Uranium Immobilization by Sulfate-Reducing Biofilms

Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 38; no. 7; pp. 2067 - 2074
Main Authors Beyenal, Haluk, Sani, Rajesh K, Peyton, Brent M, Dohnalkova, Alice C, Amonette, James E, Lewandowski, Zbigniew
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.04.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into the reactor for 32 weeks at a concentration of 126 μM. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating:  (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes:  (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite.
AbstractList Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI)was continuously fed into the reactor for 32 weeks at a concentration of 126 microM. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite.Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI)was continuously fed into the reactor for 32 weeks at a concentration of 126 microM. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite.
Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into the reactor for 32 weeks at a concentration of 126 μM. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating:  (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes:  (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite.
Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into the reactor for 32 weeks at a concentration of 126 mu M. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H sub(2)S) production rate and estimated from the H sub(2)S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H sub(2)S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L sub(3)-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite.
Hexavalent uranium [U(VI)l was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI)was continuously fed into the reactor for 32 weeks at a concentration of 126,uM. During this time, the soluble Ll(Vl) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that WVO had been reduced to UP). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite. [PUBLICATION ABSTRACT]
Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI)was continuously fed into the reactor for 32 weeks at a concentration of 126 microM. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite.
Author Lewandowski, Zbigniew
Amonette, James E
Dohnalkova, Alice C
Peyton, Brent M
Beyenal, Haluk
Sani, Rajesh K
Author_xml – sequence: 1
  givenname: Haluk
  surname: Beyenal
  fullname: Beyenal, Haluk
– sequence: 2
  givenname: Rajesh K
  surname: Sani
  fullname: Sani, Rajesh K
– sequence: 3
  givenname: Brent M
  surname: Peyton
  fullname: Peyton, Brent M
– sequence: 4
  givenname: Alice C
  surname: Dohnalkova
  fullname: Dohnalkova, Alice C
– sequence: 5
  givenname: James E
  surname: Amonette
  fullname: Amonette, James E
– sequence: 6
  givenname: Zbigniew
  surname: Lewandowski
  fullname: Lewandowski, Zbigniew
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15632667$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15112808$$D View this record in MEDLINE/PubMed
BookMark eNqF0VtLHTEQB_BQFD1eHvoF5FCo4MPWmc3mso_twRsoLV6gbyGbTSR2LzbZBfXTGz3HY1GhT3n5zUzmPxtkpes7S8hnhG8IOe7bCLSQAugnMkGWQ8YkwxUyAUCalZT_XicbMd4AQE5BrpF1ZIi5BDkh9Crozo_t9KRt-8o3_kEPvu-m1f30YmycHmx2buvR-O56-sP3zjdt3CKrTjfRbi_eTXJ1eHA5O85Ofx6dzL6fZppxOWQCZS4s4wJKw3UBOautK0pTG5kXViOUQHlhnTMSbeVYDdI56hjVrio5N3ST7M773ob-72jjoFofjW0a3dl-jCoNEDyt91-IHAWD8gl-eQNv-jF0aQmVkkEqC8oS2lmgsWptrW6Db3W4Vy-hJfB1AXQ0unEpQePjP47TnHOR3P7cmdDHGKxTxg_P8Q5B-0YhqKfzqeX5UsXem4pl0w9sNrc-DvZuCXX4o9JswdTlrwtVsnLGjs6EwtdfaxNf137f9xGHpLGY
CODEN ESTHAG
CitedBy_id crossref_primary_10_1038_nrmicro1774
crossref_primary_10_1128_AEM_00051_10
crossref_primary_10_1016_j_scitotenv_2021_146085
crossref_primary_10_3934_bioeng_2016_1_44
crossref_primary_10_2134_jeq2008_0071
crossref_primary_10_1080_08827508_2024_2408015
crossref_primary_10_1007_s10534_016_9969_6
crossref_primary_10_1021_es902191s
crossref_primary_10_1016_j_cej_2020_124801
crossref_primary_10_1016_j_ibiod_2007_04_001
crossref_primary_10_1016_j_gca_2008_07_016
crossref_primary_10_1021_es303913y
crossref_primary_10_1016_j_clay_2021_106331
crossref_primary_10_1016_j_gca_2007_07_021
crossref_primary_10_1128_AEM_00420_13
crossref_primary_10_1021_es4043353
crossref_primary_10_1021_es071335k
crossref_primary_10_1016_j_pnucene_2022_104215
crossref_primary_10_1016_j_envpol_2020_114176
crossref_primary_10_1016_j_apgeochem_2016_12_024
crossref_primary_10_1111_j_1462_2920_2012_02850_x
crossref_primary_10_1186_1471_2164_13_138
crossref_primary_10_3389_fmicb_2021_565855
crossref_primary_10_1002_bit_23225
crossref_primary_10_1021_es051804n
crossref_primary_10_1089_omi_2007_0013
crossref_primary_10_1128_AEM_01844_12
crossref_primary_10_1016_j_watres_2008_04_003
crossref_primary_10_1021_es803528t
crossref_primary_10_1021_es803423p
crossref_primary_10_1146_annurev_earth_36_031207_124346
crossref_primary_10_1039_C4EW00014E
crossref_primary_10_1016_j_jhazmat_2008_07_103
crossref_primary_10_1021_es0710609
crossref_primary_10_4028_www_scientific_net_AMR_236_238_903
crossref_primary_10_1021_es801225z
crossref_primary_10_1039_c2em30077j
crossref_primary_10_1080_00223131_2013_851041
crossref_primary_10_1016_j_watres_2014_07_013
crossref_primary_10_1021_es0494297
crossref_primary_10_1007_s11356_014_3980_7
crossref_primary_10_1016_j_gca_2011_05_008
crossref_primary_10_1016_j_gca_2012_10_032
crossref_primary_10_1021_acsearthspacechem_1c00410
crossref_primary_10_1016_j_apgeochem_2014_07_021
crossref_primary_10_1016_j_scitotenv_2024_170694
crossref_primary_10_1007_s12088_008_0006_5
crossref_primary_10_1016_j_copbio_2005_04_012
crossref_primary_10_1021_es501404h
crossref_primary_10_1080_01490450802660193
crossref_primary_10_1116_6_0003883
crossref_primary_10_1021_es303022p
crossref_primary_10_2465_jmps_060322
crossref_primary_10_1016_j_jhazmat_2017_12_030
crossref_primary_10_1016_j_ecoenv_2018_04_025
crossref_primary_10_1016_j_jhazmat_2015_09_043
crossref_primary_10_1021_es702364x
crossref_primary_10_2166_aqua_2019_027
crossref_primary_10_1007_s00216_009_3296_5
crossref_primary_10_1016_S1003_6326_09_60037_6
crossref_primary_10_1146_annurev_micro_59_030804_121357
crossref_primary_10_1016_j_gca_2012_12_037
crossref_primary_10_1186_1467_4866_9_12
crossref_primary_10_1016_j_gca_2012_08_012
crossref_primary_10_1038_nrmicro2575
crossref_primary_10_1016_j_jes_2024_08_002
crossref_primary_10_1016_j_gca_2009_03_031
crossref_primary_10_1016_j_jhazmat_2021_126645
crossref_primary_10_1016_j_watres_2011_10_054
crossref_primary_10_1093_femsre_fuv033
crossref_primary_10_1007_s11274_022_03362_w
crossref_primary_10_1128_AEM_02289_14
crossref_primary_10_1128_mSystems_00493_21
crossref_primary_10_1016_j_gca_2008_07_029
crossref_primary_10_1016_j_jhazmat_2019_02_074
crossref_primary_10_1016_j_enzmictec_2021_109920
crossref_primary_10_1016_j_mimet_2009_07_013
crossref_primary_10_1016_j_scitotenv_2011_04_051
crossref_primary_10_3389_fenvs_2017_00030
crossref_primary_10_1080_10643389_2012_728522
crossref_primary_10_1007_s11157_005_2169_4
crossref_primary_10_1021_es800579g
crossref_primary_10_1016_j_jhazmat_2022_129376
crossref_primary_10_3389_fmicb_2014_00382
Cites_doi 10.1038/419134a
10.1038/350413a0
10.1002/aic.690470721
10.2172/876715
10.3354/ame015201
10.1016/S0958-1669(97)80005-5
10.1080/01490458509385929
10.1016/S0958-1669(00)00207-X
10.1021/ac960091b
10.1021/ac00037a020
10.1016/S0169-7722(98)00134-X
10.1021/es00025a026
10.1016/S0169-7722(98)00151-X
10.1021/es981241y
10.1021/ac60163a017
10.1016/S0016-7037(00)00397-5
10.1016/0016-7037(88)90357-2
10.1021/es0210042
10.1128/AEM.64.11.4607-4609.1998
10.1016/0016-7037(78)90001-7
10.1016/S0043-1354(99)00147-5
10.1016/S0043-1354(99)00024-X
10.1128/aem.63.11.4385-4391.1997
ContentType Journal Article
Copyright Copyright © 2004 American Chemical Society
2004 INIST-CNRS
Copyright American Chemical Society Apr 1, 2004
Copyright_xml – notice: Copyright © 2004 American Chemical Society
– notice: 2004 INIST-CNRS
– notice: Copyright American Chemical Society Apr 1, 2004
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7QH
7QL
7TV
7UA
7X8
DOI 10.1021/es0348703
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Aqualine
Bacteriology Abstracts (Microbiology B)
Pollution Abstracts
Water Resources Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Bacteriology Abstracts (Microbiology B)
Pollution Abstracts
Aqualine
Water Resources Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
Biotechnology Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 2074
ExternalDocumentID 675777571
15112808
15632667
10_1021_es0348703
ark_67375_TPS_959C5GM7_1
g64863
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
186
1AW
3R3
4.4
42X
4R4
53G
55A
5GY
5VS
63O
7~N
85S
A
AABXI
ABDEX
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AETEA
AFEFF
AFMIJ
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
K78
LG6
MS
NHB
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VOH
VQA
W1F
WH7
X
XFK
XZL
YZZ
ZCG
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
ABJNI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
MS~
MW2
UBC
XSW
YV5
ZCA
~A~
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
.HR
1WB
8WZ
A6W
ABHMW
ACKIV
IQODW
MVM
OHT
RNS
TAE
UBX
UBY
VJK
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7QH
7QL
7TV
7UA
7X8
ID FETCH-LOGICAL-a568t-71827e56709c6a4025def49cdc824ea1090364effc81ebf5d08ff3f53afb966c3
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Tue Aug 05 10:17:08 EDT 2025
Mon Jul 21 11:39:12 EDT 2025
Fri Jul 25 04:50:43 EDT 2025
Wed Feb 19 02:35:09 EST 2025
Mon Jul 21 09:15:02 EDT 2025
Tue Jul 01 03:25:53 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Wed Oct 30 09:41:46 EDT 2024
Thu Aug 27 13:42:46 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Radioactive waste
Sulfate-reducing bacteria
Radioactive pollution
XANES spectrometry
Immobilization
Hazardous waste
Liquid waste
Radioisotope
Chemical reduction
Sulfides
Bioreactor
Desulfovibrio desulfuricans
Transmission electron microscopy
Enzymatic activity
Decontamination
Chemical reaction
Uranium VI
Biofilm
Bacteria
Water pollution
Bioremediation
Ground water
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a568t-71827e56709c6a4025def49cdc824ea1090364effc81ebf5d08ff3f53afb966c3
Notes ark:/67375/TPS-959C5GM7-1
istex:BBE8E08ACDA9C13456C8DC63090FF2DBBDF28276
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 15112808
PQID 230138435
PQPubID 45412
PageCount 8
ParticipantIDs proquest_miscellaneous_71876936
proquest_miscellaneous_16175096
proquest_journals_230138435
pubmed_primary_15112808
pascalfrancis_primary_15632667
crossref_citationtrail_10_1021_es0348703
crossref_primary_10_1021_es0348703
istex_primary_ark_67375_TPS_959C5GM7_1
acs_journals_10_1021_es0348703
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-04-01
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: 2004-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2004
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Lloyd J. R. (es0348703b00012/es0348703b00012_1) 1998; 64
Anderson R. F. (es0348703b00026/es0348703b00026_1) 1984; 223
Suzuki Y. (es0348703b00030/es0348703b00030_1) 2002; 419
Lovley D. R. (es0348703b00010/es0348703b00010_1) 1992; 58
Kuhl M. (es0348703b00022/es0348703b00022_1) 1998; 15
Sani R. K. (es0348703b00025/es0348703b00025_1) 2002; 60
Langmuir D. (es0348703b00006/es0348703b00006_1) 1978; 42
Jeroschewski P. (es0348703b00021/es0348703b00021_1) 1996; 68
McCullough J. (es0348703b00001/es0348703b00001_1) 1999
Abdelouas A. (es0348703b00009/es0348703b00009_1) 1998; 35
Spear J. R. (es0348703b00017/es0348703b00017_1) 1999; 33
Finneran K. T. (es0348703b00031/es0348703b00031_1) 2002; 11
Lovley D. R. (es0348703b00005/es0348703b00005_1) 1991; 350
Meloan L. E. (es0348703b00028/es0348703b00028_1) 1960; 32
Mohagheghi A. (es0348703b00013/es0348703b00013_1) 1985; 4
Allison J. D. (es0348703b00014/es0348703b00014_1) 1991
Ganesh R. (es0348703b00029/es0348703b00029_1) 1999; 33
Abdelouas A. (es0348703b00008/es0348703b00008_1) 1999; 36
Gorby Y. A. (es0348703b00004/es0348703b00004_1) 1992; 26
Brina R. (es0348703b00027/es0348703b00027_1) 1992; 64
Parks G. A. (es0348703b00007/es0348703b00007_1) 1988; 52
Riley R. G. (es0348703b00003/es0348703b00003_1) 1992
Fredrickson J. K. (es0348703b00015/es0348703b00015_1) 2000; 64
Beyenal H. (es0348703b00024/es0348703b00024_1) 2001; 47
Beyenal H. (es0348703b00023/es0348703b00023_1) 2000; 34
es0348703b00032/es0348703b00032_1
Lovley D. R. (es0348703b00011/es0348703b00011_1) 1997; 8
Brooks S. C. (es0348703b00016/es0348703b00016_1) 2003; 37
Sani R. K. (es0348703b00019/es0348703b00019_1) 2001; 5
Lloyd J. R. (es0348703b00002/es0348703b00002_1) 2001; 12
Ganesh R. (es0348703b00018/es0348703b00018_1) 1997; 63
Wall J. D. (es0348703b00020/es0348703b00020_1) 1993; 175
References_xml – volume: 419
  start-page: 134
  year: 2002
  ident: es0348703b00030/es0348703b00030_1
  publication-title: Nature
  doi: 10.1038/419134a
– volume: 11
  start-page: 357
  year: 2002
  ident: es0348703b00031/es0348703b00031_1
  publication-title: Soil Sed. Contam.
– volume: 350
  start-page: 416
  year: 1991
  ident: es0348703b00005/es0348703b00005_1
  publication-title: Nature
  doi: 10.1038/350413a0
– volume: 223
  start-page: 217
  year: 1984
  ident: es0348703b00026/es0348703b00026_1
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 47
  start-page: 1697
  year: 2001
  ident: es0348703b00024/es0348703b00024_1
  publication-title: Aiche J.
  doi: 10.1002/aic.690470721
– volume-title: Bioremediation of metals and radionuclides...what it is and how it works:  A NABIR Primer
  year: 1999
  ident: es0348703b00001/es0348703b00001_1
  doi: 10.2172/876715
– volume: 15
  start-page: 209
  year: 1998
  ident: es0348703b00022/es0348703b00022_1
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame015201
– volume: 175
  start-page: 4128
  year: 1993
  ident: es0348703b00020/es0348703b00020_1
  publication-title: J. Bacteriol.
– volume: 8
  start-page: 289
  year: 1997
  ident: es0348703b00011/es0348703b00011_1
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/S0958-1669(97)80005-5
– volume-title: Nature of chemical contaminants on DOE lands and identification of representative contaminant mixtures for basic subsurface science research
  year: 1992
  ident: es0348703b00003/es0348703b00003_1
– volume: 4
  start-page: 173
  year: 1985
  ident: es0348703b00013/es0348703b00013_1
  publication-title: Geomicrobiol. J.
  doi: 10.1080/01490458509385929
– volume: 12
  start-page: 253
  year: 2001
  ident: es0348703b00002/es0348703b00002_1
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/S0958-1669(00)00207-X
– volume: 68
  start-page: 4357
  year: 1996
  ident: es0348703b00021/es0348703b00021_1
  publication-title: Anal. Chem.
  doi: 10.1021/ac960091b
– volume: 64
  start-page: 1418
  year: 1992
  ident: es0348703b00027/es0348703b00027_1
  publication-title: Anal. Chem.
  doi: 10.1021/ac00037a020
– volume: 35
  start-page: 233
  year: 1998
  ident: es0348703b00009/es0348703b00009_1
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(98)00134-X
– volume: 26
  start-page: 207
  year: 1992
  ident: es0348703b00004/es0348703b00004_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00025a026
– volume: 5
  start-page: 276
  year: 2001
  ident: es0348703b00019/es0348703b00019_1
  publication-title: Adv. Environ. Res.
– volume: 36
  start-page: 375
  year: 1999
  ident: es0348703b00008/es0348703b00008_1
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(98)00151-X
– volume: 33
  start-page: 2675
  year: 1999
  ident: es0348703b00017/es0348703b00017_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es981241y
– volume: 32
  start-page: 793
  year: 1960
  ident: es0348703b00028/es0348703b00028_1
  publication-title: Anal. Chem.
  doi: 10.1021/ac60163a017
– volume: 64
  start-page: 3098
  year: 2000
  ident: es0348703b00015/es0348703b00015_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(00)00397-5
– volume: 60
  start-page: 199
  year: 2002
  ident: es0348703b00025/es0348703b00025_1
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 52
  start-page: 875
  year: 1988
  ident: es0348703b00007/es0348703b00007_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(88)90357-2
– volume-title: EPA/600/3−91/021
  year: 1991
  ident: es0348703b00014/es0348703b00014_1
– volume: 37
  start-page: 1858
  year: 2003
  ident: es0348703b00016/es0348703b00016_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0210042
– ident: es0348703b00032/es0348703b00032_1
– volume: 58
  start-page: 856
  year: 1992
  ident: es0348703b00010/es0348703b00010_1
  publication-title: Appl. Environ. Microbiol.
– volume: 64
  start-page: 4609
  year: 1998
  ident: es0348703b00012/es0348703b00012_1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.64.11.4607-4609.1998
– volume: 42
  start-page: 569
  year: 1978
  ident: es0348703b00006/es0348703b00006_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(78)90001-7
– volume: 34
  start-page: 538
  year: 2000
  ident: es0348703b00023/es0348703b00023_1
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(99)00147-5
– volume: 33
  start-page: 3458
  year: 1999
  ident: es0348703b00029/es0348703b00029_1
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(99)00024-X
– volume: 63
  start-page: 4391
  year: 1997
  ident: es0348703b00018/es0348703b00018_1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.63.11.4385-4391.1997
SSID ssj0002308
Score 2.1439314
Snippet Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in...
Hexavalent uranium [U(VI)l was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in...
SourceID proquest
pubmed
pascalfrancis
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2067
SubjectTerms Absorption
Applied sciences
Bacteria
Biofilms
Biological and medical sciences
Biological treatment of waters
Biotechnology
Chemical Precipitation
Desulfovibrio desulfuricans
Earth sciences
Earth, ocean, space
Electrons
Engineering and environment geology. Geothermics
Environment and pollution
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Groundwaters
Hydrogen Sulfide - analysis
Industrial applications and implications. Economical aspects
Natural water pollution
Pollution
Pollution, environment geology
Radioactive wastes
Solubility
Sulfates - metabolism
Sulfur-Reducing Bacteria - physiology
Uranium
Uranium - chemistry
Uranium - isolation & purification
Wastes
Water Pollutants, Radioactive - isolation & purification
Water pollution
Water treatment and pollution
Title Uranium Immobilization by Sulfate-Reducing Biofilms
URI http://dx.doi.org/10.1021/es0348703
https://api.istex.fr/ark:/67375/TPS-959C5GM7-1/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15112808
https://www.proquest.com/docview/230138435
https://www.proquest.com/docview/16175096
https://www.proquest.com/docview/71876936
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dT9swED8heNke2MYGFDYWbWjaSyCJY8d5ZB0IkEATpVLfItuxpQraTqSR2P763eWrRaPbcy7-ON_5fpbPvwM4dBajnAq4b9LI-XHKtK8VD3zE9i6QVuRhRV98dS3Oh_HliI_W4POKG_woPLZFwBBVE6PnRiRkQiesk_6g224RQ8u2TEHKxKilD1r-lUKPKZ6Eng3S4iOlQqoCteHqMharcWYVb85ewff21U6dZnJ3VM71kfn9N4njv6byGjYbvOmd1AbyBtbsdAteLrEQbsH26eKxG4o23l68BTbE4Y7LiXeBxkpJtPWTTU__8gblvUOU6t8Q8yu24n0bU-3vSfEOhment_1zvymy4Csu5NzH2BQllhONmxEKT5M8ty5OTW5kFFtFeZtMxNY5I0OrHc8D6RxznCmn8ahk2DasT2dTuwue0i7RhIdYHsZOxmnCEisTZnJrda7CHhzgKmSNkxRZdf8dhVmnlh58bRcoMw1FOVXKuH9O9FMn-rPm5XhO6Eu1yp2EerijRLaEZ7c_BlnK0z7HnSajkT0xg0WTXCC-FUkP9lu7WIwfLS9kEvFmDz52X9E76cpFTe2sxCkiQCSCndUSqH8qR4kSO7W5LfWNfiIDufc_te3Di0U-0XtYnz-U9gNCpbk-qFzlD6_oCj0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB71caAceLQUlkIbIYq4ZEniOHEOHMrSapc-hNhdaW_BdmypartF9UZQfkr_Sv8c4zy3qBWnSpwzcsYz4_FnefwNwFutcJfjHnVlEmg3TIhwBaeei9hee0xFmV_QFx8eRf1x-GVCJwtwVb-FQSUMjmSKS_yWXcD_oIxHEFx7daPqfXX5E49n5uPgM_pyOwj2dke9vlt1EHA5jdjMxcQbxIpajjIZcTwq0UzpMJGZZEGouC1KJFGotJbMV0LTzGNaE00J1wLPAZLguIuwjKAnsAe7nd6wyfII3VndHSEh0aRmLZpX1e540tzY8Zat837ZCkxu0Am67J5xN7wttrm9x3DdGKiobjnp5jPRlb__4o78Py34BB5V6NrZKZfDU1hQ01V4OMe5uArru-3TPhStcptZAzJGKx3nZ84Al6YtGS4fqDri0hnmpxoxufvN8tziKM6nY9vp_Mw8g_G9TGcdlqbnU_UCHC50LCz6I5kfahYmMYkVi4nMlBIZ9zuwiV5Iq5Rg0uK2P_DTxg0deF_HRSorQnbbF-T0NtE3jeiPkoXkNqF3RXA1EvzixJbtxTQdfR2mCU16FPNqajW7EX3tkDRCNB_FHdiow7HVHwPeJwzRdQe2mq-Yi-wFE5-q8xyniHDY0gndLYH2t803UeJ5GeVz_8aswDz28l9m24IH_dHhQXowONrfgJW2kuoVLM0ucvUaQeJMbBar1YHv9x3cfwCigG3n
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3dTtRAFD5BSIxeCKLoikBj1HhTbDuddnrhBS5sWFFCXDbZuzIznUkIsBC6jcLD-Cq-muf0bxcD8YrE655MZ87ffJM58x2At9bgLic97uoksG6YMOUqyT0Xsb31hIkyv6Qv_rYf7Q7DLyM-moNfzVsYnESOI-XlJT5F9UVma4YB_6PJPYYA22uaVe-Zqx94RMs_9bfRnu-CoLdz2N116y4CruSRmLiYfIPYcOIp05HE4xLPjA0TnWkRhEZSYSKLQmOtFr5RlmeesJZZzqRVeBbQDMd9AAt0PUiHu63uoM30CN9F0yEhYdGoYS6anSrtejq_sestkAF_UhWmzNEQtuqgcTfELbe63iL8bpVUVricbBYTtamv_-KP_H-1uARPapTtbFVh8RTmzHgZHs9wLy7Dys70iR-K1jkufwZsiJo6Ls6cPoYolQ5XD1UddeUMilOL2Nz9Tny3OIrz-Zg6np_lz2F4L8tZgfnx-di8BEcqGytCgSzzQyvCJGaxETHTmTEqk34H1tESaZ0a8rS89Q_8tDVDBz40vpHqmpid-oOc3ib6phW9qNhIbhN6XzpYKyEvT6h8L-bp4cEgTXjS5ZhfU5rZDQ-cDskjRPVR3IHVxiWn80en95lAlN2BjfYr5iS6aJJjc17gEhEWE63Q3RKof2rCiRIvKk-f-TdmB-GJV_9S2wY8PNjupV_7-3ur8GhaUPUa5ieXhVlDrDhR62XAOnB03779B7pIcGo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uranium+Immobilization+by+Sulfate-Reducing+Biofilms&rft.jtitle=Environmental+science+%26+technology&rft.au=Beyenal%2C+Haluk&rft.au=Sani%2C+Rajesh+K.&rft.au=Peyton%2C+Brent+M.&rft.au=Dohnalkova%2C+Alice+C.&rft.date=2004-04-01&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=38&rft.issue=7&rft.spage=2067&rft.epage=2074&rft_id=info:doi/10.1021%2Fes0348703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_es0348703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon