Ridge subduction sparked reorganization of the Pacific plate‐mantle system 60–50 million years ago

A reorganization centered on the Pacific plate occurred ~53–47 million years ago. A “top‐down” plate tectonic mechanism, complete subduction of the Izanagi plate, as opposed to a “bottom‐up” mantle flow mechanism, has been proposed as the main driver. Verification based on marine geophysical observa...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 42; no. 6; pp. 1732 - 1740
Main Authors Seton, Maria, Flament, Nicolas, Whittaker, Joanne, Müller, R. Dietmar, Gurnis, Michael, Bower, Dan J.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.03.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A reorganization centered on the Pacific plate occurred ~53–47 million years ago. A “top‐down” plate tectonic mechanism, complete subduction of the Izanagi plate, as opposed to a “bottom‐up” mantle flow mechanism, has been proposed as the main driver. Verification based on marine geophysical observations is impossible as most ocean crust recording this event has been subducted. Using a forward modeling approach, which assimilates surface plate velocities and shallow thermal structure of slabs into mantle flow models, we show that complete Izanagi plate subduction and margin‐wide slab detachment induced a major change in sub‐Pacific mantle flow, from dominantly southward before 60 Ma to north‐northeastward after 50 Ma. Our results agree with onshore geology, mantle tomography, and the inferred motion of the Hawaiian hot spot and are consistent with a plate tectonic process driving the rapid plate‐mantle reorganization in the Pacific hemisphere between 60 and 50 Ma. This reorganization is reflected in tectonic changes in the Pacific and surrounding ocean basins. Key Points Pacific Eocene reorganization was triggered by a ridge subduction event Izanagi plate subduction and slab detachment altered Pacific mantle flow Our geodynamic models agree with seismic tomography and onshore geology
AbstractList A reorganization centered on the Pacific plate occurred ~53–47 million years ago. A “top‐down” plate tectonic mechanism, complete subduction of the Izanagi plate, as opposed to a “bottom‐up” mantle flow mechanism, has been proposed as the main driver. Verification based on marine geophysical observations is impossible as most ocean crust recording this event has been subducted. Using a forward modeling approach, which assimilates surface plate velocities and shallow thermal structure of slabs into mantle flow models, we show that complete Izanagi plate subduction and margin‐wide slab detachment induced a major change in sub‐Pacific mantle flow, from dominantly southward before 60 Ma to north‐northeastward after 50 Ma. Our results agree with onshore geology, mantle tomography, and the inferred motion of the Hawaiian hot spot and are consistent with a plate tectonic process driving the rapid plate‐mantle reorganization in the Pacific hemisphere between 60 and 50 Ma. This reorganization is reflected in tectonic changes in the Pacific and surrounding ocean basins.
A reorganization centered on the Pacific plate occurred ~53-47million years ago. A "top-down" plate tectonic mechanism, complete subduction of the Izanagi plate, as opposed to a "bottom-up" mantle flow mechanism, has been proposed as the main driver. Verification based on marine geophysical observations is impossible as most ocean crust recording this event has been subducted. Using a forward modeling approach, which assimilates surface plate velocities and shallow thermal structure of slabs into mantle flow models, we show that complete Izanagi plate subduction and margin-wide slab detachment induced a major change in sub-Pacific mantle flow, from dominantly southward before 60Ma to north-northeastward after 50Ma. Our results agree with onshore geology, mantle tomography, and the inferred motion of the Hawaiian hot spot and are consistent with a plate tectonic process driving the rapid plate-mantle reorganization in the Pacific hemisphere between 60 and 50Ma. This reorganization is reflected in tectonic changes in the Pacific and surrounding ocean basins.
A reorganization centered on the Pacific plate occurred ~53-47million years ago. A "top-down" plate tectonic mechanism, complete subduction of the Izanagi plate, as opposed to a "bottom-up" mantle flow mechanism, has been proposed as the main driver. Verification based on marine geophysical observations is impossible as most ocean crust recording this event has been subducted. Using a forward modeling approach, which assimilates surface plate velocities and shallow thermal structure of slabs into mantle flow models, we show that complete Izanagi plate subduction and margin-wide slab detachment induced a major change in sub-Pacific mantle flow, from dominantly southward before 60Ma to north-northeastward after 50Ma. Our results agree with onshore geology, mantle tomography, and the inferred motion of the Hawaiian hot spot and are consistent with a plate tectonic process driving the rapid plate-mantle reorganization in the Pacific hemisphere between 60 and 50Ma. This reorganization is reflected in tectonic changes in the Pacific and surrounding ocean basins. Key Points * Pacific Eocene reorganization was triggered by a ridge subduction event * Izanagi plate subduction and slab detachment altered Pacific mantle flow * Our geodynamic models agree with seismic tomography and onshore geology
A reorganization centered on the Pacific plate occurred ~53–47 million years ago. A “top‐down” plate tectonic mechanism, complete subduction of the Izanagi plate, as opposed to a “bottom‐up” mantle flow mechanism, has been proposed as the main driver. Verification based on marine geophysical observations is impossible as most ocean crust recording this event has been subducted. Using a forward modeling approach, which assimilates surface plate velocities and shallow thermal structure of slabs into mantle flow models, we show that complete Izanagi plate subduction and margin‐wide slab detachment induced a major change in sub‐Pacific mantle flow, from dominantly southward before 60 Ma to north‐northeastward after 50 Ma. Our results agree with onshore geology, mantle tomography, and the inferred motion of the Hawaiian hot spot and are consistent with a plate tectonic process driving the rapid plate‐mantle reorganization in the Pacific hemisphere between 60 and 50 Ma. This reorganization is reflected in tectonic changes in the Pacific and surrounding ocean basins. Key Points Pacific Eocene reorganization was triggered by a ridge subduction event Izanagi plate subduction and slab detachment altered Pacific mantle flow Our geodynamic models agree with seismic tomography and onshore geology
Abstract A reorganization centered on the Pacific plate occurred ~53–47 million years ago. A “top‐down” plate tectonic mechanism, complete subduction of the Izanagi plate, as opposed to a “bottom‐up” mantle flow mechanism, has been proposed as the main driver. Verification based on marine geophysical observations is impossible as most ocean crust recording this event has been subducted. Using a forward modeling approach, which assimilates surface plate velocities and shallow thermal structure of slabs into mantle flow models, we show that complete Izanagi plate subduction and margin‐wide slab detachment induced a major change in sub‐Pacific mantle flow, from dominantly southward before 60 Ma to north‐northeastward after 50 Ma. Our results agree with onshore geology, mantle tomography, and the inferred motion of the Hawaiian hot spot and are consistent with a plate tectonic process driving the rapid plate‐mantle reorganization in the Pacific hemisphere between 60 and 50 Ma. This reorganization is reflected in tectonic changes in the Pacific and surrounding ocean basins. Key Points Pacific Eocene reorganization was triggered by a ridge subduction event Izanagi plate subduction and slab detachment altered Pacific mantle flow Our geodynamic models agree with seismic tomography and onshore geology
Author Bower, Dan J.
Flament, Nicolas
Whittaker, Joanne
Müller, R. Dietmar
Gurnis, Michael
Seton, Maria
Author_xml – sequence: 1
  givenname: Maria
  surname: Seton
  fullname: Seton, Maria
  organization: University of Sydney
– sequence: 2
  givenname: Nicolas
  surname: Flament
  fullname: Flament, Nicolas
  organization: University of Sydney
– sequence: 3
  givenname: Joanne
  surname: Whittaker
  fullname: Whittaker, Joanne
  organization: University of Tasmania
– sequence: 4
  givenname: R. Dietmar
  surname: Müller
  fullname: Müller, R. Dietmar
  organization: University of Sydney
– sequence: 5
  givenname: Michael
  surname: Gurnis
  fullname: Gurnis, Michael
  organization: California Institute of Technology
– sequence: 6
  givenname: Dan J.
  surname: Bower
  fullname: Bower, Dan J.
  organization: California Institute of Technology
BookMark eNqF0c1qFEEQAOBGIriJ3nyAhlw8uKb6v_sYgm4CC0rQ89DTU7N2nJnedM8Q1lMeIZA3zJNk4noIHuKpiqqvCoo6JAdDGpCQ9ww-MQB-woGp1Rq0AGVekQVzUi4tgDkgCwA359zoN-SwlCsAECDYgrSXsdkgLVPdTGGMaaBl6_MvbGjGlDd-iL_9n3Jq6fgT6TcfYhsD3XZ-xIfbu94PYzfP78qIPdXwcHuvgPax656GduhzoX6T3pLXre8Kvvsbj8iPL5-_n50v119XF2en66VXBuwyuNqa2kvrhA5cNSFoJnhwwiloleQutMpIlE6hqAUiazhy5413tUOHII7Ih_3ebU7XE5ax6mMJ2HV-wDSVilmwwhip5f-ptsoyzaSe6fE_9CpNeZgPqZhjYLVU2ryo5rZl0kk-q497FXIqJWNbbXPsfd5VDKqnL1bPvzhzvuc3scPdi7ZaXa4V19aKR1zKnxQ
CitedBy_id crossref_primary_10_1029_2022GC010331
crossref_primary_10_1002_2015GC005911
crossref_primary_10_1016_j_jseaes_2018_10_016
crossref_primary_10_1080_00206814_2019_1669079
crossref_primary_10_1029_2019GC008862
crossref_primary_10_1093_gji_ggy526
crossref_primary_10_1029_2022TC007299
crossref_primary_10_1186_s40645_016_0085_6
crossref_primary_10_1016_j_epsl_2019_04_041
crossref_primary_10_1016_j_lithos_2023_107329
crossref_primary_10_1130_G050724_1
crossref_primary_10_1016_j_gr_2023_05_023
crossref_primary_10_1016_j_lithos_2021_106516
crossref_primary_10_5026_jgeography_126_163
crossref_primary_10_1029_2021TC007029
crossref_primary_10_1038_s41561_022_00893_7
crossref_primary_10_1038_s41561_024_01404_6
crossref_primary_10_3389_feart_2022_829163
crossref_primary_10_5802_crgeos_250
crossref_primary_10_1016_j_gsf_2021_101142
crossref_primary_10_5194_se_11_37_2020
crossref_primary_10_1111_iar_12320
crossref_primary_10_1111_jmg_12633
crossref_primary_10_1016_j_marpetgeo_2022_105598
crossref_primary_10_31857_S0016853X23040045
crossref_primary_10_1038_s43017_022_00384_8
crossref_primary_10_1016_j_tecto_2017_10_004
crossref_primary_10_1016_j_earscirev_2023_104573
crossref_primary_10_1016_j_earscirev_2021_103859
crossref_primary_10_1016_j_gr_2020_05_005
crossref_primary_10_1038_s41467_021_21980_0
crossref_primary_10_1016_j_earscirev_2020_103357
crossref_primary_10_1130_G36303_1
crossref_primary_10_1144_SP544_2023_127
crossref_primary_10_1029_2018GL081703
crossref_primary_10_1111_iar_12218
crossref_primary_10_1016_j_lithos_2018_01_003
crossref_primary_10_1111_iar_12458
crossref_primary_10_1186_s12862_022_02017_6
crossref_primary_10_1002_2016JB013355
crossref_primary_10_1016_j_lithos_2023_107174
crossref_primary_10_1016_j_jsg_2023_104934
crossref_primary_10_2138_gselements_20_2_103
crossref_primary_10_1029_2018GC007751
crossref_primary_10_1038_nature18319
crossref_primary_10_3389_feart_2021_783409
crossref_primary_10_1016_j_earscirev_2018_07_011
crossref_primary_10_1134_S0016852123040040
crossref_primary_10_1016_j_earscirev_2017_10_012
crossref_primary_10_1002_2017JB013991
crossref_primary_10_1111_rge_12156
crossref_primary_10_1007_s11430_019_9619_9
crossref_primary_10_1016_j_epsl_2019_04_025
crossref_primary_10_1016_j_tecto_2024_230269
crossref_primary_10_1016_j_earscirev_2023_104507
crossref_primary_10_2465_jmps_190617
crossref_primary_10_1130_B32050_1
crossref_primary_10_1016_j_gca_2020_06_024
crossref_primary_10_1016_j_lithos_2023_107421
crossref_primary_10_1016_j_tecto_2021_229116
crossref_primary_10_1016_j_tecto_2016_01_025
crossref_primary_10_1029_2020GC009244
crossref_primary_10_1016_j_epsl_2018_03_057
crossref_primary_10_1016_j_earscirev_2023_104590
crossref_primary_10_1038_s41467_022_28290_z
crossref_primary_10_1029_2020TC006298
crossref_primary_10_1007_s12583_021_1592_y
crossref_primary_10_1016_j_epsl_2015_08_006
crossref_primary_10_1016_j_earscirev_2023_104351
crossref_primary_10_1016_j_gr_2020_09_002
crossref_primary_10_1016_j_epsl_2022_117445
crossref_primary_10_1016_j_earscirev_2022_104298
crossref_primary_10_9795_bullgsj_70_117
crossref_primary_10_1016_j_epsl_2023_118435
crossref_primary_10_3799_dqkx_2022_122
crossref_primary_10_1017_S0016756818000742
crossref_primary_10_1016_j_jsg_2024_105195
crossref_primary_10_1016_j_gca_2023_04_017
crossref_primary_10_1016_j_jseaes_2017_03_032
crossref_primary_10_1130_G46778_1
crossref_primary_10_1029_2023GC011180
crossref_primary_10_1016_j_gsf_2023_101673
crossref_primary_10_1016_j_scib_2021_12_008
crossref_primary_10_2113_2023_lithosphere_2023_279
crossref_primary_10_1016_j_earscirev_2018_01_020
crossref_primary_10_1111_bre_12520
crossref_primary_10_3389_feart_2020_00117
crossref_primary_10_1088_1757_899X_1079_7_072008
crossref_primary_10_1016_j_jsames_2021_103604
crossref_primary_10_1016_j_margeo_2021_106656
crossref_primary_10_1016_j_tecto_2022_229374
crossref_primary_10_1134_S0016852121040051
crossref_primary_10_1093_nsr_nwz135
crossref_primary_10_1016_j_earscirev_2023_104524
crossref_primary_10_1029_2020JB021492
crossref_primary_10_1080_00206814_2023_2230596
crossref_primary_10_1016_j_earscirev_2018_12_009
crossref_primary_10_1016_j_gr_2017_04_001
crossref_primary_10_1093_petrology_egaa050
crossref_primary_10_18654_1000_0569_2019_01_01
crossref_primary_10_1016_j_earscirev_2021_103544
crossref_primary_10_1111_iar_12523
crossref_primary_10_1111_iar_12403
crossref_primary_10_1111_ter_12486
crossref_primary_10_1016_j_gr_2022_02_017
crossref_primary_10_1016_j_gr_2015_08_005
crossref_primary_10_1016_j_gr_2021_02_016
crossref_primary_10_1130_G48611_1
crossref_primary_10_1029_2017TC004830
crossref_primary_10_1080_08120099_2021_1966835
crossref_primary_10_1093_gji_ggw098
crossref_primary_10_1016_j_tecto_2018_08_010
crossref_primary_10_1029_2018TC005036
crossref_primary_10_1038_ncomms15660
crossref_primary_10_1007_s11430_017_9166_8
crossref_primary_10_1016_j_earscirev_2020_103317
crossref_primary_10_1016_j_jseaes_2020_104353
crossref_primary_10_1016_j_earscirev_2021_103779
crossref_primary_10_1093_petrology_egaa060
crossref_primary_10_1186_s40645_018_0234_1
crossref_primary_10_1029_2022GL098428
crossref_primary_10_1016_j_gca_2018_03_007
crossref_primary_10_1016_j_jog_2016_07_004
crossref_primary_10_1080_00206814_2016_1183146
crossref_primary_10_1111_1755_6724_14628
crossref_primary_10_1029_2018TC005164
crossref_primary_10_1029_2023GC010977
crossref_primary_10_1029_2020TC006416
crossref_primary_10_1146_annurev_earth_060115_012211
crossref_primary_10_1080_00206814_2022_2151051
crossref_primary_10_1016_j_gr_2023_09_013
crossref_primary_10_1130_B35851_1
crossref_primary_10_1186_s40645_023_00594_8
crossref_primary_10_1002_gj_3344
crossref_primary_10_1016_j_earscirev_2021_103605
crossref_primary_10_1016_j_jsg_2020_104190
crossref_primary_10_1016_j_lithos_2022_106891
crossref_primary_10_1016_j_tecto_2023_229998
crossref_primary_10_3389_feart_2021_781117
crossref_primary_10_1016_j_tecto_2023_229999
crossref_primary_10_1016_j_lithos_2017_12_003
crossref_primary_10_1016_j_chemgeo_2019_06_003
crossref_primary_10_1029_2021GL094638
crossref_primary_10_1029_2023TC007857
crossref_primary_10_1111_bre_12470
crossref_primary_10_1002_2016GC006404
crossref_primary_10_1111_iar_12346
crossref_primary_10_1002_gj_2808
crossref_primary_10_1029_2019GC008373
crossref_primary_10_1038_s43247_024_01263_4
crossref_primary_10_1080_00206814_2021_1961104
crossref_primary_10_1029_2019TC005673
crossref_primary_10_1016_j_epsl_2020_116071
crossref_primary_10_1016_j_oregeorev_2020_103352
crossref_primary_10_1016_j_chemgeo_2023_121373
crossref_primary_10_1093_petrology_egae071
crossref_primary_10_1134_S0016852118050023
crossref_primary_10_1130_GES02629_1
crossref_primary_10_1016_j_epsl_2017_02_024
crossref_primary_10_1016_j_precamres_2017_07_013
crossref_primary_10_1038_s41598_024_55471_1
crossref_primary_10_1002_gj_4445
crossref_primary_10_1016_j_epsl_2018_08_020
crossref_primary_10_1002_2015GL067155
crossref_primary_10_1016_j_earscirev_2021_103552
crossref_primary_10_1016_j_epsl_2015_05_016
crossref_primary_10_1111_jmg_12701
crossref_primary_10_1029_2022GC010514
crossref_primary_10_1016_j_earscirev_2021_103790
crossref_primary_10_1016_j_jseaes_2017_06_016
Cites_doi 10.1038/ngeo471
10.1016/0012-821X(82)90173-X
10.1130/0016-7606(1988)100<0733:PHOTKP>2.3.CO;2
10.1029/2011JB008413
10.1038/nature10174
10.1029/2011GL050155
10.1016/j.pepi.2014.10.013
10.1017/CBO9780511976308.008
10.1002/ggge.20267
10.1002/2013TC003412
10.1016/j.epsl.2013.11.017
10.1029/98JB00386
10.1016/S0012-821X(03)00643-5
10.1016/j.cageo.2011.04.014
10.1038/311615a0
10.1016/j.epsl.2011.11.027
10.1126/science.189.4201.419
10.1029/2011GC003877
10.1126/science.1161256
10.1016/j.epsl.2011.04.006
10.1038/ngeo708
10.1002/2014GC005457
10.1126/science.1143769
10.1126/science.1092485
10.1126/science.1128489
10.1016/S0012-821X(04)00498-4
10.1038/24850
10.1002/2013GL057401
10.1038/nature06691
10.1029/JB093iB04p02813
10.1029/2004GC000723
10.1029/GM088p0001
10.1029/2009JB006402
10.1126/science.1191223
10.1029/2004TC001720
10.1130/SPE273-p1
10.1016/0040-1951(95)00106-9
10.1029/2007GC001806
10.1016/j.earscirev.2012.03.002
ContentType Journal Article
Copyright 2015. American Geophysical Union. All Rights Reserved.
Copyright Blackwell Publishing Ltd. Mar 2015
Copyright_xml – notice: 2015. American Geophysical Union. All Rights Reserved.
– notice: Copyright Blackwell Publishing Ltd. Mar 2015
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7UA
C1K
DOI 10.1002/2015GL063057
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 1740
ExternalDocumentID 3657159891
10_1002_2015GL063057
GRL52688
Genre article
GeographicLocations Pacific Plate
I, Pacific
GeographicLocations_xml – name: Pacific Plate
– name: I, Pacific
GrantInformation_xml – fundername: NCI National Facility
– fundername: Australian Research Council
  funderid: DP0987713 (M.S.); FL0992245 (R.D.M.); DE14100376 (J.W.)
– fundername: National Science Foundation
  funderid: EAR‐1247022; CMMI‐1028978
– fundername: National Computational Merit Allocation Scheme
– fundername: ASA industry research
  funderid: ARC IH130200012
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
PYCSY
7TG
7TN
8FD
ALXUD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7UA
C1K
ID FETCH-LOGICAL-a5708-c9b87ba48936c25dcc6132c93950f5429cf574e495e3b3ee1d2e29a7a9b9e9e03
ISSN 0094-8276
IngestDate Fri Jun 28 10:53:18 EDT 2024
Fri Jun 28 13:22:49 EDT 2024
Thu Oct 10 20:55:01 EDT 2024
Thu Oct 10 21:07:52 EDT 2024
Thu Sep 12 16:27:34 EDT 2024
Sat Aug 24 01:02:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a5708-c9b87ba48936c25dcc6132c93950f5429cf574e495e3b3ee1d2e29a7a9b9e9e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2015GL063057
PQID 1673814942
PQPubID 54723
PageCount 9
ParticipantIDs proquest_miscellaneous_1808377464
proquest_miscellaneous_1685816146
proquest_journals_1910864567
proquest_journals_1673814942
crossref_primary_10_1002_2015GL063057
wiley_primary_10_1002_2015GL063057_GRL52688
PublicationCentury 2000
PublicationDate 28 March 2015
PublicationDateYYYYMMDD 2015-03-28
PublicationDate_xml – month: 03
  year: 2015
  text: 28 March 2015
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2015
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2011; 116
1982; 57
2004; 303
2004; 226
2010; 329
2011
2013; 40
2008; 9
1988; 12
2007
1995
1988; 100
2012; 39
2011; 12
2012; 38
1998; 396
2006; 313
1988; 93
1997; 4
2009; 114
2011; 475
2005; 24
2011; 306
2013; 14
2012; 113
1984; 311
2014; 15
1993; 273
2005; 6
1998; 103
1975; 189
2015; 238
2009; 3
2004; 218
2009; 2
2008; 451
2007; 318
1996; 255
2014; 33
2012; 317
2009; 324
2014; 387
1996; 315
e_1_2_8_28_1
e_1_2_8_29_1
Taira A. (e_1_2_8_38_1) 1988; 12
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
Nakajima T. (e_1_2_8_25_1) 1996; 315
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Grand S. P. (e_1_2_8_15_1) 1997; 4
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 116
  year: 2011
  article-title: The tectonic fabric of the ocean basins
  publication-title: J. Geophys. Res.
– volume: 396
  start-page: 455
  issue: 6710
  year: 1998
  end-page: 459
  article-title: Asymmetric sea‐floor spreading caused by ridge–plume interactions
  publication-title: Nature
– volume: 238
  start-page: 8
  year: 2015
  end-page: 22
  article-title: Assimilating lithosphere and slab history in 4‐D Earth models
  publication-title: Phys. Earth Planet. Inter.
– volume: 57
  start-page: 63
  issue: 1
  year: 1982
  end-page: 74
  article-title: The early Cenozoic tectonic history of the southeast Pacific
  publication-title: Earth Planet. Sci. Lett.
– volume: 189
  start-page: 419
  issue: 4201
  year: 1975
  end-page: 426
  article-title: Cenozoic tectonics of Asia: Effects of a continental collision
  publication-title: Science
– volume: 226
  start-page: 275
  issue: 3–4
  year: 2004
  end-page: 292
  article-title: Subduction initiation: Spontaneous and induced
  publication-title: Earth Planet. Sci. Lett.
– volume: 24
  year: 2005
  article-title: Mesozoic episodic magmatism in South Korea and its tectonic implication
  publication-title: Tectonics
– volume: 93
  start-page: 2813
  year: 1988
  end-page: 2838
  article-title: Eocene reorganization of the Pacific‐Farallon Spreading Center north of the Mendocino Fracture Zone
  publication-title: J. Geophys. Res.
– volume: 2
  start-page: 286
  issue: 4
  year: 2009
  end-page: 289
  article-title: Mid‐ocean‐ridge basalt of Indian type in the northwest Pacific Ocean basin
  publication-title: Nat. Geosci.
– volume: 3
  start-page: 36
  year: 2009
  end-page: 40
  article-title: Towards absolute plate motions constrained by lower‐mantle slab remnants
  publication-title: Nat. Geosci.
– year: 2007
– volume: 14
  start-page: 4564
  year: 2013
  end-page: 4584
  article-title: Constraints on past plate and mantle motion from new ages for the Hawaiian‐Emperor Seamount Chain
  publication-title: Geochem. Geophys. Geosyst.
– volume: 33
  start-page: 936
  year: 2014
  end-page: 959
  article-title: Long‐term evolution of an accretionary prism: The case study of the Shimanto Belt, Kyushu, Japan
  publication-title: Tectonics
– volume: 313
  start-page: 1281
  issue: 5791
  year: 2006
  end-page: 1284
  article-title: 50‐Ma initiation of Hawaiian‐Emperor bend records major change in Pacific Plate motion
  publication-title: Science
– volume: 255
  start-page: 47
  issue: 1–2
  year: 1996
  end-page: 63
  article-title: Subduction of diverging plates and the principles of slab window formation
  publication-title: Tectonophysics
– volume: 317
  start-page: 204
  year: 2012
  end-page: 217
  article-title: Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure
  publication-title: Earth Planet. Sci. Lett.
– volume: 451
  start-page: 981
  issue: 7181
  year: 2008
  end-page: 984
  article-title: Evidence of lower‐mantle slab penetration phases in plate motions
  publication-title: Nature
– volume: 9
  year: 2008
  article-title: A new global model for wave speed variations in Earth's mantle
  publication-title: Geochem. Geophys. Geosyst
– volume: 6
  year: 2005
  article-title: A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin
  publication-title: Geochem. Geophys. Geosyst.
– volume: 315
  start-page: 183
  year: 1996
  article-title: Cretaceous granitoids in SW Japan and their bearing on the crust‐forming process in the eastern Eurasian margin
  publication-title: Geol. Soc. Am. Spec. Pap.
– volume: 12
  start-page: 46
  issue: 5
  year: 1988
  article-title: The Shimanto belt in Shikoku, Japan ‚evolution of Cretaceous to Miocene accretionary prism
  publication-title: Mod. Geol.
– volume: 40
  start-page: 5652
  year: 2013
  end-page: 5657
  article-title: Finite frequency whole mantle wave tomography: Improvement of subducted slab images
  publication-title: Geophys. Res. Lett.
– volume: 218
  start-page: 109
  issue: 1–2
  year: 2004
  end-page: 122
  article-title: Great earthquakes and slab pull: Interaction between seismic coupling and plate‐slab coupling
  publication-title: Earth Planet. Sci. Lett.
– volume: 387
  start-page: 107
  year: 2014
  end-page: 119
  article-title: Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching
  publication-title: Earth Planet. Sci. Lett.
– volume: 103
  start-page: 12,413
  year: 1998
  end-page: 12,433
  article-title: The tectonic history of the Tasman Sea: A puzzle with 13 pieces
  publication-title: J. Geophys. Res.
– volume: 114
  year: 2009
  article-title: Dynamics and implications of slab detachment due to ridge‐trench collision
  publication-title: J. Geophys. Res.
– volume: 475
  start-page: 47
  issue: 7354
  year: 2011
  end-page: 52
  article-title: Indian and African plate motions driven by the push force of the Reunion plume head
  publication-title: Nature
– volume: 4
  start-page: 1
  year: 1997
  end-page: 7
  article-title: Global seismic tomography: A snapshort of convection in the Earth
  publication-title: GSA Today
– volume: 12
  year: 2011
  article-title: Dynamics of subduction initiation with different evolutionary pathways
  publication-title: Geochem. Geophys. Geosyst.
– volume: 303
  start-page: 338
  issue: 5656
  year: 2004
  end-page: 343
  article-title: Finite‐frequency tomography reveals a variety of plumes in the mantle
  publication-title: Science
– volume: 113
  start-page: 212
  issue: 3–4
  year: 2012
  end-page: 270
  article-title: Global continental and ocean basin reconstructions since 200 Ma
  publication-title: Earth Sci. Rev.
– start-page: 95
  year: 2011
  end-page: 114
– volume: 311
  start-page: 615
  issue: 5987
  year: 1984
  end-page: 621
  article-title: India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates
  publication-title: Nature
– volume: 329
  start-page: 1033
  issue: 5995
  year: 2010
  end-page: 1038
  article-title: The dynamics of plate tectonics and mantle flow: From local to global scales
  publication-title: Science
– start-page: 1
  year: 1995
  end-page: 30
– volume: 38
  start-page: 35
  year: 2012
  end-page: 42
  article-title: Plate tectonic reconstructions with continuously closing plates
  publication-title: C. R. Geosci.
– volume: 100
  start-page: 733
  issue: 5
  year: 1988
  article-title: Paleogene history of the Kula plate: Offshore evidence and onshore implications
  publication-title: Geol. Soc. Am. Bull.
– volume: 324
  start-page: 50
  issue: 5923
  year: 2009
  article-title: The bent Hawaiian‐Emperor hotspot track: Inheriting the mantle wind
  publication-title: Science
– volume: 318
  start-page: 83
  year: 2007
  end-page: 86
  article-title: Major Australian‐Antarctica Plate reorganization at Hawaiian‐Emperor Bend Time
  publication-title: Science
– volume: 15
  start-page: 3645
  year: 2014
  end-page: 3657
  article-title: History and dynamics of net rotation of the mantle and lithosphere
  publication-title: Geochem. Geophys. Geosyst.
– volume: 306
  start-page: 229
  issue: 3
  year: 2011
  end-page: 240
  article-title: The timescales of subduction initiation and subsequent evolution of an oceanic island arc
  publication-title: Earth Planet. Sci. Lett.
– volume: 273
  start-page: 1
  year: 1993
  end-page: 24
  article-title: Geologic summary and conceptual framework for the study of thermal maturity within the Eocene‐Miocene Shimanto Belt, Shikoku, Japan
  publication-title: Spec. Pap. Geol. Soc. Am.
– volume: 39
  year: 2012
  article-title: On the role of slab pull in the Cenozoic motion of the Pacific
  publication-title: Geophys. Res. Lett
– ident: e_1_2_8_37_1
  doi: 10.1038/ngeo471
– volume: 4
  start-page: 1
  year: 1997
  ident: e_1_2_8_15_1
  article-title: Global seismic tomography: A snapshort of convection in the Earth
  publication-title: GSA Today
  contributor:
    fullname: Grand S. P.
– ident: e_1_2_8_7_1
  doi: 10.1016/0012-821X(82)90173-X
– ident: e_1_2_8_20_1
  doi: 10.1130/0016-7606(1988)100<0733:PHOTKP>2.3.CO;2
– ident: e_1_2_8_21_1
  doi: 10.1029/2011JB008413
– ident: e_1_2_8_6_1
  doi: 10.1038/nature10174
– ident: e_1_2_8_10_1
  doi: 10.1029/2011GL050155
– ident: e_1_2_8_3_1
  doi: 10.1016/j.pepi.2014.10.013
– ident: e_1_2_8_4_1
  doi: 10.1017/CBO9780511976308.008
– ident: e_1_2_8_27_1
  doi: 10.1002/ggge.20267
– ident: e_1_2_8_29_1
  doi: 10.1002/2013TC003412
– ident: e_1_2_8_39_1
– ident: e_1_2_8_12_1
  doi: 10.1016/j.epsl.2013.11.017
– ident: e_1_2_8_13_1
  doi: 10.1029/98JB00386
– ident: e_1_2_8_9_1
  doi: 10.1016/S0012-821X(03)00643-5
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cageo.2011.04.014
– ident: e_1_2_8_28_1
  doi: 10.1038/311615a0
– ident: e_1_2_8_34_1
  doi: 10.1016/j.epsl.2011.11.027
– ident: e_1_2_8_22_1
  doi: 10.1126/science.189.4201.419
– ident: e_1_2_8_18_1
  doi: 10.1029/2011GC003877
– ident: e_1_2_8_40_1
  doi: 10.1126/science.1161256
– ident: e_1_2_8_17_1
  doi: 10.1016/j.epsl.2011.04.006
– ident: e_1_2_8_43_1
  doi: 10.1038/ngeo708
– ident: e_1_2_8_30_1
  doi: 10.1002/2014GC005457
– volume: 315
  start-page: 183
  year: 1996
  ident: e_1_2_8_25_1
  article-title: Cretaceous granitoids in SW Japan and their bearing on the crust‐forming process in the eastern Eurasian margin
  publication-title: Geol. Soc. Am. Spec. Pap.
  contributor:
    fullname: Nakajima T.
– ident: e_1_2_8_44_1
  doi: 10.1126/science.1143769
– ident: e_1_2_8_23_1
  doi: 10.1126/science.1092485
– ident: e_1_2_8_33_1
  doi: 10.1126/science.1128489
– ident: e_1_2_8_36_1
  doi: 10.1016/S0012-821X(04)00498-4
– ident: e_1_2_8_24_1
  doi: 10.1038/24850
– ident: e_1_2_8_26_1
  doi: 10.1002/2013GL057401
– ident: e_1_2_8_14_1
  doi: 10.1038/nature06691
– ident: e_1_2_8_8_1
  doi: 10.1029/JB093iB04p02813
– ident: e_1_2_8_11_1
  doi: 10.1029/2004GC000723
– ident: e_1_2_8_2_1
  doi: 10.1029/GM088p0001
– ident: e_1_2_8_5_1
  doi: 10.1029/2009JB006402
– ident: e_1_2_8_35_1
  doi: 10.1126/science.1191223
– ident: e_1_2_8_31_1
  doi: 10.1029/2004TC001720
– ident: e_1_2_8_42_1
  doi: 10.1130/SPE273-p1
– volume: 12
  start-page: 46
  issue: 5
  year: 1988
  ident: e_1_2_8_38_1
  article-title: The Shimanto belt in Shikoku, Japan ‚evolution of Cretaceous to Miocene accretionary prism
  publication-title: Mod. Geol.
  contributor:
    fullname: Taira A.
– ident: e_1_2_8_41_1
  doi: 10.1016/0040-1951(95)00106-9
– ident: e_1_2_8_19_1
  doi: 10.1029/2007GC001806
– ident: e_1_2_8_32_1
  doi: 10.1016/j.earscirev.2012.03.002
SSID ssj0003031
Score 2.5949602
Snippet A reorganization centered on the Pacific plate occurred ~53–47 million years ago. A “top‐down” plate tectonic mechanism, complete subduction of the Izanagi...
Abstract A reorganization centered on the Pacific plate occurred ~53–47 million years ago. A “top‐down” plate tectonic mechanism, complete subduction of the...
A reorganization centered on the Pacific plate occurred ~53-47million years ago. A "top-down" plate tectonic mechanism, complete subduction of the Izanagi...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1732
SubjectTerms Basins
Detachment
geodynamics
Geology
Geophysics
Hot spots (geology)
Izanagi plate
Magma
Mantle
Marine
Modelling
Movement
Ocean basins
Ocean models
Oceanic crust
plate reorganization
Plate tectonics
Plates (structural members)
Plates (tectonics)
Recording
ridge subduction
Ridges
Slabs
Subduction
Subduction (geology)
Thermal structure
Tomography
Title Ridge subduction sparked reorganization of the Pacific plate‐mantle system 60–50 million years ago
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015GL063057
https://www.proquest.com/docview/1673814942
https://www.proquest.com/docview/1910864567
https://search.proquest.com/docview/1685816146
https://search.proquest.com/docview/1808377464
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaWrZC4VPyKpQUZCU5RSuLYiX0sFWxVtRyWLqq4RI7jFES7qTbZQzn1EZB4Dl6qT8I4drJZWFWFw0b5WVtJ5st4xp75BqFXgirG4zz2kzjPfKrywpeykD6XBWMafiow2chHH-L9KT04YSeDwa9e1NKiznbU97V5Jf8jVTgHcjVZsv8g2a5TOAH7IF_YgoRheysZT5pkq2qR5ZYD1gP1MP-mTUJK2cuxbOMAXACeqRxd6y7K4Rze7Zl2lM5eHLQXIhZ4piaR6eASvofKk6dl35Yd6_KilbLjDPrinTXpQZ2h_lG34fnSxjM7sMhmUrJFoqyWY8PXupYu0uOglLPlqv-RWdN_u9emLk52QF3r-lzO-xMXITORW4T3lbGgPieJY8K2-ldQOBfYQritgqakB8S-tg0TNzeq3aFlfvprVLAss-YexoeGY8xSYq-Sb_8xKHahipbWmaT91nfQBkkEY0O0sftp-nnaDf1gD9gSje7JXKYFtH_Tb79qAy0dm7571Ng3x_fRpnNM8K5F2QM00LOH6O64Kfx8CXtNqLCqHqGiQR1eog471OFV1OGywIA67FCHG9RdX_2weMMWbzgOrq9-sgA7pOEGaRiQ9hhN37873tv3XbUOX7Ik4L4SGU8yaciMYkVYrhRYikSJSLCgMFXRVMESqsEh11EWaR3mRBMhEykyoYUOoidoOCtn-inCMtTglciERxz6UywLeZIXkYqYIHnIxQi9bt9femFJWdJ1chqh7fblpu6zrdLQ1LkNqaBk_WVhao-BWwGtX3aXQeeahTQ50-XCdMEZB1eJxjf8h4NzA08R0xHyGrneeKvpeHJomJf4s1s-2xa6t_yottGwni_0c7CP6-yFQ-VvAdO2mg
link.rule.ids 315,786,790,27955,27956,50847,50956
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BKgQXxKNVAwEWCU7Iqr32vo5VRRIg7aFqUMXFWu-uOZDGUR6H3PITkPiH_SWdsd00SKgSB0uWdmdlz3pmv13PfAPwwWROaOllpKQvosz5MrK2tJG2pRABLxdTNvLpmRyOs6-X4rKtc0q5MA0_xPbAjSyj9tdk4HQgfXTHGopLlxiMiDNKqIewJ4hSrwN7x9_HP8ZbZ4weuimaZ7JIcyXb2Hcc4WhX_u9V6Q5q7gLWesXpP4OnLVRkx83cPocHYfoCHg3qUrxrvKuDN93iJZTnlHTFFqvCN1ywDN3E_FfwbB6qnVxLVpUM8R5rA_HYbIJA83rz-wq1O0H5mtSZyfh680fEjOoRkdAabWHB7M9qH8b9zxcnw6itnxBZoWIdOVNoVViil5GOC-8crt3cmdSIuKQ6Va4UKgu4RQppkYaQeB64scqawgQT4vQAOtNqGg6B2SQgTrRKpxrHc6JItPJl6lJhuE-06cLHW_3ls4YmI28IkXm-q-cu9G6Vm7fGssgTqjyKO7WM_7vZUDUoBHoo_X7bjFZAvzbsNFQrGkILjeA1k_f00Qg38S1k1oVP9bze-6j54HxEXDj61X_1fgePhxeno3z05ezba3hCfShkjesedJbzVXiDGGZZvG2_0xv-Z-l7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS9xAEF-qUulLaWul16rdQn0qwWSzfx9Fe6f2KkV6RfoSNvunD-rluPMefLuPIPgN_STOJPE8oQg-BAK7sySzmdnfbmZ-Q8hXw53Q0stESV8m3PmYWBttom0UIsDlUsxG_nksDwb86FSctgdumAvT8EPMD9zQMmp_jQY-8nHngTQUVi7R6yNllFBLZAWABofN18run8HfwdwXg4NuauYZnmimZBv6DiPsLMo_XpQekOYiXq0XnO4b8rpFinS3mdq35EUYviMve3Ul3iu4q2M33WSNxBPMuaKTaekbKlgKXmJ8Fjwdh2oh1ZJWkQLco20cHh2dA868nV1fgHLPQb7mdKYyvZ3diJRiOSIUugJTmFD7r3pPBt3vv_cOkrZ8QmKFSnXiTKlVaZFdRjomvHOwdDNnciPSiGWqXBSKB9ghhbzMQ8g8C8xYZU1pgglpvk6Wh9UwfCDUZgFgolU61zCeE2WmlY-5y4VhPtOmQ7bv9VeMGpaMouFDZsWinjtk4165RWsrkyLDwqOwUePs_80Gi0EBzgPpL_NmMAL8s2GHoZriEFpowK5cPtFHA9qEt5C8Q77V8_rkoxa9kz5S4eiPz-r9maz-2u8W_cPjH5_IK-yCAWtMb5Dly_E0bAKCuSy32s_0DplG6KQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ridge+subduction+sparked+reorganization+of+the+Pacific+plate%E2%80%90mantle+system+60%E2%80%9350+million+years+ago&rft.jtitle=Geophysical+research+letters&rft.au=Seton%2C+Maria&rft.au=Flament%2C+Nicolas&rft.au=Whittaker%2C+Joanne&rft.au=M%C3%BCller%2C+R.+Dietmar&rft.date=2015-03-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=42&rft.issue=6&rft.spage=1732&rft.epage=1740&rft_id=info:doi/10.1002%2F2015GL063057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_2015GL063057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon