In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning

There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biol...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical information and modeling Vol. 57; no. 1; pp. 36 - 49
Main Authors Zang, Qingda, Mansouri, Kamel, Williams, Antony J, Judson, Richard S, Allen, David G, Casey, Warren M, Kleinstreuer, Nicole C
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure–property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol–water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R 2) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals.
AbstractList There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure-property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol-water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R ) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals.
There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure–property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol–water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R 2) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals.
There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source Quantitative Structure-Property Relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within EPA EPI Suite™ were reanalyzed using modern cheminformatics workflows to build updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol-water partition coefficient (log P), water solubility (log S), boiling point (BP), melting point (MP), vapor pressure (log VP) and bioconcentration factor (log BCF). The coefficient of determination (R 2 ) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite™ models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals.
There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure-property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol-water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R^sup 2^) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals.
There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure-property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol-water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R2) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals.There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure-property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol-water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R2) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals.
Author Williams, Antony J
Casey, Warren M
Zang, Qingda
Allen, David G
Mansouri, Kamel
Judson, Richard S
Kleinstreuer, Nicole C
AuthorAffiliation National Institute of Environmental Health Sciences
National Toxicology Program
U.S. Environmental Protection Agency
National Center for Computational Toxicology, Office of Research and Development
AuthorAffiliation_xml – name: National Toxicology Program
– name: National Institute of Environmental Health Sciences
– name: U.S. Environmental Protection Agency
– name: National Center for Computational Toxicology, Office of Research and Development
– name: National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
– name: National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
– name: Integrated Laboratory Systems, Inc., Research Triangle Park, NC 27709, USA
Author_xml – sequence: 1
  givenname: Qingda
  orcidid: 0000-0003-1543-8307
  surname: Zang
  fullname: Zang, Qingda
– sequence: 2
  givenname: Kamel
  orcidid: 0000-0002-6426-8036
  surname: Mansouri
  fullname: Mansouri, Kamel
– sequence: 3
  givenname: Antony J
  surname: Williams
  fullname: Williams, Antony J
– sequence: 4
  givenname: Richard S
  surname: Judson
  fullname: Judson, Richard S
– sequence: 5
  givenname: David G
  surname: Allen
  fullname: Allen, David G
– sequence: 6
  givenname: Warren M
  surname: Casey
  fullname: Casey, Warren M
– sequence: 7
  givenname: Nicole C
  orcidid: 0000-0002-7914-3682
  surname: Kleinstreuer
  fullname: Kleinstreuer, Nicole C
  email: nicole.kleinstreuer@nih.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28006899$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1r3DAQxUVJaJJt7z0VQS89dLeSbcn2pRCWfMGGBtpAb0KWxlkttrSV7EBO_dc7m90NSaA96eP93vCkmRNy4IMHQj5wNuMs41-1SbOVcf1MNozJTLwhx1wU9bSW7NfBfi9qeUROUloxlue1zN6So6xCvKrrY_LnytMfrnMm0JsI1pnBBU9DS2-WDwlvzRJ6Z3SHalhDHBykjXrm710Mvgc_oDbfQYneJufv6HXowIydjvQcjxDX0fkhUe0tvdZm6TzQBejoUXxHDls0wvvdOiG352c_55fTxfeLq_npYqqFLIZpAWBN1ugmb2xRM264YLoUHDS3YIsiF61l1mZtw_MSTF1aY5ESbSFF21ZVPiHftnXXY9NjLQwedacwWa_jgwraqZeKd0t1F-6V5Dkv8ecm5POuQAy_R0iD6l0y0HXaQxiT4pXIyoplUiD66RW6CmP0-DykZCYl53WB1MfniZ6i7HuDgNwCJoaUIrTKuEFv-oMBXac4U5shUDgEajMEajcEaGSvjPva_7F82Voelae0_8L_Aot1yYA
CitedBy_id crossref_primary_10_1111_cbdd_14121
crossref_primary_10_1080_07391102_2022_2144456
crossref_primary_10_1186_s13321_018_0263_1
crossref_primary_10_2174_1381612828666220608141049
crossref_primary_10_3390_molecules28227457
crossref_primary_10_1016_j_jpha_2025_101263
crossref_primary_10_3390_molecules29040903
crossref_primary_10_1016_j_yrtph_2022_105169
crossref_primary_10_1002_cem_3349
crossref_primary_10_1016_j_envint_2020_106108
crossref_primary_10_1021_acs_jpca_4c04121
crossref_primary_10_1111_cbdd_14639
crossref_primary_10_3390_molecules25010044
crossref_primary_10_3389_fphar_2024_1459954
crossref_primary_10_1080_1062936X_2019_1699602
crossref_primary_10_1038_s41563_019_0338_z
crossref_primary_10_1002_minf_202000062
crossref_primary_10_1016_j_heliyon_2020_e04639
crossref_primary_10_1111_cbdd_13600
crossref_primary_10_1002_minf_202100247
crossref_primary_10_1021_acs_estlett_0c00640
crossref_primary_10_1007_s40199_024_00548_5
crossref_primary_10_1016_j_engappai_2024_108783
crossref_primary_10_1007_s11030_021_10217_3
crossref_primary_10_1021_acs_est_3c03860
crossref_primary_10_1016_j_compbiomed_2023_107452
crossref_primary_10_1002_cjce_25525
crossref_primary_10_1016_j_scitotenv_2020_143082
crossref_primary_10_1021_acs_chemrev_8b00728
crossref_primary_10_1021_acs_iecr_2c00442
crossref_primary_10_1134_S1070363224090251
crossref_primary_10_2174_1381612829666230428110542
crossref_primary_10_1016_j_chemosphere_2017_11_137
crossref_primary_10_1093_bib_bbab430
crossref_primary_10_1021_acs_jpcc_0c00406
crossref_primary_10_1016_j_scitotenv_2018_04_266
crossref_primary_10_1016_j_scitotenv_2024_170204
crossref_primary_10_1208_s12249_025_03051_5
crossref_primary_10_1021_acs_chemrestox_8b00347
crossref_primary_10_3390_bdcc7010010
crossref_primary_10_1016_j_supflu_2021_105421
crossref_primary_10_1021_acsomega_3c07722
crossref_primary_10_1007_s11356_023_29962_z
crossref_primary_10_1021_acs_jcim_8b00553
crossref_primary_10_1021_acs_jcim_9b00646
crossref_primary_10_47470_0016_9900_2024_103_9_1056_1061
crossref_primary_10_1007_s13762_024_05498_8
crossref_primary_10_1007_s10822_020_00279_0
crossref_primary_10_1016_j_jocs_2023_102173
crossref_primary_10_1016_j_procbio_2021_08_001
crossref_primary_10_52711_0974_4150_2023_00014
crossref_primary_10_1093_toxsci_kfad012
crossref_primary_10_1021_acs_molpharmaceut_8b00083
crossref_primary_10_1016_j_drudis_2020_10_010
crossref_primary_10_3389_fchem_2018_00082
crossref_primary_10_1002_cite_202200172
crossref_primary_10_3390_molecules24081604
crossref_primary_10_1080_02786826_2024_2326547
crossref_primary_10_1016_j_jmgm_2021_107848
crossref_primary_10_1080_10426507_2022_2061970
crossref_primary_10_1080_17460441_2024_2367014
crossref_primary_10_1289_EHP4200
crossref_primary_10_1016_j_vascn_2019_106624
crossref_primary_10_3390_technologies12070095
crossref_primary_10_1021_acs_jcim_0c00574
crossref_primary_10_1016_j_ejmech_2024_117164
crossref_primary_10_1016_j_ces_2023_119623
crossref_primary_10_1016_j_indenv_2024_100031
crossref_primary_10_2174_1381612828666220729101103
crossref_primary_10_1016_j_aichem_2023_100039
crossref_primary_10_1080_15287394_2021_1956661
crossref_primary_10_3389_fphys_2019_00514
crossref_primary_10_1002_adts_202300159
crossref_primary_10_2174_0118722083297406240313090140
crossref_primary_10_1039_D0SC03115A
crossref_primary_10_1038_s41370_018_0046_9
crossref_primary_10_1002_med_21764
crossref_primary_10_1039_C9EM00556K
crossref_primary_10_1016_j_toxrep_2024_101805
crossref_primary_10_1016_j_jmgm_2022_108149
crossref_primary_10_1021_acs_accounts_0c00736
crossref_primary_10_1016_j_watres_2024_122252
crossref_primary_10_1002_ejoc_202100829
crossref_primary_10_1080_10590501_2018_1537563
crossref_primary_10_1080_07391102_2021_1985614
crossref_primary_10_3390_catal12070746
crossref_primary_10_1021_acs_molpharmaceut_1c00791
crossref_primary_10_1080_10408444_2018_1429385
crossref_primary_10_1021_acs_iecr_2c04567
crossref_primary_10_1080_10408444_2018_1429386
crossref_primary_10_1038_s41370_017_0012_y
crossref_primary_10_1039_D0RA05873D
crossref_primary_10_1088_2632_2153_acee42
crossref_primary_10_1016_j_fluid_2023_113734
crossref_primary_10_1186_s13321_017_0247_6
crossref_primary_10_1289_EHP1759
crossref_primary_10_1080_00498254_2023_2295361
crossref_primary_10_1002_cem_70003
crossref_primary_10_1007_s00726_023_03304_2
crossref_primary_10_1021_acs_jcim_2c00260
crossref_primary_10_1021_acs_chemrestox_1c00410
crossref_primary_10_1016_j_heliyon_2023_e17575
crossref_primary_10_1021_acs_est_4c11085
crossref_primary_10_1016_j_commatsci_2023_112443
crossref_primary_10_1039_D2CC01549H
crossref_primary_10_1016_j_jwpe_2024_106482
crossref_primary_10_1016_j_compbiomed_2024_108810
crossref_primary_10_1088_2632_2153_ab8aa3
crossref_primary_10_3390_app13095617
crossref_primary_10_1002_ps_4935
crossref_primary_10_1002_wcms_1516
crossref_primary_10_3390_molecules27217608
crossref_primary_10_1016_j_comtox_2019_100096
Cites_doi 10.1038/nbt.2914
10.1080/10937404.2010.483935
10.1007/s00216-011-5155-4
10.1080/1062936X.2016.1253611
10.1002/jcc.21707
10.37285/ijddd.2.3.1
10.1093/toxsci/kfr254
10.2174/1573409910666140410110241
10.1186/s13321-016-0113-y
10.1021/ci049744c
10.1002/etc.2141
10.12921/cmst.2012.18.02.81-88
10.2174/138620711795508331
10.1289/ehp.0901157
10.1186/1752-153X-4-S1-S1
10.3390/molecules17054791
10.3390/ijms13021805
10.1016/j.scitotenv.2011.10.046
10.1007/978-1-62703-050-2_6
10.1016/j.taap.2007.12.037
10.1021/ci010287z
10.1371/journal.pbio.1002156
10.1289/ehp.0901392
10.1289/ehp.1510267
10.1021/ci700257y
10.1080/10937404.2010.483938
10.1021/ci034184n
10.1016/j.jhazmat.2005.05.035
10.1021/tx100428e
10.1016/j.yrtph.2013.10.003
10.1002/minf.201000133
10.1021/ci970289c
10.1021/ci060164k
10.1021/ci900286s
10.1007/s00216-010-4268-5
10.1021/ci700307p
10.1289/ehp.0800168
10.1021/ci9901338
10.1002/cem.1321
10.1080/10937404.2010.483947
10.1021/tx900325g
10.1021/ci800436c
10.14573/altex.1305221
10.1021/ci00057a005
10.1093/toxsci/kfl103
10.1021/ci400527b
10.1021/tx7002382
10.1021/ci000152d
10.1021/ci034006u
10.1186/1758-2946-5-27
10.1002/cem.2587
10.1021/ci034107s
10.1023/A:1008715521862
10.1021/tx400021f
10.1016/j.tox.2010.12.010
10.1002/qsar.200390007
10.1021/acs.est.5b02641
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright American Chemical Society Jan 23, 2017
Copyright_xml – notice: Copyright © 2016 American Chemical Society
– notice: Copyright American Chemical Society Jan 23, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1021/acs.jcim.6b00625
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE


Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-960X
EndPage 49
ExternalDocumentID PMC6131700
4309552631
28006899
10_1021_acs_jcim_6b00625
a27714125
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: HHSN273201500010C
– fundername: Intramural EPA
  grantid: EPA999999
GroupedDBID -
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACIWK
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
PQEST
PQQKQ
RNS
ROL
UI2
VF5
VG9
W1F
X
---
-~X
4.4
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-a564t-4eedc2bab3bd4901c150a751ea1ded4435fd0dd2fb137ec97dcd01c5f465ff883
IEDL.DBID ACS
ISSN 1549-9596
1549-960X
IngestDate Thu Aug 21 18:41:45 EDT 2025
Fri Jul 11 05:43:50 EDT 2025
Mon Jun 30 10:54:16 EDT 2025
Mon Jul 21 06:02:29 EDT 2025
Thu Apr 24 23:05:57 EDT 2025
Thu Jul 03 08:29:30 EDT 2025
Thu Aug 27 13:42:05 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a564t-4eedc2bab3bd4901c150a751ea1ded4435fd0dd2fb137ec97dcd01c5f465ff883
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1543-8307
0000-0002-7914-3682
0000-0002-6426-8036
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6131700
PMID 28006899
PQID 1862661194
PQPubID 28739
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6131700
proquest_miscellaneous_1852780265
proquest_journals_1862661194
pubmed_primary_28006899
crossref_citationtrail_10_1021_acs_jcim_6b00625
crossref_primary_10_1021_acs_jcim_6b00625
acs_journals_10_1021_acs_jcim_6b00625
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2017-01-23
PublicationDateYYYYMMDD 2017-01-23
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J. Chem. Inf. Model
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
Dearden J. C. (ref44/cit44) 2012; 929
ref3/cit3
ref27/cit27
ref63/cit63
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
R Development Core Team R (ref66/cit66) 2011
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
Veerasamy R. (ref62/cit62) 2011; 2
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
Varmuza K. (ref56/cit56) 2009
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
Judson R. S. (ref53/cit53) 1997
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref7/cit7
References_xml – ident: ref18/cit18
  doi: 10.1038/nbt.2914
– ident: ref10/cit10
  doi: 10.1080/10937404.2010.483935
– ident: ref60/cit60
  doi: 10.1007/s00216-011-5155-4
– ident: ref47/cit47
  doi: 10.1080/1062936X.2016.1253611
– ident: ref51/cit51
  doi: 10.1002/jcc.21707
– volume: 2
  start-page: 511
  issue: 3
  year: 2011
  ident: ref62/cit62
  publication-title: Int. J. Drug Des. Discovery
  doi: 10.37285/ijddd.2.3.1
– ident: ref11/cit11
  doi: 10.1093/toxsci/kfr254
– ident: ref64/cit64
  doi: 10.2174/1573409910666140410110241
– volume-title: A Language and Environment for Statistical Computing
  year: 2011
  ident: ref66/cit66
– ident: ref67/cit67
  doi: 10.1186/s13321-016-0113-y
– ident: ref39/cit39
  doi: 10.1021/ci049744c
– ident: ref50/cit50
– ident: ref19/cit19
  doi: 10.1002/etc.2141
– ident: ref27/cit27
  doi: 10.12921/cmst.2012.18.02.81-88
– ident: ref20/cit20
  doi: 10.2174/138620711795508331
– ident: ref24/cit24
  doi: 10.1289/ehp.0901157
– ident: ref37/cit37
  doi: 10.1186/1752-153X-4-S1-S1
– volume-title: Introduction to Multivariate Statistical Analysis in Chemometrics
  year: 2009
  ident: ref56/cit56
– ident: ref63/cit63
  doi: 10.3390/molecules17054791
– ident: ref4/cit4
  doi: 10.3390/ijms13021805
– ident: ref3/cit3
  doi: 10.1016/j.scitotenv.2011.10.046
– volume: 929
  start-page: 93
  volume-title: Computational Toxicology
  year: 2012
  ident: ref44/cit44
  doi: 10.1007/978-1-62703-050-2_6
– ident: ref5/cit5
  doi: 10.1016/j.taap.2007.12.037
– ident: ref36/cit36
  doi: 10.1021/ci010287z
– ident: ref31/cit31
  doi: 10.1371/journal.pbio.1002156
– ident: ref14/cit14
  doi: 10.1289/ehp.0901392
– ident: ref6/cit6
  doi: 10.1289/ehp.1510267
– ident: ref40/cit40
  doi: 10.1021/ci700257y
– ident: ref25/cit25
  doi: 10.1080/10937404.2010.483938
– ident: ref42/cit42
  doi: 10.1021/ci034184n
– ident: ref26/cit26
  doi: 10.1016/j.jhazmat.2005.05.035
– ident: ref12/cit12
  doi: 10.1021/tx100428e
– ident: ref49/cit49
– ident: ref30/cit30
  doi: 10.1016/j.yrtph.2013.10.003
– ident: ref32/cit32
  doi: 10.1002/minf.201000133
– ident: ref34/cit34
  doi: 10.1021/ci970289c
– ident: ref58/cit58
  doi: 10.1021/ci060164k
– ident: ref21/cit21
  doi: 10.1021/ci900286s
– ident: ref55/cit55
  doi: 10.1007/s00216-010-4268-5
– ident: ref2/cit2
– ident: ref35/cit35
  doi: 10.1021/ci700307p
– ident: ref9/cit9
  doi: 10.1289/ehp.0800168
– ident: ref38/cit38
  doi: 10.1021/ci9901338
– start-page: 1
  volume-title: Reviews in Computational Chemistry
  year: 1997
  ident: ref53/cit53
– ident: ref57/cit57
  doi: 10.1002/cem.1321
– ident: ref7/cit7
  doi: 10.1080/10937404.2010.483947
– ident: ref13/cit13
  doi: 10.1021/tx900325g
– ident: ref22/cit22
  doi: 10.1021/ci800436c
– ident: ref23/cit23
  doi: 10.14573/altex.1305221
– ident: ref45/cit45
– ident: ref46/cit46
– ident: ref48/cit48
  doi: 10.1021/ci00057a005
– ident: ref1/cit1
– ident: ref15/cit15
  doi: 10.1093/toxsci/kfl103
– ident: ref28/cit28
  doi: 10.1021/ci400527b
– ident: ref29/cit29
  doi: 10.1021/tx7002382
– ident: ref43/cit43
  doi: 10.1021/ci000152d
– ident: ref54/cit54
  doi: 10.1021/ci034006u
– ident: ref65/cit65
  doi: 10.1186/1758-2946-5-27
– ident: ref33/cit33
  doi: 10.1002/cem.2587
– ident: ref59/cit59
  doi: 10.1021/ci034107s
– ident: ref41/cit41
  doi: 10.1023/A:1008715521862
– ident: ref16/cit16
  doi: 10.1021/tx400021f
– ident: ref8/cit8
  doi: 10.1016/j.tox.2010.12.010
– ident: ref52/cit52
– ident: ref61/cit61
  doi: 10.1002/qsar.200390007
– ident: ref17/cit17
  doi: 10.1021/acs.est.5b02641
SSID ssj0033962
Score 2.5332456
Snippet There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried...
There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as being carried out by...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36
SubjectTerms Artificial intelligence
Chemical Phenomena
Chemicals
Chemistry
Computer Simulation
Environmental Pollutants - chemistry
Environmental Pollutants - toxicity
Informatics
Machine Learning
Molecules
Quantitative Structure-Activity Relationship
Solubility
Transition Temperature
Vapor Pressure
Water - chemistry
Title In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning
URI http://dx.doi.org/10.1021/acs.jcim.6b00625
https://www.ncbi.nlm.nih.gov/pubmed/28006899
https://www.proquest.com/docview/1862661194
https://www.proquest.com/docview/1852780265
https://pubmed.ncbi.nlm.nih.gov/PMC6131700
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaemgv0DdbaOVK7aGHLNix4_iIVqygElUlisQt8rNsS7OIZC-99K93xkkWFhDimhk7iWfsGXvG3xDyiUnlVGQigxWyzITf9Zl1WmbSRKcFNzp0CbLfioMT8fVUnl7B5NyM4HO2Y1wz_uVmf8YFagiXj8kTXpQKN1p7k-Nh1c1znYqHIuJYpqUeQpJ39YCGyDWrhuiWd3kzSfKa1ZludOWLmgRWiMkmv8eL1o7d39tQjg_4oedkvXc-6V6nLS_Io1C_JE8nQ823V-TfYU2PZ-egHfT7JYZwUGx0HmlKFHVYXSvBCwB1foEZ2aFB6v7VbTmgDRgEDU35CPRoqMBLp-kMEY8S24aa2tOjlMoZaI_y-vM1OZnu_5gcZH2JhszIQrSZABPruDU2t16Aa-HAvzRKsmCYD16ALxZB_J5Hy3IVnFbeeeCSURQyxrLM35C1el6HTUJLm0cldWnAegjhvfWwFYqqjF4Lw5Ubkc8wclU_xZoqRc85q9JDGM6qH84R2RnkWrke5xzLbZzf0-LLssVFh_FxD-_2oCrXPgW3hQVjWozIxyUZRIfBF1OH-QJ5JFcl7Hihi7edZi1fxku8qaP1iKgVnVsyIAb4KqWenSUscPDGEGHx3QMHZ4s84-iX7LKM59tkrb1chPfgVbX2Q5pO_wFLmCHh
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VciiX8g8LBYxEDxyyrR17Ex84VEtXu7RbIbWVeguOf2BLyVZNVgguPAuvwpMx9iZpt6CKSyWuGcfr9Yw9M_HnbwBeUZHoxFEe4Q6ZRtxsmijXUkRCOS05U9LOAbJ7veEhf3ckjpbgZ3MXBgdRYk9lOMQ_ZxegG_7ZsZ586fa8obAGR7ljv33FLK18M3qLKl1nbLB90B9GdSGBSIkeryKOjkCzXOVxbjg6QI1RkEoEtYoaazhGDA4HaZjLaZxYLROjDbYSjveEc2kaY7834CbGPsznd1v9_Wazj2MZapZ6orNICtmchP5txN7_6XLR__0R1F7GZl5wdoPb8KudpoBx-dydVXlXf7_EIPlfz-MdWK1DbbI1Xxt3YckW92Cl31S4uw8_RgXZn5zgWiDvz_yBlTdSMnUkwGK1ryUWyBRQOj31-HNbeun2-d1AlDWMCyUJ6AsybuoNk0H4Yuo_nFYlUYUh4wBctaTmtP34AA6v5f8_hOViWtjHQNI8domQqUJfybkxucHEzyWpM5IrlugOrKOmsnpDKbOAFWA0Cw9RfVmtvg5sNOaU6ZrV3RcXObnijdftG6dzRpMr2q41FnphKD4J7lEqeQdetmJUnT9qUoWdznwbXCop5vfYxaO5Qbc_xlJ_L0nKDiQLpt428Izni5Ji8ikwn2Ps6fkkn_zj5LyAleHBeDfbHe3tPIVbzEdkmzRi8RosV2cz-wzjySp_HlY0gQ_Xbfq_Abehh90
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKkYAL_4WFAkaiBw7ZNo4dxwcO1barLqVVpVKpt-D4BxZKdtVkheDC0_AqPBcz3iR0C6q4VOKacRzHM_bMeMbfEPIiFtJIH_MIdsgs4nbDRoVRIhLaG8WZVm6eILuf7hzx18fieIn8aO_CwCAq6KkKQXxc1VPrG4SBeB2ffzTjz_0UhYW1uZS77usX8NSqV6MtYOsaY8Ptt4OdqCkmEGmR8jrioAwMK3SRFJaDEjRgCWkpYqdj6ywHq8HDQC3zRZxIZ5S0xkIr4XkqvM-yBPq9Qq5ilBB9vM3BYbvhJ4kKdUsR7CxSQrXR0L-NGHWgqRZ14B-G7fn8zDMKb3iL_OymKuS5fOrP6qJvvp1Dkfzv5_I2udmY3HRzvkbukCVX3iXXB22lu3vk-6ikh-MTWBP04BQDVyisdOJpSI81WFMsgCoAdTLFPHRXIXX79x1BoLXICxUNWRh0r607TIfh5BQPUOuK6tLSvZDA6miDbfv-Pjm6lP9fIcvlpHQPCc2KxEuhMg06k3NrCwsOoJeZt4prJk2PrAGn8mZjqfKQM8DiPDwE9uUN-3pkvRWp3DTo7lhk5OSCN152b0znyCYXtF1tpfTMUNAZTuNY8R553pGBdRhy0qWbzLCNYDIDPx-6eDAX6u5jLMP7SUr1iFwQ964BIp8vUsrxh4CADjYo4ko--sfJeUauHWwN8zej_d3H5AZDw2wjjliySpbr05l7AmZlXTwNi5qSd5ct-b8AOHWKYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Silico+Prediction+of+Physicochemical+Properties+of+Environmental+Chemicals+Using+Molecular+Fingerprints+and+Machine+Learning&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Zang%2C+Qingda&rft.au=Mansouri%2C+Kamel&rft.au=Williams%2C+Antony+J&rft.au=Judson%2C+Richard+S&rft.date=2017-01-23&rft.issn=1549-960X&rft.eissn=1549-960X&rft.volume=57&rft.issue=1&rft.spage=36&rft_id=info:doi/10.1021%2Facs.jcim.6b00625&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon