Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru)

The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers is the moraine-dammed Lake Palcacocha, which drained suddenly due to an unknown cause in 1941. The resulting Glacial Lake Outburst Flood (GLOF...

Full description

Saved in:
Bibliographic Details
Published inHydrology and earth system sciences Vol. 24; no. 1; pp. 93 - 114
Main Authors Mergili, Martin, Pudasaini, Shiva P., Emmer, Adam, Fischer, Jan-Thomas, Cochachin, Alejo, Frey, Holger
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 09.01.2020
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1607-7938
1027-5606
1607-7938
DOI10.5194/hess-24-93-2020

Cover

Loading…
Abstract The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers is the moraine-dammed Lake Palcacocha, which drained suddenly due to an unknown cause in 1941. The resulting Glacial Lake Outburst Flood (GLOF) led to dam failure and complete drainage of Lake Jircacocha downstream, and to major destruction and thousands of fatalities in the city of Huaráz at a distance of 23 km. We chose an integrated approach to revisit the 1941 event in terms of topographic reconstruction and numerical back-calculation with the GIS-based open-source mass flow/process chain simulation framework r.avaflow, which builds on an enhanced version of the Pudasaini (2012) two-phase flow model. Thereby we consider four scenarios: (A) and (AX) breach of the moraine dam of Lake Palcacocha due to retrogressive erosion, assuming two different fluid characteristics; (B) failure of the moraine dam caused by the impact of a landslide on the lake; and (C) geomechanical failure and collapse of the moraine dam. The simulations largely yield empirically adequate results with physically plausible parameters, taking the documentation of the 1941 event and previous calculations of future scenarios as reference. Most simulation scenarios indicate travel times between 36 and 70 min to reach Huaráz, accompanied with peak discharges above 10 000 m3 s−1. The results of the scenarios indicate that the most likely initiation mechanism would be retrogressive erosion, possibly triggered by a minor impact wave and/or facilitated by a weak stability condition of the moraine dam. However, the involvement of Lake Jircacocha disguises part of the signal of process initiation farther downstream. Predictive simulations of possible future events have to be based on a larger set of back-calculated GLOF process chains, taking into account the expected parameter uncertainties and appropriate strategies to deal with critical threshold effects.
AbstractList The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers is the moraine-dammed Lake Palcacocha, which drained suddenly due to an unknown cause in 1941. The resulting Glacial Lake Outburst Flood (GLOF) led to dam failure and complete drainage of Lake Jircacocha downstream, and to major destruction and thousands of fatalities in the city of Huaráz at a distance of 23 km. We chose an integrated approach to revisit the 1941 event in terms of topographic reconstruction and numerical back-calculation with the GIS-based open-source mass flow/process chain simulation framework r.avaflow, which builds on an enhanced version of the Pudasaini (2012) two-phase flow model. Thereby we consider four scenarios: (A) and (AX) breach of the moraine dam of Lake Palcacocha due to retrogressive erosion, assuming two different fluid characteristics; (B) failure of the moraine dam caused by the impact of a landslide on the lake; and (C) geomechanical failure and collapse of the moraine dam. The simulations largely yield empirically adequate results with physically plausible parameters, taking the documentation of the 1941 event and previous calculations of future scenarios as reference. Most simulation scenarios indicate travel times between 36 and 70 min to reach Huaráz, accompanied with peak discharges above 10 000 m3 s−1. The results of the scenarios indicate that the most likely initiation mechanism would be retrogressive erosion, possibly triggered by a minor impact wave and/or facilitated by a weak stability condition of the moraine dam. However, the involvement of Lake Jircacocha disguises part of the signal of process initiation farther downstream. Predictive simulations of possible future events have to be based on a larger set of back-calculated GLOF process chains, taking into account the expected parameter uncertainties and appropriate strategies to deal with critical threshold effects.
The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers is the moraine-dammed Lake Palcacocha, which drained suddenly due to an unknown cause in 1941. The resulting Glacial Lake Outburst Flood (GLOF) led to dam failure and complete drainage of Lake Jircacocha downstream, and to major destruction and thousands of fatalities in the city of Huaráz at a distance of 23 km. We chose an integrated approach to revisit the 1941 event in terms of topographic reconstruction and numerical back-calculation with the GIS-based open-source mass flow/process chain simulation framework r.avaflow, which builds on an enhanced version of the Pudasaini (2012) two-phase flow model. Thereby we consider four scenarios: (A) and (AX) breach of the moraine dam of Lake Palcacocha due to retrogressive erosion, assuming two different fluid characteristics; (B) failure of the moraine dam caused by the impact of a landslide on the lake; and (C) geomechanical failure and collapse of the moraine dam. The simulations largely yield empirically adequate results with physically plausible parameters, taking the documentation of the 1941 event and previous calculations of future scenarios as reference. Most simulation scenarios indicate travel times between 36 and 70 min to reach Huaráz, accompanied with peak discharges above 10 000 m 3  s −1 . The results of the scenarios indicate that the most likely initiation mechanism would be retrogressive erosion, possibly triggered by a minor impact wave and/or facilitated by a weak stability condition of the moraine dam. However, the involvement of Lake Jircacocha disguises part of the signal of process initiation farther downstream. Predictive simulations of possible future events have to be based on a larger set of back-calculated GLOF process chains, taking into account the expected parameter uncertainties and appropriate strategies to deal with critical threshold effects.
The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers is the moraine-dammed Lake Palcacocha, which drained suddenly due to an unknown cause in 1941. The resulting Glacial Lake Outburst Flood (GLOF) led to dam failure and complete drainage of Lake Jircacocha downstream, and to major destruction and thousands of fatalities in the city of Huaráz at a distance of 23 km. We chose an integrated approach to revisit the 1941 event in terms of topographic reconstruction and numerical back-calculation with the GIS-based open-source mass flow/process chain simulation framework r.avaflow, which builds on an enhanced version of the Pudasaini (2012) two-phase flow model. Thereby we consider four scenarios: (A) and (AX) breach of the moraine dam of Lake Palcacocha due to retrogressive erosion, assuming two different fluid characteristics; (B) failure of the moraine dam caused by the impact of a landslide on the lake; and (C) geomechanical failure and collapse of the moraine dam. The simulations largely yield empirically adequate results with physically plausible parameters, taking the documentation of the 1941 event and previous calculations of future scenarios as reference. Most simulation scenarios indicate travel times between 36 and 70 min to reach Huaráz, accompanied with peak discharges above 10 000 m3 s-1. The results of the scenarios indicate that the most likely initiation mechanism would be retrogressive erosion, possibly triggered by a minor impact wave and/or facilitated by a weak stability condition of the moraine dam. However, the involvement of Lake Jircacocha disguises part of the signal of process initiation farther downstream. Predictive simulations of possible future events have to be based on a larger set of back-calculated GLOF process chains, taking into account the expected parameter uncertainties and appropriate strategies to deal with critical threshold effects.
The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers is the moraine-dammed Lake Palcacocha, which drained suddenly due to an unknown cause in 1941. The resulting Glacial Lake Outburst Flood (GLOF) led to dam failure and complete drainage of Lake Jircacocha downstream, and to major destruction and thousands of fatalities in the city of Huaráz at a distance of 23 km. We chose an integrated approach to revisit the 1941 event in terms of topographic reconstruction and numerical back-calculation with the GIS-based open-source mass flow/process chain simulation framework r.avaflow, which builds on an enhanced version of the Pudasaini (2012) two-phase flow model. Thereby we consider four scenarios: (A) and (AX) breach of the moraine dam of Lake Palcacocha due to retrogressive erosion, assuming two different fluid characteristics; (B) failure of the moraine dam caused by the impact of a landslide on the lake; and (C) geomechanical failure and collapse of the moraine dam. The simulations largely yield empirically adequate results with physically plausible parameters, taking the documentation of the 1941 event and previous calculations of future scenarios as reference. Most simulation scenarios indicate travel times between 36 and 70 min to reach Huaráz, accompanied with peak discharges above 10 000 m.sup.3  s.sup.-1 . The results of the scenarios indicate that the most likely initiation mechanism would be retrogressive erosion, possibly triggered by a minor impact wave and/or facilitated by a weak stability condition of the moraine dam. However, the involvement of Lake Jircacocha disguises part of the signal of process initiation farther downstream. Predictive simulations of possible future events have to be based on a larger set of back-calculated GLOF process chains, taking into account the expected parameter uncertainties and appropriate strategies to deal with critical threshold effects.
Audience Academic
Author Frey, Holger
Mergili, Martin
Pudasaini, Shiva P.
Cochachin, Alejo
Emmer, Adam
Fischer, Jan-Thomas
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0001-5085-4846
  surname: Mergili
  fullname: Mergili, Martin
– sequence: 2
  givenname: Shiva P.
  orcidid: 0000-0002-6741-0827
  surname: Pudasaini
  fullname: Pudasaini, Shiva P.
– sequence: 3
  givenname: Adam
  orcidid: 0000-0002-8268-990X
  surname: Emmer
  fullname: Emmer, Adam
– sequence: 4
  givenname: Jan-Thomas
  orcidid: 0000-0001-5179-6457
  surname: Fischer
  fullname: Fischer, Jan-Thomas
– sequence: 5
  givenname: Alejo
  surname: Cochachin
  fullname: Cochachin, Alejo
– sequence: 6
  givenname: Holger
  orcidid: 0000-0003-0705-3570
  surname: Frey
  fullname: Frey, Holger
BookMark eNp1UsFuEzEUXKEi0RbOXC1xoRLbem2v1z6WqC2RIrUqcOJgvfU-Jw6bdbEdCf6Gb-HLcAgIgkA-2BrNzLPHc1IdTWHCqnre0PO20eJihSnVTNSa14wy-qg6biTt6k5zdfTH-Ul1ktKaUqaUZMfVh3u0YUo5bm32YSLBkbxCUgybb19vFrfX5CEGW6yJXYGfCGSygI9I7mC0YEMByctZiIMfR4xAXo8wWXhF7jBuz55Wjx2MCZ_93E-r99dX72Zv6sXtzXx2uaihlTLXvGFacsaQOmdFz1nbK-4GhSC6TqsWqMCOSakHAXTQDFsnKeug72TXsx75aTXf-w4B1uYh-g3ELyaANz-AEJcGYvZ2RKOc6LXiDUpNBRta7UoQlDnZC9C618Xrxd6rPPvTFlM267CNU7m-YZwLqYRo2G_WEoqpn1zIEezGJ2suZUOVFpx1hXX-D1ZZA258SR2dL_iB4OxAUDgZP-clbFMy87f3h9x2z7UxpBTRGesz7P6wDPGjaajZ1cLsamGYMJqbXS2K7uIv3a_A_qf4DtBDuC8
CitedBy_id crossref_primary_10_1007_s10064_024_04018_9
crossref_primary_10_1007_s41748_022_00330_0
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103416
crossref_primary_10_1016_j_geomorph_2024_109471
crossref_primary_10_1007_s10346_021_01670_0
crossref_primary_10_1038_s41467_021_26959_5
crossref_primary_10_1016_j_catena_2024_108308
crossref_primary_10_5194_tc_15_3159_2021
crossref_primary_10_1016_j_enggeo_2021_106072
crossref_primary_10_1016_j_enggeo_2022_106798
crossref_primary_10_1007_s10346_021_01804_4
crossref_primary_10_1016_j_enggeo_2022_106797
crossref_primary_10_1140_epjp_s13360_024_04908_7
crossref_primary_10_1007_s10346_024_02358_x
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103292
crossref_primary_10_1016_j_scitotenv_2020_139997
crossref_primary_10_1016_j_scitotenv_2023_163262
crossref_primary_10_1016_j_geomorph_2020_107178
crossref_primary_10_1016_j_enggeo_2020_105877
crossref_primary_10_1016_j_geoforum_2021_06_011
crossref_primary_10_1016_j_ijnonlinmec_2024_104860
crossref_primary_10_3389_feart_2021_607277
crossref_primary_10_1017_jfm_2021_348
crossref_primary_10_1016_j_enggeo_2025_107959
crossref_primary_10_1016_j_scitotenv_2023_169758
crossref_primary_10_1109_JSTARS_2024_3522950
crossref_primary_10_1007_s10064_023_03480_1
crossref_primary_10_5194_nhess_20_2175_2020
crossref_primary_10_1061_JHEND8_HYENG_13736
crossref_primary_10_1016_j_enggeo_2021_106384
crossref_primary_10_1007_s10346_022_01989_2
crossref_primary_10_1038_s41598_022_16337_6
crossref_primary_10_1007_s10346_020_01478_4
crossref_primary_10_5194_nhess_22_3041_2022
crossref_primary_10_1016_j_geomorph_2021_107960
crossref_primary_10_1016_j_enggeo_2021_106188
crossref_primary_10_1016_j_enggeo_2022_106763
crossref_primary_10_5194_tc_17_5137_2023
crossref_primary_10_1029_2022EF003253
crossref_primary_10_1016_j_jhydrol_2023_129311
crossref_primary_10_1016_j_jhydrol_2023_130146
crossref_primary_10_1029_2021WR030688
crossref_primary_10_1038_s41467_023_36033_x
crossref_primary_10_54139_revinguc_v28i1_4
crossref_primary_10_1080_19475705_2024_2432365
crossref_primary_10_3390_hydrology8010024
crossref_primary_10_1016_j_scitotenv_2020_144008
crossref_primary_10_1007_s12583_024_0116_y
crossref_primary_10_1016_j_enggeo_2023_107186
crossref_primary_10_1134_S009780782207003X
crossref_primary_10_1016_j_geomorph_2024_109051
crossref_primary_10_1080_19475705_2024_2356216
crossref_primary_10_3390_w12102664
crossref_primary_10_1002_esp_6033
crossref_primary_10_1144_jgs2021_084
crossref_primary_10_1111_bor_12611
crossref_primary_10_1007_s11440_021_01296_5
crossref_primary_10_1007_s12583_022_1625_1
crossref_primary_10_1016_j_geomorph_2021_107992
crossref_primary_10_1017_jog_2020_52
crossref_primary_10_5194_hess_29_969_2025
crossref_primary_10_1002_esp_5687
crossref_primary_10_1002_esp_5841
crossref_primary_10_1016_j_jhydrol_2023_129465
crossref_primary_10_1016_j_scitotenv_2021_151660
crossref_primary_10_1016_j_earscirev_2022_104135
crossref_primary_10_3390_app132312610
crossref_primary_10_1016_j_iswcr_2024_07_003
crossref_primary_10_32911_as_2024_v17_n1_1153
crossref_primary_10_1016_j_jhydrol_2024_132417
crossref_primary_10_1038_s41561_021_00686_4
crossref_primary_10_1007_s10346_023_02081_z
crossref_primary_10_1016_j_gloplacha_2021_103722
crossref_primary_10_1007_s12583_020_1118_z
crossref_primary_10_1016_j_enggeo_2020_105771
crossref_primary_10_1016_j_ijnonlinmec_2022_104204
crossref_primary_10_1007_s10346_022_01901_y
crossref_primary_10_1016_j_enggeo_2022_106783
crossref_primary_10_1016_j_jfluidstructs_2020_103162
crossref_primary_10_1007_s10346_023_02157_w
crossref_primary_10_5194_esurf_10_165_2022
Cites_doi 10.1016/j.gloplacha.2004.10.007
10.1016/B978-0-12-394849-6.00008-1
10.1007/s10346-016-0724-4
10.1016/j.ijmultiphaseflow.2019.01.005
10.1016/j.catena.2016.07.032
10.5194/gmd-10-553-2017
10.1016/j.geomorph.2014.06.031
10.1139/t04-052
10.1029/2011JF002186
10.1061/(ASCE)0733-9429(1992)118:11(1490)
10.1144/GSL.ENG.1998.015.01.05
10.1002/2014JF003183
10.5194/hess-20-2519-2016
10.3389/feart.2018.00210
10.1016/j.gloplacha.2013.04.001
10.1016/j.enggeo.2019.105429
10.1002/zamm.200310123
10.3189/2016AoG71A034
10.1016/j.jnnfm.2013.07.005
10.3189/2016AoG71A039
10.3189/S0260305500005280
10.5194/nhess-13-1551-2013
10.1016/S1040-6182(99)00035-X
10.1016/j.earscirev.2014.03.009
10.1007/s11069-011-9860-2
10.5194/hess-18-3461-2014
10.5194/nhess-15-2617-2015
10.1002/esp.4318
10.5194/nhess-18-1373-2018
10.1016/S0022-1694(01)00421-8
10.1029/2019JF005204
10.5194/adgeo-35-145-2014
10.1016/j.geomorph.2015.06.032
10.5194/nhess-19-251-2019
10.1016/j.enggeo.2009.06.020
10.1016/j.scitotenv.2019.02.388
10.1017/S0022112089000340
10.1029/97WR01616
10.1007/s10346-008-0118-3
10.1111/jfr3.12241
10.1029/2018JF004778
10.5194/tc-12-1195-2018
10.5194/nhess-11-1447-2011
10.1177/0309133314546344
10.1007/s11069-019-03657-6
10.5194/nhess-3-647-2003
10.1016/0021-9991(90)90260-8
10.1007/s10584-011-0249-8
10.1007/s10346-005-0052-6
10.1016/j.geomorph.2018.08.032
10.1002/esp.1198
10.1007/s00707-019-02457-0
10.1098/rsta.2005.1596
10.1016/j.coldregions.2010.04.005
10.1016/j.quascirev.2017.10.028
10.5194/nhess-15-1163-2015
10.1006/jcph.2001.6946
10.1016/B978-0-12-394849-6.00014-7
10.1007/s10346-015-0658-2
10.1029/97RG00426
10.5194/nhess-2019-204
10.2747/0272-3646.31.6.528
ContentType Journal Article
Copyright COPYRIGHT 2020 Copernicus GmbH
2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 Copernicus GmbH
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.5194/hess-24-93-2020
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1607-7938
EndPage 114
ExternalDocumentID oai_doaj_org_article_8f4b9831e69042d59f02802f6b4a99b9
A610894327
10_5194_hess_24_93_2020
GeographicLocations Peru
Cordillera Blanca
GeographicLocations_xml – name: Cordillera Blanca
– name: Peru
GroupedDBID 29I
2WC
5GY
5VS
7XC
8CJ
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
EBS
ECGQY
EDH
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
ISR
ITC
K6-
KQ8
L6V
L8X
LK5
M7R
M7S
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
~KM
BBORY
PMFND
7QH
7TG
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H96
KL.
KR7
L.G
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-a566t-31296322e0ffc4b325b83fd8ea477985a04e72669d4a0d92e5f6027ab767b2be3
IEDL.DBID BENPR
ISSN 1607-7938
1027-5606
IngestDate Wed Aug 27 01:19:31 EDT 2025
Wed Aug 13 09:40:50 EDT 2025
Tue Jun 17 21:10:03 EDT 2025
Tue Jun 10 20:07:24 EDT 2025
Fri Jun 27 04:29:49 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
Tue Jul 01 02:45:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a566t-31296322e0ffc4b325b83fd8ea477985a04e72669d4a0d92e5f6027ab767b2be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8268-990X
0000-0002-6741-0827
0000-0001-5179-6457
0000-0001-5085-4846
0000-0003-0705-3570
OpenAccessLink https://www.proquest.com/docview/2334684412?pq-origsite=%requestingapplication%
PQID 2334684412
PQPubID 105724
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_8f4b9831e69042d59f02802f6b4a99b9
proquest_journals_2334684412
gale_infotracmisc_A610894327
gale_infotracacademiconefile_A610894327
gale_incontextgauss_ISR_A610894327
crossref_citationtrail_10_5194_hess_24_93_2020
crossref_primary_10_5194_hess_24_93_2020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-09
PublicationDateYYYYMMDD 2020-01-09
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-09
  day: 09
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Hydrology and earth system sciences
PublicationYear 2020
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref9
  doi: 10.1016/j.gloplacha.2004.10.007
– ident: ref62
– ident: ref1
– ident: ref11
  doi: 10.1016/B978-0-12-394849-6.00008-1
– ident: ref43
  doi: 10.1007/s10346-016-0724-4
– ident: ref61
  doi: 10.1016/j.ijmultiphaseflow.2019.01.005
– ident: ref21
  doi: 10.1016/j.catena.2016.07.032
– ident: ref49
  doi: 10.5194/gmd-10-553-2017
– ident: ref87
  doi: 10.1016/j.geomorph.2014.06.031
– ident: ref89
– ident: ref44
  doi: 10.1139/t04-052
– ident: ref85
– ident: ref59
  doi: 10.1029/2011JF002186
– ident: ref79
  doi: 10.1061/(ASCE)0733-9429(1992)118:11(1490)
– ident: ref69
  doi: 10.1144/GSL.ENG.1998.015.01.05
– ident: ref27
– ident: ref63
  doi: 10.1002/2014JF003183
– ident: ref77
  doi: 10.5194/hess-20-2519-2016
– ident: ref24
  doi: 10.3389/feart.2018.00210
– ident: ref48
  doi: 10.1016/j.gloplacha.2013.04.001
– ident: ref60
  doi: 10.1016/j.enggeo.2019.105429
– ident: ref84
  doi: 10.1002/zamm.200310123
– ident: ref57
– ident: ref38
  doi: 10.3189/2016AoG71A034
– ident: ref30
– ident: ref16
  doi: 10.1016/j.jnnfm.2013.07.005
– ident: ref41
  doi: 10.3189/2016AoG71A039
– ident: ref2
– ident: ref28
  doi: 10.3189/S0260305500005280
– ident: ref65
– ident: ref18
  doi: 10.5194/nhess-13-1551-2013
– ident: ref82
– ident: ref70
  doi: 10.1016/S1040-6182(99)00035-X
– ident: ref40
– ident: ref26
– ident: ref47
– ident: ref86
  doi: 10.1016/j.earscirev.2014.03.009
– ident: ref6
  doi: 10.1007/s11069-011-9860-2
– ident: ref19
  doi: 10.5194/hess-18-3461-2014
– ident: ref25
  doi: 10.5194/nhess-15-2617-2015
– ident: ref50
  doi: 10.1002/esp.4318
– ident: ref12
  doi: 10.5194/nhess-18-1373-2018
– ident: ref54
– ident: ref33
– ident: ref5
  doi: 10.1016/S0022-1694(01)00421-8
– ident: ref66
  doi: 10.1029/2019JF005204
– ident: ref76
  doi: 10.5194/adgeo-35-145-2014
– ident: ref20
  doi: 10.1016/j.geomorph.2015.06.032
– ident: ref64
– ident: ref3
– ident: ref32
  doi: 10.5194/nhess-19-251-2019
– ident: ref58
– ident: ref23
  doi: 10.1016/j.enggeo.2009.06.020
– ident: ref73
  doi: 10.1016/j.scitotenv.2019.02.388
– ident: ref68
– ident: ref74
  doi: 10.1017/S0022112089000340
– ident: ref83
  doi: 10.1029/97WR01616
– ident: ref7
  doi: 10.1007/s10346-008-0118-3
– ident: ref22
  doi: 10.1111/jfr3.12241
– ident: ref45
– ident: ref80
  doi: 10.1029/2018JF004778
– ident: ref29
  doi: 10.5194/tc-12-1195-2018
– ident: ref46
  doi: 10.5194/nhess-11-1447-2011
– ident: ref36
  doi: 10.1177/0309133314546344
– ident: ref72
  doi: 10.1007/s11069-019-03657-6
– ident: ref55
– ident: ref35
  doi: 10.5194/nhess-3-647-2003
– ident: ref53
  doi: 10.1016/0021-9991(90)90260-8
– ident: ref10
  doi: 10.1007/s10584-011-0249-8
– ident: ref15
– ident: ref81
  doi: 10.1007/s10346-005-0052-6
– ident: ref4
– ident: ref51
  doi: 10.1016/j.geomorph.2018.08.032
– ident: ref34
  doi: 10.1002/esp.1198
– ident: ref88
– ident: ref67
– ident: ref39
  doi: 10.1007/s00707-019-02457-0
– ident: ref56
  doi: 10.1098/rsta.2005.1596
– ident: ref13
  doi: 10.1016/j.coldregions.2010.04.005
– ident: ref42
– ident: ref17
  doi: 10.1016/j.quascirev.2017.10.028
– ident: ref71
  doi: 10.5194/nhess-15-1163-2015
– ident: ref78
  doi: 10.1006/jcph.2001.6946
– ident: ref14
  doi: 10.1016/B978-0-12-394849-6.00014-7
– ident: ref75
  doi: 10.1007/s10346-015-0658-2
– ident: ref8
– ident: ref37
  doi: 10.1029/97RG00426
– ident: ref52
  doi: 10.5194/nhess-2019-204
– ident: ref31
  doi: 10.2747/0272-3646.31.6.528
SSID ssj0028862
Score 2.5514982
Snippet The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers...
The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 93
SubjectTerms Collapse
Computer simulation
Dam failure
Dam stability
Dams
Deglaciation
Downstream
Erosion
Floods
Geographic information systems
Geographical information systems
Geomechanics
Glacial drift
Glacial lake outburst floods
Glacial lakes
Glacier retreat
Glaciers
Glaciohydrology
Landslides
Mass flow
Meltwater
Moraines
Multiphase flow
Parameter uncertainty
Process management
Reconstruction
Signal processing
Simulation
Travel time
Two phase flow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PT9swFLdQL3BBGzCtG0MWmkQnEWhtx7GPbUXXoYqhMSSkHaznxF4RVYqmcti32WfZJ-O9JIX2gHbZNXmJ7V9e3h8n7_cY-9gLWkCGmSq5j0TlMiQQi26So78JOvSCiRXb54UeX6vzm_RmpdUX_RNW0wPXwJ2aqLw1Eu9pUb-K1Eb6GCii9gqs9VXpHvq8ZTLVpFrG6Po7p8gS9Om6JvXBaEWdTtGCJEIlVqKGUJvvFX9U0fa_ZJwrjzN6xbabUJH36ym-Zhuh3GGbTdfy6e9d9oNyx2cGWD6PHMM5jsP3_v75PPk64vd1GQDPp3BbcljwCdwFfgmznAzhFHhniMlnVQ4IfDCj_Y1jfhl-PXzaY9ejs-_DcdI0S0gAI7IF2lKB75IQoRtjrrwUqTcyFiaAyjJrUuiqkKE3toWCbmFFSKNGdMBnOvPCB_mGtcp5Gd4yDl57TYxHkgpPQXgicaMSHk1cOBDb7GQJmcsbJnFqaDFzmFEQxo4wdkI5Kx1h3GadpwvuaxKNl0UH9AyexIj9ujqAOuEanXD_0ok2O6Qn6IjfoqQfaH7CA47y5eqb62O4SJTzImuzo0YoznH2iHtdj4AYECXWmuT-miS-gPn66aWiuMYA4IqkVNpgrCne_Y8VvWdbhE6192P3WQs1K3zAaGjhDyrFfwS0mAA_
  priority: 102
  providerName: Directory of Open Access Journals
Title Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru)
URI https://www.proquest.com/docview/2334684412
https://doaj.org/article/8f4b9831e69042d59f02802f6b4a99b9
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY9gAviPEhCqOyJiSGhFlrO479hNZp2UBjlMHEtBfLTuwVUSVldA_899wlbrc-jKdKzVVpzufffTj3O0JeD4PiLodMFd0Hk6UIzMVqwErwN0GFYdCxZfs8UUdn8tN5dp4Kbn_Sa5ULTGyBumpKrJHvciGk0uC8-YfZb4ZTo_B0NY3QWCMbAMEakq-N0cHJ-HSZcmmtuvNOnjPw7aoj94GoRe5OAEkYl8wIsBQc933LL7X0_XeBdOt5ikfkYQoZ6V63xpvkXqgfk_tpevnk7xNygTnkDRMsbSKFsI7C7Yf08PhLQWddNwAtJ-5nTd2cHrtfgY7dtEQ8nDi6sw85aNsV6OhoimWOd3Qcrq7fPiVnxcH3_SOWZiYwB4HZHCCVw5biPAxiLKUXPPNaxEoHJ_Pc6MwNZMjBKZtKukFleMiiAuU4n6vccx_EM7JeN3V4TqjzyiskPhLYf-q4Ry437ORRSInjYo-8X2jMlolQHOdaTC0kFqhiiyq2XFojLKq4R3aWP5h1XBp3i45wCZZiSILdftFcXdq0p6yO0hstwNwMQE-VmYjnxDwqL50x3vTINi6gRZqLGt-juXTXcJeP307tHkSNyDzP8x55k4RiA_8e9N61JYAOkBlrRXJrRRL2Ybl6eWEnNuEAPNHSal_8__JL8gCfuy3umC2yDiYTXkG4M_d9sqaLw36ybPwsPn_90W-LB_8AtV78IQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a4zAuiE9RGGAhEEMirLUdxz4gtA26lpUxwSZNXIyd2CuiSsrohPZP8TfyXpIWehi3XZvXpvn5fdp5vwfwtBcUdxlWqhQ-EpmLkLhYdJMc401QoRd0rNk-99XgSL4_To9X4Pe8F4Zeq5z7xNpRF1VOe-SbXAipNAZv_mb6I6GpUXS6Oh-h0ajFXjj_hSXbz9fDt7i-zzjvvzvcGSTtVIHEYeoyQ6fDUek4D90Yc-kFT70WsdDBySwzOnVdGTIMW6aQrlsYHtKosHZzPlOZ5z4I_N0rcFUKYciidH93UeBprZrTVZ4lmEmohkoIcyS5OUa_lXCZGIF6ScPF_4mC9bCAi0JCHef6N-B6m6CyrUajbsJKKG_BWjsrfXx-G75QxfqXd5ZVkWESyfD2PbY7-thn06b3gOVj961kbsZG7ntgB26Sk_cdO7axg_DVPYiObU9oU-UlOwinZy_uwNGlYHkXVsuqDPeAOa-8IpolQd2ujntijqO-IUUEPC524NUcMZu39OU0RWNisYwhiC1BbLm0RliCuAMbiy9MG-aOi0W3aQkWYkS5XX9QnZ7Y1oKtjtIbLVC5DTq6IjWRTqV5VF46Y7zpwBNaQEukGiW9tXPizvAuw8-f7BbmqMRzz7MOPG-FYoX_HnFvmiAQA-LhWpJcX5JEq8-XL8_1xLZeB59oYSP3_3_5MawNDj-M7Gi4v_cArhEG9baSWYdVVJ_wEBOtmX9UazeDr5dtTn8At8kzUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKKgEX3ohAAQuBKBKbh9frtQ8INS1LQ0NJgYqKi7F37QY12oSSCJWfxl_hzzCzj0CQyq0HrutJsp58noft-YaQh10nmIkhU0X3EfA0dIHxWSdIwd844bpO-oLtc1ds7_NXB9HBCvlR18LgtcraJhaGOpukuEfeZmHIhQTnzdq-uhYx3EqeT78E2EEKT1rrdholRHbcyTdI374-62_Bf_2IseTF-83toOowEBgIY2ZggBgAkDHX8T7lNmSRlaHPpDM8jpWMTIe7GFyYyrjpZIq5yAvI44yNRWyZdSF87zmyKoWMWIOs9pLXex8W6Z6UojxrZXEAcYUoiYUgYuLtEVixgPFAhYBSbDX-h08sWgec5iAKr5dcJj9rfZWXXY5a85ltpd__opL8PxV6hVyqgnG6Ua6eq2TF5dfIhaov_OjkOvmI2flvjl068RQCZgrK7dKXgzcJnZZ1FjQdmc85NTM6MEeODs04RU8zMnR9E2ZT1Fsa2hvjBtJTOnTH8yc3yP6ZTO0maeST3N0i1FhhBVJKhVjZa5hFljyskRJINmR8k7RqPOi0omrHjiFjDSkbAkgjgDTjWoUaAdQk64sPTEuWktNFewiwhRjSixcPJseHurJWWnpulQxhISsw6lmkPJ7AMy8sN0pZ1SQPEJ4aCURyRM6hmcOv9N-91RsQjyOnP4ub5HEl5Cfw9qD3suADdICcY0uSa0uSYOHS5eEawbqysDCjBXxv_3v4PjkPuNaD_u7OHXIRVVDsoKk10gD0uLsQU87svWrxUvLprOH9C246gAY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+the+1941%C2%A0GLOF+process+chain+at+Lake+Palcacocha+%28Cordillera+Blanca%2C+Peru%29&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Mergili%2C+Martin&rft.au=Pudasaini%2C+Shiva+P.&rft.au=Emmer%2C+Adam&rft.au=Fischer%2C+Jan-Thomas&rft.date=2020-01-09&rft.issn=1607-7938&rft.eissn=1607-7938&rft.volume=24&rft.issue=1&rft.spage=93&rft.epage=114&rft_id=info:doi/10.5194%2Fhess-24-93-2020&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_hess_24_93_2020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon