Uranium Immobilization by Sulfate-Reducing Biofilms
Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into...
Saved in:
Published in | Environmental science & technology Vol. 38; no. 7; pp. 2067 - 2074 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.04.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into the reactor for 32 weeks at a concentration of 126 μM. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite. |
---|---|
AbstractList | Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI)was continuously fed into the reactor for 32 weeks at a concentration of 126 microM. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite.Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI)was continuously fed into the reactor for 32 weeks at a concentration of 126 microM. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite. Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into the reactor for 32 weeks at a concentration of 126 μM. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite. Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into the reactor for 32 weeks at a concentration of 126 mu M. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H sub(2)S) production rate and estimated from the H sub(2)S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H sub(2)S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L sub(3)-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite. Hexavalent uranium [U(VI)l was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI)was continuously fed into the reactor for 32 weeks at a concentration of 126,uM. During this time, the soluble Ll(Vl) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that WVO had been reduced to UP). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite. [PUBLICATION ABSTRACT] Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI)was continuously fed into the reactor for 32 weeks at a concentration of 126 microM. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite. |
Author | Lewandowski, Zbigniew Amonette, James E Dohnalkova, Alice C Peyton, Brent M Beyenal, Haluk Sani, Rajesh K |
Author_xml | – sequence: 1 givenname: Haluk surname: Beyenal fullname: Beyenal, Haluk – sequence: 2 givenname: Rajesh K surname: Sani fullname: Sani, Rajesh K – sequence: 3 givenname: Brent M surname: Peyton fullname: Peyton, Brent M – sequence: 4 givenname: Alice C surname: Dohnalkova fullname: Dohnalkova, Alice C – sequence: 5 givenname: James E surname: Amonette fullname: Amonette, James E – sequence: 6 givenname: Zbigniew surname: Lewandowski fullname: Lewandowski, Zbigniew |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15632667$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15112808$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0VtLHTEQB_BQFD1eHvoF5FCo4MPWmc3mso_twRsoLV6gbyGbTSR2LzbZBfXTGz3HY1GhT3n5zUzmPxtkpes7S8hnhG8IOe7bCLSQAugnMkGWQ8YkwxUyAUCalZT_XicbMd4AQE5BrpF1ZIi5BDkh9Crozo_t9KRt-8o3_kEPvu-m1f30YmycHmx2buvR-O56-sP3zjdt3CKrTjfRbi_eTXJ1eHA5O85Ofx6dzL6fZppxOWQCZS4s4wJKw3UBOautK0pTG5kXViOUQHlhnTMSbeVYDdI56hjVrio5N3ST7M773ob-72jjoFofjW0a3dl-jCoNEDyt91-IHAWD8gl-eQNv-jF0aQmVkkEqC8oS2lmgsWptrW6Db3W4Vy-hJfB1AXQ0unEpQePjP47TnHOR3P7cmdDHGKxTxg_P8Q5B-0YhqKfzqeX5UsXem4pl0w9sNrc-DvZuCXX4o9JswdTlrwtVsnLGjs6EwtdfaxNf137f9xGHpLGY |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1038_nrmicro1774 crossref_primary_10_1128_AEM_00051_10 crossref_primary_10_1016_j_scitotenv_2021_146085 crossref_primary_10_3934_bioeng_2016_1_44 crossref_primary_10_2134_jeq2008_0071 crossref_primary_10_1080_08827508_2024_2408015 crossref_primary_10_1007_s10534_016_9969_6 crossref_primary_10_1021_es902191s crossref_primary_10_1016_j_cej_2020_124801 crossref_primary_10_1016_j_ibiod_2007_04_001 crossref_primary_10_1016_j_gca_2008_07_016 crossref_primary_10_1021_es303913y crossref_primary_10_1016_j_clay_2021_106331 crossref_primary_10_1016_j_gca_2007_07_021 crossref_primary_10_1128_AEM_00420_13 crossref_primary_10_1021_es4043353 crossref_primary_10_1021_es071335k crossref_primary_10_1016_j_pnucene_2022_104215 crossref_primary_10_1016_j_envpol_2020_114176 crossref_primary_10_1016_j_apgeochem_2016_12_024 crossref_primary_10_1111_j_1462_2920_2012_02850_x crossref_primary_10_1186_1471_2164_13_138 crossref_primary_10_3389_fmicb_2021_565855 crossref_primary_10_1002_bit_23225 crossref_primary_10_1021_es051804n crossref_primary_10_1089_omi_2007_0013 crossref_primary_10_1128_AEM_01844_12 crossref_primary_10_1016_j_watres_2008_04_003 crossref_primary_10_1021_es803528t crossref_primary_10_1021_es803423p crossref_primary_10_1146_annurev_earth_36_031207_124346 crossref_primary_10_1039_C4EW00014E crossref_primary_10_1016_j_jhazmat_2008_07_103 crossref_primary_10_1021_es0710609 crossref_primary_10_4028_www_scientific_net_AMR_236_238_903 crossref_primary_10_1021_es801225z crossref_primary_10_1039_c2em30077j crossref_primary_10_1080_00223131_2013_851041 crossref_primary_10_1016_j_watres_2014_07_013 crossref_primary_10_1021_es0494297 crossref_primary_10_1007_s11356_014_3980_7 crossref_primary_10_1016_j_gca_2011_05_008 crossref_primary_10_1016_j_gca_2012_10_032 crossref_primary_10_1021_acsearthspacechem_1c00410 crossref_primary_10_1016_j_apgeochem_2014_07_021 crossref_primary_10_1016_j_scitotenv_2024_170694 crossref_primary_10_1007_s12088_008_0006_5 crossref_primary_10_1016_j_copbio_2005_04_012 crossref_primary_10_1021_es501404h crossref_primary_10_1080_01490450802660193 crossref_primary_10_1116_6_0003883 crossref_primary_10_1021_es303022p crossref_primary_10_2465_jmps_060322 crossref_primary_10_1016_j_jhazmat_2017_12_030 crossref_primary_10_1016_j_ecoenv_2018_04_025 crossref_primary_10_1016_j_jhazmat_2015_09_043 crossref_primary_10_1021_es702364x crossref_primary_10_2166_aqua_2019_027 crossref_primary_10_1007_s00216_009_3296_5 crossref_primary_10_1016_S1003_6326_09_60037_6 crossref_primary_10_1146_annurev_micro_59_030804_121357 crossref_primary_10_1016_j_gca_2012_12_037 crossref_primary_10_1186_1467_4866_9_12 crossref_primary_10_1016_j_gca_2012_08_012 crossref_primary_10_1038_nrmicro2575 crossref_primary_10_1016_j_jes_2024_08_002 crossref_primary_10_1016_j_gca_2009_03_031 crossref_primary_10_1016_j_jhazmat_2021_126645 crossref_primary_10_1016_j_watres_2011_10_054 crossref_primary_10_1093_femsre_fuv033 crossref_primary_10_1007_s11274_022_03362_w crossref_primary_10_1128_AEM_02289_14 crossref_primary_10_1128_mSystems_00493_21 crossref_primary_10_1016_j_gca_2008_07_029 crossref_primary_10_1016_j_jhazmat_2019_02_074 crossref_primary_10_1016_j_enzmictec_2021_109920 crossref_primary_10_1016_j_mimet_2009_07_013 crossref_primary_10_1016_j_scitotenv_2011_04_051 crossref_primary_10_3389_fenvs_2017_00030 crossref_primary_10_1080_10643389_2012_728522 crossref_primary_10_1007_s11157_005_2169_4 crossref_primary_10_1021_es800579g crossref_primary_10_1016_j_jhazmat_2022_129376 crossref_primary_10_3389_fmicb_2014_00382 |
Cites_doi | 10.1038/419134a 10.1038/350413a0 10.1002/aic.690470721 10.2172/876715 10.3354/ame015201 10.1016/S0958-1669(97)80005-5 10.1080/01490458509385929 10.1016/S0958-1669(00)00207-X 10.1021/ac960091b 10.1021/ac00037a020 10.1016/S0169-7722(98)00134-X 10.1021/es00025a026 10.1016/S0169-7722(98)00151-X 10.1021/es981241y 10.1021/ac60163a017 10.1016/S0016-7037(00)00397-5 10.1016/0016-7037(88)90357-2 10.1021/es0210042 10.1128/AEM.64.11.4607-4609.1998 10.1016/0016-7037(78)90001-7 10.1016/S0043-1354(99)00147-5 10.1016/S0043-1354(99)00024-X 10.1128/aem.63.11.4385-4391.1997 |
ContentType | Journal Article |
Copyright | Copyright © 2004 American Chemical Society 2004 INIST-CNRS Copyright American Chemical Society Apr 1, 2004 |
Copyright_xml | – notice: Copyright © 2004 American Chemical Society – notice: 2004 INIST-CNRS – notice: Copyright American Chemical Society Apr 1, 2004 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7QH 7QL 7TV 7UA 7X8 |
DOI | 10.1021/es0348703 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts Aqualine Bacteriology Abstracts (Microbiology B) Pollution Abstracts Water Resources Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Bacteriology Abstracts (Microbiology B) Pollution Abstracts Aqualine Water Resources Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database Biotechnology Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 2074 |
ExternalDocumentID | 675777571 15112808 15632667 10_1021_es0348703 ark_67375_TPS_959C5GM7_1 g64863 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 186 1AW 3R3 4.4 42X 4R4 53G 55A 5GY 5VS 63O 7~N 85S A AABXI ABDEX ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AETEA AFEFF AFMIJ AFRAH ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 K78 LG6 MS NHB PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UNC UPT UQL VF5 VG9 VOH VQA W1F WH7 X XFK XZL YZZ ZCG --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK ABJNI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ BSCLL CUPRZ GGK MS~ MW2 UBC XSW YV5 ZCA ~A~ AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION .HR 1WB 8WZ A6W ABHMW ACKIV IQODW MVM OHT RNS TAE UBX UBY VJK ZY4 CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7QH 7QL 7TV 7UA 7X8 |
ID | FETCH-LOGICAL-a568t-71827e56709c6a4025def49cdc824ea1090364effc81ebf5d08ff3f53afb966c3 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Tue Aug 05 10:17:08 EDT 2025 Mon Jul 21 11:39:12 EDT 2025 Fri Jul 25 04:50:43 EDT 2025 Wed Feb 19 02:35:09 EST 2025 Mon Jul 21 09:15:02 EDT 2025 Tue Jul 01 03:25:53 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Wed Oct 30 09:41:46 EDT 2024 Thu Aug 27 13:42:46 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Radioactive waste Sulfate-reducing bacteria Radioactive pollution XANES spectrometry Immobilization Hazardous waste Liquid waste Radioisotope Chemical reduction Sulfides Bioreactor Desulfovibrio desulfuricans Transmission electron microscopy Enzymatic activity Decontamination Chemical reaction Uranium VI Biofilm Bacteria Water pollution Bioremediation Ground water |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a568t-71827e56709c6a4025def49cdc824ea1090364effc81ebf5d08ff3f53afb966c3 |
Notes | ark:/67375/TPS-959C5GM7-1 istex:BBE8E08ACDA9C13456C8DC63090FF2DBBDF28276 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 15112808 |
PQID | 230138435 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_71876936 proquest_miscellaneous_16175096 proquest_journals_230138435 pubmed_primary_15112808 pascalfrancis_primary_15632667 crossref_citationtrail_10_1021_es0348703 crossref_primary_10_1021_es0348703 istex_primary_ark_67375_TPS_959C5GM7_1 acs_journals_10_1021_es0348703 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-04-01 |
PublicationDateYYYYMMDD | 2004-04-01 |
PublicationDate_xml | – month: 04 year: 2004 text: 2004-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2004 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Lloyd J. R. (es0348703b00012/es0348703b00012_1) 1998; 64 Anderson R. F. (es0348703b00026/es0348703b00026_1) 1984; 223 Suzuki Y. (es0348703b00030/es0348703b00030_1) 2002; 419 Lovley D. R. (es0348703b00010/es0348703b00010_1) 1992; 58 Kuhl M. (es0348703b00022/es0348703b00022_1) 1998; 15 Sani R. K. (es0348703b00025/es0348703b00025_1) 2002; 60 Langmuir D. (es0348703b00006/es0348703b00006_1) 1978; 42 Jeroschewski P. (es0348703b00021/es0348703b00021_1) 1996; 68 McCullough J. (es0348703b00001/es0348703b00001_1) 1999 Abdelouas A. (es0348703b00009/es0348703b00009_1) 1998; 35 Spear J. R. (es0348703b00017/es0348703b00017_1) 1999; 33 Finneran K. T. (es0348703b00031/es0348703b00031_1) 2002; 11 Lovley D. R. (es0348703b00005/es0348703b00005_1) 1991; 350 Meloan L. E. (es0348703b00028/es0348703b00028_1) 1960; 32 Mohagheghi A. (es0348703b00013/es0348703b00013_1) 1985; 4 Allison J. D. (es0348703b00014/es0348703b00014_1) 1991 Ganesh R. (es0348703b00029/es0348703b00029_1) 1999; 33 Abdelouas A. (es0348703b00008/es0348703b00008_1) 1999; 36 Gorby Y. A. (es0348703b00004/es0348703b00004_1) 1992; 26 Brina R. (es0348703b00027/es0348703b00027_1) 1992; 64 Parks G. A. (es0348703b00007/es0348703b00007_1) 1988; 52 Riley R. G. (es0348703b00003/es0348703b00003_1) 1992 Fredrickson J. K. (es0348703b00015/es0348703b00015_1) 2000; 64 Beyenal H. (es0348703b00024/es0348703b00024_1) 2001; 47 Beyenal H. (es0348703b00023/es0348703b00023_1) 2000; 34 es0348703b00032/es0348703b00032_1 Lovley D. R. (es0348703b00011/es0348703b00011_1) 1997; 8 Brooks S. C. (es0348703b00016/es0348703b00016_1) 2003; 37 Sani R. K. (es0348703b00019/es0348703b00019_1) 2001; 5 Lloyd J. R. (es0348703b00002/es0348703b00002_1) 2001; 12 Ganesh R. (es0348703b00018/es0348703b00018_1) 1997; 63 Wall J. D. (es0348703b00020/es0348703b00020_1) 1993; 175 |
References_xml | – volume: 419 start-page: 134 year: 2002 ident: es0348703b00030/es0348703b00030_1 publication-title: Nature doi: 10.1038/419134a – volume: 11 start-page: 357 year: 2002 ident: es0348703b00031/es0348703b00031_1 publication-title: Soil Sed. Contam. – volume: 350 start-page: 416 year: 1991 ident: es0348703b00005/es0348703b00005_1 publication-title: Nature doi: 10.1038/350413a0 – volume: 223 start-page: 217 year: 1984 ident: es0348703b00026/es0348703b00026_1 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 47 start-page: 1697 year: 2001 ident: es0348703b00024/es0348703b00024_1 publication-title: Aiche J. doi: 10.1002/aic.690470721 – volume-title: Bioremediation of metals and radionuclides...what it is and how it works: A NABIR Primer year: 1999 ident: es0348703b00001/es0348703b00001_1 doi: 10.2172/876715 – volume: 15 start-page: 209 year: 1998 ident: es0348703b00022/es0348703b00022_1 publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame015201 – volume: 175 start-page: 4128 year: 1993 ident: es0348703b00020/es0348703b00020_1 publication-title: J. Bacteriol. – volume: 8 start-page: 289 year: 1997 ident: es0348703b00011/es0348703b00011_1 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/S0958-1669(97)80005-5 – volume-title: Nature of chemical contaminants on DOE lands and identification of representative contaminant mixtures for basic subsurface science research year: 1992 ident: es0348703b00003/es0348703b00003_1 – volume: 4 start-page: 173 year: 1985 ident: es0348703b00013/es0348703b00013_1 publication-title: Geomicrobiol. J. doi: 10.1080/01490458509385929 – volume: 12 start-page: 253 year: 2001 ident: es0348703b00002/es0348703b00002_1 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/S0958-1669(00)00207-X – volume: 68 start-page: 4357 year: 1996 ident: es0348703b00021/es0348703b00021_1 publication-title: Anal. Chem. doi: 10.1021/ac960091b – volume: 64 start-page: 1418 year: 1992 ident: es0348703b00027/es0348703b00027_1 publication-title: Anal. Chem. doi: 10.1021/ac00037a020 – volume: 35 start-page: 233 year: 1998 ident: es0348703b00009/es0348703b00009_1 publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(98)00134-X – volume: 26 start-page: 207 year: 1992 ident: es0348703b00004/es0348703b00004_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00025a026 – volume: 5 start-page: 276 year: 2001 ident: es0348703b00019/es0348703b00019_1 publication-title: Adv. Environ. Res. – volume: 36 start-page: 375 year: 1999 ident: es0348703b00008/es0348703b00008_1 publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(98)00151-X – volume: 33 start-page: 2675 year: 1999 ident: es0348703b00017/es0348703b00017_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es981241y – volume: 32 start-page: 793 year: 1960 ident: es0348703b00028/es0348703b00028_1 publication-title: Anal. Chem. doi: 10.1021/ac60163a017 – volume: 64 start-page: 3098 year: 2000 ident: es0348703b00015/es0348703b00015_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(00)00397-5 – volume: 60 start-page: 199 year: 2002 ident: es0348703b00025/es0348703b00025_1 publication-title: Appl. Microbiol. Biotechnol. – volume: 52 start-page: 875 year: 1988 ident: es0348703b00007/es0348703b00007_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(88)90357-2 – volume-title: EPA/600/3−91/021 year: 1991 ident: es0348703b00014/es0348703b00014_1 – volume: 37 start-page: 1858 year: 2003 ident: es0348703b00016/es0348703b00016_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es0210042 – ident: es0348703b00032/es0348703b00032_1 – volume: 58 start-page: 856 year: 1992 ident: es0348703b00010/es0348703b00010_1 publication-title: Appl. Environ. Microbiol. – volume: 64 start-page: 4609 year: 1998 ident: es0348703b00012/es0348703b00012_1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.11.4607-4609.1998 – volume: 42 start-page: 569 year: 1978 ident: es0348703b00006/es0348703b00006_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(78)90001-7 – volume: 34 start-page: 538 year: 2000 ident: es0348703b00023/es0348703b00023_1 publication-title: Water Res. doi: 10.1016/S0043-1354(99)00147-5 – volume: 33 start-page: 3458 year: 1999 ident: es0348703b00029/es0348703b00029_1 publication-title: Water Res. doi: 10.1016/S0043-1354(99)00024-X – volume: 63 start-page: 4391 year: 1997 ident: es0348703b00018/es0348703b00018_1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.63.11.4385-4391.1997 |
SSID | ssj0002308 |
Score | 2.1439314 |
Snippet | Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in... Hexavalent uranium [U(VI)l was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in... |
SourceID | proquest pubmed pascalfrancis crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2067 |
SubjectTerms | Absorption Applied sciences Bacteria Biofilms Biological and medical sciences Biological treatment of waters Biotechnology Chemical Precipitation Desulfovibrio desulfuricans Earth sciences Earth, ocean, space Electrons Engineering and environment geology. Geothermics Environment and pollution Exact sciences and technology Fundamental and applied biological sciences. Psychology Groundwaters Hydrogen Sulfide - analysis Industrial applications and implications. Economical aspects Natural water pollution Pollution Pollution, environment geology Radioactive wastes Solubility Sulfates - metabolism Sulfur-Reducing Bacteria - physiology Uranium Uranium - chemistry Uranium - isolation & purification Wastes Water Pollutants, Radioactive - isolation & purification Water pollution Water treatment and pollution |
Title | Uranium Immobilization by Sulfate-Reducing Biofilms |
URI | http://dx.doi.org/10.1021/es0348703 https://api.istex.fr/ark:/67375/TPS-959C5GM7-1/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/15112808 https://www.proquest.com/docview/230138435 https://www.proquest.com/docview/16175096 https://www.proquest.com/docview/71876936 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dT9swED8heNke2MYGFDYWbWjaSyCJY8d5ZB0IkEATpVLfItuxpQraTqSR2P763eWrRaPbcy7-ON_5fpbPvwM4dBajnAq4b9LI-XHKtK8VD3zE9i6QVuRhRV98dS3Oh_HliI_W4POKG_woPLZFwBBVE6PnRiRkQiesk_6g224RQ8u2TEHKxKilD1r-lUKPKZ6Eng3S4iOlQqoCteHqMharcWYVb85ewff21U6dZnJ3VM71kfn9N4njv6byGjYbvOmd1AbyBtbsdAteLrEQbsH26eKxG4o23l68BTbE4Y7LiXeBxkpJtPWTTU__8gblvUOU6t8Q8yu24n0bU-3vSfEOhment_1zvymy4Csu5NzH2BQllhONmxEKT5M8ty5OTW5kFFtFeZtMxNY5I0OrHc8D6RxznCmn8ahk2DasT2dTuwue0i7RhIdYHsZOxmnCEisTZnJrda7CHhzgKmSNkxRZdf8dhVmnlh58bRcoMw1FOVXKuH9O9FMn-rPm5XhO6Eu1yp2EerijRLaEZ7c_BlnK0z7HnSajkT0xg0WTXCC-FUkP9lu7WIwfLS9kEvFmDz52X9E76cpFTe2sxCkiQCSCndUSqH8qR4kSO7W5LfWNfiIDufc_te3Di0U-0XtYnz-U9gNCpbk-qFzlD6_oCj0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB71caAceLQUlkIbIYq4ZEniOHEOHMrSapc-hNhdaW_BdmypartF9UZQfkr_Sv8c4zy3qBWnSpwzcsYz4_FnefwNwFutcJfjHnVlEmg3TIhwBaeei9hee0xFmV_QFx8eRf1x-GVCJwtwVb-FQSUMjmSKS_yWXcD_oIxHEFx7daPqfXX5E49n5uPgM_pyOwj2dke9vlt1EHA5jdjMxcQbxIpajjIZcTwq0UzpMJGZZEGouC1KJFGotJbMV0LTzGNaE00J1wLPAZLguIuwjKAnsAe7nd6wyfII3VndHSEh0aRmLZpX1e540tzY8Zat837ZCkxu0Am67J5xN7wttrm9x3DdGKiobjnp5jPRlb__4o78Py34BB5V6NrZKZfDU1hQ01V4OMe5uArru-3TPhStcptZAzJGKx3nZ84Al6YtGS4fqDri0hnmpxoxufvN8tziKM6nY9vp_Mw8g_G9TGcdlqbnU_UCHC50LCz6I5kfahYmMYkVi4nMlBIZ9zuwiV5Iq5Rg0uK2P_DTxg0deF_HRSorQnbbF-T0NtE3jeiPkoXkNqF3RXA1EvzixJbtxTQdfR2mCU16FPNqajW7EX3tkDRCNB_FHdiow7HVHwPeJwzRdQe2mq-Yi-wFE5-q8xyniHDY0gndLYH2t803UeJ5GeVz_8aswDz28l9m24IH_dHhQXowONrfgJW2kuoVLM0ucvUaQeJMbBar1YHv9x3cfwCigG3n |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3dTtRAFD5BSIxeCKLoikBj1HhTbDuddnrhBS5sWFFCXDbZuzIznUkIsBC6jcLD-Cq-muf0bxcD8YrE655MZ87ffJM58x2At9bgLic97uoksG6YMOUqyT0Xsb31hIkyv6Qv_rYf7Q7DLyM-moNfzVsYnESOI-XlJT5F9UVma4YB_6PJPYYA22uaVe-Zqx94RMs_9bfRnu-CoLdz2N116y4CruSRmLiYfIPYcOIp05HE4xLPjA0TnWkRhEZSYSKLQmOtFr5RlmeesJZZzqRVeBbQDMd9AAt0PUiHu63uoM30CN9F0yEhYdGoYS6anSrtejq_sestkAF_UhWmzNEQtuqgcTfELbe63iL8bpVUVricbBYTtamv_-KP_H-1uARPapTtbFVh8RTmzHgZHs9wLy7Dys70iR-K1jkufwZsiJo6Ls6cPoYolQ5XD1UddeUMilOL2Nz9Tny3OIrz-Zg6np_lz2F4L8tZgfnx-di8BEcqGytCgSzzQyvCJGaxETHTmTEqk34H1tESaZ0a8rS89Q_8tDVDBz40vpHqmpid-oOc3ib6phW9qNhIbhN6XzpYKyEvT6h8L-bp4cEgTXjS5ZhfU5rZDQ-cDskjRPVR3IHVxiWn80en95lAlN2BjfYr5iS6aJJjc17gEhEWE63Q3RKof2rCiRIvKk-f-TdmB-GJV_9S2wY8PNjupV_7-3ur8GhaUPUa5ieXhVlDrDhR62XAOnB03779B7pIcGo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uranium+Immobilization+by+Sulfate-Reducing+Biofilms&rft.jtitle=Environmental+science+%26+technology&rft.au=Beyenal%2C+Haluk&rft.au=Sani%2C+Rajesh+K.&rft.au=Peyton%2C+Brent+M.&rft.au=Dohnalkova%2C+Alice+C.&rft.date=2004-04-01&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=38&rft.issue=7&rft.spage=2067&rft.epage=2074&rft_id=info:doi/10.1021%2Fes0348703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_es0348703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |