_1_3_2_17_2 doi: 10.1096/fj.201901575R – ident: e_1_3_2_64_2 doi: 10.1016/j.jconrel.2019.11.017 – ident: e_1_3_2_4_2 doi: 10.1002/pmic.200900338 – ident: e_1_3_2_37_2 doi: 10.1128/JB.00319-19 – ident: e_1_3_2_34_2 doi: 10.1111/cmi.12525 – ident: e_1_3_2_39_2 doi: 10.3390/bioengineering6010007 – ident: e_1_3_2_22_2 doi: 10.1371/journal.pone.0054661 – ident: e_1_3_2_63_2 doi: 10.1021/nn405724x – ident: e_1_3_2_15_2 doi: 10.3389/fmicb.2020.00432 – ident: e_1_3_2_3_2 doi: 10.1128/JB.181.16.4725-4733.1999 – ident: e_1_3_2_51_2 doi: 10.3389/fmicb.2019.03026 – ident: e_1_3_2_29_2 doi: 10.1038/ncomms10515 – ident: e_1_3_2_7_2 doi: 10.1016/j.chom.2014.04.001 – ident: e_1_3_2_46_2 doi: 10.1007/s00284-021-02414-y – ident: e_1_3_2_43_2 doi: 10.1371/journal.pone.0212275 – ident: e_1_3_2_42_2 doi: 10.1038/s41598-020-75108-3 – ident: e_1_3_2_31_2 doi: 10.1128/IAI.00699-20 – ident: e_1_3_2_30_2 doi: 10.3389/fimmu.2018.01466 – ident: e_1_3_2_36_2 doi: 10.1016/j.micpath.2016.02.014 – ident: e_1_3_2_9_2 doi: 10.1007/s12013-016-0770-5 – ident: e_1_3_2_48_2 doi: 10.1021/pr301208g – ident: e_1_3_2_54_2 doi: 10.1002/pmic.200700196 – ident: e_1_3_2_32_2 doi: 10.1371/journal.pone.0160374 – ident: e_1_3_2_49_2 doi: 10.1038/ni0602-499 – ident: e_1_3_2_45_2 doi: 10.1016/S0021-9258(19)52451-6 – ident: e_1_3_2_67_2 doi: 10.1128/mBio.00609-12 – ident: e_1_3_2_25_2 doi: 10.3390/ijms18061287 – ident: e_1_3_2_12_2 doi: 10.1038/s41598-017-07288-4 – ident: e_1_3_2_53_2 doi: 10.1007/s12033-007-0038-9 – ident: e_1_3_2_5_2 doi: 10.1002/pmic.201970004 – ident: e_1_3_2_38_2 doi: 10.1080/20013078.2018.1535750 – ident: e_1_3_2_13_2 doi: 10.1016/j.cell.2016.04.015 – ident: e_1_3_2_24_2 doi: 10.1111/cmi.12814 – ident: e_1_3_2_27_2 doi: 10.1016/j.micres.2014.09.006 |
SSID | ssj0001105252 |
Score | 2.4274297 |
Snippet | Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis.... Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth... ABSTRACT Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis.... |
SourceID | doaj pubmedcentral proquest crossref asm2 pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0127321 |
SubjectTerms | bacterial membrane vesicles (BMVs) Bacterial Outer Membrane - metabolism Bacterial Proteins - analysis Cell Line DNA Extracellular Vesicles - metabolism HEK293 Cells Helicobacter pylori - genetics Helicobacter pylori - metabolism Host Microbial Interactions Humans membrane vesicles (MVs) NTA outer membrane vesicles (OMVs) Pseudomonas aeruginosa - genetics Pseudomonas aeruginosa - metabolism Research Article RNA RNA, Bacterial - genetics Staphylococcus aureus - genetics Staphylococcus aureus - metabolism |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9UwFA5jQ_BF_G2dSgRBEDrbJE1S3-7GxlTmFLyyt5A0CfPh9sp674N_j_-o5yTtdVeG-JqmTel3TvOd5OQ7hLxSMI25GGQZ67YtUQuzdJ2LpWCei8CVdkms-uyTPJ2LDxfNxQ6R01mY8QsOB3ZYpI38jWcz_RZLsq-u1osD3C_lJZ4f3wMbEhB07c1m8_OPf1ZXaqzPxsZtzBvvhX8wjMG25qMk238T1_w7ZfLaHHRyl9wZySOdZbTvkZ3Q3ye3cjnJnw_Ir6n6Zl6Fo8BHKfA7OgmP0GWkh1mdGZ5yFhYQKfeBfgtDyo17B01YTjr1Gxvp56wIC8-jtvf0y9rm7KI0BD2yPX0_lTmh-UUQ9dT3-FrxAHq-XoFth-EhmZ8cfz06LcciDKVtVLWCH1ClurbtBPdKNVJFWTkI0zxQBecV07WN4MNAc2TgwTe8A_4gat9yrax0jvNHZLdf9uEJoTEG5-toGQYxMQQrGBAcQMNyWzkdC_IaETGTDZgUoDBtJuxMws6wuiBvJtDMj6zK8a_OhwjrpiMKaqcGMC8z-qepusiBGgN70hDDWalFbDlm3tpausrrgrycjMKAA-KuCiC0XA8GQlDOWlTAKMjjbCSbobhAuUGpCqK2zGfrXbav9N8vk8i3xhPGVfP0v7_JPrnNMN-mZiVjz8guXAzPgTCt3IvRO34Dq2cWIQ priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS90wFA5yQdiLTDdd5w8yEAShs03apN2biuIEf4GKbyFpEvTh9g5774N_j__ozklauVfG9rLXNCSh5yT5TnLyfYTsStjGjHci9Xldp8iFmZrG-LRglheOy8oEsuqLS3F2V5w_lA9zUl-YExbpgeOPO8gazwGzwLZWAbjWoip8zTElUufCZDY-883YXDAVTldy1Gdj_TUmrMEHKOc-fZ6Nv-NdK0-RG3SkuzFb2I8Cbf-fsOb7lMm5Pej0I1npwSM9jINeJUuuXSPLUU7y5RN5HdQ34ykcBTxKAd_RgXiETjw9iuzM0MqFG0Ok3Dp677qQG_cDilBOOtTrC-l1ZISF9qhuLb2Z6ZhdFLqgx7qlPweZExoHglYPdU_mxAPo1WwKvu26z-Tu9OT2-CztRRhSXcpsCgtQJpu6bgpupSyF9CIzEKZZgArGSlbl2sMcBpgjHHe25A3ghyK3Na-kFsZwvk5G7aR1Xwj13hmbe80wiPHO6YIBwAFraK4zU_mE7KFFVD-LOhUCFFapwXYq2E6xPCH7g9HUr8jK8bfKR2jWt4pIqB0KwM1U72bqX26WkG-DUyiYgHirAhaazDoFIShnNTJgJGQjOslbV7xAukEhEyIX3GdhLItf2qfHQPJd4QvjrPz6Pwa_ST4wTMXJWcrYFhnB73HbgKWmZidMm9_Zgx0Y priority: 102 providerName: Directory of Open Access Journals |
Title | Considerations for the Analysis of Bacterial Membrane Vesicles: Methods of Vesicle Production and Quantification Can Influence Biological and Experimental Outcomes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34937167 https://journals.asm.org/doi/10.1128/Spectrum.01273-21 https://search.proquest.com/docview/2613291023 https://pubmed.ncbi.nlm.nih.gov/PMC8694105 https://doaj.org/article/0cf35070918548a684f935330a16b0d8 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL20GYO9jHWf3kfQYDAYOLEl25L7loaWbiNrB8vom5BsaSvMTqmTh_2e_dFeSXZJytjDXmXZkn2vpHOl63MA3nFcxrQ1RWzTsowdF2asK23jjNYsM4wL7cmqF1-K02X26SK_2IN8-BfGJ-1X-nLS_mom7eVPn1t51VTTIU9ser6YC_f3ZZJP92Efl9-tEN1vrKROmo32J5g4_U6dkvv6etNM3DEri6lTh2GZI4Jz6vIj1TV0Z1Xy5P1_Q5x3Eye3VqKTR_Cwh5BkFrp6AHumfQz3g6jk7yfwZ9DgDHtxBFEpQZRHBvoRsrLkKHA041MWpsF4uTXku-n8mx9ikROV9vX6QnIeeGHxeUS1Nfm6USHHyDdB5qolHwexExI64mzv6x5vSQiQs80aPdx0T2F5cvxtfhr3Ugyxynmyxmko4VVZVhmrOc8LbotEY7BWI2DQNaciVRZHMoKdwjBT56xCFJGldckEV4XWjD2DUbtqzQsg1hpdp1ZRF8pYY1RGEeagYRRTiRY2gvfOIrIfS530YQoVcjCj9GaUNI3gw2A0eRW4Of5V-ciZ9baio9X2BavrH7J3LplUliFARgwlMJJThchsyVz-rUoLndQigreDU0gchu5sBS202nQSA1FGS8eDEcHz4CS3TQ2-FgHfcZ-dvuxeQc_3VN-9p7_87ztfwQPqsnBSGlP6Gkb4TcwbhFFrPYZ7s9ny7PPYb0OM_SC6AZCkIfM |
link.rule.ids | 230,314,727,780,784,864,885,2102,27924,27925,53147,53160,53173,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVQKwQXxDfh00hISEgpiZ3EDrdt1WpLuy1IXdSbZce2ALFZRHYP_B7-KDO2U7qoQlwdJ44yM_Ebe_weIa8ETGPGuyb3ZdvmyIWZm874vGKWV44LaQJZ9eykmc6r9-f1eaqqxLMwX1GX99uwo4dF2MfHwMaF6KRHKN-iLPvqx3qxg3umPMcz5NvgRwJ8fHsymZ8e_VlhKVGjjaWtzCvvhf8wDMQ25qRA3X8V3vy7bPLSPHRwm9xKAJJOosXvkGuuv0uuR0nJn_fIr1GBM67EUcCkFDAeHclH6NLT3cjQDE-ZuQVky72jn9wQ6uPeQRNKSod-qZF-iKyw8Dyqe0s_rnWsMApD0D3d08NR6oTGF0HLh777lwQE6Ol6Bf7thvtkfrB_tjfNkxBDrmtRrOAnVIiubbuKWyHqRvimMJCqWYALxgomS-0hjgHqNI47W_MOMERV2pZLoRtjOH9Atvpl7x4R6r0ztvSaYSLjndMVA5AD1tBcF0b6jLxGi6gUSYMKSQqTarSdCrZTrMzIm9Fo6ntk5vhX510060VHJNUODeBjKsWoKjrPAR4DgpKQx-lGVr7lWH2ry8YUVmbk5egUCoIQd1bAQsv1oCAN5axFFoyMPIxOcjEUr5BysBEZERvus_Eum1f6L58D0bfEU8ZF_fi_v8kLcmN6NjtWx4cnR0_ITYb1NyXLGXtKtqCjewYAamWep0j5DfxjGns |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbQViAuiHfD00hISEgpiZ3YDrdt6aql9IHEot4sO7YFh81WZPfA7-GPMmMnpYsqxNU7G0eZmfibePx9hLyWsIzZ4EUeyqbJkQszt60NecUcrzyXykay6uMTcTCvPp7X50NXJZ6FGZ5gv2P6RdzIx8y-cGHQI1TvUJZ99WO92ME9U57jGfItiCNRTMjWdDo_PfrzhaVEjTY2bGVe-194D8M8bGNNitT91-HNv9smr6xDs7vkzgAg6TR5_B654bv75GaSlPz5gPwaFTjTlzgKmJQCxqMj-QhdBrqbGJrhKsd-AdVy5-lX38f-uPcwhJLS0W4YpGeJFRauR03n6Oe1SR1GcQq6Zzp6OEqd0HQj6Plou39FQICerlcQ375_SOaz_S97B_kgxJCbWhYreAkVsm2atuJOylrIIAoLpZoDuGCdZKo0AfIYoI7w3Luat4AhqtI1XEkjrOX8EZl0y85vExqCt64MhmEhE7w3FQOQA94w3BRWhYy8QY_oMQ50LFKY0qPvdPSdZmVG3o5O0xeJmeNfxrvo1ktDJNWOAxBieshRXbSBAzwGBKWgjjNCVaHh2H1rSmELpzLyagwKDUmIOyvgoeW611CGctYgC0ZGHqcguZyKV0g5KGRG5Eb4bNzL5i_d92-R6FvhKeOifvLfz-QluXX2YaY_HZ4cPSW3GbbflCxn7BmZgJ1_DvhpZV8MifIbw-UaFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Considerations+for+the+Analysis+of+Bacterial+Membrane+Vesicles%3A+Methods+of+Vesicle+Production+and+Quantification+Can+Influence+Biological+and+Experimental+Outcomes&rft.jtitle=Microbiology+spectrum&rft.au=Bitto%2C+Natalie+J&rft.au=Zavan%2C+Lauren&rft.au=Johnston%2C+Ella+L&rft.au=Stinear%2C+Timothy+P&rft.date=2021-12-22&rft.pub=American+Society+for+Microbiology&rft.eissn=2165-0497&rft.volume=9&rft.issue=3&rft_id=info:doi/10.1128%2FSpectrum.01273-21&rft.externalDocID=01273-21 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2165-0497&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2165-0497&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2165-0497&client=summon |