Linking landscape morphological complexity and sediment connectivity
ABSTRACT Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have...
Saved in:
Published in | Earth surface processes and landforms Vol. 38; no. 12; pp. 1457 - 1471 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Blackwell Publishing Ltd
30.09.2013
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0197-9337 1096-9837 |
DOI | 10.1002/esp.3434 |
Cover
Loading…
Abstract | ABSTRACT
Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V‐shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity–complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non‐linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V‐shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright © 2013 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V-shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity-complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non-linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V-shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V-shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity-complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non-linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V-shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright [copy 2013 John Wiley & Sons, Ltd. Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V‐shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity–complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non‐linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V‐shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright © 2013 John Wiley & Sons, Ltd. ABSTRACT Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V‐shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity–complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non‐linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V‐shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright © 2013 John Wiley & Sons, Ltd. Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V-shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity–complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non-linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V-shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures |
Author | Masselink, Rens Keesstra, Saskia D. Temme, Arnaud J. A. M. Baartman, Jantiene E. M. |
Author_xml | – sequence: 1 givenname: Jantiene E. M. surname: Baartman fullname: Baartman, Jantiene E. M. email: Jantiene.baartman@wur.nl organization: Soil Physics and Land Management Group, Wageningen University, Wageningen, The Netherlands – sequence: 2 givenname: Rens surname: Masselink fullname: Masselink, Rens organization: Soil Physics and Land Management Group, Wageningen University, Wageningen, The Netherlands – sequence: 3 givenname: Saskia D. surname: Keesstra fullname: Keesstra, Saskia D. organization: Soil Physics and Land Management Group, Wageningen University, Wageningen, The Netherlands – sequence: 4 givenname: Arnaud J. A. M. surname: Temme fullname: Temme, Arnaud J. A. M. organization: Soil Geography and Landscape Group, Wageningen University, Wageningen, The Netherlands |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28338177$$DView record in Pascal Francis |
BookMark | eNqFkV9vFCEUxYmpidtq4keYxJj4MlsYGC7jm9Zaazb-rfGRMBRWWhamMGO7314m3TTaaHy6BH7n5nDOPtoLMRiEnhK8JBg3hyYPS8ooe4AWBHe87gSFPbTApIO6oxQeof2cLzAmhIlugd6sXLh0YV15Fc6zVoOpNjENP6KPa6eVr3TcDN7cuHFbFaLK5txtTBjLfQhGj-5neXmMHlrls3mymwfo29vjs6N39erjyenRq1WtWg6sZoZbykFpK4TVfWNbwVSHbQtctYZQhsvJEo0JbURLWug6IJz2PdbQ8d7SA_Tydu-1WptQXJsgg0raZRmVk971SaWtvJ6SDH4ew9RnyUoaDRTxi1vxkOLVZPIoNy5r48vHTZyyJJw1DTAC_P8oYwJYQwEX9Nk99CJOKZQUCkWhwYxQUajnO0qVjL1NKsymh-Q2s-FGUCoI_OZRp5hzMvYOIVjO9cpSr5zrLejyHqrdqEYXw5iU838T1LvwnDfbfy6Wx18__cm7PJqbO16lS8mBQiu_fziR_DWsPn8hZ_I9_QW9P8aQ |
CODEN | ESPLDB |
CitedBy_id | crossref_primary_10_1016_j_geomorph_2020_107455 crossref_primary_10_1016_j_scitotenv_2019_01_118 crossref_primary_10_1016_j_envpol_2017_12_003 crossref_primary_10_1016_j_geomorph_2016_08_001 crossref_primary_10_1002_hyp_70093 crossref_primary_10_1002_ldr_2526 crossref_primary_10_1002_ldr_5519 crossref_primary_10_1016_j_scitotenv_2018_10_158 crossref_primary_10_1016_j_catena_2018_02_019 crossref_primary_10_1016_j_scitotenv_2016_07_016 crossref_primary_10_1002_ldr_2641 crossref_primary_10_1016_j_geomorph_2016_07_033 crossref_primary_10_1016_j_scitotenv_2020_140385 crossref_primary_10_1007_s11368_024_03945_0 crossref_primary_10_1007_s11629_022_7709_7 crossref_primary_10_1016_j_ecolind_2018_11_039 crossref_primary_10_1016_j_geomorph_2023_108665 crossref_primary_10_1016_j_geomorph_2016_03_014 crossref_primary_10_1016_j_geomorph_2016_05_027 crossref_primary_10_1016_j_scitotenv_2019_01_009 crossref_primary_10_1016_j_catena_2016_08_023 crossref_primary_10_1016_j_scitotenv_2016_01_100 crossref_primary_10_1016_j_geoderma_2023_116622 crossref_primary_10_1177_0309133320979897 crossref_primary_10_1002_ldr_2512 crossref_primary_10_1002_ldr_3964 crossref_primary_10_1016_j_cageo_2017_10_009 crossref_primary_10_1016_j_scitotenv_2019_134770 crossref_primary_10_1002_2015JF003607 crossref_primary_10_1002_ldr_2517 crossref_primary_10_1016_j_scitotenv_2023_162679 crossref_primary_10_1002_ldr_2352 crossref_primary_10_3390_land12081591 crossref_primary_10_1109_JSTARS_2022_3161667 crossref_primary_10_1016_j_geomorph_2018_11_004 crossref_primary_10_3390_su152015042 crossref_primary_10_1007_s10668_023_03942_2 crossref_primary_10_1016_j_earscirev_2015_05_001 crossref_primary_10_1016_j_scitotenv_2016_09_036 crossref_primary_10_1007_s11368_015_1235_y crossref_primary_10_1007_s11355_021_00448_9 crossref_primary_10_1016_j_geomorph_2023_108724 crossref_primary_10_1177_0309133317714972 crossref_primary_10_1016_j_catena_2016_08_015 crossref_primary_10_1080_10106049_2016_1143532 crossref_primary_10_1002_ldr_2503 crossref_primary_10_1002_mrc_4907 crossref_primary_10_1016_j_still_2024_106145 crossref_primary_10_1002_ldr_2629 crossref_primary_10_1016_j_catena_2013_05_003 crossref_primary_10_3390_w14193055 crossref_primary_10_1029_2023WR035067 crossref_primary_10_1016_j_geoderma_2021_115566 crossref_primary_10_1016_j_geomorph_2014_08_012 crossref_primary_10_1002_esp_4295 crossref_primary_10_1016_j_scitotenv_2016_01_182 crossref_primary_10_1016_j_geoderma_2014_06_028 crossref_primary_10_1002_esp_4434 crossref_primary_10_1016_j_landusepol_2015_06_001 crossref_primary_10_1080_02723646_2020_1743613 crossref_primary_10_1007_s11629_018_4956_8 crossref_primary_10_1016_j_geomorph_2025_109726 crossref_primary_10_1002_esp_5805 crossref_primary_10_1016_j_catena_2014_11_003 crossref_primary_10_1016_j_earscirev_2020_103218 crossref_primary_10_1016_j_envres_2022_115050 crossref_primary_10_1029_2020JF006054 crossref_primary_10_21814_physisterrae_4098 crossref_primary_10_1016_j_geoderma_2016_02_004 crossref_primary_10_1016_j_catena_2019_104354 crossref_primary_10_1016_j_scitotenv_2019_04_332 crossref_primary_10_1016_j_catena_2024_108474 crossref_primary_10_1016_j_earscirev_2025_105091 crossref_primary_10_1016_j_geomorph_2014_12_024 crossref_primary_10_1002_rra_4109 crossref_primary_10_3390_w14182781 crossref_primary_10_1007_s12665_017_6861_9 crossref_primary_10_1016_j_jaridenv_2020_104418 crossref_primary_10_1016_j_catena_2017_05_021 crossref_primary_10_3390_w12071857 crossref_primary_10_1002_ldr_2722 crossref_primary_10_1016_j_geomorph_2018_02_014 crossref_primary_10_1016_j_jhydrol_2016_11_027 crossref_primary_10_1029_2023WR035162 crossref_primary_10_1016_j_geomorph_2025_109679 crossref_primary_10_1016_j_scitotenv_2017_03_291 crossref_primary_10_1016_j_geomorph_2020_107531 crossref_primary_10_1080_15320383_2024_2306486 crossref_primary_10_1002_esp_4254 crossref_primary_10_1002_esp_4377 crossref_primary_10_1038_s41467_023_42384_2 crossref_primary_10_1007_s41109_018_0067_2 crossref_primary_10_1002_esp_5507 crossref_primary_10_1002_hyp_15202 crossref_primary_10_1016_j_scitotenv_2016_02_101 crossref_primary_10_1002_hyp_11401 crossref_primary_10_1016_j_scitotenv_2020_144255 crossref_primary_10_1002_hyp_15042 crossref_primary_10_1016_j_scitotenv_2020_143162 crossref_primary_10_1016_j_catena_2021_105688 crossref_primary_10_1016_j_geomorph_2020_107300 crossref_primary_10_1016_j_scitotenv_2020_139627 crossref_primary_10_1002_ldr_2828 crossref_primary_10_1007_s11368_023_03491_1 crossref_primary_10_1016_j_scitotenv_2019_03_461 crossref_primary_10_3390_w15132397 crossref_primary_10_1002_esp_5213 crossref_primary_10_1016_j_catena_2021_105848 crossref_primary_10_1002_ldr_2820 crossref_primary_10_1002_ldr_2308 crossref_primary_10_1177_0309133316658615 crossref_primary_10_1002_esp_3714 crossref_primary_10_1016_j_scitotenv_2016_12_147 crossref_primary_10_1016_j_geomorph_2016_05_004 crossref_primary_10_1002_esp_4808 crossref_primary_10_1016_j_catena_2018_09_023 crossref_primary_10_1016_j_catena_2017_09_025 crossref_primary_10_1002_esp_4096 crossref_primary_10_5194_esurf_5_253_2017 crossref_primary_10_1002_esp_4130 crossref_primary_10_1016_j_catena_2020_104880 crossref_primary_10_3390_hydrology8010028 crossref_primary_10_1016_j_jenvman_2017_07_037 crossref_primary_10_3390_land10070667 crossref_primary_10_1002_esp_5048 crossref_primary_10_1016_j_enggeo_2022_106947 crossref_primary_10_1002_ldr_2535 crossref_primary_10_1111_ejss_70034 crossref_primary_10_1002_esp_3547 crossref_primary_10_5194_esurf_8_661_2020 crossref_primary_10_1002_ldr_2531 crossref_primary_10_1016_j_geomorph_2020_107281 crossref_primary_10_3390_app13137648 crossref_primary_10_1016_j_scitotenv_2020_139409 |
Cites_doi | 10.2134/jpa1989.0290 10.1016/j.agwat.2010.05.024 10.1016/j.geomorph.2006.01.044 10.1016/j.jhydrol.2011.05.027 10.1002/hyp.6957 10.1017/S0016774600001633 10.1002/hyp.7214 10.1016/j.catena.2009.02.021 10.1016/S0012-8252(99)00046-X 10.1016/j.geomorph.2006.10.024 10.1016/S0037-0738(03)00174-X 10.1111/j.1468-0459.2012.00476.x 10.1002/esp.1315 10.1016/S0166-2481(08)00004-4 10.1016/j.catena.2009.06.007 10.5194/nhess-8-323-2008 10.1029/2001GL013554 10.1016/j.geomorph.2009.02.030 10.1016/j.geomorph.2012.10.033 10.1007/s00267-010-9585-0 10.1016/j.jaridenv.2010.10.005 10.1016/S0169-555X(01)00174-X 10.1016/j.geomorph.2012.10.015 10.1016/j.geomorph.2006.06.039 10.1002/esp.3208 10.1016/j.catena.2009.07.001 10.1016/j.envsoft.2005.04.021 10.1002/hyp.3360080405 10.1016/0098-3004(91)90048-I 10.2475/ajs.263.2.110 10.1002/esp.441 10.1016/j.geomorph.2010.03.006 10.1016/j.geomorph.2010.10.010 10.1002/(SICI)1099-1085(19981030)12:13/14<2029::AID-HYP717>3.0.CO;2-O 10.1002/esp.1846 10.1002/esp.2063 10.2136/sssaj2002.1610 10.2307/622210 10.1130/B25567.1 10.1016/j.geomorph.2008.04.028 10.1016/j.catena.2008.07.006 10.1002/clen.201000016 10.1111/j.1475-4762.2006.00671.x 10.1002/hyp.7376 10.1111/j.1749-8198.2011.00445.x 10.1002/esp.1863 10.1002/rra.882 10.1002/esp.1531 10.1002/esp.3242 10.2478/v10104-011-0025-4 10.1016/S0098-3004(00)00134-5 10.1046/j.1365-3121.2003.00469.x 10.1016/S0341-8162(01)00162-X 10.1002/esp.1758 10.1016/j.jnc.2010.05.002 10.1016/j.advwatres.2010.12.003 10.1002/hyp.7115 10.1002/esp.2134 10.1016/j.geomorph.2011.08.020 10.1029/2007WR006367 10.1109/TGRS.2010.2053546 10.1016/j.geomorph.2008.07.006 10.1002/hyp.3360050106 10.1177/0309133307076485 10.1016/j.geomorph.2006.06.036 10.1002/hyp.8262 10.1016/j.geomorph.2012.05.2007 10.1016/S0169-555X(03)00131-4 10.1016/j.catena.2006.07.007 10.1016/j.geomorph.2011.12.042 10.1016/j.catena.2003.08.002 10.1002/1096-9837(200008)25:9<1025::AID-ESP116>3.0.CO;2-Z 10.1016/0921-8181(93)90009-D 10.1016/j.cageo.2005.08.001 10.1086/627137 10.5194/hess-13-1823-2009 10.1130/0016-7606(1992)104<1364:NMOTDO>2.3.CO;2 10.1016/j.geomorph.2008.03.004 10.1016/j.geomorph.2005.09.013 10.1002/esp.318 10.1002/rra.880 10.1016/j.gloplacha.2009.08.001 10.1016/j.geomorph.2010.07.027 10.1002/hyp.6313 10.1002/esp.2042 10.1002/hyp.7871 10.1016/0022-1694(83)90217-2 10.1029/2000WR900065 |
ContentType | Journal Article |
Copyright | Copyright © 2013 John Wiley & Sons, Ltd. Tous droits réservés © Prodig - Bibliographie Géographique Internationale (BGI), 2014 Wageningen University & Research |
Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. – notice: Tous droits réservés © Prodig - Bibliographie Géographique Internationale (BGI), 2014 – notice: Wageningen University & Research |
DBID | BSCLL AAYXX CITATION IQODW 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G 7QH H97 QVL |
DOI | 10.1002/esp.3434 |
DatabaseName | Istex CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality NARCIS:Publications |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality |
DatabaseTitleList | Civil Engineering Abstracts Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1096-9837 |
EndPage | 1471 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_443427 3083481591 28338177 10_1002_esp_3434 ESP3434 ark_67375_WNG_6B7LQR1T_J |
Genre | article |
GrantInformation_xml | – fundername: NWO funderid: 82201004 |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XKC XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION 31~ 8W4 AAPBV ABEFU ABEML ABHUG ABTAH ABWRO ACSCC ACSMX ACXME ADAWD ADDAD AFFNX AFVGU AGJLS AI. DDYGU FEDTE HF~ HVGLF IPNFZ IQODW M62 OHT RIWAO RJQFR SAMSI VH1 ZY4 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G 7QH H97 02 0R 31 3N 53G ABUFD ADKFC DZ GA HZ IA NF P4A QVL RIG SPW UNR UQL WT X Y3 |
ID | FETCH-LOGICAL-a5674-4e6f367acf88fcb2f584a90f576a5e1340576f1c013285157997163bb0c796bf3 |
IEDL.DBID | DR2 |
ISSN | 0197-9337 |
IngestDate | Tue Jan 05 18:10:26 EST 2021 Fri Jul 11 05:57:47 EDT 2025 Fri Jul 11 03:16:43 EDT 2025 Sun Jul 13 03:55:29 EDT 2025 Fri Nov 25 06:05:14 EST 2022 Thu Apr 24 23:02:26 EDT 2025 Tue Jul 01 02:51:58 EDT 2025 Wed Jan 22 16:39:39 EST 2025 Wed Oct 30 09:49:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Sedimentology Simulation Slope gradient Watershed Earth surface processes Digital elevation model Connectivity Erosion control River bed Fluvial erosion Environmental management |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a5674-4e6f367acf88fcb2f584a90f576a5e1340576f1c013285157997163bb0c796bf3 |
Notes | ark:/67375/WNG-6B7LQR1T-J istex:8B762907E2363DC1635F3D18C5A6926477A8491E NWO - No. 82201004 ArticleID:ESP3434 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
PQID | 1437204138 |
PQPubID | 866381 |
PageCount | 15 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_443427 proquest_miscellaneous_1642274176 proquest_miscellaneous_1448742370 proquest_journals_1437204138 pascalfrancis_primary_28338177 crossref_primary_10_1002_esp_3434 crossref_citationtrail_10_1002_esp_3434 wiley_primary_10_1002_esp_3434_ESP3434 istex_primary_ark_67375_WNG_6B7LQR1T_J |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 30 September 2013 |
PublicationDateYYYYMMDD | 2013-09-30 |
PublicationDate_xml | – month: 09 year: 2013 text: 30 September 2013 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester – name: Bognor Regis |
PublicationSubtitle | The Journal of the British Geomorphological Research Group |
PublicationTitle | Earth surface processes and landforms |
PublicationTitleAlternate | Earth Surf. Process. Landforms |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
References | Cavalli M, Trevisani S, Comiti F, Marchi L. 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188: 31-41. DOI: 10.1016/j.geomorph.2012.05.2007 Grohmann CH, Smith MJ, Riccomini C. 2011. Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland. Geoscience and Remote Sensing, IEEE Transactions on 49: 1200-1213. Reaney SM, Bracken LJ, Kirkby MJ. In press. The importance of surface controls on overland flow connectivity in semi-arid environments: results from a numerical experimental approach. Hydrological Processes. DOI: 10.1016/j.geomorph.2012.10.033 Veldkamp A, van den Berg MW. 1993. Three-dimensional modelling of Quaternary fluvial dynamics in a climo-tectonic dependent system. A case study of the Maas record (Maastricht, The Netherlands). Global and Planetary Change 8: 203-218. Walling DE. 1983. The sediment delivery problem. Journal of Hydrology 65: 209-237. Appels WM, Bogaart PW, van der Zee SEATM. 2011. Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity. Advances in Water Resources 34: 303-313. Hengl T, Reuter HI. 2009. Geomorphometry - Concepts, Software, Applications. Elsevier: Amsterdam. Schoorl JM, Sonneveld MPW, Veldkamp A. 2000. Three-dimensional landscape process modelling: the effect of DEM resolution. Earth Surface Processes and Landforms 25: 1025-1034. de Vente J, Poesen J, Arabkhedri M, Verstraeten G. 2007. The sediment delivery problem revisited. Progress in Physical Geography 31: 155-178. Wainwright J, Turnbull L, Ibrahim TG, Lexartza-Artza I, Thornton SF, Brazier RE. 2011. Linking environmental regimes, space and time: interpretations of structural and functional connectivity. Geomorphology 126: 387-404. Fryirs KA, Brierley GJ, Preston NJ, Spencer J. 2007b. Catchment-scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology 84: 297-316. Lexartza-Artza I, Wainwright J. 2011. Making connections: changing sediment sources and sinks in an upland catchment. Earth Surface Processes and Landforms 36: 1090-1104. Mayor ÁG, Bautista S, Small EE, Dixon M, Bellot J. 2008. Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: a tool for assessing potential water and soil losses in drylands. Water Resource Research 44: W10423. Mueller EN, Francke T, Batalla RJ, Bronstert A. 2009. Modelling the effects of land-use change on runoff and sediment yield for a meso-scale catchment in the southern Pyrenees. Catena 79: 288-296. Marden M, Arnold G, Gomez B, Rowan D. 2005. Pre- and post-reforestation gully development in Mangatu Forest, East Coast, North Island, New Zealand. River Research and Applications 21: 757-771. Lesschen JP, Schoorl JM, Cammeraat LH. 2009. Modelling runoff and erosion for a semi-arid catchment using a multi-scale approach based on hydrological connectivity. Geomorphology 109: 174-183. Liébault F, Gomez B, Page M, Marden M, Peacock D, Richard D, Trotter CM. 2005. Land-use change, sediment production and channel response in upland regions. River Research and Applications 21: 739-756. Molina A, Govers G, Van Den Putte A, Poesen J, Vanacker V. 2009. Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration: field experiments and numerical modelling. Hydrology and Earth System Sciences 13: 1823-1836. Shreve RL. 1966. Statistical law of stream number. Journal of Geology 74: 17-37. Coulthard TJ, Macklin MG, Kirkby MJ. 2002. A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms 27: 269-288. Schmidt K-H, Morche D. 2006. Sediment output and effective discharge in two small high mountain catchments in the Bavarian Alps, Germany. Geomorphology 80: 131-145. Keesstra SD, van Dam O, Verstraeten G, van Huissteden J. 2009b. Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena 78: 60-71. Pavanelli D, Cavazza C. 2010. River suspended sediment control through riparian vegetation: a method to detect the functionality of riparian vegetation. Clean - Soil Air, Water 38: 1039-1046. Temme AJAM, Veldkamp A. 2009. Multi-process Late Quaternary landscape evolution modelling reveals lags in climate response over small spatial scales. Earth Surface Processes and Landforms 34: 573-589. Theler D, Reynard E, Lambiel C, Bardou E. 2010. The contribution of geomorphological mapping to sediment transfer evaluation in small alpine catchments. Geomorphology 124: 113-123. Deshmukh DS, Chaube UC, Tignath S, Tripathi SK. 2010. Morphological analysis of sher river basin using GIS for identification of erosion-prone areas. Ecohydrology and Hydrobiology 10: 307-314. Smith HG, Dragovich D. 2008. Sediment budget analysis of slope-channel coupling and in-channel sediment storage in an upland catchment, southeastern Australia. Geomorphology 101: 643-654. Boix-Fayos C, De Vente J, Martínez-Mena M, Barberá GG, Castillo V. 2008. The impact of land use change and check-dams on catchment sediment yield. Hydrological Processes 22: 4922-4935. Clevis Q, de Boer P, Wachter M. 2003. Numerical modelling of drainage basin evolution and three-dimensional alluvial fan stratigraphy. Sedimentary Geology 163: 85-110. Claessens L, Schoorl JM, Veldkamp A. 2007. Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: an application for northern New Zealand. Geomorphology 87: 16-27. Temme AJAM, Schoorl JM, Veldkamp A. 2006. Algorithm for dealing with depressions in dynamic landscape evolution models. Computers & Geosciences 32: 452-461. Gooseff MN, McKnight DM, Doran P, Fountain AG, Lyons WB. 2011. Hydrological connectivity of the landscape of the McMurdo Dry Valleys, Antarctica. Geography Compass 5: 666-681. Holmgren P. 1994. Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrological Processes 8: 327-334. Boyle M, Frankenburger WT, Stolzy LH. 1989. The influence of organic matter on soil aggregation and water infiltration. Journal of Production Agriculture 2: 290-299. Hooke JM. 2006. Human impacts on fluvial systems in the Mediterranean region. Geomorphology 79: 311-335. Kirkby MJ. 2010. Distance, time and scale in soil erosion processes. Earth Surface Processes and Landforms 35: 1621-1623. Kuo C-W, Brierley GJ. 2013. The influence of landscape configuration upon patterns of sediment storage in a highly connected river system. Geomorphology 180-181: 255-266. Harvey AM. 2002. Effective timescales of coupling within fluvial systems. Geomorphology 44: 175-201. Freeman TG. 1991. Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences 17: 413-422. Leguédois S, Ellis TW, Hairsine PB, Tongway DJ. 2008. Sediment trapping by a tree belt: processes and consequences for sediment delivery. Hydrological Processes 22: 3523-3534. Michaelides K, Chappell A. 2009. Connectivity as a concept for characterising hydrological behaviour. Hydrological Processes 23: 517-522. Rodríguez-Caballero E, Cantón Y, Chamizo S, Afana A, Solé-Benet A. 2012. Effects of biological soil crusts on surface roughness and implications for runoff and erosion. Geomorphology 145-146: 81-89. Schoorl JM, Veldkamp A, Bouma J. 2002. Modeling water and soil redistribution in a dynamic landscape context. Soil Science Society of America Journal 66: 1610-1619. Pan C, Ma L, Shangguan Z, Ding A. 2011. Determining the sediment trapping capacity of grass filter strips. Journal of Hydrology 405: 209-216. Thompson CJ, Croke JC, Purvis-Smith D. 2011. Floodplain sediment disconnectivity at a tributary junction and valley constriction site in the Fitzroy River basin, Queensland, Australia. Geomorphology 125: 293-304. Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A. 2002. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophysical Research Letters 29: 1536. Sandercock PJ, Hooke JM. 2011. Vegetation effects on sediment connectivity and processes in an ephemeral channel in SE Spain. Journal of Arid Environments 75: 239-254. Buis E, Veldkamp A. 2008. Modelling dynamic water redistribution patterns in arid catchments in the Negev Desert of Israel. Earth Surface Processes and Landforms 33: 107-122. Casalí J, Giménez R, Díez J, Álvarez-Mozos J, Del Valle, de Lersundi J, Goñi M, Campo MA, Chahor Y, Gastesi R, López J. 2010. Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain). Agricultural Water Management 97: 1683-1694. Rosenfeld J, Hogan D, Palm D, Lundquist H, Nilsson C, Beechie TJ. 2011. Contrasting landscape influences on sediment supply and stream restoration priorities in northern Fennoscandia (Sweden and Finland) and Coastal British Columbia. Environmental Management 47: 28-39. López-Tarazón JA, Batalla RJ, Vericat D, Francke T. 2012. The sediment budget of a highly dynamic mesoscale catchment: the River Isábena. Geomorphology 138: 15-28. Smith MW, Cox NJ, Bracken LJ. 2011. Terrestrial laser scanning soil surfaces: a field methodology to examine soil surface roughness and overland flow hydraulics. Hydrological Processes 25: 842-860. Cavalli M, Marchi L. 2008. Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR. Natural Hazards and Earth System Science 8: 323-333. Lexartza-Artza I, Wainwright J. 2009. Hydrological connectivity: linking concepts with practical implications. Catena 79: 146-152. Keesstra SD, Kondrlova E, Czajka A, Seeger M, Maroulis J. 2012. Assessing riparian zone impacts on water and sediment movement: a new approach. Geologie en Mijnbouw/Netherlands Journal of Geosciences 91: 245-255. Fryirs KA, Brierley GJ, Preston NJ, Kasai M. 2007a. Buffers, barriers and blankets: 1993; 8 2010; 10 2010; 97 2006; 31 1991; 17 2013; 180–181 2006; 79 2006; 32 2006; 38 1999; 48 1965; 263 2009; 111 2003; 15 2008; 8 2005; 21 1972 2008; 33 1971 2008; 75 2007a; 70 2009a; 34 2007; 31 2008; 101 2011; 19 2003; 55 2011; 126 2007b; 84 2011; 125 2009; 13 2011; 405 2006; 21 2002; 46 2002; 44 1986 1983; 65 1979; 4 2012; 145–146 2008; 22 2011; 25 2012; 26 2007; 21 2012; 138 1998; 12 2003; 163 2009; 23 1989; 2 2009; 69 2010; 38 2010; 35 2000; 25 1992; 104 2005; 117 2010; 124 2009 2011; 75 2013; 188 2007; 90 2011; 34 2001; 27 2012; 37 2011; 36 2011; 5 2013; 182 1966; 74 1991; 5 2002; 27 2012; 94 2009; 34 1994; 8 2012; 91 2009; 79 2006; 80 2009b; 78 2002; 29 2013; 38 2000; 36 2004; 57 2002; 66 2008; 44 2011; 47 2007; 87 2011; 49 2009; 109 2009; 103 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_90_1 e_1_2_7_73_1 e_1_2_7_94_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 Foster GR (e_1_2_7_22_1) 1972 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 Wood J (e_1_2_7_95_1) 2009 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Hengl T (e_1_2_7_35_1) 2009 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_30_1 Kirkby MJ (e_1_2_7_43_1) 1971 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Kirkby MJ (e_1_2_7_44_1) 1986 |
References_xml | – reference: Lu H, Moran CJ, Prosser IP. 2006. Modelling sediment delivery ratio over the Murray Darling Basin. Environmental Modelling and Software 21: 1297-1308. – reference: Pan C, Ma L, Shangguan Z, Ding A. 2011. Determining the sediment trapping capacity of grass filter strips. Journal of Hydrology 405: 209-216. – reference: Liébault F, Gomez B, Page M, Marden M, Peacock D, Richard D, Trotter CM. 2005. Land-use change, sediment production and channel response in upland regions. River Research and Applications 21: 739-756. – reference: Temme AJAM, Veldkamp A. 2009. Multi-process Late Quaternary landscape evolution modelling reveals lags in climate response over small spatial scales. Earth Surface Processes and Landforms 34: 573-589. – reference: Boyle M, Frankenburger WT, Stolzy LH. 1989. The influence of organic matter on soil aggregation and water infiltration. Journal of Production Agriculture 2: 290-299. – reference: Sandercock PJ, Hooke JM. 2011. Vegetation effects on sediment connectivity and processes in an ephemeral channel in SE Spain. Journal of Arid Environments 75: 239-254. – reference: Thompson CJ, Croke JC, Purvis-Smith D. 2011. Floodplain sediment disconnectivity at a tributary junction and valley constriction site in the Fitzroy River basin, Queensland, Australia. Geomorphology 125: 293-304. – reference: Deshmukh DS, Chaube UC, Tignath S, Tripathi SK. 2010. Morphological analysis of sher river basin using GIS for identification of erosion-prone areas. Ecohydrology and Hydrobiology 10: 307-314. – reference: Roering JJ, Kirchner JW, Dietrich WE. 2005. Characterizing structural and lithologic controls on deep-seated landsliding: implications for topographic relief and landscape evolution in the Oregon Coast Range, USA. Geological Society of America Bulletin 117: 654-668. – reference: Lesschen JP, Schoorl JM, Cammeraat LH. 2009. Modelling runoff and erosion for a semi-arid catchment using a multi-scale approach based on hydrological connectivity. Geomorphology 109: 174-183. – reference: Cavalli M, Marchi L. 2008. Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR. Natural Hazards and Earth System Science 8: 323-333. – reference: Leguédois S, Ellis TW, Hairsine PB, Tongway DJ. 2008. Sediment trapping by a tree belt: processes and consequences for sediment delivery. Hydrological Processes 22: 3523-3534. – reference: Rosenfeld J, Hogan D, Palm D, Lundquist H, Nilsson C, Beechie TJ. 2011. Contrasting landscape influences on sediment supply and stream restoration priorities in northern Fennoscandia (Sweden and Finland) and Coastal British Columbia. Environmental Management 47: 28-39. – reference: Shreve RL. 1966. Statistical law of stream number. Journal of Geology 74: 17-37. – reference: Hooke JM. 2006. Human impacts on fluvial systems in the Mediterranean region. Geomorphology 79: 311-335. – reference: Temme AJAM, Schoorl JM, Veldkamp A. 2006. Algorithm for dealing with depressions in dynamic landscape evolution models. Computers & Geosciences 32: 452-461. – reference: Fryirs KA, Brierley GJ, Preston NJ, Kasai M. 2007a. Buffers, barriers and blankets: the (dis)connectivity of catchment-scale sediment cascades. Catena 70: 49-67. – reference: Poeppl RE, Keiler M, Von Elverfeldt K, Zweimueller I, Glade T. 2012. The influence of riparian vegetation cover on diffuse lateral sediment connectivity and biogeomorphic processes in a medium-sized agricultural catchment, Austria. Geografiska Annaler, Series A: Physical Geography 94: 511-529. – reference: Puigdefabregas J, Sole A, Gutierrez L, del Barrio G, Boer M. 1999. Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in southeast Spain. Earth-Science Reviews 48: 39-70. – reference: Schumm SA, Lichty RW. 1965. Time, space, and causality in geomorphology. American Journal of Science 263: 110-119. – reference: Lexartza-Artza I, Wainwright J. 2011. Making connections: changing sediment sources and sinks in an upland catchment. Earth Surface Processes and Landforms 36: 1090-1104. – reference: Kirkby MJ. 2010. Distance, time and scale in soil erosion processes. Earth Surface Processes and Landforms 35: 1621-1623. – reference: Holmgren P. 1994. Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrological Processes 8: 327-334. – reference: Kuo C-W, Brierley GJ. 2013. The influence of landscape configuration upon patterns of sediment storage in a highly connected river system. Geomorphology 180-181: 255-266. – reference: Gumiere SJ, Le Bissonnais Y, Raclot D, Cheviron B. 2011. Vegetated filter effects on sedimentological connectivity of agricultural catchments in erosion modelling: a review. Earth Surface Processes and Landforms 36: 3-19. – reference: Kirkby M, Bracken L, Reaney S. 2002. The influence of land use, soils and topography on the delivery of hillslope runoff to channels in SE Spain. Earth Surface Processes and Landforms 27: 1459-1473. – reference: Vieira DAN, Dabney SM. 2012. Two-dimensional flow patterns near contour grass hedges. Hydrological Processes 26: 2225-2234. – reference: Coulthard TJ, Wiel MJVD. 2006. A cellular model of river meandering. Earth Surface Processes and Landforms 31: 123-132. – reference: Keesstra SD, Kondrlova E, Czajka A, Seeger M, Maroulis J. 2012. Assessing riparian zone impacts on water and sediment movement: a new approach. Geologie en Mijnbouw/Netherlands Journal of Geosciences 91: 245-255. – reference: Schoorl JM, Boix Fayos C, de Meijer RJ, van der Graaf ER, Veldkamp A. 2004. The 137Cs technique applied to steep Mediterranean slopes (Part II): landscape evolution and model calibration. Catena 57: 35-54. – reference: Gooseff MN, McKnight DM, Doran P, Fountain AG, Lyons WB. 2011. Hydrological connectivity of the landscape of the McMurdo Dry Valleys, Antarctica. Geography Compass 5: 666-681. – reference: Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A. 2002. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophysical Research Letters 29: 1536. – reference: Michaelides K, Chappell A. 2009. Connectivity as a concept for characterising hydrological behaviour. Hydrological Processes 23: 517-522. – reference: Bracken LJ, Croke J. 2007. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrological Processes 21: 1749-1763. – reference: Keesstra SD, van Dam O, Verstraeten G, van Huissteden J. 2009b. Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena 78: 60-71. – reference: Freeman TG. 1991. Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences 17: 413-422. – reference: Fryirs KA, Brierley GJ, Preston NJ, Spencer J. 2007b. Catchment-scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology 84: 297-316. – reference: Theler D, Reynard E, Lambiel C, Bardou E. 2010. The contribution of geomorphological mapping to sediment transfer evaluation in small alpine catchments. Geomorphology 124: 113-123. – reference: Claessens L, Schoorl JM, Veldkamp A. 2007. Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: an application for northern New Zealand. Geomorphology 87: 16-27. – reference: Harvey AM. 2002. Effective timescales of coupling within fluvial systems. Geomorphology 44: 175-201. – reference: Wainwright J, Turnbull L, Ibrahim TG, Lexartza-Artza I, Thornton SF, Brazier RE. 2011. Linking environmental regimes, space and time: interpretations of structural and functional connectivity. Geomorphology 126: 387-404. – reference: Clevis Q, de Boer P, Wachter M. 2003. Numerical modelling of drainage basin evolution and three-dimensional alluvial fan stratigraphy. Sedimentary Geology 163: 85-110. – reference: Heckmann T, Schwanghart W. 2013. Geomorphic coupling and sediment connectivity in an alpine catchment - exploring sediment cascades using graph theory. Geomorphology 182: 89-103. – reference: Casalí J, Giménez R, Díez J, Álvarez-Mozos J, Del Valle, de Lersundi J, Goñi M, Campo MA, Chahor Y, Gastesi R, López J. 2010. Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain). Agricultural Water Management 97: 1683-1694. – reference: Van De Wiel MJ, Coulthard TJ, Macklin MG, Lewin J. 2007. Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model. Geomorphology 90: 283-301. – reference: Grohmann CH, Smith MJ, Riccomini C. 2011. Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland. Geoscience and Remote Sensing, IEEE Transactions on 49: 1200-1213. – reference: Boix-Fayos C, De Vente J, Martínez-Mena M, Barberá GG, Castillo V. 2008. The impact of land use change and check-dams on catchment sediment yield. Hydrological Processes 22: 4922-4935. – reference: Smith MW, Cox NJ, Bracken LJ. 2011. Terrestrial laser scanning soil surfaces: a field methodology to examine soil surface roughness and overland flow hydraulics. Hydrological Processes 25: 842-860. – reference: Walling DE. 1983. The sediment delivery problem. Journal of Hydrology 65: 209-237. – reference: Coulthard TJ, Macklin MG, Kirkby MJ. 2002. A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms 27: 269-288. – reference: Griffiths GH, Vogiatzakis IN, Porter JR, Burrows C. 2011. A landscape scale spatial model for semi-natural broadleaf woodland expansion in Wales, UK. Journal for Nature Conservation 19: 43-53. – reference: Reaney SM, Bracken LJ, Kirkby MJ. In press. The importance of surface controls on overland flow connectivity in semi-arid environments: results from a numerical experimental approach. Hydrological Processes. DOI: 10.1016/j.geomorph.2012.10.033 – reference: Meerkerk AL, van Wesemael B, Bellin N. 2009. Application of connectivity theory to model the impact of terrace failure on runoff in semi-arid catchments. Hydrological Processes 23: 2792-2803. – reference: Hengl T, Reuter HI. 2009. Geomorphometry - Concepts, Software, Applications. Elsevier: Amsterdam. – reference: Veldkamp A, van den Berg MW. 1993. Three-dimensional modelling of Quaternary fluvial dynamics in a climo-tectonic dependent system. A case study of the Maas record (Maastricht, The Netherlands). Global and Planetary Change 8: 203-218. – reference: Baartman JEM, van Gorp W, Temme AJAM, Schoorl JM. 2012. Modelling sediment dynamics due to hillslope-river interactions: incorporating fluvial behaviour in landscape evolution model LAPSUS. Earth Surface Processes and Landforms 37: 923-935. – reference: Brierley G, Fryirs K, Jain V. 2006. Landscape connectivity: the geographic basis of geomorphic applications. Area 38: 165-174. – reference: Fryirs K. 2013. (Dis)Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms 38: 30-46. – reference: López-Tarazón JA, Batalla RJ, Vericat D, Francke T. 2012. The sediment budget of a highly dynamic mesoscale catchment: the River Isábena. Geomorphology 138: 15-28. – reference: Quinn P, Beven K, Chevallier P, Planchon O. 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes 5: 59-79. – reference: Rodríguez-Caballero E, Cantón Y, Chamizo S, Afana A, Solé-Benet A. 2012. Effects of biological soil crusts on surface roughness and implications for runoff and erosion. Geomorphology 145-146: 81-89. – reference: Darboux F, Davy P, Gascuel-Odoux C, Huang C. 2002. Evolution of soil surface roughness and flowpath connectivity in overland flow experiments. Catena 46: 125-139. – reference: Appels WM, Bogaart PW, van der Zee SEATM. 2011. Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity. Advances in Water Resources 34: 303-313. – reference: Hancock GR, Lowry JBC, Coulthard TJ, Evans KG, Moliere DR. 2010. A catchment scale evaluation of the SIBERIA and CAESAR landscape evolution models. Earth Surface Processes and Landforms 35: 863-875. – reference: Keesstra SD, Bruijnzeel LA, van Huissteden J. 2009a. Meso-scale catchment sediment budgets: combining field surveys and modeling in the Dragonja catchment, southwest Slovenia. Earth Surface Processes and Landforms 34: 1547-1561. – reference: Brunsden D, Thornes JB. 1979. Landscape sensitivity and change. Transactions of the Institute of British Geographers 4: 463-484. – reference: Schoorl JM, Sonneveld MPW, Veldkamp A. 2000. Three-dimensional landscape process modelling: the effect of DEM resolution. Earth Surface Processes and Landforms 25: 1025-1034. – reference: Tucker GE, Bras RL. 2000. A stochastic approach to modeling the role of rainfall variability in drainage basin evolution. Water Resource Research 36: 1953-1964. – reference: Mueller EN, Francke T, Batalla RJ, Bronstert A. 2009. Modelling the effects of land-use change on runoff and sediment yield for a meso-scale catchment in the southern Pyrenees. Catena 79: 288-296. – reference: Tucker GE, Lancaster ST, Gasparini NM, Bras RL, Rybarczyk SM. 2001. An object-oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks. Computers & Geosciences 27: 959-973. – reference: Pavanelli D, Cavazza C. 2010. River suspended sediment control through riparian vegetation: a method to detect the functionality of riparian vegetation. Clean - Soil Air, Water 38: 1039-1046. – reference: Hill RD, Peart MR. 1998. Land use, runoff, erosion and their control: a review for southern China. Hydrological Processes 12: 2029-2042. – reference: Schlunegger F, Hinderer M. 2003. Pleistocene/Holocene climate change, re-establishment of fluvial drainage network and increase in relief in the Swiss Alps. Terra Nova 15: 88-95. – reference: Schmidt K-H, Morche D. 2006. Sediment output and effective discharge in two small high mountain catchments in the Bavarian Alps, Germany. Geomorphology 80: 131-145. – reference: Borselli L, Cassi P, Torri D. 2008. Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena 75: 268-277. – reference: Buis E, Veldkamp A. 2008. Modelling dynamic water redistribution patterns in arid catchments in the Negev Desert of Israel. Earth Surface Processes and Landforms 33: 107-122. – reference: Marden M, Arnold G, Gomez B, Rowan D. 2005. Pre- and post-reforestation gully development in Mangatu Forest, East Coast, North Island, New Zealand. River Research and Applications 21: 757-771. – reference: Mayor ÁG, Bautista S, Small EE, Dixon M, Bellot J. 2008. Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: a tool for assessing potential water and soil losses in drylands. Water Resource Research 44: W10423. – reference: Schrott L, Hufschmidt G, Hankammer M, Hoffmann T, Dikau R. 2003. Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology 55: 45-63. – reference: Smith HG, Dragovich D. 2008. Sediment budget analysis of slope-channel coupling and in-channel sediment storage in an upland catchment, southeastern Australia. Geomorphology 101: 643-654. – reference: Cavalli M, Trevisani S, Comiti F, Marchi L. 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188: 31-41. DOI: 10.1016/j.geomorph.2012.05.2007 – reference: Ward PJ, van Balen RT, Verstraeten G, Renssen H, Vandenberghe J. 2009. The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment. Geomorphology 103: 389-400. – reference: Temme AJAM, Baartman JEM, Schoorl JM. 2009. Can uncertain landscape evolution models discriminate between landscape responses to stable and changing future climate? A millennial-scale test. Global and Planetary Change 69: 48-58. – reference: Lexartza-Artza I, Wainwright J. 2009. Hydrological connectivity: linking concepts with practical implications. Catena 79: 146-152. – reference: Schoorl JM, Veldkamp A, Bouma J. 2002. Modeling water and soil redistribution in a dynamic landscape context. Soil Science Society of America Journal 66: 1610-1619. – reference: Harbor JM. 1992. Numerical modeling of the development of U-shaped valleys by glacial erosion. Geological Society of America Bulletin 104: 1364-1375. – reference: de Vente J, Poesen J, Arabkhedri M, Verstraeten G. 2007. The sediment delivery problem revisited. Progress in Physical Geography 31: 155-178. – reference: Molina A, Govers G, Van Den Putte A, Poesen J, Vanacker V. 2009. Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration: field experiments and numerical modelling. Hydrology and Earth System Sciences 13: 1823-1836. – reference: Wichmann V, Heckmann T, Haas F, Becht M. 2009. A new modelling approach to delineate the spatial extent of alpine sediment cascades. Geomorphology 111: 70-78. – volume: 79 start-page: 311 year: 2006 end-page: 335 article-title: Human impacts on fluvial systems in the Mediterranean region publication-title: Geomorphology – year: 2009 – volume: 36 start-page: 1090 year: 2011 end-page: 1104 article-title: Making connections: changing sediment sources and sinks in an upland catchment publication-title: Earth Surface Processes and Landforms – volume: 25 start-page: 1025 year: 2000 end-page: 1034 article-title: Three‐dimensional landscape process modelling: the effect of DEM resolution publication-title: Earth Surface Processes and Landforms – volume: 46 start-page: 125 year: 2002 end-page: 139 article-title: Evolution of soil surface roughness and flowpath connectivity in overland flow experiments publication-title: Catena – volume: 78 start-page: 60 year: 2009b end-page: 71 article-title: Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia publication-title: Catena – volume: 27 start-page: 269 year: 2002 end-page: 288 article-title: A cellular model of Holocene upland river basin and alluvial fan evolution publication-title: Earth Surface Processes and Landforms – volume: 94 start-page: 511 year: 2012 end-page: 529 article-title: The influence of riparian vegetation cover on diffuse lateral sediment connectivity and biogeomorphic processes in a medium‐sized agricultural catchment, Austria publication-title: Geografiska Annaler, Series A: Physical Geography – volume: 36 start-page: 1953 year: 2000 end-page: 1964 article-title: A stochastic approach to modeling the role of rainfall variability in drainage basin evolution publication-title: Water Resource Research – volume: 22 start-page: 4922 year: 2008 end-page: 4935 article-title: The impact of land use change and check‐dams on catchment sediment yield publication-title: Hydrological Processes – volume: 34 start-page: 303 year: 2011 end-page: 313 article-title: Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity publication-title: Advances in Water Resources – volume: 8 start-page: 323 year: 2008 end-page: 333 article-title: Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR publication-title: Natural Hazards and Earth System Science – volume: 70 start-page: 49 year: 2007a end-page: 67 article-title: Buffers, barriers and blankets: the (dis)connectivity of catchment‐scale sediment cascades publication-title: Catena – volume: 101 start-page: 643 year: 2008 end-page: 654 article-title: Sediment budget analysis of slope‐channel coupling and in‐channel sediment storage in an upland catchment, southeastern Australia publication-title: Geomorphology – volume: 84 start-page: 297 year: 2007b end-page: 316 article-title: Catchment‐scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia publication-title: Geomorphology – volume: 4 start-page: 463 year: 1979 end-page: 484 article-title: Landscape sensitivity and change publication-title: Transactions of the Institute of British Geographers – year: 1971 – volume: 87 start-page: 16 year: 2007 end-page: 27 article-title: Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: an application for northern New Zealand publication-title: Geomorphology – volume: 79 start-page: 146 year: 2009 end-page: 152 article-title: Hydrological connectivity: linking concepts with practical implications publication-title: Catena – volume: 49 start-page: 1200 year: 2011 end-page: 1213 article-title: Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland publication-title: Geoscience and Remote Sensing, IEEE Transactions on – volume: 180–181 start-page: 255 year: 2013 end-page: 266 article-title: The influence of landscape configuration upon patterns of sediment storage in a highly connected river system publication-title: Geomorphology – year: 1986 – volume: 138 start-page: 15 year: 2012 end-page: 28 article-title: The sediment budget of a highly dynamic mesoscale catchment: the River Isábena publication-title: Geomorphology – volume: 405 start-page: 209 year: 2011 end-page: 216 article-title: Determining the sediment trapping capacity of grass filter strips publication-title: Journal of Hydrology – volume: 111 start-page: 70 year: 2009 end-page: 78 article-title: A new modelling approach to delineate the spatial extent of alpine sediment cascades publication-title: Geomorphology – article-title: The importance of surface controls on overland flow connectivity in semi‐arid environments: results from a numerical experimental approach publication-title: Hydrological Processes – volume: 26 start-page: 2225 year: 2012 end-page: 2234 article-title: Two‐dimensional flow patterns near contour grass hedges publication-title: Hydrological Processes – volume: 33 start-page: 107 year: 2008 end-page: 122 article-title: Modelling dynamic water redistribution patterns in arid catchments in the Negev Desert of Israel publication-title: Earth Surface Processes and Landforms – volume: 17 start-page: 413 year: 1991 end-page: 422 article-title: Calculating catchment area with divergent flow based on a regular grid publication-title: Computers and Geosciences – volume: 47 start-page: 28 year: 2011 end-page: 39 article-title: Contrasting landscape influences on sediment supply and stream restoration priorities in northern Fennoscandia (Sweden and Finland) and Coastal British Columbia publication-title: Environmental Management – volume: 2 start-page: 290 year: 1989 end-page: 299 article-title: The influence of organic matter on soil aggregation and water infiltration publication-title: Journal of Production Agriculture – volume: 38 start-page: 1039 year: 2010 end-page: 1046 article-title: River suspended sediment control through riparian vegetation: a method to detect the functionality of riparian vegetation publication-title: Clean – Soil Air, Water – volume: 66 start-page: 1610 year: 2002 end-page: 1619 article-title: Modeling water and soil redistribution in a dynamic landscape context publication-title: Soil Science Society of America Journal – volume: 21 start-page: 739 year: 2005 end-page: 756 article-title: Land‐use change, sediment production and channel response in upland regions publication-title: River Research and Applications – volume: 29 start-page: 1536 year: 2002 article-title: The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values publication-title: Geophysical Research Letters – year: 1972 – volume: 31 start-page: 123 year: 2006 end-page: 132 article-title: A cellular model of river meandering publication-title: Earth Surface Processes and Landforms – volume: 48 start-page: 39 year: 1999 end-page: 70 article-title: Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in southeast Spain publication-title: Earth‐Science Reviews – volume: 13 start-page: 1823 year: 2009 end-page: 1836 article-title: Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration: field experiments and numerical modelling publication-title: Hydrology and Earth System Sciences – volume: 23 start-page: 2792 year: 2009 end-page: 2803 article-title: Application of connectivity theory to model the impact of terrace failure on runoff in semi‐arid catchments publication-title: Hydrological Processes – volume: 74 start-page: 17 year: 1966 end-page: 37 article-title: Statistical law of stream number publication-title: Journal of Geology – volume: 27 start-page: 959 year: 2001 end-page: 973 article-title: An object‐oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks publication-title: Computers & Geosciences – volume: 44 start-page: 175 year: 2002 end-page: 201 article-title: Effective timescales of coupling within fluvial systems publication-title: Geomorphology – volume: 91 start-page: 245 year: 2012 end-page: 255 article-title: Assessing riparian zone impacts on water and sediment movement: a new approach publication-title: Geologie en Mijnbouw/Netherlands Journal of Geosciences – volume: 44 year: 2008 article-title: Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: a tool for assessing potential water and soil losses in drylands publication-title: Water Resource Research – volume: 21 start-page: 757 year: 2005 end-page: 771 article-title: Pre‐ and post‐reforestation gully development in Mangatu Forest, East Coast, North Island, New Zealand publication-title: River Research and Applications – volume: 32 start-page: 452 year: 2006 end-page: 461 article-title: Algorithm for dealing with depressions in dynamic landscape evolution models publication-title: Computers & Geosciences – volume: 8 start-page: 203 year: 1993 end-page: 218 article-title: Three‐dimensional modelling of Quaternary fluvial dynamics in a climo‐tectonic dependent system. A case study of the Maas record (Maastricht, The Netherlands) publication-title: Global and Planetary Change – volume: 104 start-page: 1364 year: 1992 end-page: 1375 article-title: Numerical modeling of the development of U‐shaped valleys by glacial erosion publication-title: Geological Society of America Bulletin – volume: 38 start-page: 30 year: 2013 end-page: 46 article-title: (Dis)Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem publication-title: Earth Surface Processes and Landforms – volume: 80 start-page: 131 year: 2006 end-page: 145 article-title: Sediment output and effective discharge in two small high mountain catchments in the Bavarian Alps, Germany publication-title: Geomorphology – volume: 145–146 start-page: 81 year: 2012 end-page: 89 article-title: Effects of biological soil crusts on surface roughness and implications for runoff and erosion publication-title: Geomorphology – volume: 75 start-page: 268 year: 2008 end-page: 277 article-title: Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment publication-title: Catena – volume: 117 start-page: 654 year: 2005 end-page: 668 article-title: Characterizing structural and lithologic controls on deep‐seated landsliding: implications for topographic relief and landscape evolution in the Oregon Coast Range, USA publication-title: Geological Society of America Bulletin – volume: 57 start-page: 35 year: 2004 end-page: 54 article-title: The 137Cs technique applied to steep Mediterranean slopes (Part II): landscape evolution and model calibration publication-title: Catena – volume: 8 start-page: 327 year: 1994 end-page: 334 article-title: Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation publication-title: Hydrological Processes – volume: 38 start-page: 165 year: 2006 end-page: 174 article-title: Landscape connectivity: the geographic basis of geomorphic applications publication-title: Area – volume: 79 start-page: 288 year: 2009 end-page: 296 article-title: Modelling the effects of land‐use change on runoff and sediment yield for a meso‐scale catchment in the southern Pyrenees publication-title: Catena – volume: 21 start-page: 1297 year: 2006 end-page: 1308 article-title: Modelling sediment delivery ratio over the Murray Darling Basin publication-title: Environmental Modelling and Software – volume: 75 start-page: 239 year: 2011 end-page: 254 article-title: Vegetation effects on sediment connectivity and processes in an ephemeral channel in SE Spain publication-title: Journal of Arid Environments – volume: 22 start-page: 3523 year: 2008 end-page: 3534 article-title: Sediment trapping by a tree belt: processes and consequences for sediment delivery publication-title: Hydrological Processes – volume: 5 start-page: 666 year: 2011 end-page: 681 article-title: Hydrological connectivity of the landscape of the McMurdo Dry Valleys, Antarctica publication-title: Geography Compass – volume: 263 start-page: 110 year: 1965 end-page: 119 article-title: Time, space, and causality in geomorphology publication-title: American Journal of Science – volume: 19 start-page: 43 year: 2011 end-page: 53 article-title: A landscape scale spatial model for semi‐natural broadleaf woodland expansion in Wales, UK publication-title: Journal for Nature Conservation – volume: 69 start-page: 48 year: 2009 end-page: 58 article-title: Can uncertain landscape evolution models discriminate between landscape responses to stable and changing future climate? A millennial‐scale test publication-title: Global and Planetary Change – volume: 31 start-page: 155 year: 2007 end-page: 178 article-title: The sediment delivery problem revisited publication-title: Progress in Physical Geography – volume: 35 start-page: 863 year: 2010 end-page: 875 article-title: A catchment scale evaluation of the SIBERIA and CAESAR landscape evolution models publication-title: Earth Surface Processes and Landforms – volume: 23 start-page: 517 year: 2009 end-page: 522 article-title: Connectivity as a concept for characterising hydrological behaviour publication-title: Hydrological Processes – volume: 37 start-page: 923 year: 2012 end-page: 935 article-title: Modelling sediment dynamics due to hillslope–river interactions: incorporating fluvial behaviour in landscape evolution model LAPSUS publication-title: Earth Surface Processes and Landforms – volume: 34 start-page: 1547 year: 2009a end-page: 1561 article-title: Meso‐scale catchment sediment budgets: combining field surveys and modeling in the Dragonja catchment, southwest Slovenia publication-title: Earth Surface Processes and Landforms – volume: 65 start-page: 209 year: 1983 end-page: 237 article-title: The sediment delivery problem publication-title: Journal of Hydrology – volume: 103 start-page: 389 year: 2009 end-page: 400 article-title: The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment publication-title: Geomorphology – volume: 35 start-page: 1621 year: 2010 end-page: 1623 article-title: Distance, time and scale in soil erosion processes publication-title: Earth Surface Processes and Landforms – volume: 55 start-page: 45 year: 2003 end-page: 63 article-title: Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany publication-title: Geomorphology – volume: 109 start-page: 174 year: 2009 end-page: 183 article-title: Modelling runoff and erosion for a semi‐arid catchment using a multi‐scale approach based on hydrological connectivity publication-title: Geomorphology – volume: 34 start-page: 573 year: 2009 end-page: 589 article-title: Multi‐process Late Quaternary landscape evolution modelling reveals lags in climate response over small spatial scales publication-title: Earth Surface Processes and Landforms – volume: 124 start-page: 113 year: 2010 end-page: 123 article-title: The contribution of geomorphological mapping to sediment transfer evaluation in small alpine catchments publication-title: Geomorphology – volume: 97 start-page: 1683 year: 2010 end-page: 1694 article-title: Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain) publication-title: Agricultural Water Management – volume: 182 start-page: 89 year: 2013 end-page: 103 article-title: Geomorphic coupling and sediment connectivity in an alpine catchment – exploring sediment cascades using graph theory publication-title: Geomorphology – volume: 36 start-page: 3 year: 2011 end-page: 19 article-title: Vegetated filter effects on sedimentological connectivity of agricultural catchments in erosion modelling: a review publication-title: Earth Surface Processes and Landforms – volume: 188 start-page: 31 year: 2013 end-page: 41 article-title: Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments publication-title: Geomorphology – volume: 12 start-page: 2029 year: 1998 end-page: 2042 article-title: Land use, runoff, erosion and their control: a review for southern China publication-title: Hydrological Processes – volume: 5 start-page: 59 year: 1991 end-page: 79 article-title: The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models publication-title: Hydrological Processes – volume: 125 start-page: 293 year: 2011 end-page: 304 article-title: Floodplain sediment disconnectivity at a tributary junction and valley constriction site in the Fitzroy River basin, Queensland, Australia publication-title: Geomorphology – volume: 126 start-page: 387 year: 2011 end-page: 404 article-title: Linking environmental regimes, space and time: interpretations of structural and functional connectivity publication-title: Geomorphology – volume: 27 start-page: 1459 year: 2002 end-page: 1473 article-title: The influence of land use, soils and topography on the delivery of hillslope runoff to channels in SE Spain publication-title: Earth Surface Processes and Landforms – volume: 90 start-page: 283 year: 2007 end-page: 301 article-title: Embedding reach‐scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model publication-title: Geomorphology – volume: 163 start-page: 85 year: 2003 end-page: 110 article-title: Numerical modelling of drainage basin evolution and three‐dimensional alluvial fan stratigraphy publication-title: Sedimentary Geology – volume: 25 start-page: 842 year: 2011 end-page: 860 article-title: Terrestrial laser scanning soil surfaces: a field methodology to examine soil surface roughness and overland flow hydraulics publication-title: Hydrological Processes – volume: 10 start-page: 307 year: 2010 end-page: 314 article-title: Morphological analysis of sher river basin using GIS for identification of erosion‐prone areas publication-title: Ecohydrology and Hydrobiology – volume: 21 start-page: 1749 year: 2007 end-page: 1763 article-title: The concept of hydrological connectivity and its contribution to understanding runoff‐dominated geomorphic systems publication-title: Hydrological Processes – volume: 15 start-page: 88 year: 2003 end-page: 95 article-title: Pleistocene/Holocene climate change, re‐establishment of fluvial drainage network and increase in relief in the Swiss Alps publication-title: Terra Nova – ident: e_1_2_7_7_1 doi: 10.2134/jpa1989.0290 – ident: e_1_2_7_12_1 doi: 10.1016/j.agwat.2010.05.024 – ident: e_1_2_7_26_1 doi: 10.1016/j.geomorph.2006.01.044 – ident: e_1_2_7_60_1 doi: 10.1016/j.jhydrol.2011.05.027 – ident: e_1_2_7_47_1 doi: 10.1002/hyp.6957 – ident: e_1_2_7_40_1 doi: 10.1017/S0016774600001633 – ident: e_1_2_7_57_1 doi: 10.1002/hyp.7214 – ident: e_1_2_7_41_1 doi: 10.1016/j.catena.2009.02.021 – ident: e_1_2_7_63_1 doi: 10.1016/S0012-8252(99)00046-X – ident: e_1_2_7_88_1 doi: 10.1016/j.geomorph.2006.10.024 – ident: e_1_2_7_16_1 doi: 10.1016/S0037-0738(03)00174-X – ident: e_1_2_7_62_1 doi: 10.1111/j.1468-0459.2012.00476.x – ident: e_1_2_7_18_1 doi: 10.1002/esp.1315 – ident: e_1_2_7_66_1 doi: 10.1016/S0166-2481(08)00004-4 – ident: e_1_2_7_59_1 doi: 10.1016/j.catena.2009.06.007 – ident: e_1_2_7_13_1 doi: 10.5194/nhess-8-323-2008 – ident: e_1_2_7_2_1 doi: 10.1029/2001GL013554 – ident: e_1_2_7_48_1 doi: 10.1016/j.geomorph.2009.02.030 – ident: e_1_2_7_65_1 doi: 10.1016/j.geomorph.2012.10.033 – ident: e_1_2_7_69_1 doi: 10.1007/s00267-010-9585-0 – ident: e_1_2_7_70_1 doi: 10.1016/j.jaridenv.2010.10.005 – ident: e_1_2_7_33_1 doi: 10.1016/S0169-555X(01)00174-X – ident: e_1_2_7_46_1 doi: 10.1016/j.geomorph.2012.10.015 – ident: e_1_2_7_15_1 doi: 10.1016/j.geomorph.2006.06.039 – ident: e_1_2_7_4_1 doi: 10.1002/esp.3208 – ident: e_1_2_7_49_1 doi: 10.1016/j.catena.2009.07.001 – ident: e_1_2_7_53_1 doi: 10.1016/j.envsoft.2005.04.021 – ident: e_1_2_7_37_1 doi: 10.1002/hyp.3360080405 – ident: e_1_2_7_23_1 doi: 10.1016/0098-3004(91)90048-I – ident: e_1_2_7_77_1 doi: 10.2475/ajs.263.2.110 – ident: e_1_2_7_42_1 doi: 10.1002/esp.441 – ident: e_1_2_7_84_1 doi: 10.1016/j.geomorph.2010.03.006 – ident: e_1_2_7_85_1 doi: 10.1016/j.geomorph.2010.10.010 – ident: e_1_2_7_36_1 doi: 10.1002/(SICI)1099-1085(19981030)12:13/14<2029::AID-HYP717>3.0.CO;2-O – ident: e_1_2_7_39_1 doi: 10.1002/esp.1846 – ident: e_1_2_7_45_1 doi: 10.1002/esp.2063 – ident: e_1_2_7_75_1 doi: 10.2136/sssaj2002.1610 – ident: e_1_2_7_34_1 doi: 10.1016/j.geomorph.2012.10.033 – volume-title: Developments in Soil Science year: 2009 ident: e_1_2_7_95_1 – ident: e_1_2_7_10_1 doi: 10.2307/622210 – ident: e_1_2_7_68_1 doi: 10.1130/B25567.1 – ident: e_1_2_7_94_1 doi: 10.1016/j.geomorph.2008.04.028 – ident: e_1_2_7_6_1 doi: 10.1016/j.catena.2008.07.006 – ident: e_1_2_7_61_1 doi: 10.1002/clen.201000016 – ident: e_1_2_7_9_1 doi: 10.1111/j.1475-4762.2006.00671.x – ident: e_1_2_7_56_1 doi: 10.1002/hyp.7376 – ident: e_1_2_7_27_1 doi: 10.1111/j.1749-8198.2011.00445.x – volume-title: Sedimentation year: 1972 ident: e_1_2_7_22_1 – ident: e_1_2_7_31_1 doi: 10.1002/esp.1863 – ident: e_1_2_7_54_1 doi: 10.1002/rra.882 – ident: e_1_2_7_11_1 doi: 10.1002/esp.1531 – ident: e_1_2_7_24_1 doi: 10.1002/esp.3242 – ident: e_1_2_7_20_1 doi: 10.2478/v10104-011-0025-4 – ident: e_1_2_7_87_1 doi: 10.1016/S0098-3004(00)00134-5 – ident: e_1_2_7_71_1 doi: 10.1046/j.1365-3121.2003.00469.x – ident: e_1_2_7_19_1 doi: 10.1016/S0341-8162(01)00162-X – ident: e_1_2_7_83_1 doi: 10.1002/esp.1758 – ident: e_1_2_7_28_1 doi: 10.1016/j.jnc.2010.05.002 – ident: e_1_2_7_3_1 doi: 10.1016/j.advwatres.2010.12.003 – ident: e_1_2_7_5_1 doi: 10.1002/hyp.7115 – ident: e_1_2_7_50_1 doi: 10.1002/esp.2134 – ident: e_1_2_7_52_1 doi: 10.1016/j.geomorph.2011.08.020 – ident: e_1_2_7_55_1 doi: 10.1029/2007WR006367 – volume-title: Slopes, Forms and Processes year: 1971 ident: e_1_2_7_43_1 – ident: e_1_2_7_29_1 doi: 10.1109/TGRS.2010.2053546 – ident: e_1_2_7_93_1 doi: 10.1016/j.geomorph.2008.07.006 – ident: e_1_2_7_64_1 doi: 10.1002/hyp.3360050106 – ident: e_1_2_7_21_1 doi: 10.1177/0309133307076485 – volume-title: Geomorphometry – Concepts, Software, Applications year: 2009 ident: e_1_2_7_35_1 – ident: e_1_2_7_38_1 doi: 10.1016/j.geomorph.2006.06.036 – volume-title: Hillslope Processes year: 1986 ident: e_1_2_7_44_1 – ident: e_1_2_7_90_1 doi: 10.1002/hyp.8262 – ident: e_1_2_7_14_1 doi: 10.1016/j.geomorph.2012.05.2007 – ident: e_1_2_7_76_1 doi: 10.1016/S0169-555X(03)00131-4 – ident: e_1_2_7_25_1 doi: 10.1016/j.catena.2006.07.007 – ident: e_1_2_7_67_1 doi: 10.1016/j.geomorph.2011.12.042 – ident: e_1_2_7_73_1 doi: 10.1016/j.catena.2003.08.002 – ident: e_1_2_7_74_1 doi: 10.1002/1096-9837(200008)25:9<1025::AID-ESP116>3.0.CO;2-Z – ident: e_1_2_7_89_1 doi: 10.1016/0921-8181(93)90009-D – ident: e_1_2_7_82_1 doi: 10.1016/j.cageo.2005.08.001 – ident: e_1_2_7_78_1 doi: 10.1086/627137 – ident: e_1_2_7_58_1 doi: 10.5194/hess-13-1823-2009 – ident: e_1_2_7_32_1 doi: 10.1130/0016-7606(1992)104<1364:NMOTDO>2.3.CO;2 – ident: e_1_2_7_79_1 doi: 10.1016/j.geomorph.2008.03.004 – ident: e_1_2_7_72_1 doi: 10.1016/j.geomorph.2005.09.013 – ident: e_1_2_7_17_1 doi: 10.1002/esp.318 – ident: e_1_2_7_51_1 doi: 10.1002/rra.880 – ident: e_1_2_7_81_1 doi: 10.1016/j.gloplacha.2009.08.001 – ident: e_1_2_7_91_1 doi: 10.1016/j.geomorph.2010.07.027 – ident: e_1_2_7_8_1 doi: 10.1002/hyp.6313 – ident: e_1_2_7_30_1 doi: 10.1002/esp.2042 – ident: e_1_2_7_80_1 doi: 10.1002/hyp.7871 – ident: e_1_2_7_92_1 doi: 10.1016/0022-1694(83)90217-2 – ident: e_1_2_7_86_1 doi: 10.1029/2000WR900065 |
SSID | ssj0011489 |
Score | 2.4538276 |
Snippet | ABSTRACT
Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to... Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts... |
SourceID | wageningen proquest pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1457 |
SubjectTerms | Bgi / Prodig Catchments Catchments. Hydrological cycle cellular-model Complexity Computer simulation delivery problem DEM drainage-basin evolution Erosion Floodplains fluvial dynamics Freshwater hydrological connectivity Hydrometeorology land-use change Landforms landscape complexity landscape evolution modelling Landscapes mesoscale catchment Morphology Physical geography Rainfall riparian vegetation sediment connectivity Sediments small alpine catchments Soil conservation surface-roughness Terraces Water conservation |
Title | Linking landscape morphological complexity and sediment connectivity |
URI | https://api.istex.fr/ark:/67375/WNG-6B7LQR1T-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fesp.3434 https://www.proquest.com/docview/1437204138 https://www.proquest.com/docview/1448742370 https://www.proquest.com/docview/1642274176 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F443427 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB7EIvXFqm0xrZUUin2KJtnNbvKo9RciUn9RoQ_LJu4iqDm53KH2r-_MbhI50SJ9CtxNIDs7s_tNMvt9AN90JphFpBFZaqshwBvlhRER1iKZyS3n1rhui0Oxd8b3z7PztquSzsJ4foj-hRtlhluvKcF12aw_koaaBgt2zogKNGGCaPO3jnvmKEL5hT8pLSOs2WXHOxun692NEzvRG3LqPXVG6gadY72qxQTsnL3DDK_dkadJJOu2op138LsbhO9AuVobj8q16s8Tfsf_G-U8zLUINdzwIbUAU6ZehLetWPrlwyLM7Do14If3sHXglRdCd2CYWqnCmwFOXLeghq5h3dwj0g_RImxwp6S3kfg7Lu-VF674AGc726c_9qJWliHCiZU84kZYJqSubJ7bqkwtYhhdxBYrF52ZhBEEFDap6CsO4rlMFkRTxcoyrmQhSss-wnQ9qM0ShFLbGBeEXKc4xMIYzS6yi0oXnGRnTMwD-N5NkapaznKSzrhWnm05VegfRf4J4Gtveet5Op6xWXWz3Bvo4RX1tclM_TrcVWJTHhwdJ6dqP4CViTDob0AsRoyGMoDlLi5Um_MNFlFO8SdhOT5M_zdmK32C0bUZjMkGC0TqRIr_YYMlIZEKSREAe4w5VZO4VKOID7yNHHU3Hqr6mi6YvI3iOMgUH27VRdSLflDbJz_p-um1hp9hNnUqINQmswzTo-HYfEEsNipXXNb9BXmdMM0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqi98ChUDZQSJFROabOxYyfiBPSxlGUFZSt6QLKc1BZSSxZtdtXHr--MnaRaBAhxipRMpNiesb9xxt8H8FKngllEGpGlshoCvFGWGxFhLpKazHJujau2GIr-MT88SU8W4HV7FsbzQ3QbbhQZbr6mAKcN6Z1b1lBTY8bOGb8DSxxxBmVeu0cddxTh_NyflZYRZu2yZZ6Nk532zbm1aIm69ZJqI3WN3WO9rsUc8Fy5wBiv3KGneSzrFqP9-_CtbYavQTnbnk2L7fL6F4bH_2znA7jXgNTwjfeqh7BgqlVYbvTSv1-twt0DJwh89Qh2B158IXRnhqmaKvwxxrFr59TQ1aybSwT7IVqENS6WtCGJ93GGL712xWM43t8bvetHjTJDhGMrecSNsExIXdoss2WRWIQxOo8tJi86NT1GKFDYXkk_chDSpTInpipWFHEpc1FYtgaL1bgy6xBKbWOcEzKdYBNzYzQ7TU9LnXNSnjExD-BVO0aqbGjLST3jXHnC5URh_yjqnwBedJY_PVXHb2y23DB3BnpyRqVtMlVfhwdKvJWDz0e9kToMYHPOD7oXEI4RqaEMYKN1DNWEfY15lBP96bEMP6Z7jAFLf2F0ZcYzssEckYqR4r_YYFZIvEJSBMBunU5VpC9VK6IEb1xHXcwmqjqnC8ZvrTg2MsGP23Iu9cd-UHtfPtH1yb8aPofl_ujjQA3eDz88hZXEiYJQ1cwGLE4nM_MModm02HQheANqMTTs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9RAEJ4gROXFH6ixilgTg0-FXne72z7KjwPxckGESMLDZtvbjQnYI9e7AP71zuy2JUfUGJ-a3E2T7uzM7jft7PcBvNepYBaRRmSprYYAb5TlRkRYi6Qms5xb47othmL_hB-cpqdNVyWdhfH8EN0LN8oMt15Tgl-O7OYtaaipsWDnjN-DJS4QSBAgOuqoowjm5_6otIywaJct8WycbLZ3zm1FS-TVa2qN1DV6x3pZizncuXyFKV65M0_zUNbtRf3HcNaOwregnG_MpsVG-fMOweP_DfMJPGogavjRx9RTWDDVCjxs1NK_36zA_T0nB3zzDHYGXnohdCeGqZcq_DHGmWtX1NB1rJtrhPohWoQ1bpX0OhJ_x_W99MoVz-Gkv3u8vR81ugwRzqzkETfCMiF1abPMlkViEcToPLZYuujU9BhhQGF7JX3GQUCXypx4qlhRxKXMRWHZC1isxpV5CaHUNsYVIdMJDjE3RrNROip1zkl3xsQ8gA_tFKmyIS0n7YwL5emWE4X-UeSfAN51lpeeqOM3NutuljsDPTmnxjaZqm_DPSW25ODLUe9YHQSwNhcG3Q0IxojSUAaw2saFapK-xirKSf70WIYP0_2N6UrfYHRlxjOywQqRWpHiv9hgTUisQlIEwG5jTlWkLlUrIgRvIkddzSaquqALZm-tOA4ywYdbdxH1Rz-o3a-HdH31r4Zv4cHhTl8NPg0_v4blxCmCUMvMKixOJzPzBnHZtFhzCfgLq3wzmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+landscape+morphological+complexity+and+sediment+connectivity&rft.jtitle=Earth+surface+processes+and+landforms&rft.au=Baartman%2C+Jantiene+E.+M.&rft.au=Masselink%2C+Rens&rft.au=Keesstra%2C+Saskia+D.&rft.au=Temme%2C+Arnaud+J.+A.+M.&rft.date=2013-09-30&rft.issn=0197-9337&rft.eissn=1096-9837&rft.volume=38&rft.issue=12&rft.spage=1457&rft.epage=1471&rft_id=info:doi/10.1002%2Fesp.3434&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_esp_3434 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-9337&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-9337&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-9337&client=summon |