Development of topography in 3-D continental-collision models

Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3‐D numerical simulations to investigate the role that subduction, collision, and indentation play on lit...

Full description

Saved in:
Bibliographic Details
Published inGeochemistry, geophysics, geosystems : G3 Vol. 16; no. 5; pp. 1378 - 1400
Main Authors Pusok, A. E., Kaus, Boris J. P.
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 01.05.2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3‐D numerical simulations to investigate the role that subduction, collision, and indentation play on lithosphere dynamics at convergent margins, and to analyze the conditions under which large topographic plateaus can form in an integrated lithospheric and upper mantle‐scale model. Distinct dynamics are obtained for the oceanic subduction side (trench retreat, slab rollback) and the continental‐collision side (trench advance, slab detachment, topographic uplift, lateral extrusion). We show that slab pull alone is insufficient to generate high topography in the upper plate, and that external forcing and the presence of strong blocks such as the Tarim Basin are necessary to create and shape anomalously high topographic fronts and plateaus. Moreover, scaling is used to predict four different modes of surface expression in continental‐collision models: (I) low‐amplitude homogeneous shortening, (II) high‐amplitude homogeneous shortening, (III) Alpine‐type topography with topographic front and low plateau, and (IV) Tibet‐Himalaya‐type topography with topographic front and high plateau. Results of semianalytical models suggest that the Argand number governs the formation of high topographic fronts, while the amplitude of plateaus is controlled by the initial buoyancy ratio of the upper plate. Applying these results to natural examples, we show that the Alps belong to regime (III), the Himalaya‐Tibet to regime (IV), whereas the Andes‐Altiplano fall at the boundary between regimes (III) and (IV). Key Points: Three‐dimensional numerical models of India‐Asia‐like collision zone and plateau buildup External forcing and strong crustal blocks favor development of high topography Scaling arguments to predict different modes of surface expressions
AbstractList Abstract Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3‐D numerical simulations to investigate the role that subduction, collision, and indentation play on lithosphere dynamics at convergent margins, and to analyze the conditions under which large topographic plateaus can form in an integrated lithospheric and upper mantle‐scale model. Distinct dynamics are obtained for the oceanic subduction side (trench retreat, slab rollback) and the continental‐collision side (trench advance, slab detachment, topographic uplift, lateral extrusion). We show that slab pull alone is insufficient to generate high topography in the upper plate, and that external forcing and the presence of strong blocks such as the Tarim Basin are necessary to create and shape anomalously high topographic fronts and plateaus. Moreover, scaling is used to predict four different modes of surface expression in continental‐collision models: (I) low‐amplitude homogeneous shortening, (II) high‐amplitude homogeneous shortening, (III) Alpine‐type topography with topographic front and low plateau, and (IV) Tibet‐Himalaya‐type topography with topographic front and high plateau. Results of semianalytical models suggest that the Argand number governs the formation of high topographic fronts, while the amplitude of plateaus is controlled by the initial buoyancy ratio of the upper plate. Applying these results to natural examples, we show that the Alps belong to regime (III), the Himalaya‐Tibet to regime (IV), whereas the Andes‐Altiplano fall at the boundary between regimes (III) and (IV). Key Points: Three‐dimensional numerical models of India‐Asia‐like collision zone and plateau buildup External forcing and strong crustal blocks favor development of high topography Scaling arguments to predict different modes of surface expressions
Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3-D numerical simulations to investigate the role that subduction, collision, and indentation play on lithosphere dynamics at convergent margins, and to analyze the conditions under which large topographic plateaus can form in an integrated lithospheric and upper mantle-scale model. Distinct dynamics are obtained for the oceanic subduction side (trench retreat, slab rollback) and the continental-collision side (trench advance, slab detachment, topographic uplift, lateral extrusion). We show that slab pull alone is insufficient to generate high topography in the upper plate, and that external forcing and the presence of strong blocks such as the Tarim Basin are necessary to create and shape anomalously high topographic fronts and plateaus. Moreover, scaling is used to predict four different modes of surface expression in continental-collision models: (I) low-amplitude homogeneous shortening, (II) high-amplitude homogeneous shortening, (III) Alpine-type topography with topographic front and low plateau, and (IV) Tibet-Himalaya-type topography with topographic front and high plateau. Results of semianalytical models suggest that the Argand number governs the formation of high topographic fronts, while the amplitude of plateaus is controlled by the initial buoyancy ratio of the upper plate. Applying these results to natural examples, we show that the Alps belong to regime (III), the Himalaya-Tibet to regime (IV), whereas the Andes-Altiplano fall at the boundary between regimes (III) and (IV). Key Points: * Three-dimensional numerical models of India-Asia-like collision zone and plateau buildup * External forcing and strong crustal blocks favor development of high topography * Scaling arguments to predict different modes of surface expressions
Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3‐D numerical simulations to investigate the role that subduction, collision, and indentation play on lithosphere dynamics at convergent margins, and to analyze the conditions under which large topographic plateaus can form in an integrated lithospheric and upper mantle‐scale model. Distinct dynamics are obtained for the oceanic subduction side (trench retreat, slab rollback) and the continental‐collision side (trench advance, slab detachment, topographic uplift, lateral extrusion). We show that slab pull alone is insufficient to generate high topography in the upper plate, and that external forcing and the presence of strong blocks such as the Tarim Basin are necessary to create and shape anomalously high topographic fronts and plateaus. Moreover, scaling is used to predict four different modes of surface expression in continental‐collision models: (I) low‐amplitude homogeneous shortening, (II) high‐amplitude homogeneous shortening, (III) Alpine‐type topography with topographic front and low plateau, and (IV) Tibet‐Himalaya‐type topography with topographic front and high plateau. Results of semianalytical models suggest that the Argand number governs the formation of high topographic fronts, while the amplitude of plateaus is controlled by the initial buoyancy ratio of the upper plate. Applying these results to natural examples, we show that the Alps belong to regime (III), the Himalaya‐Tibet to regime (IV), whereas the Andes‐Altiplano fall at the boundary between regimes (III) and (IV). Key Points: Three‐dimensional numerical models of India‐Asia‐like collision zone and plateau buildup External forcing and strong crustal blocks favor development of high topography Scaling arguments to predict different modes of surface expressions
Author Pusok, A. E.
Kaus, Boris J. P.
Author_xml – sequence: 1
  givenname: A. E.
  surname: Pusok
  fullname: Pusok, A. E.
  email: puesoek@uni-mainz.de
  organization: Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany
– sequence: 2
  givenname: Boris J. P.
  surname: Kaus
  fullname: Kaus, Boris J. P.
  organization: Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany
BookMark eNp9kLFOwzAQhi1UJNrCxgNEYmEgcGfjuB4YUFsCAgEDiNEyiQMprh3iFOjbY1SEKoYO1lm67zvd_QPSc94ZQvYRjhGAnlBAno8BuGB0i_SRU55SoKK39t8hgxBmAHjK-ahPzibmw1jfzI3rEl8lnW_8S6ub12VSu4Slk6TwrqtdbGubFt7aOtTeJXNfGht2yXalbTB7v3VIHi-mD-PL9OYuvxqf36SaZ5KlGaNFxapn1MAlMC05irIqKS0lP0XMymdEYEJQ0JrRSFLIIDNYSikLQzUbksPV3Kb17wsTOjWvQ2Gs1c74RVAo4j3RR4zowT905heti9splCjECIFnG6lsJGWMcwSROlpRRetDaE2lmrae63apENRP4mo98YizFf5ZW7PcyKo8z6cUBLJopSurDp35-rN0-6YywQRXT7d5fPfjqF2rJ_YNn4qO2Q
CitedBy_id crossref_primary_10_1029_2019GC008649
crossref_primary_10_1016_j_tecto_2018_04_006
crossref_primary_10_1016_j_tecto_2019_228223
crossref_primary_10_1002_2017JB013991
crossref_primary_10_1029_2023GL106203
crossref_primary_10_15372_RGG2019126
crossref_primary_10_1038_s41467_018_07312_9
crossref_primary_10_1029_2018JB015704
crossref_primary_10_1016_j_gr_2021_10_020
crossref_primary_10_3389_feart_2023_1214686
crossref_primary_10_1016_j_epsl_2017_10_005
crossref_primary_10_1029_2021GC009967
crossref_primary_10_1093_gji_ggaa125
crossref_primary_10_1029_2020TC006570
crossref_primary_10_1080_17538947_2022_2138589
crossref_primary_10_1038_s41467_019_12337_9
crossref_primary_10_1093_gji_ggz183
crossref_primary_10_5194_se_13_583_2022
crossref_primary_10_1029_2020GL089435
crossref_primary_10_1029_2020GL088989
crossref_primary_10_1002_2017GC006821
crossref_primary_10_1002_2016JB012872
crossref_primary_10_5194_se_13_1455_2022
crossref_primary_10_1016_j_tecto_2019_228310
crossref_primary_10_1016_j_tecto_2017_09_018
crossref_primary_10_1016_j_tecto_2018_04_017
crossref_primary_10_1029_2020GC009092
crossref_primary_10_1111_bre_12499
crossref_primary_10_1016_j_tecto_2021_229081
crossref_primary_10_1029_2019GC008678
crossref_primary_10_1029_2018TC005455
crossref_primary_10_1029_2022TC007261
crossref_primary_10_1002_2018JB015443
crossref_primary_10_1016_j_epsl_2017_06_017
crossref_primary_10_1126_sciadv_aaz8681
crossref_primary_10_5194_se_9_759_2018
crossref_primary_10_1130_G48919_1
crossref_primary_10_1093_gji_ggac339
crossref_primary_10_1029_2018JB017027
crossref_primary_10_1029_2021TC007078
crossref_primary_10_1038_s41598_024_52709_w
crossref_primary_10_1029_2021JB022326
crossref_primary_10_1016_j_earscirev_2016_09_005
crossref_primary_10_1016_j_tecto_2023_229727
crossref_primary_10_1038_s41467_017_01847_z
Cites_doi 10.1111/j.1365-246X.1982.tb04969.x
10.1038/369737a0
10.5194/se-3-293-2012
10.1029/JB091iB03p03651
10.1111/j.1365-246X.2007.03343.x
10.1016/j.pepi.2010.04.007
10.1029/JB091iB03p03664
10.1016/j.tecto.2009.10.007
10.1029/JB086iB07p06115
10.1073/pnas.0703595105
10.1016/j.epsl.2011.08.021
10.1038/315297a0
10.1016/j.pepi.2008.06.028
10.1002/tect.20087
10.1016/j.epsl.2006.11.028
10.1016/j.tecto.2008.11.002
10.1029/92TC02248
10.1029/96JB00951
10.1126/science.276.5313.788
10.1029/2003JB002809
10.1029/2010GL043140
10.1016/j.epsl.2014.01.045
10.1029/2004TC001729
10.1038/nature13033
10.1016/j.tecto.2013.06.032
10.1046/j.1365-246x.1999.00734.x
10.1093/gji/ggu040
10.1029/2010JB008051
10.1016/j.epsl.2013.01.023
10.1016/j.epsl.2006.08.028
10.1016/j.epsl.2008.07.016
10.1017/CBO9780511807442
10.1130/0091-7613(2000)28
10.1016/S0012-821X(04)00070-6
10.1029/JB094iB12p17561
10.1016/j.earscirev.2009.08.003
10.1016/j.tecto.2014.06.013
10.1016/j.epsl.2010.11.035
10.1016/j.tecto.2012.09.003
10.1016/j.tecto.2009.08.042
10.1016/S0012-821X(99)00277-0
10.1038/414738a
10.1029/2001JB000145
10.1002/2013GC005223
10.1098/rsta.1988.0089
10.1029/2007JF000897
10.1038/ngeo2270
10.1038/nature05615
10.1016/0031-9201(86)90021-X
10.1029/2009RG000304
10.1038/311615a0
10.1029/2004JB002991
10.2172/1178104
10.1002/ggge.20171
10.1016/S0012-821X(99)00131-4
10.1029/2012TC003176
10.1144/GSL.SP.1986.019.01.07
10.1029/2010GL042921
10.1016/j.epsl.2014.03.007
10.1046/j.1365-246x.1999.00735.x
10.1130/2014.2507(01)
10.1007/s00015-004-1113-x
10.1038/nature10596
10.1016/j.tecto.2010.05.024
10.1016/S0025-3227(00)00167-5
10.1016/0031-9201(84)90049-9
10.1130/G22071.1
10.1111/j.1365-246X.2012.05388.x
10.1016/j.epsl.2013.08.034
10.1016/S0012-821X(00)00252-1
10.1002/2013JB010503
10.1016/j.earscirev.2005.07.005
10.1029/97TC00495
10.1126/science.105978
10.1016/j.gr.2014.04.003
10.1126/science.1155371
10.1130/G35446.1
10.1029/97TC01413
10.1029/2005GC001056
10.1016/0012-821X(81)90213-2
10.1007/978-3-540-69426-7_18
10.1130/0091-7613(2000)028
10.1029/93RG02030
10.1029/JB075i014p02625
10.1130/SPE218-p179
10.1038/nature10174
10.1038/386061a0
10.1111/j.1365-246X.2011.05164.x
ContentType Journal Article
Copyright 2015. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2015. American Geophysical Union. All Rights Reserved.
DBID BSCLL
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1002/2015GC005732
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1525-2027
EndPage 1400
ExternalDocumentID 3720420091
10_1002_2015GC005732
GGGE20713
ark_67375_WNG_WNPC732K_W
Genre article
GeographicLocations Tibet
China, People's Rep., Xizang, Tibetan Plateau
Pakistan, Himalayas
China, People's Rep., Xinjiang, Tarim Basin
GeographicLocations_xml – name: Tibet
– name: China, People's Rep., Xizang, Tibetan Plateau
– name: Pakistan, Himalayas
– name: China, People's Rep., Xinjiang, Tarim Basin
GrantInformation_xml – fundername: European Research Council under the European Community's Seventh Framework Program
  funderid: FP7/2007–2013 ; 258830
GroupedDBID 05W
0R~
1OC
24P
31~
3V.
50Y
5GY
8-1
88I
8CJ
8FE
8FH
8G5
8R4
8R5
A00
AAESR
AAHHS
AAZKR
ABCUV
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACGFS
ACGOD
ACPOU
ACXQS
ADBBV
ADEOM
ADIYS
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFGKR
AFKRA
AFPWT
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D1J
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OK1
P-X
P2W
PCBAR
PQQKQ
PROAC
Q2X
R.K
ROL
SUPJJ
UB1
WBKPD
WYJ
ZZTAW
~02
~OA
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-a5693-632cf3fb1a05903a9517dfd22d954116db11037720aa32f3f20606e1d999ce2a3
ISSN 1525-2027
IngestDate Fri Jun 28 00:43:19 EDT 2024
Sun Nov 10 04:50:23 EST 2024
Thu Oct 10 20:54:57 EDT 2024
Fri Aug 23 03:26:25 EDT 2024
Sat Aug 24 00:44:46 EDT 2024
Wed Oct 30 09:53:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a5693-632cf3fb1a05903a9517dfd22d954116db11037720aa32f3f20606e1d999ce2a3
Notes ArticleID:GGGE20713
European Research Council under the European Community's Seventh Framework Program - No. FP7/2007-2013; No. 258830
istex:BD04A1029F2014F319B55D1435EC35094B510F0F
ark:/67375/WNG-WNPC732K-W
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1689910080
PQPubID 54722
PageCount 23
ParticipantIDs proquest_miscellaneous_1701477211
proquest_journals_1917781056
proquest_journals_1689910080
crossref_primary_10_1002_2015GC005732
wiley_primary_10_1002_2015GC005732_GGGE20713
istex_primary_ark_67375_WNG_WNPC732K_W
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geochemistry, geophysics, geosystems : G3
PublicationTitleAlternate Geochem. Geophys. Geosyst
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References England, P., and D. McKenzie (1982), A thin viscous sheet model for continental deformation, Geophys. J. R. Astron. Soc., 70, 295-321, doi:10.1111/j.1365-246X.1982.tb04969.x.
Faccenna, C., T. W. Becker, C. P. Conrad, and L. Husson (2013), Mountain building and mantle dynamics, Tectonics, 32, 80-93, doi:10.1029/2012TC003176.
Turcotte, D. L., and G. Schubert (2002), Geodynamics, 2nd ed., Cambridge Univ. Press, Cambridge, U. K.
Li, Z.-H., Z. Xu, T. Gerya, and J.-P. Burg (2013), Collision of continental corner from 3-D numerical modeling, Earth Planet. Sci. Lett., 380, 98-111, doi:10.1016/j.epsl.2013.08.034.
Bilham, R., K. M. Larson, J. T. Freymueller, and P. Idylhim (1997), GPS measurements of present-day convergence across the Nepal Himalaya, Nature, 386, 61-64, doi:10.1038/386061a0.
Molnar, P., and P. Tapponnier (1981), A possible dependence of tectonic strength on the age of the crust in Asia, Earth Planet. Sci. Lett., 52, 107-114, doi:10.1016/0012-821X(81)90213-2.
England, P., and G. A. Houseman (1986), Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone, J. Geophys. Res., 91(B3), 3664-3676, doi:10.1029/JB091iB03p03664.
Hoke, G. D., J. Liu-Zeng, M. T. Hren, G. K. Wissink, and C. N. Garzione (2014), Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene, Earth Planet. Sci. Lett., 394, 270-278, doi:10.1016/j.epsl.2014.03.007.
Bouilhol, P., O. Jagoutz, J. M. Hanchar, and F. O. Dudas (2013), Dating the India-Eurasia collision through arc magmatic records, Earth Planet. Sci. Lett., 366, 163-175, doi:10.1016/j.epsl.2013.01.023.
François, T., E. Burov, and P. Agard (2014), Buildup of a dynamically supported orogenic plateau: Numerical modeling of the Zagros/Central Iran case study, Geochem. Geophys. Geosyst., 15, 2632-2654, doi:10.1002/2013GC005223.
Neil, E. A., and G. A. Houseman (1997), Geodynamics of the Tarim basin and the Tian Shan in central Asia, Tectonics, 16(4), 571-584, doi:10.1029/97TC01413.
Vilotte, J. P., M. Daignieres, R. Madariaga, and O. C. Zienkiewicz (1984), The role of a heterogeneous inclusion during continental collision, Phys. Earth Planet. Inter., 36, 236-259, doi:10.1016/0031-9201(84)90049-9.
Magni, V., C. Faccenna, J. van Hunen, and F. Funiciello (2014), How collision triggers backarc extension: Insight into Mediterranean style of extension from 3-D numerical models, Geology, 42(6), 511-514, doi:10.1130/G35446.1.
Molnar, P., and H. Lyon-Caen (1988), Some simple physical aspects of the support, structure, and evolution of mountain belts, Spec. Pap. Geol. Soc. Am., 218, 179-207.
Capitanio, F. A., and A. Replumaz (2013), Subduction and slab breakoff controls on Asian Indentation tectonics and Himalayan Western Syntaxis formation, Geochem. Geophys. Geosyst., 14, 3515-3531, doi:10.1002/ggge.20171.
Chemenda, A. I., J.-P. Burg, and M. Mattauer (2000), Evolutionary model of the Himalaya-Tibet system: Geopoem based on new modelling, geological and geophysical data, Earth Planet. Sci. Lett., 174, 397-409, doi:10.1016/S0012-821X(99)00277-0.
Schellart, W. P., J. Freeman, D. R. Stegman, L. Moresi, and D. May (2007), Evolution and diversity of subduction zones controlled by slab width, Nature, 446(7133), 308-311, doi:10.1038/nature05615.
Lechmann, S. M., D. A. May, B. J. P. Kaus and S. M. Schmalholz (2011), Comparing thin-sheet models with 3-D multilayer models for continental collision, Geophys. J. Int., 187(1), 10-33, doi:10.1111/j.1365-246X.2011.05164.x.
McQuarrie, N., and C. G. Chase (2000), Raising the Colorado Plateau, Geology, 28(1), 91-94, doi:10.1130/0091-7613(2000)028<0091:RTCP>2.0.CO;2.
Barnes, J. B., and T. A. Ehlers (2009), End member models for Andean Plateau uplift, Earth Sci. Rev., 97, 105-132, doi:10.1016/j.earscirev.2009.08.003.
Patriat, P., and J. Achache (1984), India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates, Nature, 311, 615-621, doi:10.1038/311615a0.
Van der Voo, R., W. Spakman, and H. Bijwaard (1999), Tethyan subducted slabs under India, Earth Planet. Sci. Lett., 171, 7-20, doi:10.1016/S0012-821X(99)00131-4.
Beaumont, C., R. A. Jamieson, M. H. Nguyen, and S. Medvedev (2004), Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen, J. Geophys. Res., 109, B06406, doi:10.1029/2003JB002809.
Buck, W. R., and D. Sokoutis (1994), Analogue model of gravitational collapse and surface extension during continental convergence, Nature, 369(6483), 737-740, doi:10.1038/369737a0.
Conrad, C. P., and C. Lithgow-Bertelloni (2004), The temporal evolution of plate driving forces: Importance of "slab suction" versus "slab pull" during the Cenozoic, J. Geophys. Res., 109, B10407, doi:10.1029/2004JB002991.
Schmalholz, S. M., S. Medvedev, S. M. Lechmann and Y. Podladchikov (2014), Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy, Geophys. J. Int., 197(2), 680-696, doi:10.1093/gji/ggu040.
Wang, Y., W. D. Mooney, X. Yuan, and N. Okaya (2013), Crustal structure of the northeastern Tibetan Plateau from the southern Tarim Basin to the Sichuan Basin, China, Tectonophysics, 584, 191-208.
Fernandez, N., and B. J. P. Kaus (2014), Fold interaction and wavelength selection in 3D models of multilayer detachment folding, Tectonophysics, 632, 199-217, doi:10.1016/j.tecto.2014.06.013.
Stegman, D. R., J. Freeman, W. P. Schellart, L. Moresi, and D. May (2006), Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback, Geochem. Geophys. Geosyst., 7, Q03012, doi:10.1029/2005GC001056.
Weijermars, R., and H. Schmeling (1986), Scaling of Newtonian and non Newtonian fluid dynamics without inertia for quantative modelling of rock flow due to gravity (including the concept of rheological similarity), Phys. Earth Planet. Inter., 43, 938-954.
Yang, Y., and M. Liu (2013), The Indo-Asian continental collision: A 3-D viscous model, Tectonophysics, 606, 198-211, doi:10.1016/j.tecto.2013.06.032.
Houseman, G. A., and P. England (1986), Finite strain calculations of continental deformation: 1. Method and general results for convergent zones, J. Geophys. Res., 91(B3), 3651-3663, doi:10.1029/JB091iB03p03651.
van Hinsbergen, D., B. Steinberger, P. Doubrovine, and R. Gassmölle (2011), Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision, J. Geophys. Res., 116, B06101, doi:10.1029/2010JB008051.
Duretz, T., T. V. Gerya, and D. A. May (2011), Numerical modelling of spontaneous slab breakoff and subsequent topographic response, Tectonophysics, 502, 244-256, doi:10.1016/j.tecto.2010.05.024.
Crameri, F., and B. J. P. Kaus (2010), Parameters that control lithospheric-scale thermal localization on terrestrial planets, Geophys. Res. Lett., 37, L09308, doi:10.1029/2010GL042921.
Medvedev, S. and Y. Y. Podladchikov (1999a), New extended thin-sheet approximation for geodynamic applications-I. Model formulation, Geophys. J. Int., 136, 567-585, doi:10.1046/j.1365-246x.1999.00734.x.
Replumaz, A., F. A. Capitanio, S. Guillot, A. M. Negredo, and A. Villaseñor (2014), The coupling of Indian subduction and Asian continental tectonics, Gondwana Res., 26, 608-626, doi:10.1016/j.gr.2014.04.003.
Medvedev, S. (2002), Mechanics of viscous wedges: Modeling by analytical and numerical approaches, J. Geophys. Res., 107(B6), 2123, doi:10.1029/2001JB000145.
Royden, L. H. (1993), The tectonic expression slab pull at continental convergent boundaries, Tectonics, 12(2), 303-325, doi:10.1029/92TC02248.
Ding, L., P. Kapp, and X. Wan (2005), Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet, Tectonics, 24, TC3001, doi:10.1029/2004TC001729.
Liu-Zeng, J., P. Tapponnier, Y. Gaudemer, and L. Ding (2008), Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution, J. Geophys. Res., 113, F04018, doi:10.1029/2007JF000897.
Kaus, B. J. P. (2010), Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation, Tectonophysics, 484(1-4), 36-47, doi:10.1016/j.tecto.2009.08.042.
Royden, L. H., B. C. Burchfiel, and R. D. van der Hilst (2008), The geological evolution of the Tibetan Plateau, Science, 321(5892), 1054-1058, doi:10.1126/science.1155371.
Beaumont, C., R. A. Jamieson, M. H. Nguyen, and B. Lee (2001), Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation, Nature, 414, 738-742, doi:10.1038/414738a.
Dewey, J. F., and J. M. Bird (1970), Mountain belts and the new global tectonics, J. Geophys. Res., 75(14), 2625-2647, doi:10.1029/JB075i014p02625.
England, P., and G. A. Houseman (1989), Extension during continental convergence, with application to the Tibetan Plateau, J. Geophys. Res., 94(B12), 17,561-17,579, doi:10.1029/JB094iB12p17561.
England, P., and G. A. Houseman (1985), Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions, Nature, 315, 297-301, doi:10.1038/315297a0.
Royden, L. H., B. C. Burchfiel, R. King, E. Wang, Z. Chen, F. Shen, and Y. Liu (1997), Surface deformation and lower crustal flow in Eastern Tibet, Science, 276(5313), 788-790, doi:10.1126/science.276.5313.788.
Wang, C., X. Zhao, Z. Liu, P. C. Lippert, S. A. Graham, R. S. Coe, H. Yi, L. Zhu, S. Liu, and Y. Li (2008), Constraints on the early uplift history of the Tibetan Plateau, Proc. Natl. Acad. Sci. U. S. A., 105, 4987-4992, doi:10.1073/pnas.0703595105.
Replumaz, A., A. M. Negredo, S. Guillot, and A. Villaseñor (2010), Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction, Tectonophysics, 483(1-2), 125-134, doi:10.1016/j.tecto.2009.10.007.
Ghosh, A., W. E. Holt, L. M. Flesch, and A. J. Haines (2006), Gravitational potential energy of the Tibetan Plateau and the forces driving the Ind
2011; 116
2006; 34
2013; 606
1999; 171
1997; 276
2006; 251
2014; 26
2013; 366
2000; 174
1970; 75
2008; 105
2010; 181
1996; 101
2011; 310
2011; 475
1981; 86
2005; 24
2001; 173
2001; 294
2013; 14
2009; 97
1984; 311
1986; 43
2007; 254
1997; 386
2013; 118
1999b; 136
1993; 31
2014; 15
2002; 107
1997; 16
2005; 72
2008; 113
2014; 7
2011; 480
2008; 274
1988; 218
2001; 414
2007; 169
2004; 221
1986; 91
2010; 37
2012; 189
2007; 446
2000; 28
1982; 70
2009
2010; 484
2006; 7
2013; 584
2007
2010; 483
1986; 19
2014; 392
2002
2004; 109
2008; 321
2014; 394
2013; 380
2014; 197
1988; 326
2014; 632
2007; 16
2014; 42
2011; 302
1989; 94
1993; 12
2004; 97
1994; 369
2014; 507
2010; 48
2012; 3
2014; 508
2011; 502
1984; 36
2013; 32
1999a; 136
2000; 183
2009; 465
1985; 315
2014
1981; 52
2011; 187
2008; 171
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_90_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 32
  start-page: 1
  year: 2013
  end-page: 18
  article-title: Orocline and syntaxes formation during subduction and collision
  publication-title: Tectonics
– volume: 12
  start-page: 303
  issue: 2
  year: 1993
  end-page: 325
  article-title: The tectonic expression slab pull at continental convergent boundaries
  publication-title: Tectonics
– year: 2009
– volume: 14
  start-page: 3515
  year: 2013
  end-page: 3531
  article-title: Subduction and slab breakoff controls on Asian Indentation tectonics and Himalayan Western Syntaxis formation
  publication-title: Geochem. Geophys. Geosyst.
– volume: 26
  start-page: 608
  year: 2014
  end-page: 626
  article-title: The coupling of Indian subduction and Asian continental tectonics
  publication-title: Gondwana Res.
– volume: 169
  start-page: 683
  issue: 2
  year: 2007
  end-page: 698
  article-title: Models of crustal flow in the India‐Asia collision zone
  publication-title: Geophys. J. Int.
– volume: 42
  start-page: 511
  issue: 6
  year: 2014
  end-page: 514
  article-title: How collision triggers backarc extension: Insight into Mediterranean style of extension from 3‐D numerical models
  publication-title: Geology
– volume: 70
  start-page: 295
  year: 1982
  end-page: 321
  article-title: A thin viscous sheet model for continental deformation
  publication-title: Geophys. J. R. Astron. Soc.
– volume: 584
  start-page: 191
  year: 2013
  end-page: 208
  article-title: Crustal structure of the northeastern Tibetan Plateau from the southern Tarim Basin to the Sichuan Basin, China
  publication-title: Tectonophysics
– volume: 75
  start-page: 2625
  issue: 14
  year: 1970
  end-page: 2647
  article-title: Mountain belts and the new global tectonics
  publication-title: J. Geophys. Res.
– volume: 484
  start-page: 36
  issue: 1–4
  year: 2010
  end-page: 47
  article-title: Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation
  publication-title: Tectonophysics
– volume: 97
  start-page: 105
  year: 2009
  end-page: 132
  article-title: End member models for Andean Plateau uplift
  publication-title: Earth Sci. Rev.
– volume: 37
  start-page: L09308
  year: 2010
  article-title: Parameters that control lithospheric‐scale thermal localization on terrestrial planets
  publication-title: Geophys. Res. Lett.
– volume: 366
  start-page: 163
  year: 2013
  end-page: 175
  article-title: Dating the India‐Eurasia collision through arc magmatic records
  publication-title: Earth Planet. Sci. Lett.
– volume: 446
  start-page: 308
  issue: 7133
  year: 2007
  end-page: 311
  article-title: Evolution and diversity of subduction zones controlled by slab width
  publication-title: Nature
– volume: 3
  start-page: 293
  issue: 2
  year: 2012
  end-page: 306
  article-title: Numerical models of slab migration in continental collision zones
  publication-title: Solid Earth
– volume: 174
  start-page: 397
  year: 2000
  end-page: 409
  article-title: Evolutionary model of the Himalaya‐Tibet system: Geopoem based on new modelling, geological and geophysical data
  publication-title: Earth Planet. Sci. Lett.
– volume: 276
  start-page: 788
  issue: 5313
  year: 1997
  end-page: 790
  article-title: Surface deformation and lower crustal flow in Eastern Tibet
  publication-title: Science
– volume: 502
  start-page: 244
  year: 2011
  end-page: 256
  article-title: Numerical modelling of spontaneous slab breakoff and subsequent topographic response
  publication-title: Tectonophysics
– volume: 171
  start-page: 198
  issue: 1–4
  year: 2008
  end-page: 223
  article-title: A benchmark comparison of spontaneous subduction models—Towards a free surface
  publication-title: Phys. Earth Planet. Inter.
– volume: 43
  start-page: 938
  year: 1986
  end-page: 954
  article-title: Scaling of Newtonian and non Newtonian fluid dynamics without inertia for quantative modelling of rock flow due to gravity (including the concept of rheological similarity)
  publication-title: Phys. Earth Planet. Inter.
– year: 2014
– volume: 632
  start-page: 199
  year: 2014
  end-page: 217
  article-title: Fold interaction and wavelength selection in 3D models of multilayer detachment folding
  publication-title: Tectonophysics
– volume: 7
  start-page: Q03012
  year: 2006
  article-title: Influence of trench width on subduction hinge retreat rates in 3‐D models of slab rollback
  publication-title: Geochem. Geophys. Geosyst.
– volume: 15
  start-page: 2632
  year: 2014
  end-page: 2654
  article-title: Buildup of a dynamically supported orogenic plateau: Numerical modeling of the Zagros/Central Iran case study
  publication-title: Geochem. Geophys. Geosyst.
– volume: 113
  start-page: F04018
  year: 2008
  article-title: Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution
  publication-title: J. Geophys. Res.
– volume: 34
  start-page: 321
  issue: 5
  year: 2006
  end-page: 324
  article-title: Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate
  publication-title: Geology
– volume: 394
  start-page: 270
  year: 2014
  end-page: 278
  article-title: Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene
  publication-title: Earth Planet. Sci. Lett.
– volume: 72
  start-page: 169
  issue: 3–4
  year: 2005
  end-page: 188
  article-title: Greater India
  publication-title: Earth Sci. Rev.
– volume: 109
  start-page: B10407
  year: 2004
  article-title: The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic
  publication-title: J. Geophys. Res.
– volume: 28
  start-page: 91
  issue: 1
  year: 2000
  end-page: 94
  article-title: Raising the Colorado Plateau
  publication-title: Geology
– volume: 107
  start-page: 2123
  issue: B6
  year: 2002
  article-title: Mechanics of viscous wedges: Modeling by analytical and numerical approaches
  publication-title: J. Geophys. Res.
– volume: 97
  start-page: 93
  issue: 1
  year: 2004
  end-page: 117
  article-title: Tectonic map and overall architecture of the Alpine orogen
  publication-title: Eclogae Geol. Helv.
– volume: 109
  start-page: B06406
  year: 2004
  article-title: Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan‐Tibetan orogen
  publication-title: J. Geophys. Res.
– volume: 118
  start-page: 5722
  year: 2013
  end-page: 5732
  article-title: Three‐dimensional velocity field of present‐day crustal motion of the Tibetan Plateau derived from GPS measurements
  publication-title: J. Geophys. Res. Solid Earth
– start-page: 351
  year: 2007
  end-page: 366
– volume: 274
  start-page: 157
  issue: 1–2
  year: 2008
  end-page: 168
  article-title: Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma
  publication-title: Earth Planet. Sci. Lett.
– volume: 36
  start-page: 236
  year: 1984
  end-page: 259
  article-title: The role of a heterogeneous inclusion during continental collision
  publication-title: Phys. Earth Planet. Inter.
– volume: 101
  start-page: 17,679
  issue: B8
  year: 1996
  end-page: 17,705
  article-title: Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust
  publication-title: J. Geophys. Res.
– volume: 91
  start-page: 3651
  issue: B3
  year: 1986
  end-page: 3663
  article-title: Finite strain calculations of continental deformation: 1. Method and general results for convergent zones
  publication-title: J. Geophys. Res.
– volume: 251
  start-page: 104
  issue: 1–2
  year: 2006
  end-page: 119
  article-title: Mantle instability beneath the Sierra Nevada Mountains in California and Death Valley extension
  publication-title: Earth Planet. Sci. Lett.
– volume: 465
  start-page: 128
  issue: 1–4
  year: 2009
  end-page: 135
  article-title: Crustal thickening and lateral extrusion during the Indo‐Asian collision: A 3D viscous flow model
  publication-title: Tectonophysics
– volume: 507
  start-page: 1
  year: 2014
  end-page: 12
  article-title: Early Cretaceous to present latitude of the central proto‐Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia
  publication-title: Spec. Pap. Geol. Soc. Am.
– volume: 302
  start-page: 27
  issue: 1–2
  year: 2011
  end-page: 37
  article-title: Continental collision and slab break‐off: A comparison of 3‐D numerical models with observations
  publication-title: Earth Planet. Sci. Lett.
– volume: 136
  start-page: 586
  year: 1999b
  end-page: 608
  article-title: New extended thin‐sheet approximation for geodynamic applications—II. Two‐dimensional examples
  publication-title: Geophys. J. Int.
– volume: 321
  start-page: 1054
  issue: 5892
  year: 2008
  end-page: 1058
  article-title: The geological evolution of the Tibetan Plateau
  publication-title: Science
– volume: 28
  start-page: 703
  issue: 8
  year: 2000
  end-page: 706
  article-title: Topographic ooze: Building the eastern margin of Tibet by lower crustal flow
  publication-title: Geology
– volume: 187
  start-page: 10
  issue: 1
  year: 2011
  end-page: 33
  article-title: Comparing thin‐sheet models with 3‐D multilayer models for continental collision
  publication-title: Geophys. J. Int.
– volume: 386
  start-page: 61
  year: 1997
  end-page: 64
  article-title: GPS measurements of present‐day convergence across the Nepal Himalaya
  publication-title: Nature
– volume: 48
  start-page: RG2005
  year: 2010
  article-title: Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications
  publication-title: Rev. Geophys.
– volume: 480
  start-page: 83
  issue: 7375
  year: 2011
  end-page: 86
  article-title: Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline
  publication-title: Nature
– volume: 136
  start-page: 567
  year: 1999a
  end-page: 585
  article-title: New extended thin‐sheet approximation for geodynamic applications—I. Model formulation
  publication-title: Geophys. J. Int.
– volume: 16
  start-page: 571
  issue: 4
  year: 1997
  end-page: 584
  article-title: Geodynamics of the Tarim basin and the Tian Shan in central Asia
  publication-title: Tectonics
– volume: 369
  start-page: 737
  issue: 6483
  year: 1994
  end-page: 740
  article-title: Analogue model of gravitational collapse and surface extension during continental convergence
  publication-title: Nature
– volume: 380
  start-page: 98
  year: 2013
  end-page: 111
  article-title: Collision of continental corner from 3‐D numerical modeling
  publication-title: Earth Planet. Sci. Lett.
– volume: 171
  start-page: 7
  year: 1999
  end-page: 20
  article-title: Tethyan subducted slabs under India
  publication-title: Earth Planet. Sci. Lett.
– volume: 32
  start-page: 80
  year: 2013
  end-page: 93
  article-title: Mountain building and mantle dynamics
  publication-title: Tectonics
– volume: 508
  start-page: 245
  year: 2014
  end-page: 248
  article-title: Dynamics of continental accretion
  publication-title: Nature
– volume: 189
  start-page: 38
  issue: 1
  year: 2012
  end-page: 54
  article-title: A comparison of numerical surface topography calculations in geodynamic modelling: An evaluation of the ‘sticky air’ method
  publication-title: Geophys. J. Int.
– volume: 16
  year: 2007
  article-title: Origin of the high plateau in the central Andes, Bolivia, South America
  publication-title: Tectonics
– volume: 310
  start-page: 453
  issue: 3–4
  year: 2011
  end-page: 461
  article-title: Mantle conveyor beneath the Tethyan collisional belt
  publication-title: Earth Planet. Sci. Lett.
– volume: 315
  start-page: 297
  year: 1985
  end-page: 301
  article-title: Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions
  publication-title: Nature
– volume: 116
  start-page: B06101
  year: 2011
  article-title: Acceleration and deceleration of India‐Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision
  publication-title: J. Geophys. Res.
– volume: 91
  start-page: 3664
  issue: B3
  year: 1986
  end-page: 3676
  article-title: Finite strain calculations of continental deformation: 2. Comparison with the India‐Asia Collision Zone
  publication-title: J. Geophys. Res.
– volume: 183
  start-page: 215
  issue: 1–2
  year: 2000
  end-page: 229
  article-title: Predicting paleoelevation of Tibet and the Himalaya from O vs. altitude gradients in meteoric water across the Nepal Himalaya
  publication-title: Earth Planet. Sci. Lett.
– volume: 254
  start-page: 173
  issue: 1–2
  year: 2007
  end-page: 179
  article-title: Buckling instabilities of subducted lithosphere beneath the transition zone
  publication-title: Earth Planet. Sci. Lett.
– volume: 475
  start-page: 47
  issue: 7354
  year: 2011
  end-page: 52
  article-title: Indian and African plate motions driven by the push force of the Reunion plume head
  publication-title: Nature
– volume: 37
  start-page: L09307
  year: 2010
  article-title: Viscosity in transition zone and lower mantle: Implications for slab penetration
  publication-title: Geophys. Res. Lett.
– volume: 606
  start-page: 198
  year: 2013
  end-page: 211
  article-title: The Indo‐Asian continental collision: A 3‐D viscous model
  publication-title: Tectonophysics
– volume: 173
  start-page: 1
  year: 2001
  end-page: 19
  article-title: Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan
  publication-title: Mar. Geol.
– volume: 311
  start-page: 615
  year: 1984
  end-page: 621
  article-title: India‐Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates
  publication-title: Nature
– volume: 181
  start-page: 12
  issue: 1–2
  year: 2010
  end-page: 20
  article-title: A stabilization algorithm for geodynamic numerical simulations with a free surface
  publication-title: Phys. Earth Planet. Inter.
– volume: 483
  start-page: 125
  issue: 1–2
  year: 2010
  end-page: 134
  article-title: Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction
  publication-title: Tectonophysics
– year: 2002
– volume: 221
  start-page: 103
  issue: 1–4
  year: 2004
  end-page: 115
  article-title: 4‐D evolution of SE Asia's mantle from geological reconstructions and seismic tomography
  publication-title: Earth Planet. Sci. Lett.
– volume: 197
  start-page: 680
  issue: 2
  year: 2014
  end-page: 696
  article-title: Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy
  publication-title: Geophys. J. Int.
– volume: 392
  start-page: 250
  year: 2014
  end-page: 264
  article-title: The Andean‐type Gangdese Mountains: Paleoelevation record from the Paleocene‐Eocene Linzhou Basin
  publication-title: Earth Planet. Sci. Lett.
– volume: 294
  start-page: 1671
  issue: 5547
  year: 2001
  end-page: 1677
  article-title: Oblique stepwise rise and growth of the Tibet Plateau
  publication-title: Science
– volume: 19
  start-page: 113
  issue: 1
  year: 1986
  end-page: 157
  article-title: On the mechanics of the collision between India and Asia
  publication-title: Geol. Soc. Spec. Publ.
– volume: 414
  start-page: 738
  year: 2001
  end-page: 742
  article-title: Himalayan tectonics explained by extrusion of a low‐viscosity crustal channel coupled to focused surface denudation
  publication-title: Nature
– volume: 52
  start-page: 107
  year: 1981
  end-page: 114
  article-title: A possible dependence of tectonic strength on the age of the crust in Asia
  publication-title: Earth Planet. Sci. Lett.
– volume: 7
  start-page: 830
  year: 2014
  end-page: 833
  article-title: Plateau uplift in western Canada caused by lithospheric delamination along a craton edge
  publication-title: Nat. Geosci.
– volume: 94
  start-page: 17,561
  issue: B12
  year: 1989
  end-page: 17,579
  article-title: Extension during continental convergence, with application to the Tibetan Plateau
  publication-title: J. Geophys. Res.
– volume: 24
  start-page: TC3001
  year: 2005
  article-title: Paleocene‐Eocene record of ophiolite obduction and initial India‐Asia collision, south central Tibet
  publication-title: Tectonics
– volume: 86
  start-page: 6115
  issue: B7
  year: 1981
  end-page: 6132
  article-title: Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts
  publication-title: J. Geophys. Res.
– volume: 31
  start-page: 357
  issue: 4
  year: 1993
  end-page: 396
  article-title: Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon
  publication-title: Rev. Geophys.
– volume: 326
  start-page: 301
  issue: 1589
  year: 1988
  end-page: 320
  article-title: The mechanics of the Tibetan Plateau [and Discussion]
  publication-title: Philos. Trans. R. Soc. A
– volume: 218
  start-page: 179
  year: 1988
  end-page: 207
  article-title: Some simple physical aspects of the support, structure, and evolution of mountain belts
  publication-title: Spec. Pap. Geol. Soc. Am.
– volume: 105
  start-page: 4987
  year: 2008
  end-page: 4992
  article-title: Constraints on the early uplift history of the Tibetan Plateau
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1365-246X.1982.tb04969.x
– ident: e_1_2_8_13_1
  doi: 10.1038/369737a0
– ident: e_1_2_8_53_1
  doi: 10.5194/se-3-293-2012
– ident: e_1_2_8_40_1
  doi: 10.1029/JB091iB03p03651
– ident: e_1_2_8_20_1
  doi: 10.1111/j.1365-246X.2007.03343.x
– ident: e_1_2_8_43_1
  doi: 10.1016/j.pepi.2010.04.007
– ident: e_1_2_8_29_1
  doi: 10.1029/JB091iB03p03664
– ident: e_1_2_8_67_1
  doi: 10.1016/j.tecto.2009.10.007
– ident: e_1_2_8_41_1
  doi: 10.1029/JB086iB07p06115
– ident: e_1_2_8_86_1
  doi: 10.1073/pnas.0703595105
– ident: e_1_2_8_10_1
  doi: 10.1016/j.epsl.2011.08.021
– ident: e_1_2_8_3_1
– ident: e_1_2_8_28_1
  doi: 10.1038/315297a0
– ident: e_1_2_8_76_1
  doi: 10.1016/j.pepi.2008.06.028
– ident: e_1_2_8_4_1
  doi: 10.1002/tect.20087
– ident: e_1_2_8_69_1
  doi: 10.1016/j.epsl.2006.11.028
– ident: e_1_2_8_89_1
  doi: 10.1016/j.tecto.2008.11.002
– ident: e_1_2_8_70_1
  doi: 10.1029/92TC02248
– ident: e_1_2_8_71_1
  doi: 10.1029/96JB00951
– ident: e_1_2_8_72_1
  doi: 10.1126/science.276.5313.788
– ident: e_1_2_8_9_1
  doi: 10.1029/2003JB002809
– ident: e_1_2_8_65_1
  doi: 10.1029/2010GL043140
– ident: e_1_2_8_25_1
  doi: 10.1016/j.epsl.2014.01.045
– ident: e_1_2_8_24_1
  doi: 10.1029/2004TC001729
– ident: e_1_2_8_62_1
  doi: 10.1038/nature13033
– ident: e_1_2_8_90_1
  doi: 10.1016/j.tecto.2013.06.032
– ident: e_1_2_8_57_1
  doi: 10.1046/j.1365-246x.1999.00734.x
– ident: e_1_2_8_75_1
  doi: 10.1093/gji/ggu040
– ident: e_1_2_8_83_1
  doi: 10.1029/2010JB008051
– ident: e_1_2_8_12_1
  doi: 10.1016/j.epsl.2013.01.023
– ident: e_1_2_8_46_1
  doi: 10.1016/j.epsl.2006.08.028
– ident: e_1_2_8_48_1
  doi: 10.1016/j.epsl.2008.07.016
– ident: e_1_2_8_81_1
  doi: 10.1017/CBO9780511807442
– ident: e_1_2_8_18_1
  doi: 10.1130/0091-7613(2000)28
– ident: e_1_2_8_66_1
  doi: 10.1016/S0012-821X(04)00070-6
– ident: e_1_2_8_30_1
  doi: 10.1029/JB094iB12p17561
– ident: e_1_2_8_7_1
  doi: 10.1016/j.earscirev.2009.08.003
– ident: e_1_2_8_34_1
  doi: 10.1016/j.tecto.2014.06.013
– ident: e_1_2_8_84_1
  doi: 10.1016/j.epsl.2010.11.035
– ident: e_1_2_8_87_1
  doi: 10.1016/j.tecto.2012.09.003
– ident: e_1_2_8_42_1
  doi: 10.1016/j.tecto.2009.08.042
– ident: e_1_2_8_17_1
  doi: 10.1016/S0012-821X(99)00277-0
– ident: e_1_2_8_8_1
  doi: 10.1038/414738a
– ident: e_1_2_8_56_1
  doi: 10.1029/2001JB000145
– ident: e_1_2_8_35_1
  doi: 10.1002/2013GC005223
– ident: e_1_2_8_32_1
  doi: 10.1098/rsta.1988.0089
– ident: e_1_2_8_52_1
  doi: 10.1029/2007JF000897
– ident: e_1_2_8_6_1
  doi: 10.1038/ngeo2270
– ident: e_1_2_8_74_1
  doi: 10.1038/nature05615
– ident: e_1_2_8_88_1
  doi: 10.1016/0031-9201(86)90021-X
– ident: e_1_2_8_38_1
  doi: 10.1029/2009RG000304
– ident: e_1_2_8_64_1
  doi: 10.1038/311615a0
– ident: e_1_2_8_19_1
  doi: 10.1029/2004JB002991
– ident: e_1_2_8_5_1
  doi: 10.2172/1178104
– ident: e_1_2_8_15_1
  doi: 10.1002/ggge.20171
– ident: e_1_2_8_82_1
  doi: 10.1016/S0012-821X(99)00131-4
– ident: e_1_2_8_33_1
  doi: 10.1029/2012TC003176
– ident: e_1_2_8_80_1
  doi: 10.1144/GSL.SP.1986.019.01.07
– ident: e_1_2_8_21_1
  doi: 10.1029/2010GL042921
– ident: e_1_2_8_39_1
  doi: 10.1016/j.epsl.2014.03.007
– ident: e_1_2_8_58_1
  doi: 10.1046/j.1365-246x.1999.00735.x
– ident: e_1_2_8_51_1
  doi: 10.1130/2014.2507(01)
– ident: e_1_2_8_77_1
  doi: 10.1007/s00015-004-1113-x
– ident: e_1_2_8_16_1
  doi: 10.1038/nature10596
– ident: e_1_2_8_26_1
  doi: 10.1016/j.tecto.2010.05.024
– ident: e_1_2_8_44_1
  doi: 10.1016/S0025-3227(00)00167-5
– ident: e_1_2_8_85_1
  doi: 10.1016/0031-9201(84)90049-9
– ident: e_1_2_8_37_1
  doi: 10.1130/G22071.1
– ident: e_1_2_8_22_1
  doi: 10.1111/j.1365-246X.2012.05388.x
– ident: e_1_2_8_49_1
  doi: 10.1016/j.epsl.2013.08.034
– ident: e_1_2_8_36_1
  doi: 10.1016/S0012-821X(00)00252-1
– ident: e_1_2_8_50_1
  doi: 10.1002/2013JB010503
– ident: e_1_2_8_2_1
  doi: 10.1016/j.earscirev.2005.07.005
– ident: e_1_2_8_45_1
  doi: 10.1029/97TC00495
– ident: e_1_2_8_79_1
  doi: 10.1126/science.105978
– ident: e_1_2_8_68_1
  doi: 10.1016/j.gr.2014.04.003
– ident: e_1_2_8_73_1
  doi: 10.1126/science.1155371
– ident: e_1_2_8_54_1
  doi: 10.1130/G35446.1
– ident: e_1_2_8_63_1
  doi: 10.1029/97TC01413
– ident: e_1_2_8_78_1
  doi: 10.1029/2005GC001056
– ident: e_1_2_8_60_1
  doi: 10.1016/0012-821X(81)90213-2
– ident: e_1_2_8_27_1
  doi: 10.1007/978-3-540-69426-7_18
– ident: e_1_2_8_55_1
  doi: 10.1130/0091-7613(2000)028
– ident: e_1_2_8_61_1
  doi: 10.1029/93RG02030
– ident: e_1_2_8_23_1
  doi: 10.1029/JB075i014p02625
– ident: e_1_2_8_59_1
  doi: 10.1130/SPE218-p179
– ident: e_1_2_8_14_1
  doi: 10.1038/nature10174
– ident: e_1_2_8_11_1
  doi: 10.1038/386061a0
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1365-246X.2011.05164.x
SSID ssj0014558
Score 2.3874798
Snippet Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic...
Abstract Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1378
SubjectTerms Active margins
Amplitude
Banks (topography)
Buoyancy
continental collisions
Dynamics
Evolution
Fronts
India-Asia collision
Lithosphere
Loads (forces)
Mathematical models
Modes
mountain building processes
numerical modeling
Numerical models
Numerical simulations
Plateaus
Scaling
scaling analysis
Shape
Slope
Subduction
Topography
Topography (geology)
Uplift
Upper mantle
Title Development of topography in 3-D continental-collision models
URI https://api.istex.fr/ark:/67375/WNG-WNPC732K-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015GC005732
https://www.proquest.com/docview/1689910080
https://www.proquest.com/docview/1917781056
https://search.proquest.com/docview/1701477211
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9swUISWwV7GPpm3bniw7WneIsmSnccuTZ01awispX0zsi2XUbBLHUO7h_323UmOo9BQtj3EJJYci7vT6b6PkPfRUGhZShpksZRBqEoRKDiWg1DkGvShvIwLTBQ-nsvpaXh0Ls4HgyMnaqldZp_zX1vzSv4Hq3AP8IpZsv-A2f5P4QZ8B_zCFTAM17_CsRPxY3z99VVXgBqtGDw4MIHoIEZixmOAGDeJ5Lb7TeOKpYnGxlm28xsC_ULX1uTRdL9swefGGBCSnlUs2qa-tNylT2iYqdY89LUG9oEh_q5dgYp1FJ_l-XcDd9zoTN2xSyYCNJ9s8FPp0I1wmCPltlvPHa5tq8DiIpKxqdDI1qfTyiM_3f-RLg4O0-_f5rPNUXsYY7Md9PSAJrzLgOkgtzv-Pek9SqEQcZf4AK_74r5sQyTZxd11s6FvuFqLETtOHpNHnb7g71vkPyEDXT0lDxLTj_n2GXFJwK9Lf00C_s_KBxLwt5KAb0ngOTk9nJyMp0HXESNQQo54IDnLS15mVGHOMFcgHkdFWTBWjERIqSwyinmfAAulOIOZbAgKqqYFqAHY-Y2_IDtVXemXxM_jmBeC6wiLQ-cjGasYZHsu5VBRlYelRz6sgJJe2cInqS1xzVIXeB75aCDWT1LXlxgsGIn0bJ7AZzGGWbP0zCN7K5Cm3R5qUipB38f6UsPtwyMaRTGoANIj7_ph2A3o1VKVrluYEwFyIzRkeOSTwdS9602TJJkwtM28un9Br8nD9bbYIzvL61a_AQF0mb01lPUHM6J_Qw
link.rule.ids 315,783,787,27936,27937
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+topography+in+3-D+continental-collision+models&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Pusok%2C+A+E&rft.au=Kaus%2C+Boris+J+P&rft.date=2015-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1525-2027&rft.volume=16&rft.issue=5&rft.spage=1378&rft_id=info:doi/10.1002%2F2015GC005732&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3720420091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon