Linking landscape morphological complexity and sediment connectivity

ABSTRACT Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have...

Full description

Saved in:
Bibliographic Details
Published inEarth surface processes and landforms Vol. 38; no. 12; pp. 1457 - 1471
Main Authors Baartman, Jantiene E. M., Masselink, Rens, Keesstra, Saskia D., Temme, Arnaud J. A. M.
Format Journal Article
LanguageEnglish
Published Chichester Blackwell Publishing Ltd 30.09.2013
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0197-9337
1096-9837
DOI10.1002/esp.3434

Cover

Loading…
Abstract ABSTRACT Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V‐shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity–complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non‐linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V‐shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V-shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity-complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non-linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V-shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V-shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity-complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non-linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V-shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright [copy 2013 John Wiley & Sons, Ltd.
Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V‐shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity–complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non‐linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V‐shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright © 2013 John Wiley & Sons, Ltd.
ABSTRACT Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V‐shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity–complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non‐linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V‐shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright © 2013 John Wiley & Sons, Ltd.
Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V-shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity–complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non-linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V-shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures
Author Masselink, Rens
Keesstra, Saskia D.
Temme, Arnaud J. A. M.
Baartman, Jantiene E. M.
Author_xml – sequence: 1
  givenname: Jantiene E. M.
  surname: Baartman
  fullname: Baartman, Jantiene E. M.
  email: Jantiene.baartman@wur.nl
  organization: Soil Physics and Land Management Group, Wageningen University, Wageningen, The Netherlands
– sequence: 2
  givenname: Rens
  surname: Masselink
  fullname: Masselink, Rens
  organization: Soil Physics and Land Management Group, Wageningen University, Wageningen, The Netherlands
– sequence: 3
  givenname: Saskia D.
  surname: Keesstra
  fullname: Keesstra, Saskia D.
  organization: Soil Physics and Land Management Group, Wageningen University, Wageningen, The Netherlands
– sequence: 4
  givenname: Arnaud J. A. M.
  surname: Temme
  fullname: Temme, Arnaud J. A. M.
  organization: Soil Geography and Landscape Group, Wageningen University, Wageningen, The Netherlands
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28338177$$DView record in Pascal Francis
BookMark eNqFkV9vFCEUxYmpidtq4keYxJj4MlsYGC7jm9Zaazb-rfGRMBRWWhamMGO7314m3TTaaHy6BH7n5nDOPtoLMRiEnhK8JBg3hyYPS8ooe4AWBHe87gSFPbTApIO6oxQeof2cLzAmhIlugd6sXLh0YV15Fc6zVoOpNjENP6KPa6eVr3TcDN7cuHFbFaLK5txtTBjLfQhGj-5neXmMHlrls3mymwfo29vjs6N39erjyenRq1WtWg6sZoZbykFpK4TVfWNbwVSHbQtctYZQhsvJEo0JbURLWug6IJz2PdbQ8d7SA_Tydu-1WptQXJsgg0raZRmVk971SaWtvJ6SDH4ew9RnyUoaDRTxi1vxkOLVZPIoNy5r48vHTZyyJJw1DTAC_P8oYwJYQwEX9Nk99CJOKZQUCkWhwYxQUajnO0qVjL1NKsymh-Q2s-FGUCoI_OZRp5hzMvYOIVjO9cpSr5zrLejyHqrdqEYXw5iU838T1LvwnDfbfy6Wx18__cm7PJqbO16lS8mBQiu_fziR_DWsPn8hZ_I9_QW9P8aQ
CODEN ESPLDB
CitedBy_id crossref_primary_10_1016_j_geomorph_2020_107455
crossref_primary_10_1016_j_scitotenv_2019_01_118
crossref_primary_10_1016_j_envpol_2017_12_003
crossref_primary_10_1016_j_geomorph_2016_08_001
crossref_primary_10_1002_hyp_70093
crossref_primary_10_1002_ldr_2526
crossref_primary_10_1002_ldr_5519
crossref_primary_10_1016_j_scitotenv_2018_10_158
crossref_primary_10_1016_j_catena_2018_02_019
crossref_primary_10_1016_j_scitotenv_2016_07_016
crossref_primary_10_1002_ldr_2641
crossref_primary_10_1016_j_geomorph_2016_07_033
crossref_primary_10_1016_j_scitotenv_2020_140385
crossref_primary_10_1007_s11368_024_03945_0
crossref_primary_10_1007_s11629_022_7709_7
crossref_primary_10_1016_j_ecolind_2018_11_039
crossref_primary_10_1016_j_geomorph_2023_108665
crossref_primary_10_1016_j_geomorph_2016_03_014
crossref_primary_10_1016_j_geomorph_2016_05_027
crossref_primary_10_1016_j_scitotenv_2019_01_009
crossref_primary_10_1016_j_catena_2016_08_023
crossref_primary_10_1016_j_scitotenv_2016_01_100
crossref_primary_10_1016_j_geoderma_2023_116622
crossref_primary_10_1177_0309133320979897
crossref_primary_10_1002_ldr_2512
crossref_primary_10_1002_ldr_3964
crossref_primary_10_1016_j_cageo_2017_10_009
crossref_primary_10_1016_j_scitotenv_2019_134770
crossref_primary_10_1002_2015JF003607
crossref_primary_10_1002_ldr_2517
crossref_primary_10_1016_j_scitotenv_2023_162679
crossref_primary_10_1002_ldr_2352
crossref_primary_10_3390_land12081591
crossref_primary_10_1109_JSTARS_2022_3161667
crossref_primary_10_1016_j_geomorph_2018_11_004
crossref_primary_10_3390_su152015042
crossref_primary_10_1007_s10668_023_03942_2
crossref_primary_10_1016_j_earscirev_2015_05_001
crossref_primary_10_1016_j_scitotenv_2016_09_036
crossref_primary_10_1007_s11368_015_1235_y
crossref_primary_10_1007_s11355_021_00448_9
crossref_primary_10_1016_j_geomorph_2023_108724
crossref_primary_10_1177_0309133317714972
crossref_primary_10_1016_j_catena_2016_08_015
crossref_primary_10_1080_10106049_2016_1143532
crossref_primary_10_1002_ldr_2503
crossref_primary_10_1002_mrc_4907
crossref_primary_10_1016_j_still_2024_106145
crossref_primary_10_1002_ldr_2629
crossref_primary_10_1016_j_catena_2013_05_003
crossref_primary_10_3390_w14193055
crossref_primary_10_1029_2023WR035067
crossref_primary_10_1016_j_geoderma_2021_115566
crossref_primary_10_1016_j_geomorph_2014_08_012
crossref_primary_10_1002_esp_4295
crossref_primary_10_1016_j_scitotenv_2016_01_182
crossref_primary_10_1016_j_geoderma_2014_06_028
crossref_primary_10_1002_esp_4434
crossref_primary_10_1016_j_landusepol_2015_06_001
crossref_primary_10_1080_02723646_2020_1743613
crossref_primary_10_1007_s11629_018_4956_8
crossref_primary_10_1016_j_geomorph_2025_109726
crossref_primary_10_1002_esp_5805
crossref_primary_10_1016_j_catena_2014_11_003
crossref_primary_10_1016_j_earscirev_2020_103218
crossref_primary_10_1016_j_envres_2022_115050
crossref_primary_10_1029_2020JF006054
crossref_primary_10_21814_physisterrae_4098
crossref_primary_10_1016_j_geoderma_2016_02_004
crossref_primary_10_1016_j_catena_2019_104354
crossref_primary_10_1016_j_scitotenv_2019_04_332
crossref_primary_10_1016_j_catena_2024_108474
crossref_primary_10_1016_j_earscirev_2025_105091
crossref_primary_10_1016_j_geomorph_2014_12_024
crossref_primary_10_1002_rra_4109
crossref_primary_10_3390_w14182781
crossref_primary_10_1007_s12665_017_6861_9
crossref_primary_10_1016_j_jaridenv_2020_104418
crossref_primary_10_1016_j_catena_2017_05_021
crossref_primary_10_3390_w12071857
crossref_primary_10_1002_ldr_2722
crossref_primary_10_1016_j_geomorph_2018_02_014
crossref_primary_10_1016_j_jhydrol_2016_11_027
crossref_primary_10_1029_2023WR035162
crossref_primary_10_1016_j_geomorph_2025_109679
crossref_primary_10_1016_j_scitotenv_2017_03_291
crossref_primary_10_1016_j_geomorph_2020_107531
crossref_primary_10_1080_15320383_2024_2306486
crossref_primary_10_1002_esp_4254
crossref_primary_10_1002_esp_4377
crossref_primary_10_1038_s41467_023_42384_2
crossref_primary_10_1007_s41109_018_0067_2
crossref_primary_10_1002_esp_5507
crossref_primary_10_1002_hyp_15202
crossref_primary_10_1016_j_scitotenv_2016_02_101
crossref_primary_10_1002_hyp_11401
crossref_primary_10_1016_j_scitotenv_2020_144255
crossref_primary_10_1002_hyp_15042
crossref_primary_10_1016_j_scitotenv_2020_143162
crossref_primary_10_1016_j_catena_2021_105688
crossref_primary_10_1016_j_geomorph_2020_107300
crossref_primary_10_1016_j_scitotenv_2020_139627
crossref_primary_10_1002_ldr_2828
crossref_primary_10_1007_s11368_023_03491_1
crossref_primary_10_1016_j_scitotenv_2019_03_461
crossref_primary_10_3390_w15132397
crossref_primary_10_1002_esp_5213
crossref_primary_10_1016_j_catena_2021_105848
crossref_primary_10_1002_ldr_2820
crossref_primary_10_1002_ldr_2308
crossref_primary_10_1177_0309133316658615
crossref_primary_10_1002_esp_3714
crossref_primary_10_1016_j_scitotenv_2016_12_147
crossref_primary_10_1016_j_geomorph_2016_05_004
crossref_primary_10_1002_esp_4808
crossref_primary_10_1016_j_catena_2018_09_023
crossref_primary_10_1016_j_catena_2017_09_025
crossref_primary_10_1002_esp_4096
crossref_primary_10_5194_esurf_5_253_2017
crossref_primary_10_1002_esp_4130
crossref_primary_10_1016_j_catena_2020_104880
crossref_primary_10_3390_hydrology8010028
crossref_primary_10_1016_j_jenvman_2017_07_037
crossref_primary_10_3390_land10070667
crossref_primary_10_1002_esp_5048
crossref_primary_10_1016_j_enggeo_2022_106947
crossref_primary_10_1002_ldr_2535
crossref_primary_10_1111_ejss_70034
crossref_primary_10_1002_esp_3547
crossref_primary_10_5194_esurf_8_661_2020
crossref_primary_10_1002_ldr_2531
crossref_primary_10_1016_j_geomorph_2020_107281
crossref_primary_10_3390_app13137648
crossref_primary_10_1016_j_scitotenv_2020_139409
Cites_doi 10.2134/jpa1989.0290
10.1016/j.agwat.2010.05.024
10.1016/j.geomorph.2006.01.044
10.1016/j.jhydrol.2011.05.027
10.1002/hyp.6957
10.1017/S0016774600001633
10.1002/hyp.7214
10.1016/j.catena.2009.02.021
10.1016/S0012-8252(99)00046-X
10.1016/j.geomorph.2006.10.024
10.1016/S0037-0738(03)00174-X
10.1111/j.1468-0459.2012.00476.x
10.1002/esp.1315
10.1016/S0166-2481(08)00004-4
10.1016/j.catena.2009.06.007
10.5194/nhess-8-323-2008
10.1029/2001GL013554
10.1016/j.geomorph.2009.02.030
10.1016/j.geomorph.2012.10.033
10.1007/s00267-010-9585-0
10.1016/j.jaridenv.2010.10.005
10.1016/S0169-555X(01)00174-X
10.1016/j.geomorph.2012.10.015
10.1016/j.geomorph.2006.06.039
10.1002/esp.3208
10.1016/j.catena.2009.07.001
10.1016/j.envsoft.2005.04.021
10.1002/hyp.3360080405
10.1016/0098-3004(91)90048-I
10.2475/ajs.263.2.110
10.1002/esp.441
10.1016/j.geomorph.2010.03.006
10.1016/j.geomorph.2010.10.010
10.1002/(SICI)1099-1085(19981030)12:13/14<2029::AID-HYP717>3.0.CO;2-O
10.1002/esp.1846
10.1002/esp.2063
10.2136/sssaj2002.1610
10.2307/622210
10.1130/B25567.1
10.1016/j.geomorph.2008.04.028
10.1016/j.catena.2008.07.006
10.1002/clen.201000016
10.1111/j.1475-4762.2006.00671.x
10.1002/hyp.7376
10.1111/j.1749-8198.2011.00445.x
10.1002/esp.1863
10.1002/rra.882
10.1002/esp.1531
10.1002/esp.3242
10.2478/v10104-011-0025-4
10.1016/S0098-3004(00)00134-5
10.1046/j.1365-3121.2003.00469.x
10.1016/S0341-8162(01)00162-X
10.1002/esp.1758
10.1016/j.jnc.2010.05.002
10.1016/j.advwatres.2010.12.003
10.1002/hyp.7115
10.1002/esp.2134
10.1016/j.geomorph.2011.08.020
10.1029/2007WR006367
10.1109/TGRS.2010.2053546
10.1016/j.geomorph.2008.07.006
10.1002/hyp.3360050106
10.1177/0309133307076485
10.1016/j.geomorph.2006.06.036
10.1002/hyp.8262
10.1016/j.geomorph.2012.05.2007
10.1016/S0169-555X(03)00131-4
10.1016/j.catena.2006.07.007
10.1016/j.geomorph.2011.12.042
10.1016/j.catena.2003.08.002
10.1002/1096-9837(200008)25:9<1025::AID-ESP116>3.0.CO;2-Z
10.1016/0921-8181(93)90009-D
10.1016/j.cageo.2005.08.001
10.1086/627137
10.5194/hess-13-1823-2009
10.1130/0016-7606(1992)104<1364:NMOTDO>2.3.CO;2
10.1016/j.geomorph.2008.03.004
10.1016/j.geomorph.2005.09.013
10.1002/esp.318
10.1002/rra.880
10.1016/j.gloplacha.2009.08.001
10.1016/j.geomorph.2010.07.027
10.1002/hyp.6313
10.1002/esp.2042
10.1002/hyp.7871
10.1016/0022-1694(83)90217-2
10.1029/2000WR900065
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Tous droits réservés © Prodig - Bibliographie Géographique Internationale (BGI), 2014
Wageningen University & Research
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: Tous droits réservés © Prodig - Bibliographie Géographique Internationale (BGI), 2014
– notice: Wageningen University & Research
DBID BSCLL
AAYXX
CITATION
IQODW
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
7QH
H97
QVL
DOI 10.1002/esp.3434
DatabaseName Istex
CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
NARCIS:Publications
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
DatabaseTitleList Civil Engineering Abstracts
Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1096-9837
EndPage 1471
ExternalDocumentID oai_library_wur_nl_wurpubs_443427
3083481591
28338177
10_1002_esp_3434
ESP3434
ark_67375_WNG_6B7LQR1T_J
Genre article
GrantInformation_xml – fundername: NWO
  funderid: 82201004
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XKC
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
31~
8W4
AAPBV
ABEFU
ABEML
ABHUG
ABTAH
ABWRO
ACSCC
ACSMX
ACXME
ADAWD
ADDAD
AFFNX
AFVGU
AGJLS
AI.
DDYGU
FEDTE
HF~
HVGLF
IPNFZ
IQODW
M62
OHT
RIWAO
RJQFR
SAMSI
VH1
ZY4
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
7QH
H97
02
0R
31
3N
53G
ABUFD
ADKFC
DZ
GA
HZ
IA
NF
P4A
QVL
RIG
SPW
UNR
UQL
WT
X
Y3
ID FETCH-LOGICAL-a5674-4e6f367acf88fcb2f584a90f576a5e1340576f1c013285157997163bb0c796bf3
IEDL.DBID DR2
ISSN 0197-9337
IngestDate Tue Jan 05 18:10:26 EST 2021
Fri Jul 11 05:57:47 EDT 2025
Fri Jul 11 03:16:43 EDT 2025
Sun Jul 13 03:55:29 EDT 2025
Fri Nov 25 06:05:14 EST 2022
Thu Apr 24 23:02:26 EDT 2025
Tue Jul 01 02:51:58 EDT 2025
Wed Jan 22 16:39:39 EST 2025
Wed Oct 30 09:49:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Sedimentology
Simulation
Slope gradient
Watershed
Earth surface processes
Digital elevation model
Connectivity
Erosion control
River bed
Fluvial erosion
Environmental management
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5674-4e6f367acf88fcb2f584a90f576a5e1340576f1c013285157997163bb0c796bf3
Notes ark:/67375/WNG-6B7LQR1T-J
istex:8B762907E2363DC1635F3D18C5A6926477A8491E
NWO - No. 82201004
ArticleID:ESP3434
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
PQID 1437204138
PQPubID 866381
PageCount 15
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_443427
proquest_miscellaneous_1642274176
proquest_miscellaneous_1448742370
proquest_journals_1437204138
pascalfrancis_primary_28338177
crossref_primary_10_1002_esp_3434
crossref_citationtrail_10_1002_esp_3434
wiley_primary_10_1002_esp_3434_ESP3434
istex_primary_ark_67375_WNG_6B7LQR1T_J
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 30 September 2013
PublicationDateYYYYMMDD 2013-09-30
PublicationDate_xml – month: 09
  year: 2013
  text: 30 September 2013
  day: 30
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
– name: Bognor Regis
PublicationSubtitle The Journal of the British Geomorphological Research Group
PublicationTitle Earth surface processes and landforms
PublicationTitleAlternate Earth Surf. Process. Landforms
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Cavalli M, Trevisani S, Comiti F, Marchi L. 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188: 31-41. DOI: 10.1016/j.geomorph.2012.05.2007
Grohmann CH, Smith MJ, Riccomini C. 2011. Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland. Geoscience and Remote Sensing, IEEE Transactions on 49: 1200-1213.
Reaney SM, Bracken LJ, Kirkby MJ. In press. The importance of surface controls on overland flow connectivity in semi-arid environments: results from a numerical experimental approach. Hydrological Processes. DOI: 10.1016/j.geomorph.2012.10.033
Veldkamp A, van den Berg MW. 1993. Three-dimensional modelling of Quaternary fluvial dynamics in a climo-tectonic dependent system. A case study of the Maas record (Maastricht, The Netherlands). Global and Planetary Change 8: 203-218.
Walling DE. 1983. The sediment delivery problem. Journal of Hydrology 65: 209-237.
Appels WM, Bogaart PW, van der Zee SEATM. 2011. Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity. Advances in Water Resources 34: 303-313.
Hengl T, Reuter HI. 2009. Geomorphometry - Concepts, Software, Applications. Elsevier: Amsterdam.
Schoorl JM, Sonneveld MPW, Veldkamp A. 2000. Three-dimensional landscape process modelling: the effect of DEM resolution. Earth Surface Processes and Landforms 25: 1025-1034.
de Vente J, Poesen J, Arabkhedri M, Verstraeten G. 2007. The sediment delivery problem revisited. Progress in Physical Geography 31: 155-178.
Wainwright J, Turnbull L, Ibrahim TG, Lexartza-Artza I, Thornton SF, Brazier RE. 2011. Linking environmental regimes, space and time: interpretations of structural and functional connectivity. Geomorphology 126: 387-404.
Fryirs KA, Brierley GJ, Preston NJ, Spencer J. 2007b. Catchment-scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology 84: 297-316.
Lexartza-Artza I, Wainwright J. 2011. Making connections: changing sediment sources and sinks in an upland catchment. Earth Surface Processes and Landforms 36: 1090-1104.
Mayor ÁG, Bautista S, Small EE, Dixon M, Bellot J. 2008. Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: a tool for assessing potential water and soil losses in drylands. Water Resource Research 44: W10423.
Mueller EN, Francke T, Batalla RJ, Bronstert A. 2009. Modelling the effects of land-use change on runoff and sediment yield for a meso-scale catchment in the southern Pyrenees. Catena 79: 288-296.
Marden M, Arnold G, Gomez B, Rowan D. 2005. Pre- and post-reforestation gully development in Mangatu Forest, East Coast, North Island, New Zealand. River Research and Applications 21: 757-771.
Lesschen JP, Schoorl JM, Cammeraat LH. 2009. Modelling runoff and erosion for a semi-arid catchment using a multi-scale approach based on hydrological connectivity. Geomorphology 109: 174-183.
Liébault F, Gomez B, Page M, Marden M, Peacock D, Richard D, Trotter CM. 2005. Land-use change, sediment production and channel response in upland regions. River Research and Applications 21: 739-756.
Molina A, Govers G, Van Den Putte A, Poesen J, Vanacker V. 2009. Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration: field experiments and numerical modelling. Hydrology and Earth System Sciences 13: 1823-1836.
Shreve RL. 1966. Statistical law of stream number. Journal of Geology 74: 17-37.
Coulthard TJ, Macklin MG, Kirkby MJ. 2002. A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms 27: 269-288.
Schmidt K-H, Morche D. 2006. Sediment output and effective discharge in two small high mountain catchments in the Bavarian Alps, Germany. Geomorphology 80: 131-145.
Keesstra SD, van Dam O, Verstraeten G, van Huissteden J. 2009b. Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena 78: 60-71.
Pavanelli D, Cavazza C. 2010. River suspended sediment control through riparian vegetation: a method to detect the functionality of riparian vegetation. Clean - Soil Air, Water 38: 1039-1046.
Temme AJAM, Veldkamp A. 2009. Multi-process Late Quaternary landscape evolution modelling reveals lags in climate response over small spatial scales. Earth Surface Processes and Landforms 34: 573-589.
Theler D, Reynard E, Lambiel C, Bardou E. 2010. The contribution of geomorphological mapping to sediment transfer evaluation in small alpine catchments. Geomorphology 124: 113-123.
Deshmukh DS, Chaube UC, Tignath S, Tripathi SK. 2010. Morphological analysis of sher river basin using GIS for identification of erosion-prone areas. Ecohydrology and Hydrobiology 10: 307-314.
Smith HG, Dragovich D. 2008. Sediment budget analysis of slope-channel coupling and in-channel sediment storage in an upland catchment, southeastern Australia. Geomorphology 101: 643-654.
Boix-Fayos C, De Vente J, Martínez-Mena M, Barberá GG, Castillo V. 2008. The impact of land use change and check-dams on catchment sediment yield. Hydrological Processes 22: 4922-4935.
Clevis Q, de Boer P, Wachter M. 2003. Numerical modelling of drainage basin evolution and three-dimensional alluvial fan stratigraphy. Sedimentary Geology 163: 85-110.
Claessens L, Schoorl JM, Veldkamp A. 2007. Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: an application for northern New Zealand. Geomorphology 87: 16-27.
Temme AJAM, Schoorl JM, Veldkamp A. 2006. Algorithm for dealing with depressions in dynamic landscape evolution models. Computers & Geosciences 32: 452-461.
Gooseff MN, McKnight DM, Doran P, Fountain AG, Lyons WB. 2011. Hydrological connectivity of the landscape of the McMurdo Dry Valleys, Antarctica. Geography Compass 5: 666-681.
Holmgren P. 1994. Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrological Processes 8: 327-334.
Boyle M, Frankenburger WT, Stolzy LH. 1989. The influence of organic matter on soil aggregation and water infiltration. Journal of Production Agriculture 2: 290-299.
Hooke JM. 2006. Human impacts on fluvial systems in the Mediterranean region. Geomorphology 79: 311-335.
Kirkby MJ. 2010. Distance, time and scale in soil erosion processes. Earth Surface Processes and Landforms 35: 1621-1623.
Kuo C-W, Brierley GJ. 2013. The influence of landscape configuration upon patterns of sediment storage in a highly connected river system. Geomorphology 180-181: 255-266.
Harvey AM. 2002. Effective timescales of coupling within fluvial systems. Geomorphology 44: 175-201.
Freeman TG. 1991. Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences 17: 413-422.
Leguédois S, Ellis TW, Hairsine PB, Tongway DJ. 2008. Sediment trapping by a tree belt: processes and consequences for sediment delivery. Hydrological Processes 22: 3523-3534.
Michaelides K, Chappell A. 2009. Connectivity as a concept for characterising hydrological behaviour. Hydrological Processes 23: 517-522.
Rodríguez-Caballero E, Cantón Y, Chamizo S, Afana A, Solé-Benet A. 2012. Effects of biological soil crusts on surface roughness and implications for runoff and erosion. Geomorphology 145-146: 81-89.
Schoorl JM, Veldkamp A, Bouma J. 2002. Modeling water and soil redistribution in a dynamic landscape context. Soil Science Society of America Journal 66: 1610-1619.
Pan C, Ma L, Shangguan Z, Ding A. 2011. Determining the sediment trapping capacity of grass filter strips. Journal of Hydrology 405: 209-216.
Thompson CJ, Croke JC, Purvis-Smith D. 2011. Floodplain sediment disconnectivity at a tributary junction and valley constriction site in the Fitzroy River basin, Queensland, Australia. Geomorphology 125: 293-304.
Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A. 2002. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophysical Research Letters 29: 1536.
Sandercock PJ, Hooke JM. 2011. Vegetation effects on sediment connectivity and processes in an ephemeral channel in SE Spain. Journal of Arid Environments 75: 239-254.
Buis E, Veldkamp A. 2008. Modelling dynamic water redistribution patterns in arid catchments in the Negev Desert of Israel. Earth Surface Processes and Landforms 33: 107-122.
Casalí J, Giménez R, Díez J, Álvarez-Mozos J, Del Valle, de Lersundi J, Goñi M, Campo MA, Chahor Y, Gastesi R, López J. 2010. Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain). Agricultural Water Management 97: 1683-1694.
Rosenfeld J, Hogan D, Palm D, Lundquist H, Nilsson C, Beechie TJ. 2011. Contrasting landscape influences on sediment supply and stream restoration priorities in northern Fennoscandia (Sweden and Finland) and Coastal British Columbia. Environmental Management 47: 28-39.
López-Tarazón JA, Batalla RJ, Vericat D, Francke T. 2012. The sediment budget of a highly dynamic mesoscale catchment: the River Isábena. Geomorphology 138: 15-28.
Smith MW, Cox NJ, Bracken LJ. 2011. Terrestrial laser scanning soil surfaces: a field methodology to examine soil surface roughness and overland flow hydraulics. Hydrological Processes 25: 842-860.
Cavalli M, Marchi L. 2008. Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR. Natural Hazards and Earth System Science 8: 323-333.
Lexartza-Artza I, Wainwright J. 2009. Hydrological connectivity: linking concepts with practical implications. Catena 79: 146-152.
Keesstra SD, Kondrlova E, Czajka A, Seeger M, Maroulis J. 2012. Assessing riparian zone impacts on water and sediment movement: a new approach. Geologie en Mijnbouw/Netherlands Journal of Geosciences 91: 245-255.
Fryirs KA, Brierley GJ, Preston NJ, Kasai M. 2007a. Buffers, barriers and blankets:
1993; 8
2010; 10
2010; 97
2006; 31
1991; 17
2013; 180–181
2006; 79
2006; 32
2006; 38
1999; 48
1965; 263
2009; 111
2003; 15
2008; 8
2005; 21
1972
2008; 33
1971
2008; 75
2007a; 70
2009a; 34
2007; 31
2008; 101
2011; 19
2003; 55
2011; 126
2007b; 84
2011; 125
2009; 13
2011; 405
2006; 21
2002; 46
2002; 44
1986
1983; 65
1979; 4
2012; 145–146
2008; 22
2011; 25
2012; 26
2007; 21
2012; 138
1998; 12
2003; 163
2009; 23
1989; 2
2009; 69
2010; 38
2010; 35
2000; 25
1992; 104
2005; 117
2010; 124
2009
2011; 75
2013; 188
2007; 90
2011; 34
2001; 27
2012; 37
2011; 36
2011; 5
2013; 182
1966; 74
1991; 5
2002; 27
2012; 94
2009; 34
1994; 8
2012; 91
2009; 79
2006; 80
2009b; 78
2002; 29
2013; 38
2000; 36
2004; 57
2002; 66
2008; 44
2011; 47
2007; 87
2011; 49
2009; 109
2009; 103
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_90_1
e_1_2_7_73_1
e_1_2_7_94_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
Foster GR (e_1_2_7_22_1) 1972
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
Wood J (e_1_2_7_95_1) 2009
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Hengl T (e_1_2_7_35_1) 2009
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_30_1
Kirkby MJ (e_1_2_7_43_1) 1971
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
Kirkby MJ (e_1_2_7_44_1) 1986
References_xml – reference: Lu H, Moran CJ, Prosser IP. 2006. Modelling sediment delivery ratio over the Murray Darling Basin. Environmental Modelling and Software 21: 1297-1308.
– reference: Pan C, Ma L, Shangguan Z, Ding A. 2011. Determining the sediment trapping capacity of grass filter strips. Journal of Hydrology 405: 209-216.
– reference: Liébault F, Gomez B, Page M, Marden M, Peacock D, Richard D, Trotter CM. 2005. Land-use change, sediment production and channel response in upland regions. River Research and Applications 21: 739-756.
– reference: Temme AJAM, Veldkamp A. 2009. Multi-process Late Quaternary landscape evolution modelling reveals lags in climate response over small spatial scales. Earth Surface Processes and Landforms 34: 573-589.
– reference: Boyle M, Frankenburger WT, Stolzy LH. 1989. The influence of organic matter on soil aggregation and water infiltration. Journal of Production Agriculture 2: 290-299.
– reference: Sandercock PJ, Hooke JM. 2011. Vegetation effects on sediment connectivity and processes in an ephemeral channel in SE Spain. Journal of Arid Environments 75: 239-254.
– reference: Thompson CJ, Croke JC, Purvis-Smith D. 2011. Floodplain sediment disconnectivity at a tributary junction and valley constriction site in the Fitzroy River basin, Queensland, Australia. Geomorphology 125: 293-304.
– reference: Deshmukh DS, Chaube UC, Tignath S, Tripathi SK. 2010. Morphological analysis of sher river basin using GIS for identification of erosion-prone areas. Ecohydrology and Hydrobiology 10: 307-314.
– reference: Roering JJ, Kirchner JW, Dietrich WE. 2005. Characterizing structural and lithologic controls on deep-seated landsliding: implications for topographic relief and landscape evolution in the Oregon Coast Range, USA. Geological Society of America Bulletin 117: 654-668.
– reference: Lesschen JP, Schoorl JM, Cammeraat LH. 2009. Modelling runoff and erosion for a semi-arid catchment using a multi-scale approach based on hydrological connectivity. Geomorphology 109: 174-183.
– reference: Cavalli M, Marchi L. 2008. Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR. Natural Hazards and Earth System Science 8: 323-333.
– reference: Leguédois S, Ellis TW, Hairsine PB, Tongway DJ. 2008. Sediment trapping by a tree belt: processes and consequences for sediment delivery. Hydrological Processes 22: 3523-3534.
– reference: Rosenfeld J, Hogan D, Palm D, Lundquist H, Nilsson C, Beechie TJ. 2011. Contrasting landscape influences on sediment supply and stream restoration priorities in northern Fennoscandia (Sweden and Finland) and Coastal British Columbia. Environmental Management 47: 28-39.
– reference: Shreve RL. 1966. Statistical law of stream number. Journal of Geology 74: 17-37.
– reference: Hooke JM. 2006. Human impacts on fluvial systems in the Mediterranean region. Geomorphology 79: 311-335.
– reference: Temme AJAM, Schoorl JM, Veldkamp A. 2006. Algorithm for dealing with depressions in dynamic landscape evolution models. Computers & Geosciences 32: 452-461.
– reference: Fryirs KA, Brierley GJ, Preston NJ, Kasai M. 2007a. Buffers, barriers and blankets: the (dis)connectivity of catchment-scale sediment cascades. Catena 70: 49-67.
– reference: Poeppl RE, Keiler M, Von Elverfeldt K, Zweimueller I, Glade T. 2012. The influence of riparian vegetation cover on diffuse lateral sediment connectivity and biogeomorphic processes in a medium-sized agricultural catchment, Austria. Geografiska Annaler, Series A: Physical Geography 94: 511-529.
– reference: Puigdefabregas J, Sole A, Gutierrez L, del Barrio G, Boer M. 1999. Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in southeast Spain. Earth-Science Reviews 48: 39-70.
– reference: Schumm SA, Lichty RW. 1965. Time, space, and causality in geomorphology. American Journal of Science 263: 110-119.
– reference: Lexartza-Artza I, Wainwright J. 2011. Making connections: changing sediment sources and sinks in an upland catchment. Earth Surface Processes and Landforms 36: 1090-1104.
– reference: Kirkby MJ. 2010. Distance, time and scale in soil erosion processes. Earth Surface Processes and Landforms 35: 1621-1623.
– reference: Holmgren P. 1994. Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrological Processes 8: 327-334.
– reference: Kuo C-W, Brierley GJ. 2013. The influence of landscape configuration upon patterns of sediment storage in a highly connected river system. Geomorphology 180-181: 255-266.
– reference: Gumiere SJ, Le Bissonnais Y, Raclot D, Cheviron B. 2011. Vegetated filter effects on sedimentological connectivity of agricultural catchments in erosion modelling: a review. Earth Surface Processes and Landforms 36: 3-19.
– reference: Kirkby M, Bracken L, Reaney S. 2002. The influence of land use, soils and topography on the delivery of hillslope runoff to channels in SE Spain. Earth Surface Processes and Landforms 27: 1459-1473.
– reference: Vieira DAN, Dabney SM. 2012. Two-dimensional flow patterns near contour grass hedges. Hydrological Processes 26: 2225-2234.
– reference: Coulthard TJ, Wiel MJVD. 2006. A cellular model of river meandering. Earth Surface Processes and Landforms 31: 123-132.
– reference: Keesstra SD, Kondrlova E, Czajka A, Seeger M, Maroulis J. 2012. Assessing riparian zone impacts on water and sediment movement: a new approach. Geologie en Mijnbouw/Netherlands Journal of Geosciences 91: 245-255.
– reference: Schoorl JM, Boix Fayos C, de Meijer RJ, van der Graaf ER, Veldkamp A. 2004. The 137Cs technique applied to steep Mediterranean slopes (Part II): landscape evolution and model calibration. Catena 57: 35-54.
– reference: Gooseff MN, McKnight DM, Doran P, Fountain AG, Lyons WB. 2011. Hydrological connectivity of the landscape of the McMurdo Dry Valleys, Antarctica. Geography Compass 5: 666-681.
– reference: Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A. 2002. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophysical Research Letters 29: 1536.
– reference: Michaelides K, Chappell A. 2009. Connectivity as a concept for characterising hydrological behaviour. Hydrological Processes 23: 517-522.
– reference: Bracken LJ, Croke J. 2007. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrological Processes 21: 1749-1763.
– reference: Keesstra SD, van Dam O, Verstraeten G, van Huissteden J. 2009b. Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena 78: 60-71.
– reference: Freeman TG. 1991. Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences 17: 413-422.
– reference: Fryirs KA, Brierley GJ, Preston NJ, Spencer J. 2007b. Catchment-scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology 84: 297-316.
– reference: Theler D, Reynard E, Lambiel C, Bardou E. 2010. The contribution of geomorphological mapping to sediment transfer evaluation in small alpine catchments. Geomorphology 124: 113-123.
– reference: Claessens L, Schoorl JM, Veldkamp A. 2007. Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: an application for northern New Zealand. Geomorphology 87: 16-27.
– reference: Harvey AM. 2002. Effective timescales of coupling within fluvial systems. Geomorphology 44: 175-201.
– reference: Wainwright J, Turnbull L, Ibrahim TG, Lexartza-Artza I, Thornton SF, Brazier RE. 2011. Linking environmental regimes, space and time: interpretations of structural and functional connectivity. Geomorphology 126: 387-404.
– reference: Clevis Q, de Boer P, Wachter M. 2003. Numerical modelling of drainage basin evolution and three-dimensional alluvial fan stratigraphy. Sedimentary Geology 163: 85-110.
– reference: Heckmann T, Schwanghart W. 2013. Geomorphic coupling and sediment connectivity in an alpine catchment - exploring sediment cascades using graph theory. Geomorphology 182: 89-103.
– reference: Casalí J, Giménez R, Díez J, Álvarez-Mozos J, Del Valle, de Lersundi J, Goñi M, Campo MA, Chahor Y, Gastesi R, López J. 2010. Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain). Agricultural Water Management 97: 1683-1694.
– reference: Van De Wiel MJ, Coulthard TJ, Macklin MG, Lewin J. 2007. Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model. Geomorphology 90: 283-301.
– reference: Grohmann CH, Smith MJ, Riccomini C. 2011. Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland. Geoscience and Remote Sensing, IEEE Transactions on 49: 1200-1213.
– reference: Boix-Fayos C, De Vente J, Martínez-Mena M, Barberá GG, Castillo V. 2008. The impact of land use change and check-dams on catchment sediment yield. Hydrological Processes 22: 4922-4935.
– reference: Smith MW, Cox NJ, Bracken LJ. 2011. Terrestrial laser scanning soil surfaces: a field methodology to examine soil surface roughness and overland flow hydraulics. Hydrological Processes 25: 842-860.
– reference: Walling DE. 1983. The sediment delivery problem. Journal of Hydrology 65: 209-237.
– reference: Coulthard TJ, Macklin MG, Kirkby MJ. 2002. A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms 27: 269-288.
– reference: Griffiths GH, Vogiatzakis IN, Porter JR, Burrows C. 2011. A landscape scale spatial model for semi-natural broadleaf woodland expansion in Wales, UK. Journal for Nature Conservation 19: 43-53.
– reference: Reaney SM, Bracken LJ, Kirkby MJ. In press. The importance of surface controls on overland flow connectivity in semi-arid environments: results from a numerical experimental approach. Hydrological Processes. DOI: 10.1016/j.geomorph.2012.10.033
– reference: Meerkerk AL, van Wesemael B, Bellin N. 2009. Application of connectivity theory to model the impact of terrace failure on runoff in semi-arid catchments. Hydrological Processes 23: 2792-2803.
– reference: Hengl T, Reuter HI. 2009. Geomorphometry - Concepts, Software, Applications. Elsevier: Amsterdam.
– reference: Veldkamp A, van den Berg MW. 1993. Three-dimensional modelling of Quaternary fluvial dynamics in a climo-tectonic dependent system. A case study of the Maas record (Maastricht, The Netherlands). Global and Planetary Change 8: 203-218.
– reference: Baartman JEM, van Gorp W, Temme AJAM, Schoorl JM. 2012. Modelling sediment dynamics due to hillslope-river interactions: incorporating fluvial behaviour in landscape evolution model LAPSUS. Earth Surface Processes and Landforms 37: 923-935.
– reference: Brierley G, Fryirs K, Jain V. 2006. Landscape connectivity: the geographic basis of geomorphic applications. Area 38: 165-174.
– reference: Fryirs K. 2013. (Dis)Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms 38: 30-46.
– reference: López-Tarazón JA, Batalla RJ, Vericat D, Francke T. 2012. The sediment budget of a highly dynamic mesoscale catchment: the River Isábena. Geomorphology 138: 15-28.
– reference: Quinn P, Beven K, Chevallier P, Planchon O. 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes 5: 59-79.
– reference: Rodríguez-Caballero E, Cantón Y, Chamizo S, Afana A, Solé-Benet A. 2012. Effects of biological soil crusts on surface roughness and implications for runoff and erosion. Geomorphology 145-146: 81-89.
– reference: Darboux F, Davy P, Gascuel-Odoux C, Huang C. 2002. Evolution of soil surface roughness and flowpath connectivity in overland flow experiments. Catena 46: 125-139.
– reference: Appels WM, Bogaart PW, van der Zee SEATM. 2011. Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity. Advances in Water Resources 34: 303-313.
– reference: Hancock GR, Lowry JBC, Coulthard TJ, Evans KG, Moliere DR. 2010. A catchment scale evaluation of the SIBERIA and CAESAR landscape evolution models. Earth Surface Processes and Landforms 35: 863-875.
– reference: Keesstra SD, Bruijnzeel LA, van Huissteden J. 2009a. Meso-scale catchment sediment budgets: combining field surveys and modeling in the Dragonja catchment, southwest Slovenia. Earth Surface Processes and Landforms 34: 1547-1561.
– reference: Brunsden D, Thornes JB. 1979. Landscape sensitivity and change. Transactions of the Institute of British Geographers 4: 463-484.
– reference: Schoorl JM, Sonneveld MPW, Veldkamp A. 2000. Three-dimensional landscape process modelling: the effect of DEM resolution. Earth Surface Processes and Landforms 25: 1025-1034.
– reference: Tucker GE, Bras RL. 2000. A stochastic approach to modeling the role of rainfall variability in drainage basin evolution. Water Resource Research 36: 1953-1964.
– reference: Mueller EN, Francke T, Batalla RJ, Bronstert A. 2009. Modelling the effects of land-use change on runoff and sediment yield for a meso-scale catchment in the southern Pyrenees. Catena 79: 288-296.
– reference: Tucker GE, Lancaster ST, Gasparini NM, Bras RL, Rybarczyk SM. 2001. An object-oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks. Computers & Geosciences 27: 959-973.
– reference: Pavanelli D, Cavazza C. 2010. River suspended sediment control through riparian vegetation: a method to detect the functionality of riparian vegetation. Clean - Soil Air, Water 38: 1039-1046.
– reference: Hill RD, Peart MR. 1998. Land use, runoff, erosion and their control: a review for southern China. Hydrological Processes 12: 2029-2042.
– reference: Schlunegger F, Hinderer M. 2003. Pleistocene/Holocene climate change, re-establishment of fluvial drainage network and increase in relief in the Swiss Alps. Terra Nova 15: 88-95.
– reference: Schmidt K-H, Morche D. 2006. Sediment output and effective discharge in two small high mountain catchments in the Bavarian Alps, Germany. Geomorphology 80: 131-145.
– reference: Borselli L, Cassi P, Torri D. 2008. Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena 75: 268-277.
– reference: Buis E, Veldkamp A. 2008. Modelling dynamic water redistribution patterns in arid catchments in the Negev Desert of Israel. Earth Surface Processes and Landforms 33: 107-122.
– reference: Marden M, Arnold G, Gomez B, Rowan D. 2005. Pre- and post-reforestation gully development in Mangatu Forest, East Coast, North Island, New Zealand. River Research and Applications 21: 757-771.
– reference: Mayor ÁG, Bautista S, Small EE, Dixon M, Bellot J. 2008. Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: a tool for assessing potential water and soil losses in drylands. Water Resource Research 44: W10423.
– reference: Schrott L, Hufschmidt G, Hankammer M, Hoffmann T, Dikau R. 2003. Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology 55: 45-63.
– reference: Smith HG, Dragovich D. 2008. Sediment budget analysis of slope-channel coupling and in-channel sediment storage in an upland catchment, southeastern Australia. Geomorphology 101: 643-654.
– reference: Cavalli M, Trevisani S, Comiti F, Marchi L. 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188: 31-41. DOI: 10.1016/j.geomorph.2012.05.2007
– reference: Ward PJ, van Balen RT, Verstraeten G, Renssen H, Vandenberghe J. 2009. The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment. Geomorphology 103: 389-400.
– reference: Temme AJAM, Baartman JEM, Schoorl JM. 2009. Can uncertain landscape evolution models discriminate between landscape responses to stable and changing future climate? A millennial-scale test. Global and Planetary Change 69: 48-58.
– reference: Lexartza-Artza I, Wainwright J. 2009. Hydrological connectivity: linking concepts with practical implications. Catena 79: 146-152.
– reference: Schoorl JM, Veldkamp A, Bouma J. 2002. Modeling water and soil redistribution in a dynamic landscape context. Soil Science Society of America Journal 66: 1610-1619.
– reference: Harbor JM. 1992. Numerical modeling of the development of U-shaped valleys by glacial erosion. Geological Society of America Bulletin 104: 1364-1375.
– reference: de Vente J, Poesen J, Arabkhedri M, Verstraeten G. 2007. The sediment delivery problem revisited. Progress in Physical Geography 31: 155-178.
– reference: Molina A, Govers G, Van Den Putte A, Poesen J, Vanacker V. 2009. Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration: field experiments and numerical modelling. Hydrology and Earth System Sciences 13: 1823-1836.
– reference: Wichmann V, Heckmann T, Haas F, Becht M. 2009. A new modelling approach to delineate the spatial extent of alpine sediment cascades. Geomorphology 111: 70-78.
– volume: 79
  start-page: 311
  year: 2006
  end-page: 335
  article-title: Human impacts on fluvial systems in the Mediterranean region
  publication-title: Geomorphology
– year: 2009
– volume: 36
  start-page: 1090
  year: 2011
  end-page: 1104
  article-title: Making connections: changing sediment sources and sinks in an upland catchment
  publication-title: Earth Surface Processes and Landforms
– volume: 25
  start-page: 1025
  year: 2000
  end-page: 1034
  article-title: Three‐dimensional landscape process modelling: the effect of DEM resolution
  publication-title: Earth Surface Processes and Landforms
– volume: 46
  start-page: 125
  year: 2002
  end-page: 139
  article-title: Evolution of soil surface roughness and flowpath connectivity in overland flow experiments
  publication-title: Catena
– volume: 78
  start-page: 60
  year: 2009b
  end-page: 71
  article-title: Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia
  publication-title: Catena
– volume: 27
  start-page: 269
  year: 2002
  end-page: 288
  article-title: A cellular model of Holocene upland river basin and alluvial fan evolution
  publication-title: Earth Surface Processes and Landforms
– volume: 94
  start-page: 511
  year: 2012
  end-page: 529
  article-title: The influence of riparian vegetation cover on diffuse lateral sediment connectivity and biogeomorphic processes in a medium‐sized agricultural catchment, Austria
  publication-title: Geografiska Annaler, Series A: Physical Geography
– volume: 36
  start-page: 1953
  year: 2000
  end-page: 1964
  article-title: A stochastic approach to modeling the role of rainfall variability in drainage basin evolution
  publication-title: Water Resource Research
– volume: 22
  start-page: 4922
  year: 2008
  end-page: 4935
  article-title: The impact of land use change and check‐dams on catchment sediment yield
  publication-title: Hydrological Processes
– volume: 34
  start-page: 303
  year: 2011
  end-page: 313
  article-title: Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity
  publication-title: Advances in Water Resources
– volume: 8
  start-page: 323
  year: 2008
  end-page: 333
  article-title: Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR
  publication-title: Natural Hazards and Earth System Science
– volume: 70
  start-page: 49
  year: 2007a
  end-page: 67
  article-title: Buffers, barriers and blankets: the (dis)connectivity of catchment‐scale sediment cascades
  publication-title: Catena
– volume: 101
  start-page: 643
  year: 2008
  end-page: 654
  article-title: Sediment budget analysis of slope‐channel coupling and in‐channel sediment storage in an upland catchment, southeastern Australia
  publication-title: Geomorphology
– volume: 84
  start-page: 297
  year: 2007b
  end-page: 316
  article-title: Catchment‐scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia
  publication-title: Geomorphology
– volume: 4
  start-page: 463
  year: 1979
  end-page: 484
  article-title: Landscape sensitivity and change
  publication-title: Transactions of the Institute of British Geographers
– year: 1971
– volume: 87
  start-page: 16
  year: 2007
  end-page: 27
  article-title: Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: an application for northern New Zealand
  publication-title: Geomorphology
– volume: 79
  start-page: 146
  year: 2009
  end-page: 152
  article-title: Hydrological connectivity: linking concepts with practical implications
  publication-title: Catena
– volume: 49
  start-page: 1200
  year: 2011
  end-page: 1213
  article-title: Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland
  publication-title: Geoscience and Remote Sensing, IEEE Transactions on
– volume: 180–181
  start-page: 255
  year: 2013
  end-page: 266
  article-title: The influence of landscape configuration upon patterns of sediment storage in a highly connected river system
  publication-title: Geomorphology
– year: 1986
– volume: 138
  start-page: 15
  year: 2012
  end-page: 28
  article-title: The sediment budget of a highly dynamic mesoscale catchment: the River Isábena
  publication-title: Geomorphology
– volume: 405
  start-page: 209
  year: 2011
  end-page: 216
  article-title: Determining the sediment trapping capacity of grass filter strips
  publication-title: Journal of Hydrology
– volume: 111
  start-page: 70
  year: 2009
  end-page: 78
  article-title: A new modelling approach to delineate the spatial extent of alpine sediment cascades
  publication-title: Geomorphology
– article-title: The importance of surface controls on overland flow connectivity in semi‐arid environments: results from a numerical experimental approach
  publication-title: Hydrological Processes
– volume: 26
  start-page: 2225
  year: 2012
  end-page: 2234
  article-title: Two‐dimensional flow patterns near contour grass hedges
  publication-title: Hydrological Processes
– volume: 33
  start-page: 107
  year: 2008
  end-page: 122
  article-title: Modelling dynamic water redistribution patterns in arid catchments in the Negev Desert of Israel
  publication-title: Earth Surface Processes and Landforms
– volume: 17
  start-page: 413
  year: 1991
  end-page: 422
  article-title: Calculating catchment area with divergent flow based on a regular grid
  publication-title: Computers and Geosciences
– volume: 47
  start-page: 28
  year: 2011
  end-page: 39
  article-title: Contrasting landscape influences on sediment supply and stream restoration priorities in northern Fennoscandia (Sweden and Finland) and Coastal British Columbia
  publication-title: Environmental Management
– volume: 2
  start-page: 290
  year: 1989
  end-page: 299
  article-title: The influence of organic matter on soil aggregation and water infiltration
  publication-title: Journal of Production Agriculture
– volume: 38
  start-page: 1039
  year: 2010
  end-page: 1046
  article-title: River suspended sediment control through riparian vegetation: a method to detect the functionality of riparian vegetation
  publication-title: Clean – Soil Air, Water
– volume: 66
  start-page: 1610
  year: 2002
  end-page: 1619
  article-title: Modeling water and soil redistribution in a dynamic landscape context
  publication-title: Soil Science Society of America Journal
– volume: 21
  start-page: 739
  year: 2005
  end-page: 756
  article-title: Land‐use change, sediment production and channel response in upland regions
  publication-title: River Research and Applications
– volume: 29
  start-page: 1536
  year: 2002
  article-title: The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values
  publication-title: Geophysical Research Letters
– year: 1972
– volume: 31
  start-page: 123
  year: 2006
  end-page: 132
  article-title: A cellular model of river meandering
  publication-title: Earth Surface Processes and Landforms
– volume: 48
  start-page: 39
  year: 1999
  end-page: 70
  article-title: Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in southeast Spain
  publication-title: Earth‐Science Reviews
– volume: 13
  start-page: 1823
  year: 2009
  end-page: 1836
  article-title: Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration: field experiments and numerical modelling
  publication-title: Hydrology and Earth System Sciences
– volume: 23
  start-page: 2792
  year: 2009
  end-page: 2803
  article-title: Application of connectivity theory to model the impact of terrace failure on runoff in semi‐arid catchments
  publication-title: Hydrological Processes
– volume: 74
  start-page: 17
  year: 1966
  end-page: 37
  article-title: Statistical law of stream number
  publication-title: Journal of Geology
– volume: 27
  start-page: 959
  year: 2001
  end-page: 973
  article-title: An object‐oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks
  publication-title: Computers & Geosciences
– volume: 44
  start-page: 175
  year: 2002
  end-page: 201
  article-title: Effective timescales of coupling within fluvial systems
  publication-title: Geomorphology
– volume: 91
  start-page: 245
  year: 2012
  end-page: 255
  article-title: Assessing riparian zone impacts on water and sediment movement: a new approach
  publication-title: Geologie en Mijnbouw/Netherlands Journal of Geosciences
– volume: 44
  year: 2008
  article-title: Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: a tool for assessing potential water and soil losses in drylands
  publication-title: Water Resource Research
– volume: 21
  start-page: 757
  year: 2005
  end-page: 771
  article-title: Pre‐ and post‐reforestation gully development in Mangatu Forest, East Coast, North Island, New Zealand
  publication-title: River Research and Applications
– volume: 32
  start-page: 452
  year: 2006
  end-page: 461
  article-title: Algorithm for dealing with depressions in dynamic landscape evolution models
  publication-title: Computers & Geosciences
– volume: 8
  start-page: 203
  year: 1993
  end-page: 218
  article-title: Three‐dimensional modelling of Quaternary fluvial dynamics in a climo‐tectonic dependent system. A case study of the Maas record (Maastricht, The Netherlands)
  publication-title: Global and Planetary Change
– volume: 104
  start-page: 1364
  year: 1992
  end-page: 1375
  article-title: Numerical modeling of the development of U‐shaped valleys by glacial erosion
  publication-title: Geological Society of America Bulletin
– volume: 38
  start-page: 30
  year: 2013
  end-page: 46
  article-title: (Dis)Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem
  publication-title: Earth Surface Processes and Landforms
– volume: 80
  start-page: 131
  year: 2006
  end-page: 145
  article-title: Sediment output and effective discharge in two small high mountain catchments in the Bavarian Alps, Germany
  publication-title: Geomorphology
– volume: 145–146
  start-page: 81
  year: 2012
  end-page: 89
  article-title: Effects of biological soil crusts on surface roughness and implications for runoff and erosion
  publication-title: Geomorphology
– volume: 75
  start-page: 268
  year: 2008
  end-page: 277
  article-title: Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment
  publication-title: Catena
– volume: 117
  start-page: 654
  year: 2005
  end-page: 668
  article-title: Characterizing structural and lithologic controls on deep‐seated landsliding: implications for topographic relief and landscape evolution in the Oregon Coast Range, USA
  publication-title: Geological Society of America Bulletin
– volume: 57
  start-page: 35
  year: 2004
  end-page: 54
  article-title: The 137Cs technique applied to steep Mediterranean slopes (Part II): landscape evolution and model calibration
  publication-title: Catena
– volume: 8
  start-page: 327
  year: 1994
  end-page: 334
  article-title: Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation
  publication-title: Hydrological Processes
– volume: 38
  start-page: 165
  year: 2006
  end-page: 174
  article-title: Landscape connectivity: the geographic basis of geomorphic applications
  publication-title: Area
– volume: 79
  start-page: 288
  year: 2009
  end-page: 296
  article-title: Modelling the effects of land‐use change on runoff and sediment yield for a meso‐scale catchment in the southern Pyrenees
  publication-title: Catena
– volume: 21
  start-page: 1297
  year: 2006
  end-page: 1308
  article-title: Modelling sediment delivery ratio over the Murray Darling Basin
  publication-title: Environmental Modelling and Software
– volume: 75
  start-page: 239
  year: 2011
  end-page: 254
  article-title: Vegetation effects on sediment connectivity and processes in an ephemeral channel in SE Spain
  publication-title: Journal of Arid Environments
– volume: 22
  start-page: 3523
  year: 2008
  end-page: 3534
  article-title: Sediment trapping by a tree belt: processes and consequences for sediment delivery
  publication-title: Hydrological Processes
– volume: 5
  start-page: 666
  year: 2011
  end-page: 681
  article-title: Hydrological connectivity of the landscape of the McMurdo Dry Valleys, Antarctica
  publication-title: Geography Compass
– volume: 263
  start-page: 110
  year: 1965
  end-page: 119
  article-title: Time, space, and causality in geomorphology
  publication-title: American Journal of Science
– volume: 19
  start-page: 43
  year: 2011
  end-page: 53
  article-title: A landscape scale spatial model for semi‐natural broadleaf woodland expansion in Wales, UK
  publication-title: Journal for Nature Conservation
– volume: 69
  start-page: 48
  year: 2009
  end-page: 58
  article-title: Can uncertain landscape evolution models discriminate between landscape responses to stable and changing future climate? A millennial‐scale test
  publication-title: Global and Planetary Change
– volume: 31
  start-page: 155
  year: 2007
  end-page: 178
  article-title: The sediment delivery problem revisited
  publication-title: Progress in Physical Geography
– volume: 35
  start-page: 863
  year: 2010
  end-page: 875
  article-title: A catchment scale evaluation of the SIBERIA and CAESAR landscape evolution models
  publication-title: Earth Surface Processes and Landforms
– volume: 23
  start-page: 517
  year: 2009
  end-page: 522
  article-title: Connectivity as a concept for characterising hydrological behaviour
  publication-title: Hydrological Processes
– volume: 37
  start-page: 923
  year: 2012
  end-page: 935
  article-title: Modelling sediment dynamics due to hillslope–river interactions: incorporating fluvial behaviour in landscape evolution model LAPSUS
  publication-title: Earth Surface Processes and Landforms
– volume: 34
  start-page: 1547
  year: 2009a
  end-page: 1561
  article-title: Meso‐scale catchment sediment budgets: combining field surveys and modeling in the Dragonja catchment, southwest Slovenia
  publication-title: Earth Surface Processes and Landforms
– volume: 65
  start-page: 209
  year: 1983
  end-page: 237
  article-title: The sediment delivery problem
  publication-title: Journal of Hydrology
– volume: 103
  start-page: 389
  year: 2009
  end-page: 400
  article-title: The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment
  publication-title: Geomorphology
– volume: 35
  start-page: 1621
  year: 2010
  end-page: 1623
  article-title: Distance, time and scale in soil erosion processes
  publication-title: Earth Surface Processes and Landforms
– volume: 55
  start-page: 45
  year: 2003
  end-page: 63
  article-title: Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany
  publication-title: Geomorphology
– volume: 109
  start-page: 174
  year: 2009
  end-page: 183
  article-title: Modelling runoff and erosion for a semi‐arid catchment using a multi‐scale approach based on hydrological connectivity
  publication-title: Geomorphology
– volume: 34
  start-page: 573
  year: 2009
  end-page: 589
  article-title: Multi‐process Late Quaternary landscape evolution modelling reveals lags in climate response over small spatial scales
  publication-title: Earth Surface Processes and Landforms
– volume: 124
  start-page: 113
  year: 2010
  end-page: 123
  article-title: The contribution of geomorphological mapping to sediment transfer evaluation in small alpine catchments
  publication-title: Geomorphology
– volume: 97
  start-page: 1683
  year: 2010
  end-page: 1694
  article-title: Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain)
  publication-title: Agricultural Water Management
– volume: 182
  start-page: 89
  year: 2013
  end-page: 103
  article-title: Geomorphic coupling and sediment connectivity in an alpine catchment – exploring sediment cascades using graph theory
  publication-title: Geomorphology
– volume: 36
  start-page: 3
  year: 2011
  end-page: 19
  article-title: Vegetated filter effects on sedimentological connectivity of agricultural catchments in erosion modelling: a review
  publication-title: Earth Surface Processes and Landforms
– volume: 188
  start-page: 31
  year: 2013
  end-page: 41
  article-title: Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments
  publication-title: Geomorphology
– volume: 12
  start-page: 2029
  year: 1998
  end-page: 2042
  article-title: Land use, runoff, erosion and their control: a review for southern China
  publication-title: Hydrological Processes
– volume: 5
  start-page: 59
  year: 1991
  end-page: 79
  article-title: The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models
  publication-title: Hydrological Processes
– volume: 125
  start-page: 293
  year: 2011
  end-page: 304
  article-title: Floodplain sediment disconnectivity at a tributary junction and valley constriction site in the Fitzroy River basin, Queensland, Australia
  publication-title: Geomorphology
– volume: 126
  start-page: 387
  year: 2011
  end-page: 404
  article-title: Linking environmental regimes, space and time: interpretations of structural and functional connectivity
  publication-title: Geomorphology
– volume: 27
  start-page: 1459
  year: 2002
  end-page: 1473
  article-title: The influence of land use, soils and topography on the delivery of hillslope runoff to channels in SE Spain
  publication-title: Earth Surface Processes and Landforms
– volume: 90
  start-page: 283
  year: 2007
  end-page: 301
  article-title: Embedding reach‐scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model
  publication-title: Geomorphology
– volume: 163
  start-page: 85
  year: 2003
  end-page: 110
  article-title: Numerical modelling of drainage basin evolution and three‐dimensional alluvial fan stratigraphy
  publication-title: Sedimentary Geology
– volume: 25
  start-page: 842
  year: 2011
  end-page: 860
  article-title: Terrestrial laser scanning soil surfaces: a field methodology to examine soil surface roughness and overland flow hydraulics
  publication-title: Hydrological Processes
– volume: 10
  start-page: 307
  year: 2010
  end-page: 314
  article-title: Morphological analysis of sher river basin using GIS for identification of erosion‐prone areas
  publication-title: Ecohydrology and Hydrobiology
– volume: 21
  start-page: 1749
  year: 2007
  end-page: 1763
  article-title: The concept of hydrological connectivity and its contribution to understanding runoff‐dominated geomorphic systems
  publication-title: Hydrological Processes
– volume: 15
  start-page: 88
  year: 2003
  end-page: 95
  article-title: Pleistocene/Holocene climate change, re‐establishment of fluvial drainage network and increase in relief in the Swiss Alps
  publication-title: Terra Nova
– ident: e_1_2_7_7_1
  doi: 10.2134/jpa1989.0290
– ident: e_1_2_7_12_1
  doi: 10.1016/j.agwat.2010.05.024
– ident: e_1_2_7_26_1
  doi: 10.1016/j.geomorph.2006.01.044
– ident: e_1_2_7_60_1
  doi: 10.1016/j.jhydrol.2011.05.027
– ident: e_1_2_7_47_1
  doi: 10.1002/hyp.6957
– ident: e_1_2_7_40_1
  doi: 10.1017/S0016774600001633
– ident: e_1_2_7_57_1
  doi: 10.1002/hyp.7214
– ident: e_1_2_7_41_1
  doi: 10.1016/j.catena.2009.02.021
– ident: e_1_2_7_63_1
  doi: 10.1016/S0012-8252(99)00046-X
– ident: e_1_2_7_88_1
  doi: 10.1016/j.geomorph.2006.10.024
– ident: e_1_2_7_16_1
  doi: 10.1016/S0037-0738(03)00174-X
– ident: e_1_2_7_62_1
  doi: 10.1111/j.1468-0459.2012.00476.x
– ident: e_1_2_7_18_1
  doi: 10.1002/esp.1315
– ident: e_1_2_7_66_1
  doi: 10.1016/S0166-2481(08)00004-4
– ident: e_1_2_7_59_1
  doi: 10.1016/j.catena.2009.06.007
– ident: e_1_2_7_13_1
  doi: 10.5194/nhess-8-323-2008
– ident: e_1_2_7_2_1
  doi: 10.1029/2001GL013554
– ident: e_1_2_7_48_1
  doi: 10.1016/j.geomorph.2009.02.030
– ident: e_1_2_7_65_1
  doi: 10.1016/j.geomorph.2012.10.033
– ident: e_1_2_7_69_1
  doi: 10.1007/s00267-010-9585-0
– ident: e_1_2_7_70_1
  doi: 10.1016/j.jaridenv.2010.10.005
– ident: e_1_2_7_33_1
  doi: 10.1016/S0169-555X(01)00174-X
– ident: e_1_2_7_46_1
  doi: 10.1016/j.geomorph.2012.10.015
– ident: e_1_2_7_15_1
  doi: 10.1016/j.geomorph.2006.06.039
– ident: e_1_2_7_4_1
  doi: 10.1002/esp.3208
– ident: e_1_2_7_49_1
  doi: 10.1016/j.catena.2009.07.001
– ident: e_1_2_7_53_1
  doi: 10.1016/j.envsoft.2005.04.021
– ident: e_1_2_7_37_1
  doi: 10.1002/hyp.3360080405
– ident: e_1_2_7_23_1
  doi: 10.1016/0098-3004(91)90048-I
– ident: e_1_2_7_77_1
  doi: 10.2475/ajs.263.2.110
– ident: e_1_2_7_42_1
  doi: 10.1002/esp.441
– ident: e_1_2_7_84_1
  doi: 10.1016/j.geomorph.2010.03.006
– ident: e_1_2_7_85_1
  doi: 10.1016/j.geomorph.2010.10.010
– ident: e_1_2_7_36_1
  doi: 10.1002/(SICI)1099-1085(19981030)12:13/14<2029::AID-HYP717>3.0.CO;2-O
– ident: e_1_2_7_39_1
  doi: 10.1002/esp.1846
– ident: e_1_2_7_45_1
  doi: 10.1002/esp.2063
– ident: e_1_2_7_75_1
  doi: 10.2136/sssaj2002.1610
– ident: e_1_2_7_34_1
  doi: 10.1016/j.geomorph.2012.10.033
– volume-title: Developments in Soil Science
  year: 2009
  ident: e_1_2_7_95_1
– ident: e_1_2_7_10_1
  doi: 10.2307/622210
– ident: e_1_2_7_68_1
  doi: 10.1130/B25567.1
– ident: e_1_2_7_94_1
  doi: 10.1016/j.geomorph.2008.04.028
– ident: e_1_2_7_6_1
  doi: 10.1016/j.catena.2008.07.006
– ident: e_1_2_7_61_1
  doi: 10.1002/clen.201000016
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1475-4762.2006.00671.x
– ident: e_1_2_7_56_1
  doi: 10.1002/hyp.7376
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1749-8198.2011.00445.x
– volume-title: Sedimentation
  year: 1972
  ident: e_1_2_7_22_1
– ident: e_1_2_7_31_1
  doi: 10.1002/esp.1863
– ident: e_1_2_7_54_1
  doi: 10.1002/rra.882
– ident: e_1_2_7_11_1
  doi: 10.1002/esp.1531
– ident: e_1_2_7_24_1
  doi: 10.1002/esp.3242
– ident: e_1_2_7_20_1
  doi: 10.2478/v10104-011-0025-4
– ident: e_1_2_7_87_1
  doi: 10.1016/S0098-3004(00)00134-5
– ident: e_1_2_7_71_1
  doi: 10.1046/j.1365-3121.2003.00469.x
– ident: e_1_2_7_19_1
  doi: 10.1016/S0341-8162(01)00162-X
– ident: e_1_2_7_83_1
  doi: 10.1002/esp.1758
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jnc.2010.05.002
– ident: e_1_2_7_3_1
  doi: 10.1016/j.advwatres.2010.12.003
– ident: e_1_2_7_5_1
  doi: 10.1002/hyp.7115
– ident: e_1_2_7_50_1
  doi: 10.1002/esp.2134
– ident: e_1_2_7_52_1
  doi: 10.1016/j.geomorph.2011.08.020
– ident: e_1_2_7_55_1
  doi: 10.1029/2007WR006367
– volume-title: Slopes, Forms and Processes
  year: 1971
  ident: e_1_2_7_43_1
– ident: e_1_2_7_29_1
  doi: 10.1109/TGRS.2010.2053546
– ident: e_1_2_7_93_1
  doi: 10.1016/j.geomorph.2008.07.006
– ident: e_1_2_7_64_1
  doi: 10.1002/hyp.3360050106
– ident: e_1_2_7_21_1
  doi: 10.1177/0309133307076485
– volume-title: Geomorphometry – Concepts, Software, Applications
  year: 2009
  ident: e_1_2_7_35_1
– ident: e_1_2_7_38_1
  doi: 10.1016/j.geomorph.2006.06.036
– volume-title: Hillslope Processes
  year: 1986
  ident: e_1_2_7_44_1
– ident: e_1_2_7_90_1
  doi: 10.1002/hyp.8262
– ident: e_1_2_7_14_1
  doi: 10.1016/j.geomorph.2012.05.2007
– ident: e_1_2_7_76_1
  doi: 10.1016/S0169-555X(03)00131-4
– ident: e_1_2_7_25_1
  doi: 10.1016/j.catena.2006.07.007
– ident: e_1_2_7_67_1
  doi: 10.1016/j.geomorph.2011.12.042
– ident: e_1_2_7_73_1
  doi: 10.1016/j.catena.2003.08.002
– ident: e_1_2_7_74_1
  doi: 10.1002/1096-9837(200008)25:9<1025::AID-ESP116>3.0.CO;2-Z
– ident: e_1_2_7_89_1
  doi: 10.1016/0921-8181(93)90009-D
– ident: e_1_2_7_82_1
  doi: 10.1016/j.cageo.2005.08.001
– ident: e_1_2_7_78_1
  doi: 10.1086/627137
– ident: e_1_2_7_58_1
  doi: 10.5194/hess-13-1823-2009
– ident: e_1_2_7_32_1
  doi: 10.1130/0016-7606(1992)104<1364:NMOTDO>2.3.CO;2
– ident: e_1_2_7_79_1
  doi: 10.1016/j.geomorph.2008.03.004
– ident: e_1_2_7_72_1
  doi: 10.1016/j.geomorph.2005.09.013
– ident: e_1_2_7_17_1
  doi: 10.1002/esp.318
– ident: e_1_2_7_51_1
  doi: 10.1002/rra.880
– ident: e_1_2_7_81_1
  doi: 10.1016/j.gloplacha.2009.08.001
– ident: e_1_2_7_91_1
  doi: 10.1016/j.geomorph.2010.07.027
– ident: e_1_2_7_8_1
  doi: 10.1002/hyp.6313
– ident: e_1_2_7_30_1
  doi: 10.1002/esp.2042
– ident: e_1_2_7_80_1
  doi: 10.1002/hyp.7871
– ident: e_1_2_7_92_1
  doi: 10.1016/0022-1694(83)90217-2
– ident: e_1_2_7_86_1
  doi: 10.1029/2000WR900065
SSID ssj0011489
Score 2.4538276
Snippet ABSTRACT Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to...
Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts...
SourceID wageningen
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1457
SubjectTerms Bgi / Prodig
Catchments
Catchments. Hydrological cycle
cellular-model
Complexity
Computer simulation
delivery problem
DEM
drainage-basin evolution
Erosion
Floodplains
fluvial dynamics
Freshwater
hydrological connectivity
Hydrometeorology
land-use change
Landforms
landscape complexity
landscape evolution modelling
Landscapes
mesoscale catchment
Morphology
Physical geography
Rainfall
riparian vegetation
sediment connectivity
Sediments
small alpine catchments
Soil conservation
surface-roughness
Terraces
Water conservation
Title Linking landscape morphological complexity and sediment connectivity
URI https://api.istex.fr/ark:/67375/WNG-6B7LQR1T-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fesp.3434
https://www.proquest.com/docview/1437204138
https://www.proquest.com/docview/1448742370
https://www.proquest.com/docview/1642274176
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F443427
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB7EIvXFqm0xrZUUin2KJtnNbvKo9RciUn9RoQ_LJu4iqDm53KH2r-_MbhI50SJ9CtxNIDs7s_tNMvt9AN90JphFpBFZaqshwBvlhRER1iKZyS3n1rhui0Oxd8b3z7PztquSzsJ4foj-hRtlhluvKcF12aw_koaaBgt2zogKNGGCaPO3jnvmKEL5hT8pLSOs2WXHOxun692NEzvRG3LqPXVG6gadY72qxQTsnL3DDK_dkadJJOu2op138LsbhO9AuVobj8q16s8Tfsf_G-U8zLUINdzwIbUAU6ZehLetWPrlwyLM7Do14If3sHXglRdCd2CYWqnCmwFOXLeghq5h3dwj0g_RImxwp6S3kfg7Lu-VF674AGc726c_9qJWliHCiZU84kZYJqSubJ7bqkwtYhhdxBYrF52ZhBEEFDap6CsO4rlMFkRTxcoyrmQhSss-wnQ9qM0ShFLbGBeEXKc4xMIYzS6yi0oXnGRnTMwD-N5NkapaznKSzrhWnm05VegfRf4J4Gtveet5Op6xWXWz3Bvo4RX1tclM_TrcVWJTHhwdJ6dqP4CViTDob0AsRoyGMoDlLi5Um_MNFlFO8SdhOT5M_zdmK32C0bUZjMkGC0TqRIr_YYMlIZEKSREAe4w5VZO4VKOID7yNHHU3Hqr6mi6YvI3iOMgUH27VRdSLflDbJz_p-um1hp9hNnUqINQmswzTo-HYfEEsNipXXNb9BXmdMM0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqi98ChUDZQSJFROabOxYyfiBPSxlGUFZSt6QLKc1BZSSxZtdtXHr--MnaRaBAhxipRMpNiesb9xxt8H8FKngllEGpGlshoCvFGWGxFhLpKazHJujau2GIr-MT88SU8W4HV7FsbzQ3QbbhQZbr6mAKcN6Z1b1lBTY8bOGb8DSxxxBmVeu0cddxTh_NyflZYRZu2yZZ6Nk532zbm1aIm69ZJqI3WN3WO9rsUc8Fy5wBiv3KGneSzrFqP9-_CtbYavQTnbnk2L7fL6F4bH_2znA7jXgNTwjfeqh7BgqlVYbvTSv1-twt0DJwh89Qh2B158IXRnhqmaKvwxxrFr59TQ1aybSwT7IVqENS6WtCGJ93GGL712xWM43t8bvetHjTJDhGMrecSNsExIXdoss2WRWIQxOo8tJi86NT1GKFDYXkk_chDSpTInpipWFHEpc1FYtgaL1bgy6xBKbWOcEzKdYBNzYzQ7TU9LnXNSnjExD-BVO0aqbGjLST3jXHnC5URh_yjqnwBedJY_PVXHb2y23DB3BnpyRqVtMlVfhwdKvJWDz0e9kToMYHPOD7oXEI4RqaEMYKN1DNWEfY15lBP96bEMP6Z7jAFLf2F0ZcYzssEckYqR4r_YYFZIvEJSBMBunU5VpC9VK6IEb1xHXcwmqjqnC8ZvrTg2MsGP23Iu9cd-UHtfPtH1yb8aPofl_ujjQA3eDz88hZXEiYJQ1cwGLE4nM_MModm02HQheANqMTTs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9RAEJ4gROXFH6ixilgTg0-FXne72z7KjwPxckGESMLDZtvbjQnYI9e7AP71zuy2JUfUGJ-a3E2T7uzM7jft7PcBvNepYBaRRmSprYYAb5TlRkRYi6Qms5xb47othmL_hB-cpqdNVyWdhfH8EN0LN8oMt15Tgl-O7OYtaaipsWDnjN-DJS4QSBAgOuqoowjm5_6otIywaJct8WycbLZ3zm1FS-TVa2qN1DV6x3pZizncuXyFKV65M0_zUNbtRf3HcNaOwregnG_MpsVG-fMOweP_DfMJPGogavjRx9RTWDDVCjxs1NK_36zA_T0nB3zzDHYGXnohdCeGqZcq_DHGmWtX1NB1rJtrhPohWoQ1bpX0OhJ_x_W99MoVz-Gkv3u8vR81ugwRzqzkETfCMiF1abPMlkViEcToPLZYuujU9BhhQGF7JX3GQUCXypx4qlhRxKXMRWHZC1isxpV5CaHUNsYVIdMJDjE3RrNROip1zkl3xsQ8gA_tFKmyIS0n7YwL5emWE4X-UeSfAN51lpeeqOM3NutuljsDPTmnxjaZqm_DPSW25ODLUe9YHQSwNhcG3Q0IxojSUAaw2saFapK-xirKSf70WIYP0_2N6UrfYHRlxjOywQqRWpHiv9hgTUisQlIEwG5jTlWkLlUrIgRvIkddzSaquqALZm-tOA4ywYdbdxH1Rz-o3a-HdH31r4Zv4cHhTl8NPg0_v4blxCmCUMvMKixOJzPzBnHZtFhzCfgLq3wzmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+landscape+morphological+complexity+and+sediment+connectivity&rft.jtitle=Earth+surface+processes+and+landforms&rft.au=Baartman%2C+Jantiene+E.+M.&rft.au=Masselink%2C+Rens&rft.au=Keesstra%2C+Saskia+D.&rft.au=Temme%2C+Arnaud+J.+A.+M.&rft.date=2013-09-30&rft.issn=0197-9337&rft.eissn=1096-9837&rft.volume=38&rft.issue=12&rft.spage=1457&rft.epage=1471&rft_id=info:doi/10.1002%2Fesp.3434&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_esp_3434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-9337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-9337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-9337&client=summon