Considerations for the Analysis of Bacterial Membrane Vesicles: Methods of Vesicle Production and Quantification Can Influence Biological and Experimental Outcomes

Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified...

Full description

Saved in:
Bibliographic Details
Published inMicrobiology spectrum Vol. 9; no. 3; p. e0127321
Main Authors Bitto, Natalie J, Zavan, Lauren, Johnston, Ella L, Stinear, Timothy P, Hill, Andrew F, Kaparakis-Liaskos, Maria
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 22.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori, Pseudomonas aeruginosa, and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions.
AbstractList Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori, Pseudomonas aeruginosa, and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. IMPORTANCE Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions.
Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori , Pseudomonas aeruginosa , and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. IMPORTANCE Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions.
ABSTRACT Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori, Pseudomonas aeruginosa, and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. IMPORTANCE Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions.
Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori , Pseudomonas aeruginosa , and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. IMPORTANCE Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions.
Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori, Pseudomonas aeruginosa, and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions.
Author Johnston, Ella L
Stinear, Timothy P
Zavan, Lauren
Kaparakis-Liaskos, Maria
Bitto, Natalie J
Hill, Andrew F
Author_xml – sequence: 1
  givenname: Natalie J
  orcidid: 0000-0003-3533-9824
  surname: Bitto
  fullname: Bitto, Natalie J
  organization: Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe Universitygrid.1018.8, Melbourne, Victoria, Australia
– sequence: 2
  givenname: Lauren
  orcidid: 0000-0003-4700-3033
  surname: Zavan
  fullname: Zavan, Lauren
  organization: Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe Universitygrid.1018.8, Melbourne, Victoria, Australia
– sequence: 3
  givenname: Ella L
  orcidid: 0000-0003-2880-5719
  surname: Johnston
  fullname: Johnston, Ella L
  organization: Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe Universitygrid.1018.8, Melbourne, Victoria, Australia
– sequence: 4
  givenname: Timothy P
  orcidid: 0000-0003-0150-123X
  surname: Stinear
  fullname: Stinear, Timothy P
  organization: Department of Microbiology and Immunology, Doherty Institute, University of Melbournegrid.1008.9, Parkville, Victoria, Australia
– sequence: 5
  givenname: Andrew F
  orcidid: 0000-0001-5581-2354
  surname: Hill
  fullname: Hill, Andrew F
  organization: Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe Universitygrid.1018.8, Melbourne, Victoria, Australia
– sequence: 6
  givenname: Maria
  orcidid: 0000-0002-8964-4456
  surname: Kaparakis-Liaskos
  fullname: Kaparakis-Liaskos, Maria
  organization: Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe Universitygrid.1018.8, Melbourne, Victoria, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34937167$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaU_gAvykUsWfyR2zAGpXRVYqaggPq6WYzu7Xjn2YjuI_h7-KN7sUrUXTh69mXlvxvOeVyc-eFNVLxFcIIS7N2lnVI7TuIAIM1Jj9KQ6w4i2NWw4O3kQn1YXKW0hhAjBFrf4WXVKGk4Youys-rMMPlltosy2RGAIEeSNAZdeurtkEwgDuJIqm2ilA5_M2EfpDfhhklXOpLcFypug57ojCD7HoCe15wPSa_Blkj7bwapZAiylBys_uMl4ZcCVDS6sS87Ntde_d0VpND4X4HbKKowmvaieDtIlc3F8z6vv76-_LT_WN7cfVsvLm1q2DOaaMMgU56ohmrGWsoHCHndYY9T2muEOyYFTQjinhhjdEoU5aZDmpGOS9j0h59XqwKuD3IpdmUPGOxGkFTMQ4lrImPcrCqgG0kIGOerappO0awZOWkKgRLSHuitc7w5cu6kfjVZloyjdI9LHGW83Yh1-iY7yptypELw-EsTwczIpi9EmZZwr3x-mJDBFBHME8X5udChVMaQUzXAvg6DYe0V8PXpFzF4RGJWexaFHphGLbZhiOXj6b8OrhwvdS_yzEvkL81XPZA
CitedBy_id crossref_primary_10_1080_19490976_2024_2341670
crossref_primary_10_3389_fimmu_2024_1296061
crossref_primary_10_3389_fimmu_2023_1274295
crossref_primary_10_4049_jimmunol_2200892
crossref_primary_10_1007_s11274_024_03963_7
crossref_primary_10_1186_s13568_022_01499_3
crossref_primary_10_1016_j_tibtech_2022_03_005
crossref_primary_10_1016_j_jconrel_2023_10_027
crossref_primary_10_3389_fchem_2023_1284292
crossref_primary_10_1002_elps_202200133
crossref_primary_10_1080_19490976_2024_2359515
crossref_primary_10_3389_fcimb_2023_1193198
crossref_primary_10_1002_pmic_202300269
crossref_primary_10_3389_fimmu_2022_970725
crossref_primary_10_3390_pharmaceutics15020522
crossref_primary_10_1038_s41579_023_00875_5
crossref_primary_10_1002_jev2_12404
crossref_primary_10_1128_spectrum_05179_22
crossref_primary_10_3389_fmicb_2023_1254367
crossref_primary_10_3390_ijms23179742
crossref_primary_10_1111_1751_7915_14312
crossref_primary_10_1093_femsml_uqad029
crossref_primary_10_1016_j_cej_2022_138309
crossref_primary_10_1016_j_actbio_2024_04_022
crossref_primary_10_3389_fmicb_2024_1361270
crossref_primary_10_3390_cells12232674
crossref_primary_10_3390_ph16030421
crossref_primary_10_1016_j_pharmthera_2023_108443
crossref_primary_10_1128_aem_01346_22
Cites_doi 10.1080/20013078.2018.1535750
10.1111/cmi.12658
10.1371/journal.pone.0212275
10.1038/s41579-018-0112-2
10.1371/journal.pone.0160374
10.1038/s41598-020-75108-3
10.1038/s41598-019-48181-6
10.1139/w02-077
10.1002/pmic.201970004
10.1007/s00284-021-02414-y
10.1111/cmi.12814
10.1016/j.micpath.2016.02.014
10.1016/j.bios.2016.08.100
10.1016/j.molimm.2021.02.027
10.1038/s41467-018-03847-z
10.1128/JB.01493-14
10.1038/ni1028
10.1371/journal.pone.0160440
10.3389/fmicb.2019.03026
10.1016/0165-022x(94)90078-7
10.1021/pr301208g
10.3389/fmicb.2021.628801
10.1016/j.jconrel.2019.11.017
10.1038/nri3837
10.3389/fcimb.2017.00308
10.1111/jth.12554
10.2217/nnm.12.173
10.1111/cmi.12525
10.1080/20013078.2019.1632099
10.4155/tde.15.40
10.1128/mBio.00609-12
10.1128/JB.181.16.4725-4733.1999
10.1007/s12013-016-0770-5
10.1126/science.1243457
10.1099/mic.0.060343-0
10.1371/journal.pone.0054661
10.1016/j.cell.2016.04.015
10.1002/pmic.200700196
10.1111/j.1462-5822.2009.01404.x
10.1038/ncomms10515
10.3389/fimmu.2018.01466
10.1096/fj.201901575R
10.1038/s41598-017-07288-4
10.1371/journal.pone.0151967
10.1021/nn405724x
10.1371/journal.pone.0116896
10.1006/abio.1976.9999
10.1016/j.micres.2014.09.006
10.1128/IAI.00699-20
10.1073/pnas.1915829117
10.1128/AEM.04248-13
10.1128/JB.180.20.5478-5483.1998
10.3390/ijms18061287
10.1016/S0021-9258(19)52451-6
10.1038/ni0602-499
10.1128/JB.00319-19
10.1016/j.chom.2014.04.001
10.1007/s12033-007-0038-9
10.1038/s41598-018-23029-7
10.3390/bioengineering6010007
10.1002/jev2.12080
10.3389/fmicb.2020.00432
10.1038/ncomms11220
10.1016/j.vaccine.2012.03.028
10.1080/20013078.2017.1333883
10.1002/pmic.200900338
10.1128/JB.01322-09
ContentType Journal Article
Copyright Copyright © 2021 Bitto et al.
Copyright © 2021 Bitto et al. 2021 Bitto et al.
Copyright_xml – notice: Copyright © 2021 Bitto et al.
– notice: Copyright © 2021 Bitto et al. 2021 Bitto et al.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1128/spectrum.01273-21
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2165-0497
Editor Edelmann, Mariola J
Editor_xml – sequence: 1
  givenname: Mariola J
  surname: Edelmann
  fullname: Edelmann, Mariola J
– sequence: 1
  givenname: Mariola J.
  surname: Edelmann
  fullname: Edelmann, Mariola J.
EndPage e0127321
ExternalDocumentID oai_doaj_org_article_0cf35070918548a684f935330a16b0d8
10_1128_Spectrum_01273_21
01273-21
34937167
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP190101655
  funderid: http://doi.org/10.13039/501100000923
– fundername: Veski
  grantid: Inspiring Women Fellowship
  funderid: https://doi.org/10.13039/100012789
– fundername: Department of Health | National Health and Medical Research Council (NHMRC)
  grantid: 1107800
  funderid: https://doi.org/10.13039/501100000925
– fundername: La Trobe University
  grantid: RFA Understanding Diseases Grant
  funderid: https://doi.org/10.13039/501100001215
– fundername: ;
  grantid: RFA Understanding Diseases Grant
– fundername: ;
  grantid: DP190101655
– fundername: ;
  grantid: Inspiring Women Fellowship
– fundername: ;
  grantid: 1107800
GroupedDBID 53G
AAUOK
ADBBV
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
CGR
CUY
CVF
EBS
ECM
EIF
EJD
FF~
FRP
GROUPED_DOAJ
H13
M~E
NPM
OK1
RPM
RSF
UCJ
BXI
FF
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a570t-3707c99c43d77567f60b282d215bd7281af9633996e3ed53c29341d9387a6bb33
IEDL.DBID RPM
ISSN 2165-0497
IngestDate Tue Dec 17 15:17:24 EST 2024
Tue Sep 17 20:43:31 EDT 2024
Fri Oct 25 08:54:07 EDT 2024
Fri Dec 06 03:57:51 EST 2024
Thu Jan 20 01:29:34 EST 2022
Sat Sep 28 08:21:26 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords quantification
RNA
outer membrane vesicles (OMVs)
membrane vesicles (MVs)
DNA
protein
NTA
bacterial membrane vesicles (BMVs)
TLRs
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a570t-3707c99c43d77567f60b282d215bd7281af9633996e3ed53c29341d9387a6bb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0002-8964-4456
0000-0003-2880-5719
0000-0003-4700-3033
0000-0001-5581-2354
0000-0003-3533-9824
0000-0003-0150-123X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694105/
PMID 34937167
PQID 2613291023
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_0cf35070918548a684f935330a16b0d8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8694105
proquest_miscellaneous_2613291023
crossref_primary_10_1128_Spectrum_01273_21
asm2_journals_10_1128_Spectrum_01273_21
pubmed_primary_34937167
PublicationCentury 2000
PublicationDate 20211222
PublicationDateYYYYMMDD 2021-12-22
PublicationDate_xml – month: 12
  year: 2021
  text: 20211222
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Microbiology spectrum
PublicationTitleAbbrev Microbiol Spectr
PublicationTitleAlternate Microbiol Spectr
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – sequence: 0
  name: American Society for Microbiology
– name: American Society for Microbiology
References Caruana, JC, Walper, SA (B14) 2020; 11
Lynch, JB, Schwartzman, JA, Bennett, BD, McAnulty, SJ, Knop, M, Nyholm, SV, Ruby, EG (B36) 2019; 201
Jurk, M, Heil, F, Vollmer, J, Schetter, C, Krieg, AM, Wagner, H, Lipford, G, Bauer, S (B48) 2002; 3
Gujrati, V, Kim, S, Kim, S-H, Min, JJ, Choy, HE, Kim, SC, Jon, S (B62) 2014; 8
Latz, E, Schoenemeyer, A, Visintin, A, Fitzgerald, KA, Monks, BG, Knetter, CF, Lien, E, Nilsen, NJ, Espevik, T, Golenbock, DT (B49) 2004; 5
Gilmore, WJ, Johnston, EL, Zavan, L, Bitto, NJ, Kaparakis-Liaskos, M (B25) 2021; 134
Perez-Cruz, C, Delgado, L, Lopez-Iglesias, C, Mercade, E (B58) 2015; 10
Evans, AGL, Davey, HM, Cookson, A, Currinn, H, Cooke-Fox, G, Stanczyk, PJ, Whitworth, DE (B18) 2012; 158
Vanaja, SK, Russo, AJ, Behl, B, Banerjee, I, Yankova, M, Deshmukh, SD, Rathinam, VAK (B12) 2016; 165
Bradford, MM (B43) 1976; 72
de Vrij, J, Maas, SL, van Nispen, M, Sena-Esteves, M, Limpens, RW, Koster, AJ, Leenstra, S, Lamfers, ML, Broekman, ML (B55) 2013; 8
Nagakubo, T, Nomura, N, Toyofuku, M (B50) 2019; 10
Hong, J, Dauros-Singorenko, P, Whitcombe, A, Payne, L, Blenkiron, C, Phillips, A, Swift, S (B46) 2019; 8
Wang, X, Thompson, CD, Weidenmaier, C, Lee, JC (B61) 2018; 9
Alves, NJ, Turner, KB, Medintz, IL, Walper, SA (B64) 2015; 6
Arraud, N, Linares, R, Tan, S, Gounou, C, Pasquet, J-M, Mornet, S, Brisson, AR (B56) 2014; 12
Blenkiron, C, Simonov, D, Muthukaruppan, A, Tsai, P, Dauros, P, Green, S, Hong, J, Print, CG, Swift, S, Phillips, AR (B9) 2016; 11
Elmi, A, Dorey, A, Watson, E, Jagatia, H, Inglis, NF, Gundogdu, O, Bajaj-Elliott, M, Wren, BW, Smith, DGE, Dorrell, N (B23) 2018; 20
Thane, KE, Davis, AM, Hoffman, AM (B54) 2019; 9
Choi, J-W, Kwon, T-Y, Hong, S-H, Lee, H-J (B8) 2018; 76
Gerritzen, MJH, Martens, DE, Wijffels, RH, Stork, M (B39) 2017; 6
Liao, S, Klein, MI, Heim, KP, Fan, Y, Bitoun, JP, Ahn, S-J, Burne, RA, Koo, H, Brady, LJ, Wen, ZT (B10) 2014; 196
Li, Z, Clarke, AJ, Beveridge, TJ (B19) 1998; 180
Weiss, G, Forster, S, Irving, A, Tate, M, Ferrero, RL, Hertzog, P, Frøkiær, H, Kaparakis-Liaskos, M (B66) 2013; 4
Noble, JE, Knight, AE, Reason, AJ, Di Matola, A, Bailey, MJ (B52) 2007; 37
Jeon, H, Oh, MH, Jun, SH, Kim, SI, Choi, CW, Kwon, HI, Na, SH, Kim, YJ, Nicholas, A, Selasi, GN, Lee, JC (B35) 2016; 93
MacDonald, KL, Beveridge, TJ (B27) 2002; 48
Lee, E-Y, Bang, JY, Park, GW, Choi, D-S, Kang, JS, Kim, H-J, Park, K-S, Lee, J-O, Kim, Y-K, Kwon, K-H, Kim, K-P, Gho, YS (B53) 2007; 7
Wang, X, Eagen, WJ, Lee, JC (B13) 2020; 117
Turnbull, L, Toyofuku, M, Hynen, AL, Kurosawa, M, Pessi, G, Petty, NK, Osvath, SR, Cárcamo-Oyarce, G, Gloag, ES, Shimoni, R, Omasits, U, Ito, S, Yap, X, Monahan, LG, Cavaliere, R, Ahrens, CH, Charles, IG, Nomura, N, Eberl, L, Whitchurch, CB (B59) 2016; 7
Turner, L, Bitto, NJ, Steer, DL, Lo, C, D'Costa, K, Ramm, G, Shambrook, M, Hill, AF, Ferrero, RL, Kaparakis-Liaskos, M (B29) 2018; 9
Biller, SJ, Schubotz, F, Roggensack, SE, Thompson, AW, Summons, RE, Chisholm, SW (B40) 2014; 343
Fulsundar, S, Harms, K, Flaten, GE, Johnsen, PJ, Chopade, BA, Nielsen, KM (B15) 2014; 80
Roier, S, Zingl, FG, Cakar, F, Durakovic, S, Kohl, P, Eichmann, TO, Klug, L, Gadermaier, B, Weinzerl, K, Prassl, R, Lass, A, Daum, G, Reidl, J, Feldman, MF, Schild, S (B28) 2016; 7
Beveridge, TJ (B2) 1999; 181
Petrovski, S, Stanisich, VA (B67) 2010; 192
Klimentová, J, Stulík, J (B26) 2015; 170
Bitto, NJ, Cheng, L, Johnston, EL, Pathirana, R, Phan, TK, Poon, IKH, O’Brien-Simpson, NM, Hill, AF, Stinear, TP, Kaparakis-Liaskos, M (B7) 2021; 10
Zavan, L, Bitto, NJ, Johnston, EL, Greening, DW, Kaparakis-Liaskos, M (B4) 2019; 19
Thay, B, Wai, SN, Oscarsson, J (B21) 2013; 8
Cooke, AC, Nello, AV, Ernst, RK, Schertzer, JW (B42) 2019; 14
Han, E-C, Choi, S-Y, Lee, Y, Park, J-W, Hong, S-H, Lee, H-J (B16) 2019; 33
Kaparakis, M, Turnbull, L, Carneiro, L, Firth, S, Coleman, HA, Parkington, HC, Le Bourhis, L, Karrar, A, Viala, J, Mak, J, Hutton, ML, Davies, JK, Crack, PJ, Hertzog, PJ, Philpott, DJ, Girardin, SE, Whitchurch, CB, Ferrero, RL (B5) 2010; 12
Lee, E-Y, Choi, D-Y, Kim, D-K, Kim, J-W, Park, JO, Kim, S, Kim, S-H, Desiderio, DM, Kim, Y-K, Kim, K-P, Gho, YS (B3) 2009; 9
Kaparakis-Liaskos, M, Ferrero, RL (B20) 2015; 15
Huang, W, Zhang, Q, Li, W, Yuan, M, Zhou, J, Hua, L, Chen, Y, Ye, C, Ma, Y (B63) 2020; 317
Sharif, E, Eftekhari, Z, Mohit, E (B45) 2021; 78
Théry, C, Witwer, KW, Aikawa, E, Alcaraz, MJ, Anderson, JD, Andriantsitohaina, R, Antoniou, A, Arab, T, Archer, F, Atkin-Smith, GK, Ayre, DC, Bach, J-M, Bachurski, D, Baharvand, H, Balaj, L, Baldacchino, S, Bauer, NN, Baxter, AA, Bebawy, M, Beckham, C, Bedina Zavec, A, Benmoussa, A, Berardi, AC, Bergese, P, Bielska, E, Blenkiron, C, Bobis-Wozowicz, S, Boilard, E, Boireau, W, Bongiovanni, A, Borràs, FE, Bosch, S, Boulanger, CM, Breakefield, X, Breglio, AM, Brennan, MÁ, Brigstock, DR, Brisson, A, Broekman, ML, Bromberg, JF, Bryl-Górecka, P, Buch, S, Buck, AH, Burger, D, Busatto, S, Buschmann, D, Bussolati, B, Buzás, EI, Byrd, JB, Camussi, G (B37) 2018; 7
Cecil, JD, O’Brien-Simpson, NM, Lenzo, JC, Holden, JA, Chen, Y-Y, Singleton, W, Gause, KT, Yan, Y, Caruso, F, Reynolds, EC (B17) 2016; 11
Gasperini, G, Alfini, R, Arato, V, Mancini, F, Aruta, MG, Kanvatirth, P, Pickard, D, Necchi, F, Saul, A, Rossi, O, Micoli, F, Mastroeni, P (B30) 2021; 89
Rodriguez, BV, Kuehn, MJ (B41) 2020; 10
Cañas, M-A, Giménez, R, Fábrega, M-J, Toloza, L, Baldomà, L, Badia, J (B31) 2016; 11
Reimer, SL, Beniac, DR, Hiebert, SL, Booth, TF, Chong, PM, Westmacott, GR, Zhanel, GG, Bay, DC (B34) 2021; 12
Pathirana, RD, Kaparakis-Liaskos, M (B65) 2016; 18
Augustyniak, D, Seredyński, R, McClean, S, Roszkowiak, J, Roszniowski, B, Smith, DL, Drulis-Kawa, Z, Mackiewicz, P (B32) 2018; 8
van de Waterbeemd, B, Streefland, M, van Keulen, L, van den Ijssel, J, de Haan, A, Eppink, MH, van der Pol, LA (B60) 2012; 30
Lowry, OH, Rosebrough, NJ, Farr, AL, Randall, RJ (B44) 1951; 193
Obeid, S, Ceroi, A, Mourey, G, Saas, P, Elie-Caille, C, Boireau, W (B57) 2017; 93
Zakharzhevskaya, NB, Tsvetkov, VB, Vanyushkina, AA, Varizhuk, AM, Rakitina, DV, Podgorsky, VV, Vishnyakov, IE, Kharlampieva, DD, Manuvera, VA, Lisitsyn, FV, Gushina, EA, Lazarev, VN, Govorun, VM (B22) 2017; 7
Aschtgen, M-S, Wetzel, K, Goldman, W, McFall-Ngai, M, Ruby, E (B33) 2016; 18
Bitto, NJ, Chapman, R, Pidot, S, Costin, A, Lo, C, Choi, J, D'Cruze, T, Reynolds, EC, Dashper, SG, Turnbull, L, Whitchurch, CB, Stinear, TP, Stacey, KJ, Ferrero, RL (B11) 2017; 7
Bitto, NJ, Kaparakis-Liaskos, M (B24) 2017; 18
van de Waterbeemd, B, Mommen, GPM, Pennings, JLA, Eppink, MH, Wijffels, RH, van der Pol, LA, de Jong, APJM (B47) 2013; 12
Irving, AT, Mimuro, H, Kufer, TA, Lo, C, Wheeler, R, Turner, LJ, Thomas, BJ, Malosse, C, Gantier, MP, Casillas, LN, Votta, BJ, Bertin, J, Boneca, IG, Sasakawa, C, Philpott, DJ, Ferrero, RL, Kaparakis-Liaskos, M (B6) 2014; 15
Fountoulakis, M, Juranville, JF, Manneberg, M (B51) 1992; 24
Hartjes, TA, Mytnyk, S, Jenster, GW, van Steijn, V, van Royen, ME (B38) 2019; 6
Toyofuku, M, Nomura, N, Eberl, L (B1) 2019; 17
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – volume: 7
  start-page: 1535750
  year: 2018
  ident: B37
  article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
  publication-title: J Extracell Vesicles
  doi: 10.1080/20013078.2018.1535750
  contributor:
    fullname: Camussi, G
– volume: 18
  start-page: 1518
  year: 2016
  end-page: 1524
  ident: B65
  article-title: Bacterial membrane vesicles: biogenesis, immune regulation and pathogenesis
  publication-title: Cell Microbiol
  doi: 10.1111/cmi.12658
  contributor:
    fullname: Kaparakis-Liaskos, M
– volume: 14
  start-page: e0212275
  year: 2019
  end-page: e0212295
  ident: B42
  article-title: Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0212275
  contributor:
    fullname: Schertzer, JW
– volume: 17
  start-page: 13
  year: 2019
  end-page: 24
  ident: B1
  article-title: Types and origins of bacterial membrane vesicles
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-018-0112-2
  contributor:
    fullname: Eberl, L
– volume: 11
  start-page: e0160374
  year: 2016
  end-page: e0160396
  ident: B31
  article-title: Outer membrane vesicles from the probiotic Escherichia coli Nissle 1917 and the commensal ECOR12 enter intestinal epithelial cells via clathrin-dependent endocytosis and elicit differential effects on DNA damage
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0160374
  contributor:
    fullname: Badia, J
– volume: 10
  start-page: 18293
  year: 2020
  ident: B41
  article-title: Staphylococcus aureus secretes immunomodulatory RNA and DNA via membrane vesicles
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-75108-3
  contributor:
    fullname: Kuehn, MJ
– volume: 9
  start-page: 12295
  year: 2019
  ident: B54
  article-title: Improved methods for fluorescent labeling and detection of single extracellular vesicles using nanoparticle tracking analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-48181-6
  contributor:
    fullname: Hoffman, AM
– volume: 48
  start-page: 810
  year: 2002
  end-page: 820
  ident: B27
  article-title: Bactericidal effect of gentamicin-induced membrane vesicles derived from Pseudomonas aeruginosa PAO1 on Gram-positive bacteria
  publication-title: Can J Microbiol
  doi: 10.1139/w02-077
  contributor:
    fullname: Beveridge, TJ
– volume: 19
  start-page: e1800209
  year: 2019
  end-page: e1800223
  ident: B4
  article-title: Helicobacter pylori growth stage determines the size, protein composition, and preferential cargo packaging of outer membrane vesicles
  publication-title: Proteomics
  doi: 10.1002/pmic.201970004
  contributor:
    fullname: Kaparakis-Liaskos, M
– volume: 78
  start-page: 1602
  year: 2021
  end-page: 1614
  ident: B45
  article-title: The effect of growth stage and isolation method on properties of ClearColi™ outer membrane vesicles (OMVs)
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-021-02414-y
  contributor:
    fullname: Mohit, E
– volume: 20
  start-page: e12814
  year: 2018
  end-page: e12827
  ident: B23
  article-title: The bile salt sodium taurocholate induces Campylobacter jejuni outer membrane vesicle production and increases OMV-associated proteolytic activity
  publication-title: Cell Microbiol
  doi: 10.1111/cmi.12814
  contributor:
    fullname: Dorrell, N
– volume: 93
  start-page: 185
  year: 2016
  end-page: 193
  ident: B35
  article-title: Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells
  publication-title: Microb Pathog
  doi: 10.1016/j.micpath.2016.02.014
  contributor:
    fullname: Lee, JC
– volume: 93
  start-page: 250
  year: 2017
  end-page: 259
  ident: B57
  article-title: Development of a NanoBioAnalytical platform for “on-chip” qualification and quantification of platelet-derived microparticles
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2016.08.100
  contributor:
    fullname: Boireau, W
– volume: 134
  start-page: 72
  year: 2021
  end-page: 85
  ident: B25
  article-title: Immunomodulatory roles and novel applications of bacterial membrane vesicles
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2021.02.027
  contributor:
    fullname: Kaparakis-Liaskos, M
– volume: 9
  start-page: 1379
  year: 2018
  ident: B61
  article-title: Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03847-z
  contributor:
    fullname: Lee, JC
– volume: 196
  start-page: 2355
  year: 2014
  end-page: 2366
  ident: B10
  article-title: Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery
  publication-title: J Bacteriol
  doi: 10.1128/JB.01493-14
  contributor:
    fullname: Wen, ZT
– volume: 5
  start-page: 190
  year: 2004
  end-page: 198
  ident: B49
  article-title: TLR9 signals after translocating from the ER to CpG DNA in the lysosome
  publication-title: Nat Immunol
  doi: 10.1038/ni1028
  contributor:
    fullname: Golenbock, DT
– volume: 11
  start-page: e0160440
  year: 2016
  end-page: e0160456
  ident: B9
  article-title: Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0160440
  contributor:
    fullname: Phillips, AR
– volume: 10
  start-page: 3026
  year: 2019
  ident: B50
  article-title: Cracking open bacterial membrane vesicles
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.03026
  contributor:
    fullname: Toyofuku, M
– volume: 24
  start-page: 265
  year: 1992
  end-page: 274
  ident: B51
  article-title: Comparison of the Coomassie brilliant blue, bicinchoninic acid and Lowry quantitation assays, using non-glycosylated and glycosylated proteins
  publication-title: J Biochem Biophys Methods
  doi: 10.1016/0165-022x(94)90078-7
  contributor:
    fullname: Manneberg, M
– volume: 12
  start-page: 1898
  year: 2013
  end-page: 1908
  ident: B47
  article-title: Quantitative proteomics reveals distinct differences in the protein content of outer membrane vesicle vaccines
  publication-title: J Proteome Res
  doi: 10.1021/pr301208g
  contributor:
    fullname: de Jong, APJM
– volume: 12
  start-page: 628801
  year: 2021
  ident: B34
  article-title: Comparative analysis of outer membrane vesicle isolation methods with an Escherichia coli tolA mutant reveals a hypervesiculating phenotype with outer-inner membrane vesicle content
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.628801
  contributor:
    fullname: Bay, DC
– volume: 317
  start-page: 1
  year: 2020
  end-page: 22
  ident: B63
  article-title: Development of novel nanoantibiotics using an outer membrane vesicle-based drug efflux mechanism
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2019.11.017
  contributor:
    fullname: Ma, Y
– volume: 15
  start-page: 375
  year: 2015
  end-page: 387
  ident: B20
  article-title: Immune modulation by bacterial outer membrane vesicles
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3837
  contributor:
    fullname: Ferrero, RL
– volume: 7
  start-page: 308
  year: 2017
  end-page: 323
  ident: B22
  article-title: Interaction of Bacteroides fragilis toxin with outer membrane vesicles reveals new mechanism of its secretion and delivery
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2017.00308
  contributor:
    fullname: Govorun, VM
– volume: 12
  start-page: 614
  year: 2014
  end-page: 627
  ident: B56
  article-title: Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration
  publication-title: J Thromb Haemost
  doi: 10.1111/jth.12554
  contributor:
    fullname: Brisson, AR
– volume: 8
  start-page: 1443
  year: 2013
  end-page: 1458
  ident: B55
  article-title: Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing
  publication-title: Nanomedicine (Lond)
  doi: 10.2217/nnm.12.173
  contributor:
    fullname: Broekman, ML
– volume: 18
  start-page: 488
  year: 2016
  end-page: 499
  ident: B33
  article-title: Vibrio fischeri-derived outer membrane vesicles trigger host development
  publication-title: Cell Microbiol
  doi: 10.1111/cmi.12525
  contributor:
    fullname: Ruby, E
– volume: 8
  start-page: 1632099
  year: 2019
  ident: B46
  article-title: Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions
  publication-title: J Extracell Vesicles
  doi: 10.1080/20013078.2019.1632099
  contributor:
    fullname: Swift, S
– volume: 6
  start-page: 873
  year: 2015
  end-page: 887
  ident: B64
  article-title: Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles
  publication-title: Ther Deliv
  doi: 10.4155/tde.15.40
  contributor:
    fullname: Walper, SA
– volume: 4
  year: 2013
  ident: B66
  article-title: Helicobacter pylori VacA suppresses Lactobacillus acidophilus-induced interferon beta signaling in macrophages via alterations in the endocytic pathway
  publication-title: mBio
  doi: 10.1128/mBio.00609-12
  contributor:
    fullname: Kaparakis-Liaskos, M
– volume: 181
  start-page: 4725
  year: 1999
  end-page: 4733
  ident: B2
  article-title: Structures of Gram-negative cell walls and their derived membrane vesicles
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.16.4725-4733.1999
  contributor:
    fullname: Beveridge, TJ
– volume: 76
  start-page: 293
  year: 2018
  end-page: 301
  ident: B8
  article-title: Isolation and characterization of a microRNA-size secretable small RNA in Streptococcus sanguinis
  publication-title: Cell Biochem Biophys
  doi: 10.1007/s12013-016-0770-5
  contributor:
    fullname: Lee, H-J
– volume: 343
  start-page: 183
  year: 2014
  end-page: 186
  ident: B40
  article-title: Bacterial vesicles in marine ecosystems
  publication-title: Science
  doi: 10.1126/science.1243457
  contributor:
    fullname: Chisholm, SW
– volume: 158
  start-page: 2742
  year: 2012
  end-page: 2752
  ident: B18
  article-title: Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.060343-0
  contributor:
    fullname: Whitworth, DE
– volume: 8
  start-page: e54661
  year: 2013
  end-page: e54671
  ident: B21
  article-title: Staphylococcus aureus alpha-toxin-dependent induction of host cell death by membrane-derived vesicles
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0054661
  contributor:
    fullname: Oscarsson, J
– volume: 165
  start-page: 1106
  year: 2016
  end-page: 1119
  ident: B12
  article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.015
  contributor:
    fullname: Rathinam, VAK
– volume: 7
  start-page: 3143
  year: 2007
  end-page: 3153
  ident: B53
  article-title: Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli
  publication-title: PROTEOMICS
  doi: 10.1002/pmic.200700196
  contributor:
    fullname: Gho, YS
– volume: 12
  start-page: 372
  year: 2010
  end-page: 385
  ident: B5
  article-title: Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2009.01404.x
  contributor:
    fullname: Ferrero, RL
– volume: 7
  start-page: 10515
  year: 2016
  end-page: 10527
  ident: B28
  article-title: A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria
  publication-title: Nat Commun
  doi: 10.1038/ncomms10515
  contributor:
    fullname: Schild, S
– volume: 9
  start-page: 1466
  year: 2018
  end-page: 1476
  ident: B29
  article-title: Helicobacter pylori outer membrane vesicle size determines their mechanisms of host cell entry and protein content
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.01466
  contributor:
    fullname: Kaparakis-Liaskos, M
– volume: 33
  start-page: 13412
  year: 2019
  end-page: 13422
  ident: B16
  article-title: Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood–brain barrier in mice
  publication-title: FASEB J
  doi: 10.1096/fj.201901575R
  contributor:
    fullname: Lee, H-J
– volume: 7
  start-page: 7072
  year: 2017
  end-page: 7086
  ident: B11
  article-title: Bacterial membrane vesicles transport their DNA cargo into host cells
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-07288-4
  contributor:
    fullname: Ferrero, RL
– volume: 11
  start-page: e0151967
  year: 2016
  end-page: e0151987
  ident: B17
  article-title: Differential responses of pattern recognition receptors to outer membrane vesicles of three periodontal pathogens
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0151967
  contributor:
    fullname: Reynolds, EC
– volume: 8
  start-page: 1525
  year: 2014
  end-page: 1537
  ident: B62
  article-title: Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy
  publication-title: ACS Nano
  doi: 10.1021/nn405724x
  contributor:
    fullname: Jon, S
– volume: 10
  year: 2015
  ident: B58
  article-title: Outer-inner membrane vesicles naturally secreted by Gram-negative pathogenic bacteria
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0116896
  contributor:
    fullname: Mercade, E
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  ident: B43
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal Biochem
  doi: 10.1006/abio.1976.9999
  contributor:
    fullname: Bradford, MM
– volume: 170
  start-page: 1
  year: 2015
  end-page: 9
  ident: B26
  article-title: Methods of isolation and purification of outer membrane vesicles from Gram-negative bacteria
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2014.09.006
  contributor:
    fullname: Stulík, J
– volume: 89
  year: 2021
  ident: B30
  article-title: Salmonella Paratyphi A outer membrane vesicles displaying Vi polysaccharide as a multivalent vaccine against enteric fever
  publication-title: Infect Immun
  doi: 10.1128/IAI.00699-20
  contributor:
    fullname: Mastroeni, P
– volume: 117
  start-page: 3174
  year: 2020
  end-page: 3184
  ident: B13
  article-title: Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1915829117
  contributor:
    fullname: Lee, JC
– volume: 80
  start-page: 3469
  year: 2014
  end-page: 3483
  ident: B15
  article-title: Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.04248-13
  contributor:
    fullname: Nielsen, KM
– volume: 180
  start-page: 5478
  year: 1998
  end-page: 5483
  ident: B19
  article-title: Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria
  publication-title: J Bacteriol
  doi: 10.1128/JB.180.20.5478-5483.1998
  contributor:
    fullname: Beveridge, TJ
– volume: 18
  start-page: e1287
  year: 2017
  end-page: e1301
  ident: B24
  article-title: The therapeutic benefit of bacterial membrane vesicles
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18061287
  contributor:
    fullname: Kaparakis-Liaskos, M
– volume: 193
  start-page: 265
  year: 1951
  end-page: 275
  ident: B44
  article-title: Protein measurement with the Folin phenol reagent
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)52451-6
  contributor:
    fullname: Randall, RJ
– volume: 3
  start-page: 499
  year: 2002
  ident: B48
  article-title: Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848
  publication-title: Nat Immunol
  doi: 10.1038/ni0602-499
  contributor:
    fullname: Bauer, S
– volume: 201
  year: 2019
  ident: B36
  article-title: Ambient pH alters the protein content of outer membrane vesicles, driving host development in a beneficial symbiosis
  publication-title: J Bacteriol
  doi: 10.1128/JB.00319-19
  contributor:
    fullname: Ruby, EG
– volume: 15
  start-page: 623
  year: 2014
  end-page: 635
  ident: B6
  article-title: The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.04.001
  contributor:
    fullname: Kaparakis-Liaskos, M
– volume: 37
  start-page: 99
  year: 2007
  end-page: 111
  ident: B52
  article-title: A comparison of protein quantitation assays for biopharmaceutical applications
  publication-title: Mol Biotechnol
  doi: 10.1007/s12033-007-0038-9
  contributor:
    fullname: Bailey, MJ
– volume: 8
  start-page: 4955
  year: 2018
  end-page: 4969
  ident: B32
  article-title: Virulence factors of Moraxella catarrhalis outer membrane vesicles are major targets for cross-reactive antibodies and have adapted during evolution
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-23029-7
  contributor:
    fullname: Mackiewicz, P
– volume: 6
  start-page: 7
  year: 2019
  end-page: 32
  ident: B38
  article-title: Extracellular vesicle quantification and characterization: common methods and emerging approaches
  publication-title: Bioengineering
  doi: 10.3390/bioengineering6010007
  contributor:
    fullname: van Royen, ME
– volume: 10
  issue: 6
  year: 2021
  ident: B7
  article-title: Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune signaling pathways and induce autophagy
  publication-title: J Extracell Vesicles
  doi: 10.1002/jev2.12080
  contributor:
    fullname: Kaparakis-Liaskos, M
– volume: 11
  start-page: 432
  year: 2020
  ident: B14
  article-title: Bacterial membrane vesicles as mediators of microbe – microbe and microbe – host community interactions
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00432
  contributor:
    fullname: Walper, SA
– volume: 7
  start-page: 11220
  year: 2016
  end-page: 11232
  ident: B59
  article-title: Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms
  publication-title: Nat Commun
  doi: 10.1038/ncomms11220
  contributor:
    fullname: Whitchurch, CB
– volume: 30
  start-page: 3683
  year: 2012
  end-page: 3690
  ident: B60
  article-title: Identification and optimization of critical process parameters for the production of NOMV vaccine against Neisseria meningitidis
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2012.03.028
  contributor:
    fullname: van der Pol, LA
– volume: 6
  start-page: 1333883
  year: 2017
  end-page: 1333892
  ident: B39
  article-title: High throughput nanoparticle tracking analysis for monitoring outer membrane vesicle production
  publication-title: J Extracell Vesicles
  doi: 10.1080/20013078.2017.1333883
  contributor:
    fullname: Stork, M
– volume: 9
  start-page: 5425
  year: 2009
  end-page: 5436
  ident: B3
  article-title: Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles
  publication-title: Proteomics
  doi: 10.1002/pmic.200900338
  contributor:
    fullname: Gho, YS
– volume: 192
  start-page: 1865
  year: 2010
  end-page: 1874
  ident: B67
  article-title: Tn502 and Tn512 are res site hunters that provide evidence of resolvase-independent transposition to random sites
  publication-title: J Bacteriol
  doi: 10.1128/JB.01322-09
  contributor:
    fullname: Stanisich, VA
– ident: e_1_3_2_26_2
  doi: 10.1016/j.molimm.2021.02.027
– ident: e_1_3_2_44_2
  doi: 10.1006/abio.1976.9999
– ident: e_1_3_2_28_2
  doi: 10.1139/w02-077
– ident: e_1_3_2_6_2
  doi: 10.1111/j.1462-5822.2009.01404.x
– ident: e_1_3_2_16_2
  doi: 10.1128/AEM.04248-13
– ident: e_1_3_2_60_2
  doi: 10.1038/ncomms11220
– ident: e_1_3_2_8_2
  doi: 10.1002/jev2.12080
– ident: e_1_3_2_20_2
  doi: 10.1128/JB.180.20.5478-5483.1998
– ident: e_1_3_2_41_2
  doi: 10.1126/science.1243457
– ident: e_1_3_2_10_2
  doi: 10.1371/journal.pone.0160440
– ident: e_1_3_2_65_2
  doi: 10.4155/tde.15.40
– ident: e_1_3_2_58_2
  doi: 10.1016/j.bios.2016.08.100
– ident: e_1_3_2_21_2
  doi: 10.1038/nri3837
– ident: e_1_3_2_52_2
  doi: 10.1016/0165-022x(94)90078-7
– ident: e_1_3_2_59_2
  doi: 10.1371/journal.pone.0116896
– ident: e_1_3_2_40_2
  doi: 10.1080/20013078.2017.1333883
– ident: e_1_3_2_66_2
  doi: 10.1111/cmi.12658
– ident: e_1_3_2_56_2
  doi: 10.2217/nnm.12.173
– ident: e_1_3_2_47_2
  doi: 10.1080/20013078.2019.1632099
– ident: e_1_3_2_18_2
  doi: 10.1371/journal.pone.0151967
– ident: e_1_3_2_23_2
  doi: 10.3389/fcimb.2017.00308
– ident: e_1_3_2_50_2
  doi: 10.1038/ni1028
– ident: e_1_3_2_14_2
  doi: 10.1073/pnas.1915829117
– ident: e_1_3_2_68_2
  doi: 10.1128/JB.01322-09
– ident: e_1_3_2_35_2
  doi: 10.3389/fmicb.2021.628801
– ident: e_1_3_2_33_2
  doi: 10.1038/s41598-018-23029-7
– ident: e_1_3_2_11_2
  doi: 10.1128/JB.01493-14
– ident: e_1_3_2_57_2
  doi: 10.1111/jth.12554
– ident: e_1_3_2_61_2
  doi: 10.1016/j.vaccine.2012.03.028
– ident: e_1_3_2_62_2
  doi: 10.1038/s41467-018-03847-z
– ident: e_1_3_2_2_2
  doi: 10.1038/s41579-018-0112-2
– ident: e_1_3_2_55_2
  doi: 10.1038/s41598-019-48181-6
– ident: e_1_3_2_19_2
  doi: 10.1099/mic.0.060343-0
– ident: e_1_3_2_17_2
  doi: 10.1096/fj.201901575R
– ident: e_1_3_2_64_2
  doi: 10.1016/j.jconrel.2019.11.017
– ident: e_1_3_2_4_2
  doi: 10.1002/pmic.200900338
– ident: e_1_3_2_37_2
  doi: 10.1128/JB.00319-19
– ident: e_1_3_2_34_2
  doi: 10.1111/cmi.12525
– ident: e_1_3_2_39_2
  doi: 10.3390/bioengineering6010007
– ident: e_1_3_2_22_2
  doi: 10.1371/journal.pone.0054661
– ident: e_1_3_2_63_2
  doi: 10.1021/nn405724x
– ident: e_1_3_2_15_2
  doi: 10.3389/fmicb.2020.00432
– ident: e_1_3_2_3_2
  doi: 10.1128/JB.181.16.4725-4733.1999
– ident: e_1_3_2_51_2
  doi: 10.3389/fmicb.2019.03026
– ident: e_1_3_2_29_2
  doi: 10.1038/ncomms10515
– ident: e_1_3_2_7_2
  doi: 10.1016/j.chom.2014.04.001
– ident: e_1_3_2_46_2
  doi: 10.1007/s00284-021-02414-y
– ident: e_1_3_2_43_2
  doi: 10.1371/journal.pone.0212275
– ident: e_1_3_2_42_2
  doi: 10.1038/s41598-020-75108-3
– ident: e_1_3_2_31_2
  doi: 10.1128/IAI.00699-20
– ident: e_1_3_2_30_2
  doi: 10.3389/fimmu.2018.01466
– ident: e_1_3_2_36_2
  doi: 10.1016/j.micpath.2016.02.014
– ident: e_1_3_2_9_2
  doi: 10.1007/s12013-016-0770-5
– ident: e_1_3_2_48_2
  doi: 10.1021/pr301208g
– ident: e_1_3_2_54_2
  doi: 10.1002/pmic.200700196
– ident: e_1_3_2_32_2
  doi: 10.1371/journal.pone.0160374
– ident: e_1_3_2_49_2
  doi: 10.1038/ni0602-499
– ident: e_1_3_2_45_2
  doi: 10.1016/S0021-9258(19)52451-6
– ident: e_1_3_2_67_2
  doi: 10.1128/mBio.00609-12
– ident: e_1_3_2_25_2
  doi: 10.3390/ijms18061287
– ident: e_1_3_2_12_2
  doi: 10.1038/s41598-017-07288-4
– ident: e_1_3_2_53_2
  doi: 10.1007/s12033-007-0038-9
– ident: e_1_3_2_5_2
  doi: 10.1002/pmic.201970004
– ident: e_1_3_2_38_2
  doi: 10.1080/20013078.2018.1535750
– ident: e_1_3_2_13_2
  doi: 10.1016/j.cell.2016.04.015
– ident: e_1_3_2_24_2
  doi: 10.1111/cmi.12814
– ident: e_1_3_2_27_2
  doi: 10.1016/j.micres.2014.09.006
SSID ssj0001105252
Score 2.4274297
Snippet Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis....
Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth...
ABSTRACT Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis....
SourceID doaj
pubmedcentral
proquest
crossref
asm2
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0127321
SubjectTerms bacterial membrane vesicles (BMVs)
Bacterial Outer Membrane - metabolism
Bacterial Proteins - analysis
Cell Line
DNA
Extracellular Vesicles - metabolism
HEK293 Cells
Helicobacter pylori - genetics
Helicobacter pylori - metabolism
Host Microbial Interactions
Humans
membrane vesicles (MVs)
NTA
outer membrane vesicles (OMVs)
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - metabolism
Research Article
RNA
RNA, Bacterial - genetics
Staphylococcus aureus - genetics
Staphylococcus aureus - metabolism
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9UwFA5jQ_BF_G2dSgRBEDrbJE1S3-7GxlTmFLyyt5A0CfPh9sp674N_j_-o5yTtdVeG-JqmTel3TvOd5OQ7hLxSMI25GGQZ67YtUQuzdJ2LpWCei8CVdkms-uyTPJ2LDxfNxQ6R01mY8QsOB3ZYpI38jWcz_RZLsq-u1osD3C_lJZ4f3wMbEhB07c1m8_OPf1ZXaqzPxsZtzBvvhX8wjMG25qMk238T1_w7ZfLaHHRyl9wZySOdZbTvkZ3Q3ye3cjnJnw_Ir6n6Zl6Fo8BHKfA7OgmP0GWkh1mdGZ5yFhYQKfeBfgtDyo17B01YTjr1Gxvp56wIC8-jtvf0y9rm7KI0BD2yPX0_lTmh-UUQ9dT3-FrxAHq-XoFth-EhmZ8cfz06LcciDKVtVLWCH1ClurbtBPdKNVJFWTkI0zxQBecV07WN4MNAc2TgwTe8A_4gat9yrax0jvNHZLdf9uEJoTEG5-toGQYxMQQrGBAcQMNyWzkdC_IaETGTDZgUoDBtJuxMws6wuiBvJtDMj6zK8a_OhwjrpiMKaqcGMC8z-qepusiBGgN70hDDWalFbDlm3tpausrrgrycjMKAA-KuCiC0XA8GQlDOWlTAKMjjbCSbobhAuUGpCqK2zGfrXbav9N8vk8i3xhPGVfP0v7_JPrnNMN-mZiVjz8guXAzPgTCt3IvRO34Dq2cWIQ
  priority: 102
  providerName: American Society for Microbiology
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS90wFA5yQdiLTDdd5w8yEAShs03apN2biuIEf4GKbyFpEvTh9g5774N_j__ozklauVfG9rLXNCSh5yT5TnLyfYTsStjGjHci9Xldp8iFmZrG-LRglheOy8oEsuqLS3F2V5w_lA9zUl-YExbpgeOPO8gazwGzwLZWAbjWoip8zTElUufCZDY-883YXDAVTldy1Gdj_TUmrMEHKOc-fZ6Nv-NdK0-RG3SkuzFb2I8Cbf-fsOb7lMm5Pej0I1npwSM9jINeJUuuXSPLUU7y5RN5HdQ34ykcBTxKAd_RgXiETjw9iuzM0MqFG0Ok3Dp677qQG_cDilBOOtTrC-l1ZISF9qhuLb2Z6ZhdFLqgx7qlPweZExoHglYPdU_mxAPo1WwKvu26z-Tu9OT2-CztRRhSXcpsCgtQJpu6bgpupSyF9CIzEKZZgArGSlbl2sMcBpgjHHe25A3ghyK3Na-kFsZwvk5G7aR1Xwj13hmbe80wiPHO6YIBwAFraK4zU_mE7KFFVD-LOhUCFFapwXYq2E6xPCH7g9HUr8jK8bfKR2jWt4pIqB0KwM1U72bqX26WkG-DUyiYgHirAhaazDoFIShnNTJgJGQjOslbV7xAukEhEyIX3GdhLItf2qfHQPJd4QvjrPz6Pwa_ST4wTMXJWcrYFhnB73HbgKWmZidMm9_Zgx0Y
  priority: 102
  providerName: Directory of Open Access Journals
Title Considerations for the Analysis of Bacterial Membrane Vesicles: Methods of Vesicle Production and Quantification Can Influence Biological and Experimental Outcomes
URI https://www.ncbi.nlm.nih.gov/pubmed/34937167
https://journals.asm.org/doi/10.1128/Spectrum.01273-21
https://search.proquest.com/docview/2613291023
https://pubmed.ncbi.nlm.nih.gov/PMC8694105
https://doaj.org/article/0cf35070918548a684f935330a16b0d8
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL20GYO9jHWf3kfQYDAYOLEl25L7loaWbiNrB8vom5BsaSvMTqmTh_2e_dFeSXZJytjDXmXZkn2vpHOl63MA3nFcxrQ1RWzTsowdF2asK23jjNYsM4wL7cmqF1-K02X26SK_2IN8-BfGJ-1X-nLS_mom7eVPn1t51VTTIU9ser6YC_f3ZZJP92Efl9-tEN1vrKROmo32J5g4_U6dkvv6etNM3DEri6lTh2GZI4Jz6vIj1TV0Z1Xy5P1_Q5x3Eye3VqKTR_Cwh5BkFrp6AHumfQz3g6jk7yfwZ9DgDHtxBFEpQZRHBvoRsrLkKHA041MWpsF4uTXku-n8mx9ikROV9vX6QnIeeGHxeUS1Nfm6USHHyDdB5qolHwexExI64mzv6x5vSQiQs80aPdx0T2F5cvxtfhr3Ugyxynmyxmko4VVZVhmrOc8LbotEY7BWI2DQNaciVRZHMoKdwjBT56xCFJGldckEV4XWjD2DUbtqzQsg1hpdp1ZRF8pYY1RGEeagYRRTiRY2gvfOIrIfS530YQoVcjCj9GaUNI3gw2A0eRW4Of5V-ciZ9baio9X2BavrH7J3LplUliFARgwlMJJThchsyVz-rUoLndQigreDU0gchu5sBS202nQSA1FGS8eDEcHz4CS3TQ2-FgHfcZ-dvuxeQc_3VN-9p7_87ztfwQPqsnBSGlP6Gkb4TcwbhFFrPYZ7s9ny7PPYb0OM_SC6AZCkIfM
link.rule.ids 230,314,727,780,784,864,885,2102,27924,27925,53147,53160,53173,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVQKwQXxDfh00hISEgpiZ3EDrdt1WpLuy1IXdSbZce2ALFZRHYP_B7-KDO2U7qoQlwdJ44yM_Ebe_weIa8ETGPGuyb3ZdvmyIWZm874vGKWV44LaQJZ9eykmc6r9-f1eaqqxLMwX1GX99uwo4dF2MfHwMaF6KRHKN-iLPvqx3qxg3umPMcz5NvgRwJ8fHsymZ8e_VlhKVGjjaWtzCvvhf8wDMQ25qRA3X8V3vy7bPLSPHRwm9xKAJJOosXvkGuuv0uuR0nJn_fIr1GBM67EUcCkFDAeHclH6NLT3cjQDE-ZuQVky72jn9wQ6uPeQRNKSod-qZF-iKyw8Dyqe0s_rnWsMApD0D3d08NR6oTGF0HLh777lwQE6Ol6Bf7thvtkfrB_tjfNkxBDrmtRrOAnVIiubbuKWyHqRvimMJCqWYALxgomS-0hjgHqNI47W_MOMERV2pZLoRtjOH9Atvpl7x4R6r0ztvSaYSLjndMVA5AD1tBcF0b6jLxGi6gUSYMKSQqTarSdCrZTrMzIm9Fo6ntk5vhX510060VHJNUODeBjKsWoKjrPAR4DgpKQx-lGVr7lWH2ry8YUVmbk5egUCoIQd1bAQsv1oCAN5axFFoyMPIxOcjEUr5BysBEZERvus_Eum1f6L58D0bfEU8ZF_fi_v8kLcmN6NjtWx4cnR0_ITYb1NyXLGXtKtqCjewYAamWep0j5DfxjGns
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbQViAuiHfD00hISEgpiZ3YDrdt6aql9IHEot4sO7YFh81WZPfA7-GPMmMnpYsqxNU7G0eZmfibePx9hLyWsIzZ4EUeyqbJkQszt60NecUcrzyXykay6uMTcTCvPp7X50NXJZ6FGZ5gv2P6RdzIx8y-cGHQI1TvUJZ99WO92ME9U57jGfItiCNRTMjWdDo_PfrzhaVEjTY2bGVe-194D8M8bGNNitT91-HNv9smr6xDs7vkzgAg6TR5_B654bv75GaSlPz5gPwaFTjTlzgKmJQCxqMj-QhdBrqbGJrhKsd-AdVy5-lX38f-uPcwhJLS0W4YpGeJFRauR03n6Oe1SR1GcQq6Zzp6OEqd0HQj6Plou39FQICerlcQ375_SOaz_S97B_kgxJCbWhYreAkVsm2atuJOylrIIAoLpZoDuGCdZKo0AfIYoI7w3Luat4AhqtI1XEkjrOX8EZl0y85vExqCt64MhmEhE7w3FQOQA94w3BRWhYy8QY_oMQ50LFKY0qPvdPSdZmVG3o5O0xeJmeNfxrvo1ktDJNWOAxBieshRXbSBAzwGBKWgjjNCVaHh2H1rSmELpzLyagwKDUmIOyvgoeW611CGctYgC0ZGHqcguZyKV0g5KGRG5Eb4bNzL5i_d92-R6FvhKeOifvLfz-QluXX2YaY_HZ4cPSW3GbbflCxn7BmZgJ1_DvhpZV8MifIbw-UaFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Considerations+for+the+Analysis+of+Bacterial+Membrane+Vesicles%3A+Methods+of+Vesicle+Production+and+Quantification+Can+Influence+Biological+and+Experimental+Outcomes&rft.jtitle=Microbiology+spectrum&rft.au=Bitto%2C+Natalie+J&rft.au=Zavan%2C+Lauren&rft.au=Johnston%2C+Ella+L&rft.au=Stinear%2C+Timothy+P&rft.date=2021-12-22&rft.pub=American+Society+for+Microbiology&rft.eissn=2165-0497&rft.volume=9&rft.issue=3&rft_id=info:doi/10.1128%2FSpectrum.01273-21&rft.externalDocID=01273-21
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2165-0497&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2165-0497&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2165-0497&client=summon