Development of topography in 3-D continental-collision models
Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3‐D numerical simulations to investigate the role that subduction, collision, and indentation play on lit...
Saved in:
Published in | Geochemistry, geophysics, geosystems : G3 Vol. 16; no. 5; pp. 1378 - 1400 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
01.05.2015
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3‐D numerical simulations to investigate the role that subduction, collision, and indentation play on lithosphere dynamics at convergent margins, and to analyze the conditions under which large topographic plateaus can form in an integrated lithospheric and upper mantle‐scale model. Distinct dynamics are obtained for the oceanic subduction side (trench retreat, slab rollback) and the continental‐collision side (trench advance, slab detachment, topographic uplift, lateral extrusion). We show that slab pull alone is insufficient to generate high topography in the upper plate, and that external forcing and the presence of strong blocks such as the Tarim Basin are necessary to create and shape anomalously high topographic fronts and plateaus. Moreover, scaling is used to predict four different modes of surface expression in continental‐collision models: (I) low‐amplitude homogeneous shortening, (II) high‐amplitude homogeneous shortening, (III) Alpine‐type topography with topographic front and low plateau, and (IV) Tibet‐Himalaya‐type topography with topographic front and high plateau. Results of semianalytical models suggest that the Argand number governs the formation of high topographic fronts, while the amplitude of plateaus is controlled by the initial buoyancy ratio of the upper plate. Applying these results to natural examples, we show that the Alps belong to regime (III), the Himalaya‐Tibet to regime (IV), whereas the Andes‐Altiplano fall at the boundary between regimes (III) and (IV).
Key Points:
Three‐dimensional numerical models of India‐Asia‐like collision zone and plateau buildup
External forcing and strong crustal blocks favor development of high topography
Scaling arguments to predict different modes of surface expressions |
---|---|
AbstractList | Abstract
Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3‐D numerical simulations to investigate the role that subduction, collision, and indentation play on lithosphere dynamics at convergent margins, and to analyze the conditions under which large topographic plateaus can form in an integrated lithospheric and upper mantle‐scale model. Distinct dynamics are obtained for the oceanic subduction side (trench retreat, slab rollback) and the continental‐collision side (trench advance, slab detachment, topographic uplift, lateral extrusion). We show that slab pull alone is insufficient to generate high topography in the upper plate, and that external forcing and the presence of strong blocks such as the Tarim Basin are necessary to create and shape anomalously high topographic fronts and plateaus. Moreover, scaling is used to predict four different modes of surface expression in continental‐collision models: (I) low‐amplitude homogeneous shortening, (II) high‐amplitude homogeneous shortening, (III) Alpine‐type topography with topographic front and low plateau, and (IV) Tibet‐Himalaya‐type topography with topographic front and high plateau. Results of semianalytical models suggest that the Argand number governs the formation of high topographic fronts, while the amplitude of plateaus is controlled by the initial buoyancy ratio of the upper plate. Applying these results to natural examples, we show that the Alps belong to regime (III), the Himalaya‐Tibet to regime (IV), whereas the Andes‐Altiplano fall at the boundary between regimes (III) and (IV).
Key Points:
Three‐dimensional numerical models of India‐Asia‐like collision zone and plateau buildup
External forcing and strong crustal blocks favor development of high topography
Scaling arguments to predict different modes of surface expressions Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3-D numerical simulations to investigate the role that subduction, collision, and indentation play on lithosphere dynamics at convergent margins, and to analyze the conditions under which large topographic plateaus can form in an integrated lithospheric and upper mantle-scale model. Distinct dynamics are obtained for the oceanic subduction side (trench retreat, slab rollback) and the continental-collision side (trench advance, slab detachment, topographic uplift, lateral extrusion). We show that slab pull alone is insufficient to generate high topography in the upper plate, and that external forcing and the presence of strong blocks such as the Tarim Basin are necessary to create and shape anomalously high topographic fronts and plateaus. Moreover, scaling is used to predict four different modes of surface expression in continental-collision models: (I) low-amplitude homogeneous shortening, (II) high-amplitude homogeneous shortening, (III) Alpine-type topography with topographic front and low plateau, and (IV) Tibet-Himalaya-type topography with topographic front and high plateau. Results of semianalytical models suggest that the Argand number governs the formation of high topographic fronts, while the amplitude of plateaus is controlled by the initial buoyancy ratio of the upper plate. Applying these results to natural examples, we show that the Alps belong to regime (III), the Himalaya-Tibet to regime (IV), whereas the Andes-Altiplano fall at the boundary between regimes (III) and (IV). Key Points: * Three-dimensional numerical models of India-Asia-like collision zone and plateau buildup * External forcing and strong crustal blocks favor development of high topography * Scaling arguments to predict different modes of surface expressions Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3‐D numerical simulations to investigate the role that subduction, collision, and indentation play on lithosphere dynamics at convergent margins, and to analyze the conditions under which large topographic plateaus can form in an integrated lithospheric and upper mantle‐scale model. Distinct dynamics are obtained for the oceanic subduction side (trench retreat, slab rollback) and the continental‐collision side (trench advance, slab detachment, topographic uplift, lateral extrusion). We show that slab pull alone is insufficient to generate high topography in the upper plate, and that external forcing and the presence of strong blocks such as the Tarim Basin are necessary to create and shape anomalously high topographic fronts and plateaus. Moreover, scaling is used to predict four different modes of surface expression in continental‐collision models: (I) low‐amplitude homogeneous shortening, (II) high‐amplitude homogeneous shortening, (III) Alpine‐type topography with topographic front and low plateau, and (IV) Tibet‐Himalaya‐type topography with topographic front and high plateau. Results of semianalytical models suggest that the Argand number governs the formation of high topographic fronts, while the amplitude of plateaus is controlled by the initial buoyancy ratio of the upper plate. Applying these results to natural examples, we show that the Alps belong to regime (III), the Himalaya‐Tibet to regime (IV), whereas the Andes‐Altiplano fall at the boundary between regimes (III) and (IV). Key Points: Three‐dimensional numerical models of India‐Asia‐like collision zone and plateau buildup External forcing and strong crustal blocks favor development of high topography Scaling arguments to predict different modes of surface expressions |
Author | Pusok, A. E. Kaus, Boris J. P. |
Author_xml | – sequence: 1 givenname: A. E. surname: Pusok fullname: Pusok, A. E. email: puesoek@uni-mainz.de organization: Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany – sequence: 2 givenname: Boris J. P. surname: Kaus fullname: Kaus, Boris J. P. organization: Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany |
BookMark | eNp9kLFOwzAQhi1UJNrCxgNEYmEgcGfjuB4YUFsCAgEDiNEyiQMprh3iFOjbY1SEKoYO1lm67zvd_QPSc94ZQvYRjhGAnlBAno8BuGB0i_SRU55SoKK39t8hgxBmAHjK-ahPzibmw1jfzI3rEl8lnW_8S6ub12VSu4Slk6TwrqtdbGubFt7aOtTeJXNfGht2yXalbTB7v3VIHi-mD-PL9OYuvxqf36SaZ5KlGaNFxapn1MAlMC05irIqKS0lP0XMymdEYEJQ0JrRSFLIIDNYSikLQzUbksPV3Kb17wsTOjWvQ2Gs1c74RVAo4j3RR4zowT905heti9splCjECIFnG6lsJGWMcwSROlpRRetDaE2lmrae63apENRP4mo98YizFf5ZW7PcyKo8z6cUBLJopSurDp35-rN0-6YywQRXT7d5fPfjqF2rJ_YNn4qO2Q |
CitedBy_id | crossref_primary_10_1029_2019GC008649 crossref_primary_10_1016_j_tecto_2018_04_006 crossref_primary_10_1016_j_tecto_2019_228223 crossref_primary_10_1002_2017JB013991 crossref_primary_10_1029_2023GL106203 crossref_primary_10_15372_RGG2019126 crossref_primary_10_1038_s41467_018_07312_9 crossref_primary_10_1029_2018JB015704 crossref_primary_10_1016_j_gr_2021_10_020 crossref_primary_10_3389_feart_2023_1214686 crossref_primary_10_1016_j_epsl_2017_10_005 crossref_primary_10_1029_2021GC009967 crossref_primary_10_1093_gji_ggaa125 crossref_primary_10_1029_2020TC006570 crossref_primary_10_1080_17538947_2022_2138589 crossref_primary_10_1038_s41467_019_12337_9 crossref_primary_10_1093_gji_ggz183 crossref_primary_10_5194_se_13_583_2022 crossref_primary_10_1029_2020GL089435 crossref_primary_10_1029_2020GL088989 crossref_primary_10_1002_2017GC006821 crossref_primary_10_1002_2016JB012872 crossref_primary_10_5194_se_13_1455_2022 crossref_primary_10_1016_j_tecto_2019_228310 crossref_primary_10_1016_j_tecto_2017_09_018 crossref_primary_10_1016_j_tecto_2018_04_017 crossref_primary_10_1029_2020GC009092 crossref_primary_10_1111_bre_12499 crossref_primary_10_1016_j_tecto_2021_229081 crossref_primary_10_1029_2019GC008678 crossref_primary_10_1029_2018TC005455 crossref_primary_10_1029_2022TC007261 crossref_primary_10_1002_2018JB015443 crossref_primary_10_1016_j_epsl_2017_06_017 crossref_primary_10_1126_sciadv_aaz8681 crossref_primary_10_5194_se_9_759_2018 crossref_primary_10_1130_G48919_1 crossref_primary_10_1093_gji_ggac339 crossref_primary_10_1029_2018JB017027 crossref_primary_10_1029_2021TC007078 crossref_primary_10_1038_s41598_024_52709_w crossref_primary_10_1029_2021JB022326 crossref_primary_10_1016_j_earscirev_2016_09_005 crossref_primary_10_1016_j_tecto_2023_229727 crossref_primary_10_1038_s41467_017_01847_z |
Cites_doi | 10.1111/j.1365-246X.1982.tb04969.x 10.1038/369737a0 10.5194/se-3-293-2012 10.1029/JB091iB03p03651 10.1111/j.1365-246X.2007.03343.x 10.1016/j.pepi.2010.04.007 10.1029/JB091iB03p03664 10.1016/j.tecto.2009.10.007 10.1029/JB086iB07p06115 10.1073/pnas.0703595105 10.1016/j.epsl.2011.08.021 10.1038/315297a0 10.1016/j.pepi.2008.06.028 10.1002/tect.20087 10.1016/j.epsl.2006.11.028 10.1016/j.tecto.2008.11.002 10.1029/92TC02248 10.1029/96JB00951 10.1126/science.276.5313.788 10.1029/2003JB002809 10.1029/2010GL043140 10.1016/j.epsl.2014.01.045 10.1029/2004TC001729 10.1038/nature13033 10.1016/j.tecto.2013.06.032 10.1046/j.1365-246x.1999.00734.x 10.1093/gji/ggu040 10.1029/2010JB008051 10.1016/j.epsl.2013.01.023 10.1016/j.epsl.2006.08.028 10.1016/j.epsl.2008.07.016 10.1017/CBO9780511807442 10.1130/0091-7613(2000)28 10.1016/S0012-821X(04)00070-6 10.1029/JB094iB12p17561 10.1016/j.earscirev.2009.08.003 10.1016/j.tecto.2014.06.013 10.1016/j.epsl.2010.11.035 10.1016/j.tecto.2012.09.003 10.1016/j.tecto.2009.08.042 10.1016/S0012-821X(99)00277-0 10.1038/414738a 10.1029/2001JB000145 10.1002/2013GC005223 10.1098/rsta.1988.0089 10.1029/2007JF000897 10.1038/ngeo2270 10.1038/nature05615 10.1016/0031-9201(86)90021-X 10.1029/2009RG000304 10.1038/311615a0 10.1029/2004JB002991 10.2172/1178104 10.1002/ggge.20171 10.1016/S0012-821X(99)00131-4 10.1029/2012TC003176 10.1144/GSL.SP.1986.019.01.07 10.1029/2010GL042921 10.1016/j.epsl.2014.03.007 10.1046/j.1365-246x.1999.00735.x 10.1130/2014.2507(01) 10.1007/s00015-004-1113-x 10.1038/nature10596 10.1016/j.tecto.2010.05.024 10.1016/S0025-3227(00)00167-5 10.1016/0031-9201(84)90049-9 10.1130/G22071.1 10.1111/j.1365-246X.2012.05388.x 10.1016/j.epsl.2013.08.034 10.1016/S0012-821X(00)00252-1 10.1002/2013JB010503 10.1016/j.earscirev.2005.07.005 10.1029/97TC00495 10.1126/science.105978 10.1016/j.gr.2014.04.003 10.1126/science.1155371 10.1130/G35446.1 10.1029/97TC01413 10.1029/2005GC001056 10.1016/0012-821X(81)90213-2 10.1007/978-3-540-69426-7_18 10.1130/0091-7613(2000)028 10.1029/93RG02030 10.1029/JB075i014p02625 10.1130/SPE218-p179 10.1038/nature10174 10.1038/386061a0 10.1111/j.1365-246X.2011.05164.x |
ContentType | Journal Article |
Copyright | 2015. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2015. American Geophysical Union. All Rights Reserved. |
DBID | BSCLL AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
DOI | 10.1002/2015GC005732 |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1525-2027 |
EndPage | 1400 |
ExternalDocumentID | 3720420091 10_1002_2015GC005732 GGGE20713 ark_67375_WNG_WNPC732K_W |
Genre | article |
GeographicLocations | Tibet China, People's Rep., Xizang, Tibetan Plateau Pakistan, Himalayas China, People's Rep., Xinjiang, Tarim Basin |
GeographicLocations_xml | – name: Tibet – name: China, People's Rep., Xizang, Tibetan Plateau – name: Pakistan, Himalayas – name: China, People's Rep., Xinjiang, Tarim Basin |
GrantInformation_xml | – fundername: European Research Council under the European Community's Seventh Framework Program funderid: FP7/2007–2013 ; 258830 |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 3V. 50Y 5GY 8-1 88I 8CJ 8FE 8FH 8G5 8R4 8R5 A00 AAESR AAHHS AAZKR ABCUV ABUWG ACAHQ ACBWZ ACCFJ ACGFS ACGOD ACPOU ACXQS ADBBV ADEOM ADIYS ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFGKR AFKRA AFPWT AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI BSCLL CCPQU CS3 D1J DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OK1 P-X P2W PCBAR PQQKQ PROAC Q2X R.K ROL SUPJJ UB1 WBKPD WYJ ZZTAW ~02 ~OA AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
ID | FETCH-LOGICAL-a5693-632cf3fb1a05903a9517dfd22d954116db11037720aa32f3f20606e1d999ce2a3 |
ISSN | 1525-2027 |
IngestDate | Fri Jun 28 00:43:19 EDT 2024 Sun Nov 10 04:50:23 EST 2024 Thu Oct 10 20:54:57 EDT 2024 Fri Aug 23 03:26:25 EDT 2024 Sat Aug 24 00:44:46 EDT 2024 Wed Oct 30 09:53:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a5693-632cf3fb1a05903a9517dfd22d954116db11037720aa32f3f20606e1d999ce2a3 |
Notes | ArticleID:GGGE20713 European Research Council under the European Community's Seventh Framework Program - No. FP7/2007-2013; No. 258830 istex:BD04A1029F2014F319B55D1435EC35094B510F0F ark:/67375/WNG-WNPC732K-W ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1689910080 |
PQPubID | 54722 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_1701477211 proquest_journals_1917781056 proquest_journals_1689910080 crossref_primary_10_1002_2015GC005732 wiley_primary_10_1002_2015GC005732_GGGE20713 istex_primary_ark_67375_WNG_WNPC732K_W |
PublicationCentury | 2000 |
PublicationDate | May 2015 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: May 2015 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geochemistry, geophysics, geosystems : G3 |
PublicationTitleAlternate | Geochem. Geophys. Geosyst |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | England, P., and D. McKenzie (1982), A thin viscous sheet model for continental deformation, Geophys. J. R. Astron. Soc., 70, 295-321, doi:10.1111/j.1365-246X.1982.tb04969.x. Faccenna, C., T. W. Becker, C. P. Conrad, and L. Husson (2013), Mountain building and mantle dynamics, Tectonics, 32, 80-93, doi:10.1029/2012TC003176. Turcotte, D. L., and G. Schubert (2002), Geodynamics, 2nd ed., Cambridge Univ. Press, Cambridge, U. K. Li, Z.-H., Z. Xu, T. Gerya, and J.-P. Burg (2013), Collision of continental corner from 3-D numerical modeling, Earth Planet. Sci. Lett., 380, 98-111, doi:10.1016/j.epsl.2013.08.034. Bilham, R., K. M. Larson, J. T. Freymueller, and P. Idylhim (1997), GPS measurements of present-day convergence across the Nepal Himalaya, Nature, 386, 61-64, doi:10.1038/386061a0. Molnar, P., and P. Tapponnier (1981), A possible dependence of tectonic strength on the age of the crust in Asia, Earth Planet. Sci. Lett., 52, 107-114, doi:10.1016/0012-821X(81)90213-2. England, P., and G. A. Houseman (1986), Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone, J. Geophys. Res., 91(B3), 3664-3676, doi:10.1029/JB091iB03p03664. Hoke, G. D., J. Liu-Zeng, M. T. Hren, G. K. Wissink, and C. N. Garzione (2014), Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene, Earth Planet. Sci. Lett., 394, 270-278, doi:10.1016/j.epsl.2014.03.007. Bouilhol, P., O. Jagoutz, J. M. Hanchar, and F. O. Dudas (2013), Dating the India-Eurasia collision through arc magmatic records, Earth Planet. Sci. Lett., 366, 163-175, doi:10.1016/j.epsl.2013.01.023. François, T., E. Burov, and P. Agard (2014), Buildup of a dynamically supported orogenic plateau: Numerical modeling of the Zagros/Central Iran case study, Geochem. Geophys. Geosyst., 15, 2632-2654, doi:10.1002/2013GC005223. Neil, E. A., and G. A. Houseman (1997), Geodynamics of the Tarim basin and the Tian Shan in central Asia, Tectonics, 16(4), 571-584, doi:10.1029/97TC01413. Vilotte, J. P., M. Daignieres, R. Madariaga, and O. C. Zienkiewicz (1984), The role of a heterogeneous inclusion during continental collision, Phys. Earth Planet. Inter., 36, 236-259, doi:10.1016/0031-9201(84)90049-9. Magni, V., C. Faccenna, J. van Hunen, and F. Funiciello (2014), How collision triggers backarc extension: Insight into Mediterranean style of extension from 3-D numerical models, Geology, 42(6), 511-514, doi:10.1130/G35446.1. Molnar, P., and H. Lyon-Caen (1988), Some simple physical aspects of the support, structure, and evolution of mountain belts, Spec. Pap. Geol. Soc. Am., 218, 179-207. Capitanio, F. A., and A. Replumaz (2013), Subduction and slab breakoff controls on Asian Indentation tectonics and Himalayan Western Syntaxis formation, Geochem. Geophys. Geosyst., 14, 3515-3531, doi:10.1002/ggge.20171. Chemenda, A. I., J.-P. Burg, and M. Mattauer (2000), Evolutionary model of the Himalaya-Tibet system: Geopoem based on new modelling, geological and geophysical data, Earth Planet. Sci. Lett., 174, 397-409, doi:10.1016/S0012-821X(99)00277-0. Schellart, W. P., J. Freeman, D. R. Stegman, L. Moresi, and D. May (2007), Evolution and diversity of subduction zones controlled by slab width, Nature, 446(7133), 308-311, doi:10.1038/nature05615. Lechmann, S. M., D. A. May, B. J. P. Kaus and S. M. Schmalholz (2011), Comparing thin-sheet models with 3-D multilayer models for continental collision, Geophys. J. Int., 187(1), 10-33, doi:10.1111/j.1365-246X.2011.05164.x. McQuarrie, N., and C. G. Chase (2000), Raising the Colorado Plateau, Geology, 28(1), 91-94, doi:10.1130/0091-7613(2000)028<0091:RTCP>2.0.CO;2. Barnes, J. B., and T. A. Ehlers (2009), End member models for Andean Plateau uplift, Earth Sci. Rev., 97, 105-132, doi:10.1016/j.earscirev.2009.08.003. Patriat, P., and J. Achache (1984), India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates, Nature, 311, 615-621, doi:10.1038/311615a0. Van der Voo, R., W. Spakman, and H. Bijwaard (1999), Tethyan subducted slabs under India, Earth Planet. Sci. Lett., 171, 7-20, doi:10.1016/S0012-821X(99)00131-4. Beaumont, C., R. A. Jamieson, M. H. Nguyen, and S. Medvedev (2004), Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen, J. Geophys. Res., 109, B06406, doi:10.1029/2003JB002809. Buck, W. R., and D. Sokoutis (1994), Analogue model of gravitational collapse and surface extension during continental convergence, Nature, 369(6483), 737-740, doi:10.1038/369737a0. Conrad, C. P., and C. Lithgow-Bertelloni (2004), The temporal evolution of plate driving forces: Importance of "slab suction" versus "slab pull" during the Cenozoic, J. Geophys. Res., 109, B10407, doi:10.1029/2004JB002991. Schmalholz, S. M., S. Medvedev, S. M. Lechmann and Y. Podladchikov (2014), Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy, Geophys. J. Int., 197(2), 680-696, doi:10.1093/gji/ggu040. Wang, Y., W. D. Mooney, X. Yuan, and N. Okaya (2013), Crustal structure of the northeastern Tibetan Plateau from the southern Tarim Basin to the Sichuan Basin, China, Tectonophysics, 584, 191-208. Fernandez, N., and B. J. P. Kaus (2014), Fold interaction and wavelength selection in 3D models of multilayer detachment folding, Tectonophysics, 632, 199-217, doi:10.1016/j.tecto.2014.06.013. Stegman, D. R., J. Freeman, W. P. Schellart, L. Moresi, and D. May (2006), Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback, Geochem. Geophys. Geosyst., 7, Q03012, doi:10.1029/2005GC001056. Weijermars, R., and H. Schmeling (1986), Scaling of Newtonian and non Newtonian fluid dynamics without inertia for quantative modelling of rock flow due to gravity (including the concept of rheological similarity), Phys. Earth Planet. Inter., 43, 938-954. Yang, Y., and M. Liu (2013), The Indo-Asian continental collision: A 3-D viscous model, Tectonophysics, 606, 198-211, doi:10.1016/j.tecto.2013.06.032. Houseman, G. A., and P. England (1986), Finite strain calculations of continental deformation: 1. Method and general results for convergent zones, J. Geophys. Res., 91(B3), 3651-3663, doi:10.1029/JB091iB03p03651. van Hinsbergen, D., B. Steinberger, P. Doubrovine, and R. Gassmölle (2011), Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision, J. Geophys. Res., 116, B06101, doi:10.1029/2010JB008051. Duretz, T., T. V. Gerya, and D. A. May (2011), Numerical modelling of spontaneous slab breakoff and subsequent topographic response, Tectonophysics, 502, 244-256, doi:10.1016/j.tecto.2010.05.024. Crameri, F., and B. J. P. Kaus (2010), Parameters that control lithospheric-scale thermal localization on terrestrial planets, Geophys. Res. Lett., 37, L09308, doi:10.1029/2010GL042921. Medvedev, S. and Y. Y. Podladchikov (1999a), New extended thin-sheet approximation for geodynamic applications-I. Model formulation, Geophys. J. Int., 136, 567-585, doi:10.1046/j.1365-246x.1999.00734.x. Replumaz, A., F. A. Capitanio, S. Guillot, A. M. Negredo, and A. Villaseñor (2014), The coupling of Indian subduction and Asian continental tectonics, Gondwana Res., 26, 608-626, doi:10.1016/j.gr.2014.04.003. Medvedev, S. (2002), Mechanics of viscous wedges: Modeling by analytical and numerical approaches, J. Geophys. Res., 107(B6), 2123, doi:10.1029/2001JB000145. Royden, L. H. (1993), The tectonic expression slab pull at continental convergent boundaries, Tectonics, 12(2), 303-325, doi:10.1029/92TC02248. Ding, L., P. Kapp, and X. Wan (2005), Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet, Tectonics, 24, TC3001, doi:10.1029/2004TC001729. Liu-Zeng, J., P. Tapponnier, Y. Gaudemer, and L. Ding (2008), Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution, J. Geophys. Res., 113, F04018, doi:10.1029/2007JF000897. Kaus, B. J. P. (2010), Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation, Tectonophysics, 484(1-4), 36-47, doi:10.1016/j.tecto.2009.08.042. Royden, L. H., B. C. Burchfiel, and R. D. van der Hilst (2008), The geological evolution of the Tibetan Plateau, Science, 321(5892), 1054-1058, doi:10.1126/science.1155371. Beaumont, C., R. A. Jamieson, M. H. Nguyen, and B. Lee (2001), Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation, Nature, 414, 738-742, doi:10.1038/414738a. Dewey, J. F., and J. M. Bird (1970), Mountain belts and the new global tectonics, J. Geophys. Res., 75(14), 2625-2647, doi:10.1029/JB075i014p02625. England, P., and G. A. Houseman (1989), Extension during continental convergence, with application to the Tibetan Plateau, J. Geophys. Res., 94(B12), 17,561-17,579, doi:10.1029/JB094iB12p17561. England, P., and G. A. Houseman (1985), Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions, Nature, 315, 297-301, doi:10.1038/315297a0. Royden, L. H., B. C. Burchfiel, R. King, E. Wang, Z. Chen, F. Shen, and Y. Liu (1997), Surface deformation and lower crustal flow in Eastern Tibet, Science, 276(5313), 788-790, doi:10.1126/science.276.5313.788. Wang, C., X. Zhao, Z. Liu, P. C. Lippert, S. A. Graham, R. S. Coe, H. Yi, L. Zhu, S. Liu, and Y. Li (2008), Constraints on the early uplift history of the Tibetan Plateau, Proc. Natl. Acad. Sci. U. S. A., 105, 4987-4992, doi:10.1073/pnas.0703595105. Replumaz, A., A. M. Negredo, S. Guillot, and A. Villaseñor (2010), Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction, Tectonophysics, 483(1-2), 125-134, doi:10.1016/j.tecto.2009.10.007. Ghosh, A., W. E. Holt, L. M. Flesch, and A. J. Haines (2006), Gravitational potential energy of the Tibetan Plateau and the forces driving the Ind 2011; 116 2006; 34 2013; 606 1999; 171 1997; 276 2006; 251 2014; 26 2013; 366 2000; 174 1970; 75 2008; 105 2010; 181 1996; 101 2011; 310 2011; 475 1981; 86 2005; 24 2001; 173 2001; 294 2013; 14 2009; 97 1984; 311 1986; 43 2007; 254 1997; 386 2013; 118 1999b; 136 1993; 31 2014; 15 2002; 107 1997; 16 2005; 72 2008; 113 2014; 7 2011; 480 2008; 274 1988; 218 2001; 414 2007; 169 2004; 221 1986; 91 2010; 37 2012; 189 2007; 446 2000; 28 1982; 70 2009 2010; 484 2006; 7 2013; 584 2007 2010; 483 1986; 19 2014; 392 2002 2004; 109 2008; 321 2014; 394 2013; 380 2014; 197 1988; 326 2014; 632 2007; 16 2014; 42 2011; 302 1989; 94 1993; 12 2004; 97 1994; 369 2014; 507 2010; 48 2012; 3 2014; 508 2011; 502 1984; 36 2013; 32 1999a; 136 2000; 183 2009; 465 1985; 315 2014 1981; 52 2011; 187 2008; 171 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_90_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 32 start-page: 1 year: 2013 end-page: 18 article-title: Orocline and syntaxes formation during subduction and collision publication-title: Tectonics – volume: 12 start-page: 303 issue: 2 year: 1993 end-page: 325 article-title: The tectonic expression slab pull at continental convergent boundaries publication-title: Tectonics – year: 2009 – volume: 14 start-page: 3515 year: 2013 end-page: 3531 article-title: Subduction and slab breakoff controls on Asian Indentation tectonics and Himalayan Western Syntaxis formation publication-title: Geochem. Geophys. Geosyst. – volume: 26 start-page: 608 year: 2014 end-page: 626 article-title: The coupling of Indian subduction and Asian continental tectonics publication-title: Gondwana Res. – volume: 169 start-page: 683 issue: 2 year: 2007 end-page: 698 article-title: Models of crustal flow in the India‐Asia collision zone publication-title: Geophys. J. Int. – volume: 42 start-page: 511 issue: 6 year: 2014 end-page: 514 article-title: How collision triggers backarc extension: Insight into Mediterranean style of extension from 3‐D numerical models publication-title: Geology – volume: 70 start-page: 295 year: 1982 end-page: 321 article-title: A thin viscous sheet model for continental deformation publication-title: Geophys. J. R. Astron. Soc. – volume: 584 start-page: 191 year: 2013 end-page: 208 article-title: Crustal structure of the northeastern Tibetan Plateau from the southern Tarim Basin to the Sichuan Basin, China publication-title: Tectonophysics – volume: 75 start-page: 2625 issue: 14 year: 1970 end-page: 2647 article-title: Mountain belts and the new global tectonics publication-title: J. Geophys. Res. – volume: 484 start-page: 36 issue: 1–4 year: 2010 end-page: 47 article-title: Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation publication-title: Tectonophysics – volume: 97 start-page: 105 year: 2009 end-page: 132 article-title: End member models for Andean Plateau uplift publication-title: Earth Sci. Rev. – volume: 37 start-page: L09308 year: 2010 article-title: Parameters that control lithospheric‐scale thermal localization on terrestrial planets publication-title: Geophys. Res. Lett. – volume: 366 start-page: 163 year: 2013 end-page: 175 article-title: Dating the India‐Eurasia collision through arc magmatic records publication-title: Earth Planet. Sci. Lett. – volume: 446 start-page: 308 issue: 7133 year: 2007 end-page: 311 article-title: Evolution and diversity of subduction zones controlled by slab width publication-title: Nature – volume: 3 start-page: 293 issue: 2 year: 2012 end-page: 306 article-title: Numerical models of slab migration in continental collision zones publication-title: Solid Earth – volume: 174 start-page: 397 year: 2000 end-page: 409 article-title: Evolutionary model of the Himalaya‐Tibet system: Geopoem based on new modelling, geological and geophysical data publication-title: Earth Planet. Sci. Lett. – volume: 276 start-page: 788 issue: 5313 year: 1997 end-page: 790 article-title: Surface deformation and lower crustal flow in Eastern Tibet publication-title: Science – volume: 502 start-page: 244 year: 2011 end-page: 256 article-title: Numerical modelling of spontaneous slab breakoff and subsequent topographic response publication-title: Tectonophysics – volume: 171 start-page: 198 issue: 1–4 year: 2008 end-page: 223 article-title: A benchmark comparison of spontaneous subduction models—Towards a free surface publication-title: Phys. Earth Planet. Inter. – volume: 43 start-page: 938 year: 1986 end-page: 954 article-title: Scaling of Newtonian and non Newtonian fluid dynamics without inertia for quantative modelling of rock flow due to gravity (including the concept of rheological similarity) publication-title: Phys. Earth Planet. Inter. – year: 2014 – volume: 632 start-page: 199 year: 2014 end-page: 217 article-title: Fold interaction and wavelength selection in 3D models of multilayer detachment folding publication-title: Tectonophysics – volume: 7 start-page: Q03012 year: 2006 article-title: Influence of trench width on subduction hinge retreat rates in 3‐D models of slab rollback publication-title: Geochem. Geophys. Geosyst. – volume: 15 start-page: 2632 year: 2014 end-page: 2654 article-title: Buildup of a dynamically supported orogenic plateau: Numerical modeling of the Zagros/Central Iran case study publication-title: Geochem. Geophys. Geosyst. – volume: 113 start-page: F04018 year: 2008 article-title: Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution publication-title: J. Geophys. Res. – volume: 34 start-page: 321 issue: 5 year: 2006 end-page: 324 article-title: Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate publication-title: Geology – volume: 394 start-page: 270 year: 2014 end-page: 278 article-title: Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene publication-title: Earth Planet. Sci. Lett. – volume: 72 start-page: 169 issue: 3–4 year: 2005 end-page: 188 article-title: Greater India publication-title: Earth Sci. Rev. – volume: 109 start-page: B10407 year: 2004 article-title: The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic publication-title: J. Geophys. Res. – volume: 28 start-page: 91 issue: 1 year: 2000 end-page: 94 article-title: Raising the Colorado Plateau publication-title: Geology – volume: 107 start-page: 2123 issue: B6 year: 2002 article-title: Mechanics of viscous wedges: Modeling by analytical and numerical approaches publication-title: J. Geophys. Res. – volume: 97 start-page: 93 issue: 1 year: 2004 end-page: 117 article-title: Tectonic map and overall architecture of the Alpine orogen publication-title: Eclogae Geol. Helv. – volume: 109 start-page: B06406 year: 2004 article-title: Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan‐Tibetan orogen publication-title: J. Geophys. Res. – volume: 118 start-page: 5722 year: 2013 end-page: 5732 article-title: Three‐dimensional velocity field of present‐day crustal motion of the Tibetan Plateau derived from GPS measurements publication-title: J. Geophys. Res. Solid Earth – start-page: 351 year: 2007 end-page: 366 – volume: 274 start-page: 157 issue: 1–2 year: 2008 end-page: 168 article-title: Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma publication-title: Earth Planet. Sci. Lett. – volume: 36 start-page: 236 year: 1984 end-page: 259 article-title: The role of a heterogeneous inclusion during continental collision publication-title: Phys. Earth Planet. Inter. – volume: 101 start-page: 17,679 issue: B8 year: 1996 end-page: 17,705 article-title: Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust publication-title: J. Geophys. Res. – volume: 91 start-page: 3651 issue: B3 year: 1986 end-page: 3663 article-title: Finite strain calculations of continental deformation: 1. Method and general results for convergent zones publication-title: J. Geophys. Res. – volume: 251 start-page: 104 issue: 1–2 year: 2006 end-page: 119 article-title: Mantle instability beneath the Sierra Nevada Mountains in California and Death Valley extension publication-title: Earth Planet. Sci. Lett. – volume: 465 start-page: 128 issue: 1–4 year: 2009 end-page: 135 article-title: Crustal thickening and lateral extrusion during the Indo‐Asian collision: A 3D viscous flow model publication-title: Tectonophysics – volume: 507 start-page: 1 year: 2014 end-page: 12 article-title: Early Cretaceous to present latitude of the central proto‐Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia publication-title: Spec. Pap. Geol. Soc. Am. – volume: 302 start-page: 27 issue: 1–2 year: 2011 end-page: 37 article-title: Continental collision and slab break‐off: A comparison of 3‐D numerical models with observations publication-title: Earth Planet. Sci. Lett. – volume: 136 start-page: 586 year: 1999b end-page: 608 article-title: New extended thin‐sheet approximation for geodynamic applications—II. Two‐dimensional examples publication-title: Geophys. J. Int. – volume: 321 start-page: 1054 issue: 5892 year: 2008 end-page: 1058 article-title: The geological evolution of the Tibetan Plateau publication-title: Science – volume: 28 start-page: 703 issue: 8 year: 2000 end-page: 706 article-title: Topographic ooze: Building the eastern margin of Tibet by lower crustal flow publication-title: Geology – volume: 187 start-page: 10 issue: 1 year: 2011 end-page: 33 article-title: Comparing thin‐sheet models with 3‐D multilayer models for continental collision publication-title: Geophys. J. Int. – volume: 386 start-page: 61 year: 1997 end-page: 64 article-title: GPS measurements of present‐day convergence across the Nepal Himalaya publication-title: Nature – volume: 48 start-page: RG2005 year: 2010 article-title: Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications publication-title: Rev. Geophys. – volume: 480 start-page: 83 issue: 7375 year: 2011 end-page: 86 article-title: Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline publication-title: Nature – volume: 136 start-page: 567 year: 1999a end-page: 585 article-title: New extended thin‐sheet approximation for geodynamic applications—I. Model formulation publication-title: Geophys. J. Int. – volume: 16 start-page: 571 issue: 4 year: 1997 end-page: 584 article-title: Geodynamics of the Tarim basin and the Tian Shan in central Asia publication-title: Tectonics – volume: 369 start-page: 737 issue: 6483 year: 1994 end-page: 740 article-title: Analogue model of gravitational collapse and surface extension during continental convergence publication-title: Nature – volume: 380 start-page: 98 year: 2013 end-page: 111 article-title: Collision of continental corner from 3‐D numerical modeling publication-title: Earth Planet. Sci. Lett. – volume: 171 start-page: 7 year: 1999 end-page: 20 article-title: Tethyan subducted slabs under India publication-title: Earth Planet. Sci. Lett. – volume: 32 start-page: 80 year: 2013 end-page: 93 article-title: Mountain building and mantle dynamics publication-title: Tectonics – volume: 508 start-page: 245 year: 2014 end-page: 248 article-title: Dynamics of continental accretion publication-title: Nature – volume: 189 start-page: 38 issue: 1 year: 2012 end-page: 54 article-title: A comparison of numerical surface topography calculations in geodynamic modelling: An evaluation of the ‘sticky air’ method publication-title: Geophys. J. Int. – volume: 16 year: 2007 article-title: Origin of the high plateau in the central Andes, Bolivia, South America publication-title: Tectonics – volume: 310 start-page: 453 issue: 3–4 year: 2011 end-page: 461 article-title: Mantle conveyor beneath the Tethyan collisional belt publication-title: Earth Planet. Sci. Lett. – volume: 315 start-page: 297 year: 1985 end-page: 301 article-title: Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions publication-title: Nature – volume: 116 start-page: B06101 year: 2011 article-title: Acceleration and deceleration of India‐Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision publication-title: J. Geophys. Res. – volume: 91 start-page: 3664 issue: B3 year: 1986 end-page: 3676 article-title: Finite strain calculations of continental deformation: 2. Comparison with the India‐Asia Collision Zone publication-title: J. Geophys. Res. – volume: 183 start-page: 215 issue: 1–2 year: 2000 end-page: 229 article-title: Predicting paleoelevation of Tibet and the Himalaya from O vs. altitude gradients in meteoric water across the Nepal Himalaya publication-title: Earth Planet. Sci. Lett. – volume: 254 start-page: 173 issue: 1–2 year: 2007 end-page: 179 article-title: Buckling instabilities of subducted lithosphere beneath the transition zone publication-title: Earth Planet. Sci. Lett. – volume: 475 start-page: 47 issue: 7354 year: 2011 end-page: 52 article-title: Indian and African plate motions driven by the push force of the Reunion plume head publication-title: Nature – volume: 37 start-page: L09307 year: 2010 article-title: Viscosity in transition zone and lower mantle: Implications for slab penetration publication-title: Geophys. Res. Lett. – volume: 606 start-page: 198 year: 2013 end-page: 211 article-title: The Indo‐Asian continental collision: A 3‐D viscous model publication-title: Tectonophysics – volume: 173 start-page: 1 year: 2001 end-page: 19 article-title: Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan publication-title: Mar. Geol. – volume: 311 start-page: 615 year: 1984 end-page: 621 article-title: India‐Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates publication-title: Nature – volume: 181 start-page: 12 issue: 1–2 year: 2010 end-page: 20 article-title: A stabilization algorithm for geodynamic numerical simulations with a free surface publication-title: Phys. Earth Planet. Inter. – volume: 483 start-page: 125 issue: 1–2 year: 2010 end-page: 134 article-title: Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction publication-title: Tectonophysics – year: 2002 – volume: 221 start-page: 103 issue: 1–4 year: 2004 end-page: 115 article-title: 4‐D evolution of SE Asia's mantle from geological reconstructions and seismic tomography publication-title: Earth Planet. Sci. Lett. – volume: 197 start-page: 680 issue: 2 year: 2014 end-page: 696 article-title: Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy publication-title: Geophys. J. Int. – volume: 392 start-page: 250 year: 2014 end-page: 264 article-title: The Andean‐type Gangdese Mountains: Paleoelevation record from the Paleocene‐Eocene Linzhou Basin publication-title: Earth Planet. Sci. Lett. – volume: 294 start-page: 1671 issue: 5547 year: 2001 end-page: 1677 article-title: Oblique stepwise rise and growth of the Tibet Plateau publication-title: Science – volume: 19 start-page: 113 issue: 1 year: 1986 end-page: 157 article-title: On the mechanics of the collision between India and Asia publication-title: Geol. Soc. Spec. Publ. – volume: 414 start-page: 738 year: 2001 end-page: 742 article-title: Himalayan tectonics explained by extrusion of a low‐viscosity crustal channel coupled to focused surface denudation publication-title: Nature – volume: 52 start-page: 107 year: 1981 end-page: 114 article-title: A possible dependence of tectonic strength on the age of the crust in Asia publication-title: Earth Planet. Sci. Lett. – volume: 7 start-page: 830 year: 2014 end-page: 833 article-title: Plateau uplift in western Canada caused by lithospheric delamination along a craton edge publication-title: Nat. Geosci. – volume: 94 start-page: 17,561 issue: B12 year: 1989 end-page: 17,579 article-title: Extension during continental convergence, with application to the Tibetan Plateau publication-title: J. Geophys. Res. – volume: 24 start-page: TC3001 year: 2005 article-title: Paleocene‐Eocene record of ophiolite obduction and initial India‐Asia collision, south central Tibet publication-title: Tectonics – volume: 86 start-page: 6115 issue: B7 year: 1981 end-page: 6132 article-title: Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts publication-title: J. Geophys. Res. – volume: 31 start-page: 357 issue: 4 year: 1993 end-page: 396 article-title: Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon publication-title: Rev. Geophys. – volume: 326 start-page: 301 issue: 1589 year: 1988 end-page: 320 article-title: The mechanics of the Tibetan Plateau [and Discussion] publication-title: Philos. Trans. R. Soc. A – volume: 218 start-page: 179 year: 1988 end-page: 207 article-title: Some simple physical aspects of the support, structure, and evolution of mountain belts publication-title: Spec. Pap. Geol. Soc. Am. – volume: 105 start-page: 4987 year: 2008 end-page: 4992 article-title: Constraints on the early uplift history of the Tibetan Plateau publication-title: Proc. Natl. Acad. Sci. U. S. A. – ident: e_1_2_8_31_1 doi: 10.1111/j.1365-246X.1982.tb04969.x – ident: e_1_2_8_13_1 doi: 10.1038/369737a0 – ident: e_1_2_8_53_1 doi: 10.5194/se-3-293-2012 – ident: e_1_2_8_40_1 doi: 10.1029/JB091iB03p03651 – ident: e_1_2_8_20_1 doi: 10.1111/j.1365-246X.2007.03343.x – ident: e_1_2_8_43_1 doi: 10.1016/j.pepi.2010.04.007 – ident: e_1_2_8_29_1 doi: 10.1029/JB091iB03p03664 – ident: e_1_2_8_67_1 doi: 10.1016/j.tecto.2009.10.007 – ident: e_1_2_8_41_1 doi: 10.1029/JB086iB07p06115 – ident: e_1_2_8_86_1 doi: 10.1073/pnas.0703595105 – ident: e_1_2_8_10_1 doi: 10.1016/j.epsl.2011.08.021 – ident: e_1_2_8_3_1 – ident: e_1_2_8_28_1 doi: 10.1038/315297a0 – ident: e_1_2_8_76_1 doi: 10.1016/j.pepi.2008.06.028 – ident: e_1_2_8_4_1 doi: 10.1002/tect.20087 – ident: e_1_2_8_69_1 doi: 10.1016/j.epsl.2006.11.028 – ident: e_1_2_8_89_1 doi: 10.1016/j.tecto.2008.11.002 – ident: e_1_2_8_70_1 doi: 10.1029/92TC02248 – ident: e_1_2_8_71_1 doi: 10.1029/96JB00951 – ident: e_1_2_8_72_1 doi: 10.1126/science.276.5313.788 – ident: e_1_2_8_9_1 doi: 10.1029/2003JB002809 – ident: e_1_2_8_65_1 doi: 10.1029/2010GL043140 – ident: e_1_2_8_25_1 doi: 10.1016/j.epsl.2014.01.045 – ident: e_1_2_8_24_1 doi: 10.1029/2004TC001729 – ident: e_1_2_8_62_1 doi: 10.1038/nature13033 – ident: e_1_2_8_90_1 doi: 10.1016/j.tecto.2013.06.032 – ident: e_1_2_8_57_1 doi: 10.1046/j.1365-246x.1999.00734.x – ident: e_1_2_8_75_1 doi: 10.1093/gji/ggu040 – ident: e_1_2_8_83_1 doi: 10.1029/2010JB008051 – ident: e_1_2_8_12_1 doi: 10.1016/j.epsl.2013.01.023 – ident: e_1_2_8_46_1 doi: 10.1016/j.epsl.2006.08.028 – ident: e_1_2_8_48_1 doi: 10.1016/j.epsl.2008.07.016 – ident: e_1_2_8_81_1 doi: 10.1017/CBO9780511807442 – ident: e_1_2_8_18_1 doi: 10.1130/0091-7613(2000)28 – ident: e_1_2_8_66_1 doi: 10.1016/S0012-821X(04)00070-6 – ident: e_1_2_8_30_1 doi: 10.1029/JB094iB12p17561 – ident: e_1_2_8_7_1 doi: 10.1016/j.earscirev.2009.08.003 – ident: e_1_2_8_34_1 doi: 10.1016/j.tecto.2014.06.013 – ident: e_1_2_8_84_1 doi: 10.1016/j.epsl.2010.11.035 – ident: e_1_2_8_87_1 doi: 10.1016/j.tecto.2012.09.003 – ident: e_1_2_8_42_1 doi: 10.1016/j.tecto.2009.08.042 – ident: e_1_2_8_17_1 doi: 10.1016/S0012-821X(99)00277-0 – ident: e_1_2_8_8_1 doi: 10.1038/414738a – ident: e_1_2_8_56_1 doi: 10.1029/2001JB000145 – ident: e_1_2_8_35_1 doi: 10.1002/2013GC005223 – ident: e_1_2_8_32_1 doi: 10.1098/rsta.1988.0089 – ident: e_1_2_8_52_1 doi: 10.1029/2007JF000897 – ident: e_1_2_8_6_1 doi: 10.1038/ngeo2270 – ident: e_1_2_8_74_1 doi: 10.1038/nature05615 – ident: e_1_2_8_88_1 doi: 10.1016/0031-9201(86)90021-X – ident: e_1_2_8_38_1 doi: 10.1029/2009RG000304 – ident: e_1_2_8_64_1 doi: 10.1038/311615a0 – ident: e_1_2_8_19_1 doi: 10.1029/2004JB002991 – ident: e_1_2_8_5_1 doi: 10.2172/1178104 – ident: e_1_2_8_15_1 doi: 10.1002/ggge.20171 – ident: e_1_2_8_82_1 doi: 10.1016/S0012-821X(99)00131-4 – ident: e_1_2_8_33_1 doi: 10.1029/2012TC003176 – ident: e_1_2_8_80_1 doi: 10.1144/GSL.SP.1986.019.01.07 – ident: e_1_2_8_21_1 doi: 10.1029/2010GL042921 – ident: e_1_2_8_39_1 doi: 10.1016/j.epsl.2014.03.007 – ident: e_1_2_8_58_1 doi: 10.1046/j.1365-246x.1999.00735.x – ident: e_1_2_8_51_1 doi: 10.1130/2014.2507(01) – ident: e_1_2_8_77_1 doi: 10.1007/s00015-004-1113-x – ident: e_1_2_8_16_1 doi: 10.1038/nature10596 – ident: e_1_2_8_26_1 doi: 10.1016/j.tecto.2010.05.024 – ident: e_1_2_8_44_1 doi: 10.1016/S0025-3227(00)00167-5 – ident: e_1_2_8_85_1 doi: 10.1016/0031-9201(84)90049-9 – ident: e_1_2_8_37_1 doi: 10.1130/G22071.1 – ident: e_1_2_8_22_1 doi: 10.1111/j.1365-246X.2012.05388.x – ident: e_1_2_8_49_1 doi: 10.1016/j.epsl.2013.08.034 – ident: e_1_2_8_36_1 doi: 10.1016/S0012-821X(00)00252-1 – ident: e_1_2_8_50_1 doi: 10.1002/2013JB010503 – ident: e_1_2_8_2_1 doi: 10.1016/j.earscirev.2005.07.005 – ident: e_1_2_8_45_1 doi: 10.1029/97TC00495 – ident: e_1_2_8_79_1 doi: 10.1126/science.105978 – ident: e_1_2_8_68_1 doi: 10.1016/j.gr.2014.04.003 – ident: e_1_2_8_73_1 doi: 10.1126/science.1155371 – ident: e_1_2_8_54_1 doi: 10.1130/G35446.1 – ident: e_1_2_8_63_1 doi: 10.1029/97TC01413 – ident: e_1_2_8_78_1 doi: 10.1029/2005GC001056 – ident: e_1_2_8_60_1 doi: 10.1016/0012-821X(81)90213-2 – ident: e_1_2_8_27_1 doi: 10.1007/978-3-540-69426-7_18 – ident: e_1_2_8_55_1 doi: 10.1130/0091-7613(2000)028 – ident: e_1_2_8_61_1 doi: 10.1029/93RG02030 – ident: e_1_2_8_23_1 doi: 10.1029/JB075i014p02625 – ident: e_1_2_8_59_1 doi: 10.1130/SPE218-p179 – ident: e_1_2_8_14_1 doi: 10.1038/nature10174 – ident: e_1_2_8_11_1 doi: 10.1038/386061a0 – ident: e_1_2_8_47_1 doi: 10.1111/j.1365-246X.2011.05164.x |
SSID | ssj0014558 |
Score | 2.3874798 |
Snippet | Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic... Abstract Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 1378 |
SubjectTerms | Active margins Amplitude Banks (topography) Buoyancy continental collisions Dynamics Evolution Fronts India-Asia collision Lithosphere Loads (forces) Mathematical models Modes mountain building processes numerical modeling Numerical models Numerical simulations Plateaus Scaling scaling analysis Shape Slope Subduction Topography Topography (geology) Uplift Upper mantle |
Title | Development of topography in 3-D continental-collision models |
URI | https://api.istex.fr/ark:/67375/WNG-WNPC732K-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015GC005732 https://www.proquest.com/docview/1689910080 https://www.proquest.com/docview/1917781056 https://search.proquest.com/docview/1701477211 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9swUISWwV7GPpm3bniw7WneIsmSnccuTZ01awispX0zsi2XUbBLHUO7h_323UmOo9BQtj3EJJYci7vT6b6PkPfRUGhZShpksZRBqEoRKDiWg1DkGvShvIwLTBQ-nsvpaXh0Ls4HgyMnaqldZp_zX1vzSv4Hq3AP8IpZsv-A2f5P4QZ8B_zCFTAM17_CsRPxY3z99VVXgBqtGDw4MIHoIEZixmOAGDeJ5Lb7TeOKpYnGxlm28xsC_ULX1uTRdL9swefGGBCSnlUs2qa-tNylT2iYqdY89LUG9oEh_q5dgYp1FJ_l-XcDd9zoTN2xSyYCNJ9s8FPp0I1wmCPltlvPHa5tq8DiIpKxqdDI1qfTyiM_3f-RLg4O0-_f5rPNUXsYY7Md9PSAJrzLgOkgtzv-Pek9SqEQcZf4AK_74r5sQyTZxd11s6FvuFqLETtOHpNHnb7g71vkPyEDXT0lDxLTj_n2GXFJwK9Lf00C_s_KBxLwt5KAb0ngOTk9nJyMp0HXESNQQo54IDnLS15mVGHOMFcgHkdFWTBWjERIqSwyinmfAAulOIOZbAgKqqYFqAHY-Y2_IDtVXemXxM_jmBeC6wiLQ-cjGasYZHsu5VBRlYelRz6sgJJe2cInqS1xzVIXeB75aCDWT1LXlxgsGIn0bJ7AZzGGWbP0zCN7K5Cm3R5qUipB38f6UsPtwyMaRTGoANIj7_ph2A3o1VKVrluYEwFyIzRkeOSTwdS9602TJJkwtM28un9Br8nD9bbYIzvL61a_AQF0mb01lPUHM6J_Qw |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+topography+in+3-D+continental-collision+models&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Pusok%2C+A+E&rft.au=Kaus%2C+Boris+J+P&rft.date=2015-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1525-2027&rft.volume=16&rft.issue=5&rft.spage=1378&rft_id=info:doi/10.1002%2F2015GC005732&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3720420091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon |