Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru)
The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers is the moraine-dammed Lake Palcacocha, which drained suddenly due to an unknown cause in 1941. The resulting Glacial Lake Outburst Flood (GLOF...
Saved in:
Published in | Hydrology and earth system sciences Vol. 24; no. 1; pp. 93 - 114 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
09.01.2020
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1607-7938 1027-5606 1607-7938 |
DOI | 10.5194/hess-24-93-2020 |
Cover
Loading…
Abstract | The Cordillera Blanca in Peru has been the scene of rapid deglaciation
for many decades. One of numerous lakes formed in the front of the
retreating glaciers is the moraine-dammed Lake Palcacocha, which drained
suddenly due to an unknown cause in 1941. The resulting Glacial Lake
Outburst Flood (GLOF) led to dam failure and complete drainage of Lake
Jircacocha downstream, and to major destruction and thousands of fatalities
in the city of Huaráz at a distance of 23 km. We chose an integrated
approach to revisit the 1941 event in terms of topographic reconstruction
and numerical back-calculation with the GIS-based open-source mass
flow/process chain simulation framework r.avaflow, which builds on an
enhanced version of the Pudasaini (2012) two-phase flow model. Thereby we
consider four scenarios: (A) and (AX) breach of the moraine dam of Lake
Palcacocha due to retrogressive erosion, assuming two different fluid
characteristics; (B) failure of the moraine dam caused by the impact of a
landslide on the lake; and (C) geomechanical failure and collapse of the
moraine dam. The simulations largely yield empirically adequate results with
physically plausible parameters, taking the documentation of the 1941 event
and previous calculations of future scenarios as reference. Most simulation
scenarios indicate travel times between 36 and 70 min to reach
Huaráz, accompanied with peak discharges above 10 000 m3 s−1. The results of the scenarios indicate that the most likely initiation mechanism would be retrogressive erosion, possibly
triggered by a minor impact wave and/or facilitated by a weak stability
condition of the moraine dam. However, the involvement of Lake Jircacocha
disguises part of the signal of process initiation farther downstream.
Predictive simulations of possible future events have to be based on a
larger set of back-calculated GLOF process chains, taking into account the
expected parameter uncertainties and appropriate strategies to deal with
critical threshold effects. |
---|---|
AbstractList | The Cordillera Blanca in Peru has been the scene of rapid deglaciation
for many decades. One of numerous lakes formed in the front of the
retreating glaciers is the moraine-dammed Lake Palcacocha, which drained
suddenly due to an unknown cause in 1941. The resulting Glacial Lake
Outburst Flood (GLOF) led to dam failure and complete drainage of Lake
Jircacocha downstream, and to major destruction and thousands of fatalities
in the city of Huaráz at a distance of 23 km. We chose an integrated
approach to revisit the 1941 event in terms of topographic reconstruction
and numerical back-calculation with the GIS-based open-source mass
flow/process chain simulation framework r.avaflow, which builds on an
enhanced version of the Pudasaini (2012) two-phase flow model. Thereby we
consider four scenarios: (A) and (AX) breach of the moraine dam of Lake
Palcacocha due to retrogressive erosion, assuming two different fluid
characteristics; (B) failure of the moraine dam caused by the impact of a
landslide on the lake; and (C) geomechanical failure and collapse of the
moraine dam. The simulations largely yield empirically adequate results with
physically plausible parameters, taking the documentation of the 1941 event
and previous calculations of future scenarios as reference. Most simulation
scenarios indicate travel times between 36 and 70 min to reach
Huaráz, accompanied with peak discharges above 10 000 m3 s−1. The results of the scenarios indicate that the most likely initiation mechanism would be retrogressive erosion, possibly
triggered by a minor impact wave and/or facilitated by a weak stability
condition of the moraine dam. However, the involvement of Lake Jircacocha
disguises part of the signal of process initiation farther downstream.
Predictive simulations of possible future events have to be based on a
larger set of back-calculated GLOF process chains, taking into account the
expected parameter uncertainties and appropriate strategies to deal with
critical threshold effects. The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers is the moraine-dammed Lake Palcacocha, which drained suddenly due to an unknown cause in 1941. The resulting Glacial Lake Outburst Flood (GLOF) led to dam failure and complete drainage of Lake Jircacocha downstream, and to major destruction and thousands of fatalities in the city of Huaráz at a distance of 23 km. We chose an integrated approach to revisit the 1941 event in terms of topographic reconstruction and numerical back-calculation with the GIS-based open-source mass flow/process chain simulation framework r.avaflow, which builds on an enhanced version of the Pudasaini (2012) two-phase flow model. Thereby we consider four scenarios: (A) and (AX) breach of the moraine dam of Lake Palcacocha due to retrogressive erosion, assuming two different fluid characteristics; (B) failure of the moraine dam caused by the impact of a landslide on the lake; and (C) geomechanical failure and collapse of the moraine dam. The simulations largely yield empirically adequate results with physically plausible parameters, taking the documentation of the 1941 event and previous calculations of future scenarios as reference. Most simulation scenarios indicate travel times between 36 and 70 min to reach Huaráz, accompanied with peak discharges above 10 000 m 3 s −1 . The results of the scenarios indicate that the most likely initiation mechanism would be retrogressive erosion, possibly triggered by a minor impact wave and/or facilitated by a weak stability condition of the moraine dam. However, the involvement of Lake Jircacocha disguises part of the signal of process initiation farther downstream. Predictive simulations of possible future events have to be based on a larger set of back-calculated GLOF process chains, taking into account the expected parameter uncertainties and appropriate strategies to deal with critical threshold effects. The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers is the moraine-dammed Lake Palcacocha, which drained suddenly due to an unknown cause in 1941. The resulting Glacial Lake Outburst Flood (GLOF) led to dam failure and complete drainage of Lake Jircacocha downstream, and to major destruction and thousands of fatalities in the city of Huaráz at a distance of 23 km. We chose an integrated approach to revisit the 1941 event in terms of topographic reconstruction and numerical back-calculation with the GIS-based open-source mass flow/process chain simulation framework r.avaflow, which builds on an enhanced version of the Pudasaini (2012) two-phase flow model. Thereby we consider four scenarios: (A) and (AX) breach of the moraine dam of Lake Palcacocha due to retrogressive erosion, assuming two different fluid characteristics; (B) failure of the moraine dam caused by the impact of a landslide on the lake; and (C) geomechanical failure and collapse of the moraine dam. The simulations largely yield empirically adequate results with physically plausible parameters, taking the documentation of the 1941 event and previous calculations of future scenarios as reference. Most simulation scenarios indicate travel times between 36 and 70 min to reach Huaráz, accompanied with peak discharges above 10 000 m3 s-1. The results of the scenarios indicate that the most likely initiation mechanism would be retrogressive erosion, possibly triggered by a minor impact wave and/or facilitated by a weak stability condition of the moraine dam. However, the involvement of Lake Jircacocha disguises part of the signal of process initiation farther downstream. Predictive simulations of possible future events have to be based on a larger set of back-calculated GLOF process chains, taking into account the expected parameter uncertainties and appropriate strategies to deal with critical threshold effects. The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers is the moraine-dammed Lake Palcacocha, which drained suddenly due to an unknown cause in 1941. The resulting Glacial Lake Outburst Flood (GLOF) led to dam failure and complete drainage of Lake Jircacocha downstream, and to major destruction and thousands of fatalities in the city of Huaráz at a distance of 23 km. We chose an integrated approach to revisit the 1941 event in terms of topographic reconstruction and numerical back-calculation with the GIS-based open-source mass flow/process chain simulation framework r.avaflow, which builds on an enhanced version of the Pudasaini (2012) two-phase flow model. Thereby we consider four scenarios: (A) and (AX) breach of the moraine dam of Lake Palcacocha due to retrogressive erosion, assuming two different fluid characteristics; (B) failure of the moraine dam caused by the impact of a landslide on the lake; and (C) geomechanical failure and collapse of the moraine dam. The simulations largely yield empirically adequate results with physically plausible parameters, taking the documentation of the 1941 event and previous calculations of future scenarios as reference. Most simulation scenarios indicate travel times between 36 and 70 min to reach Huaráz, accompanied with peak discharges above 10 000 m.sup.3 s.sup.-1 . The results of the scenarios indicate that the most likely initiation mechanism would be retrogressive erosion, possibly triggered by a minor impact wave and/or facilitated by a weak stability condition of the moraine dam. However, the involvement of Lake Jircacocha disguises part of the signal of process initiation farther downstream. Predictive simulations of possible future events have to be based on a larger set of back-calculated GLOF process chains, taking into account the expected parameter uncertainties and appropriate strategies to deal with critical threshold effects. |
Audience | Academic |
Author | Frey, Holger Mergili, Martin Pudasaini, Shiva P. Cochachin, Alejo Emmer, Adam Fischer, Jan-Thomas |
Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0001-5085-4846 surname: Mergili fullname: Mergili, Martin – sequence: 2 givenname: Shiva P. orcidid: 0000-0002-6741-0827 surname: Pudasaini fullname: Pudasaini, Shiva P. – sequence: 3 givenname: Adam orcidid: 0000-0002-8268-990X surname: Emmer fullname: Emmer, Adam – sequence: 4 givenname: Jan-Thomas orcidid: 0000-0001-5179-6457 surname: Fischer fullname: Fischer, Jan-Thomas – sequence: 5 givenname: Alejo surname: Cochachin fullname: Cochachin, Alejo – sequence: 6 givenname: Holger orcidid: 0000-0003-0705-3570 surname: Frey fullname: Frey, Holger |
BookMark | eNp1UsFuEzEUXKEi0RbOXC1xoRLbem2v1z6WqC2RIrUqcOJgvfU-Jw6bdbEdCf6Gb-HLcAgIgkA-2BrNzLPHc1IdTWHCqnre0PO20eJihSnVTNSa14wy-qg6biTt6k5zdfTH-Ul1ktKaUqaUZMfVh3u0YUo5bm32YSLBkbxCUgybb19vFrfX5CEGW6yJXYGfCGSygI9I7mC0YEMByctZiIMfR4xAXo8wWXhF7jBuz55Wjx2MCZ_93E-r99dX72Zv6sXtzXx2uaihlTLXvGFacsaQOmdFz1nbK-4GhSC6TqsWqMCOSakHAXTQDFsnKeug72TXsx75aTXf-w4B1uYh-g3ELyaANz-AEJcGYvZ2RKOc6LXiDUpNBRta7UoQlDnZC9C618Xrxd6rPPvTFlM267CNU7m-YZwLqYRo2G_WEoqpn1zIEezGJ2suZUOVFpx1hXX-D1ZZA258SR2dL_iB4OxAUDgZP-clbFMy87f3h9x2z7UxpBTRGesz7P6wDPGjaajZ1cLsamGYMJqbXS2K7uIv3a_A_qf4DtBDuC8 |
CitedBy_id | crossref_primary_10_1007_s10064_024_04018_9 crossref_primary_10_1007_s41748_022_00330_0 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103416 crossref_primary_10_1016_j_geomorph_2024_109471 crossref_primary_10_1007_s10346_021_01670_0 crossref_primary_10_1038_s41467_021_26959_5 crossref_primary_10_1016_j_catena_2024_108308 crossref_primary_10_5194_tc_15_3159_2021 crossref_primary_10_1016_j_enggeo_2021_106072 crossref_primary_10_1016_j_enggeo_2022_106798 crossref_primary_10_1007_s10346_021_01804_4 crossref_primary_10_1016_j_enggeo_2022_106797 crossref_primary_10_1140_epjp_s13360_024_04908_7 crossref_primary_10_1007_s10346_024_02358_x crossref_primary_10_1016_j_ijmultiphaseflow_2020_103292 crossref_primary_10_1016_j_scitotenv_2020_139997 crossref_primary_10_1016_j_scitotenv_2023_163262 crossref_primary_10_1016_j_geomorph_2020_107178 crossref_primary_10_1016_j_enggeo_2020_105877 crossref_primary_10_1016_j_geoforum_2021_06_011 crossref_primary_10_1016_j_ijnonlinmec_2024_104860 crossref_primary_10_3389_feart_2021_607277 crossref_primary_10_1017_jfm_2021_348 crossref_primary_10_1016_j_enggeo_2025_107959 crossref_primary_10_1016_j_scitotenv_2023_169758 crossref_primary_10_1109_JSTARS_2024_3522950 crossref_primary_10_1007_s10064_023_03480_1 crossref_primary_10_5194_nhess_20_2175_2020 crossref_primary_10_1061_JHEND8_HYENG_13736 crossref_primary_10_1016_j_enggeo_2021_106384 crossref_primary_10_1007_s10346_022_01989_2 crossref_primary_10_1038_s41598_022_16337_6 crossref_primary_10_1007_s10346_020_01478_4 crossref_primary_10_5194_nhess_22_3041_2022 crossref_primary_10_1016_j_geomorph_2021_107960 crossref_primary_10_1016_j_enggeo_2021_106188 crossref_primary_10_1016_j_enggeo_2022_106763 crossref_primary_10_5194_tc_17_5137_2023 crossref_primary_10_1029_2022EF003253 crossref_primary_10_1016_j_jhydrol_2023_129311 crossref_primary_10_1016_j_jhydrol_2023_130146 crossref_primary_10_1029_2021WR030688 crossref_primary_10_1038_s41467_023_36033_x crossref_primary_10_54139_revinguc_v28i1_4 crossref_primary_10_1080_19475705_2024_2432365 crossref_primary_10_3390_hydrology8010024 crossref_primary_10_1016_j_scitotenv_2020_144008 crossref_primary_10_1007_s12583_024_0116_y crossref_primary_10_1016_j_enggeo_2023_107186 crossref_primary_10_1134_S009780782207003X crossref_primary_10_1016_j_geomorph_2024_109051 crossref_primary_10_1080_19475705_2024_2356216 crossref_primary_10_3390_w12102664 crossref_primary_10_1002_esp_6033 crossref_primary_10_1144_jgs2021_084 crossref_primary_10_1111_bor_12611 crossref_primary_10_1007_s11440_021_01296_5 crossref_primary_10_1007_s12583_022_1625_1 crossref_primary_10_1016_j_geomorph_2021_107992 crossref_primary_10_1017_jog_2020_52 crossref_primary_10_5194_hess_29_969_2025 crossref_primary_10_1002_esp_5687 crossref_primary_10_1002_esp_5841 crossref_primary_10_1016_j_jhydrol_2023_129465 crossref_primary_10_1016_j_scitotenv_2021_151660 crossref_primary_10_1016_j_earscirev_2022_104135 crossref_primary_10_3390_app132312610 crossref_primary_10_1016_j_iswcr_2024_07_003 crossref_primary_10_32911_as_2024_v17_n1_1153 crossref_primary_10_1016_j_jhydrol_2024_132417 crossref_primary_10_1038_s41561_021_00686_4 crossref_primary_10_1007_s10346_023_02081_z crossref_primary_10_1016_j_gloplacha_2021_103722 crossref_primary_10_1007_s12583_020_1118_z crossref_primary_10_1016_j_enggeo_2020_105771 crossref_primary_10_1016_j_ijnonlinmec_2022_104204 crossref_primary_10_1007_s10346_022_01901_y crossref_primary_10_1016_j_enggeo_2022_106783 crossref_primary_10_1016_j_jfluidstructs_2020_103162 crossref_primary_10_1007_s10346_023_02157_w crossref_primary_10_5194_esurf_10_165_2022 |
Cites_doi | 10.1016/j.gloplacha.2004.10.007 10.1016/B978-0-12-394849-6.00008-1 10.1007/s10346-016-0724-4 10.1016/j.ijmultiphaseflow.2019.01.005 10.1016/j.catena.2016.07.032 10.5194/gmd-10-553-2017 10.1016/j.geomorph.2014.06.031 10.1139/t04-052 10.1029/2011JF002186 10.1061/(ASCE)0733-9429(1992)118:11(1490) 10.1144/GSL.ENG.1998.015.01.05 10.1002/2014JF003183 10.5194/hess-20-2519-2016 10.3389/feart.2018.00210 10.1016/j.gloplacha.2013.04.001 10.1016/j.enggeo.2019.105429 10.1002/zamm.200310123 10.3189/2016AoG71A034 10.1016/j.jnnfm.2013.07.005 10.3189/2016AoG71A039 10.3189/S0260305500005280 10.5194/nhess-13-1551-2013 10.1016/S1040-6182(99)00035-X 10.1016/j.earscirev.2014.03.009 10.1007/s11069-011-9860-2 10.5194/hess-18-3461-2014 10.5194/nhess-15-2617-2015 10.1002/esp.4318 10.5194/nhess-18-1373-2018 10.1016/S0022-1694(01)00421-8 10.1029/2019JF005204 10.5194/adgeo-35-145-2014 10.1016/j.geomorph.2015.06.032 10.5194/nhess-19-251-2019 10.1016/j.enggeo.2009.06.020 10.1016/j.scitotenv.2019.02.388 10.1017/S0022112089000340 10.1029/97WR01616 10.1007/s10346-008-0118-3 10.1111/jfr3.12241 10.1029/2018JF004778 10.5194/tc-12-1195-2018 10.5194/nhess-11-1447-2011 10.1177/0309133314546344 10.1007/s11069-019-03657-6 10.5194/nhess-3-647-2003 10.1016/0021-9991(90)90260-8 10.1007/s10584-011-0249-8 10.1007/s10346-005-0052-6 10.1016/j.geomorph.2018.08.032 10.1002/esp.1198 10.1007/s00707-019-02457-0 10.1098/rsta.2005.1596 10.1016/j.coldregions.2010.04.005 10.1016/j.quascirev.2017.10.028 10.5194/nhess-15-1163-2015 10.1006/jcph.2001.6946 10.1016/B978-0-12-394849-6.00014-7 10.1007/s10346-015-0658-2 10.1029/97RG00426 10.5194/nhess-2019-204 10.2747/0272-3646.31.6.528 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.5194/hess-24-93-2020 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1607-7938 |
EndPage | 114 |
ExternalDocumentID | oai_doaj_org_article_8f4b9831e69042d59f02802f6b4a99b9 A610894327 10_5194_hess_24_93_2020 |
GeographicLocations | Peru Cordillera Blanca |
GeographicLocations_xml | – name: Cordillera Blanca – name: Peru |
GroupedDBID | 29I 2WC 5GY 5VS 7XC 8CJ 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACGFO ACIWK ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z EBS ECGQY EDH EJD GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS ISR ITC K6- KQ8 L6V L8X LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RKB RNS TR2 XSB ~02 ~KM BBORY PMFND 7QH 7TG 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H96 KL. KR7 L.G PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-a566t-31296322e0ffc4b325b83fd8ea477985a04e72669d4a0d92e5f6027ab767b2be3 |
IEDL.DBID | BENPR |
ISSN | 1607-7938 1027-5606 |
IngestDate | Wed Aug 27 01:19:31 EDT 2025 Wed Aug 13 09:40:50 EDT 2025 Tue Jun 17 21:10:03 EDT 2025 Tue Jun 10 20:07:24 EDT 2025 Fri Jun 27 04:29:49 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 Tue Jul 01 02:45:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a566t-31296322e0ffc4b325b83fd8ea477985a04e72669d4a0d92e5f6027ab767b2be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8268-990X 0000-0002-6741-0827 0000-0001-5179-6457 0000-0001-5085-4846 0000-0003-0705-3570 |
OpenAccessLink | https://www.proquest.com/docview/2334684412?pq-origsite=%requestingapplication% |
PQID | 2334684412 |
PQPubID | 105724 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8f4b9831e69042d59f02802f6b4a99b9 proquest_journals_2334684412 gale_infotracmisc_A610894327 gale_infotracacademiconefile_A610894327 gale_incontextgauss_ISR_A610894327 crossref_citationtrail_10_5194_hess_24_93_2020 crossref_primary_10_5194_hess_24_93_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-09 |
PublicationDateYYYYMMDD | 2020-01-09 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Hydrology and earth system sciences |
PublicationYear | 2020 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref9 doi: 10.1016/j.gloplacha.2004.10.007 – ident: ref62 – ident: ref1 – ident: ref11 doi: 10.1016/B978-0-12-394849-6.00008-1 – ident: ref43 doi: 10.1007/s10346-016-0724-4 – ident: ref61 doi: 10.1016/j.ijmultiphaseflow.2019.01.005 – ident: ref21 doi: 10.1016/j.catena.2016.07.032 – ident: ref49 doi: 10.5194/gmd-10-553-2017 – ident: ref87 doi: 10.1016/j.geomorph.2014.06.031 – ident: ref89 – ident: ref44 doi: 10.1139/t04-052 – ident: ref85 – ident: ref59 doi: 10.1029/2011JF002186 – ident: ref79 doi: 10.1061/(ASCE)0733-9429(1992)118:11(1490) – ident: ref69 doi: 10.1144/GSL.ENG.1998.015.01.05 – ident: ref27 – ident: ref63 doi: 10.1002/2014JF003183 – ident: ref77 doi: 10.5194/hess-20-2519-2016 – ident: ref24 doi: 10.3389/feart.2018.00210 – ident: ref48 doi: 10.1016/j.gloplacha.2013.04.001 – ident: ref60 doi: 10.1016/j.enggeo.2019.105429 – ident: ref84 doi: 10.1002/zamm.200310123 – ident: ref57 – ident: ref38 doi: 10.3189/2016AoG71A034 – ident: ref30 – ident: ref16 doi: 10.1016/j.jnnfm.2013.07.005 – ident: ref41 doi: 10.3189/2016AoG71A039 – ident: ref2 – ident: ref28 doi: 10.3189/S0260305500005280 – ident: ref65 – ident: ref18 doi: 10.5194/nhess-13-1551-2013 – ident: ref82 – ident: ref70 doi: 10.1016/S1040-6182(99)00035-X – ident: ref40 – ident: ref26 – ident: ref47 – ident: ref86 doi: 10.1016/j.earscirev.2014.03.009 – ident: ref6 doi: 10.1007/s11069-011-9860-2 – ident: ref19 doi: 10.5194/hess-18-3461-2014 – ident: ref25 doi: 10.5194/nhess-15-2617-2015 – ident: ref50 doi: 10.1002/esp.4318 – ident: ref12 doi: 10.5194/nhess-18-1373-2018 – ident: ref54 – ident: ref33 – ident: ref5 doi: 10.1016/S0022-1694(01)00421-8 – ident: ref66 doi: 10.1029/2019JF005204 – ident: ref76 doi: 10.5194/adgeo-35-145-2014 – ident: ref20 doi: 10.1016/j.geomorph.2015.06.032 – ident: ref64 – ident: ref3 – ident: ref32 doi: 10.5194/nhess-19-251-2019 – ident: ref58 – ident: ref23 doi: 10.1016/j.enggeo.2009.06.020 – ident: ref73 doi: 10.1016/j.scitotenv.2019.02.388 – ident: ref68 – ident: ref74 doi: 10.1017/S0022112089000340 – ident: ref83 doi: 10.1029/97WR01616 – ident: ref7 doi: 10.1007/s10346-008-0118-3 – ident: ref22 doi: 10.1111/jfr3.12241 – ident: ref45 – ident: ref80 doi: 10.1029/2018JF004778 – ident: ref29 doi: 10.5194/tc-12-1195-2018 – ident: ref46 doi: 10.5194/nhess-11-1447-2011 – ident: ref36 doi: 10.1177/0309133314546344 – ident: ref72 doi: 10.1007/s11069-019-03657-6 – ident: ref55 – ident: ref35 doi: 10.5194/nhess-3-647-2003 – ident: ref53 doi: 10.1016/0021-9991(90)90260-8 – ident: ref10 doi: 10.1007/s10584-011-0249-8 – ident: ref15 – ident: ref81 doi: 10.1007/s10346-005-0052-6 – ident: ref4 – ident: ref51 doi: 10.1016/j.geomorph.2018.08.032 – ident: ref34 doi: 10.1002/esp.1198 – ident: ref88 – ident: ref67 – ident: ref39 doi: 10.1007/s00707-019-02457-0 – ident: ref56 doi: 10.1098/rsta.2005.1596 – ident: ref13 doi: 10.1016/j.coldregions.2010.04.005 – ident: ref42 – ident: ref17 doi: 10.1016/j.quascirev.2017.10.028 – ident: ref71 doi: 10.5194/nhess-15-1163-2015 – ident: ref78 doi: 10.1006/jcph.2001.6946 – ident: ref14 doi: 10.1016/B978-0-12-394849-6.00014-7 – ident: ref75 doi: 10.1007/s10346-015-0658-2 – ident: ref8 – ident: ref37 doi: 10.1029/97RG00426 – ident: ref52 doi: 10.5194/nhess-2019-204 – ident: ref31 doi: 10.2747/0272-3646.31.6.528 |
SSID | ssj0028862 |
Score | 2.5514982 |
Snippet | The Cordillera Blanca in Peru has been the scene of rapid deglaciation
for many decades. One of numerous lakes formed in the front of the
retreating glaciers... The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 93 |
SubjectTerms | Collapse Computer simulation Dam failure Dam stability Dams Deglaciation Downstream Erosion Floods Geographic information systems Geographical information systems Geomechanics Glacial drift Glacial lake outburst floods Glacial lakes Glacier retreat Glaciers Glaciohydrology Landslides Mass flow Meltwater Moraines Multiphase flow Parameter uncertainty Process management Reconstruction Signal processing Simulation Travel time Two phase flow |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PT9swFLdQL3BBGzCtG0MWmkQnEWhtx7GPbUXXoYqhMSSkHaznxF4RVYqmcti32WfZJ-O9JIX2gHbZNXmJ7V9e3h8n7_cY-9gLWkCGmSq5j0TlMiQQi26So78JOvSCiRXb54UeX6vzm_RmpdUX_RNW0wPXwJ2aqLw1Eu9pUb-K1Eb6GCii9gqs9VXpHvq8ZTLVpFrG6Po7p8gS9Om6JvXBaEWdTtGCJEIlVqKGUJvvFX9U0fa_ZJwrjzN6xbabUJH36ym-Zhuh3GGbTdfy6e9d9oNyx2cGWD6PHMM5jsP3_v75PPk64vd1GQDPp3BbcljwCdwFfgmznAzhFHhniMlnVQ4IfDCj_Y1jfhl-PXzaY9ejs-_DcdI0S0gAI7IF2lKB75IQoRtjrrwUqTcyFiaAyjJrUuiqkKE3toWCbmFFSKNGdMBnOvPCB_mGtcp5Gd4yDl57TYxHkgpPQXgicaMSHk1cOBDb7GQJmcsbJnFqaDFzmFEQxo4wdkI5Kx1h3GadpwvuaxKNl0UH9AyexIj9ujqAOuEanXD_0ok2O6Qn6IjfoqQfaH7CA47y5eqb62O4SJTzImuzo0YoznH2iHtdj4AYECXWmuT-miS-gPn66aWiuMYA4IqkVNpgrCne_Y8VvWdbhE6192P3WQs1K3zAaGjhDyrFfwS0mAA_ priority: 102 providerName: Directory of Open Access Journals |
Title | Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru) |
URI | https://www.proquest.com/docview/2334684412 https://doaj.org/article/8f4b9831e69042d59f02802f6b4a99b9 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY9gAviPEhCqOyJiSGhFlrO479hNZp2UBjlMHEtBfLTuwVUSVldA_899wlbrc-jKdKzVVpzufffTj3O0JeD4PiLodMFd0Hk6UIzMVqwErwN0GFYdCxZfs8UUdn8tN5dp4Kbn_Sa5ULTGyBumpKrJHvciGk0uC8-YfZb4ZTo_B0NY3QWCMbAMEakq-N0cHJ-HSZcmmtuvNOnjPw7aoj94GoRe5OAEkYl8wIsBQc933LL7X0_XeBdOt5ikfkYQoZ6V63xpvkXqgfk_tpevnk7xNygTnkDRMsbSKFsI7C7Yf08PhLQWddNwAtJ-5nTd2cHrtfgY7dtEQ8nDi6sw85aNsV6OhoimWOd3Qcrq7fPiVnxcH3_SOWZiYwB4HZHCCVw5biPAxiLKUXPPNaxEoHJ_Pc6MwNZMjBKZtKukFleMiiAuU4n6vccx_EM7JeN3V4TqjzyiskPhLYf-q4Ry437ORRSInjYo-8X2jMlolQHOdaTC0kFqhiiyq2XFojLKq4R3aWP5h1XBp3i45wCZZiSILdftFcXdq0p6yO0hstwNwMQE-VmYjnxDwqL50x3vTINi6gRZqLGt-juXTXcJeP307tHkSNyDzP8x55k4RiA_8e9N61JYAOkBlrRXJrRRL2Ybl6eWEnNuEAPNHSal_8__JL8gCfuy3umC2yDiYTXkG4M_d9sqaLw36ybPwsPn_90W-LB_8AtV78IQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a4zAuiE9RGGAhEEMirLUdxz4gtA26lpUxwSZNXIyd2CuiSsrohPZP8TfyXpIWehi3XZvXpvn5fdp5vwfwtBcUdxlWqhQ-EpmLkLhYdJMc401QoRd0rNk-99XgSL4_To9X4Pe8F4Zeq5z7xNpRF1VOe-SbXAipNAZv_mb6I6GpUXS6Oh-h0ajFXjj_hSXbz9fDt7i-zzjvvzvcGSTtVIHEYeoyQ6fDUek4D90Yc-kFT70WsdDBySwzOnVdGTIMW6aQrlsYHtKosHZzPlOZ5z4I_N0rcFUKYciidH93UeBprZrTVZ4lmEmohkoIcyS5OUa_lXCZGIF6ScPF_4mC9bCAi0JCHef6N-B6m6CyrUajbsJKKG_BWjsrfXx-G75QxfqXd5ZVkWESyfD2PbY7-thn06b3gOVj961kbsZG7ntgB26Sk_cdO7axg_DVPYiObU9oU-UlOwinZy_uwNGlYHkXVsuqDPeAOa-8IpolQd2ujntijqO-IUUEPC524NUcMZu39OU0RWNisYwhiC1BbLm0RliCuAMbiy9MG-aOi0W3aQkWYkS5XX9QnZ7Y1oKtjtIbLVC5DTq6IjWRTqV5VF46Y7zpwBNaQEukGiW9tXPizvAuw8-f7BbmqMRzz7MOPG-FYoX_HnFvmiAQA-LhWpJcX5JEq8-XL8_1xLZeB59oYSP3_3_5MawNDj-M7Gi4v_cArhEG9baSWYdVVJ_wEBOtmX9UazeDr5dtTn8At8kzUw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKKgEX3ohAAQuBKBKbh9frtQ8INS1LQ0NJgYqKi7F37QY12oSSCJWfxl_hzzCzj0CQyq0HrutJsp58noft-YaQh10nmIkhU0X3EfA0dIHxWSdIwd844bpO-oLtc1ds7_NXB9HBCvlR18LgtcraJhaGOpukuEfeZmHIhQTnzdq-uhYx3EqeT78E2EEKT1rrdholRHbcyTdI374-62_Bf_2IseTF-83toOowEBgIY2ZggBgAkDHX8T7lNmSRlaHPpDM8jpWMTIe7GFyYyrjpZIq5yAvI44yNRWyZdSF87zmyKoWMWIOs9pLXex8W6Z6UojxrZXEAcYUoiYUgYuLtEVixgPFAhYBSbDX-h08sWgec5iAKr5dcJj9rfZWXXY5a85ltpd__opL8PxV6hVyqgnG6Ua6eq2TF5dfIhaov_OjkOvmI2flvjl068RQCZgrK7dKXgzcJnZZ1FjQdmc85NTM6MEeODs04RU8zMnR9E2ZT1Fsa2hvjBtJTOnTH8yc3yP6ZTO0maeST3N0i1FhhBVJKhVjZa5hFljyskRJINmR8k7RqPOi0omrHjiFjDSkbAkgjgDTjWoUaAdQk64sPTEuWktNFewiwhRjSixcPJseHurJWWnpulQxhISsw6lmkPJ7AMy8sN0pZ1SQPEJ4aCURyRM6hmcOv9N-91RsQjyOnP4ub5HEl5Cfw9qD3suADdICcY0uSa0uSYOHS5eEawbqysDCjBXxv_3v4PjkPuNaD_u7OHXIRVVDsoKk10gD0uLsQU87svWrxUvLprOH9C246gAY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+the+1941%C2%A0GLOF+process+chain+at+Lake+Palcacocha+%28Cordillera+Blanca%2C+Peru%29&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Mergili%2C+Martin&rft.au=Pudasaini%2C+Shiva+P.&rft.au=Emmer%2C+Adam&rft.au=Fischer%2C+Jan-Thomas&rft.date=2020-01-09&rft.issn=1607-7938&rft.eissn=1607-7938&rft.volume=24&rft.issue=1&rft.spage=93&rft.epage=114&rft_id=info:doi/10.5194%2Fhess-24-93-2020&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_hess_24_93_2020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon |