In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning
There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biol...
Saved in:
Published in | Journal of chemical information and modeling Vol. 57; no. 1; pp. 36 - 49 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure–property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol–water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R 2) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals. |
---|---|
AbstractList | There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure-property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol-water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R
) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals. There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure–property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol–water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R 2) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals. There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source Quantitative Structure-Property Relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within EPA EPI Suite™ were reanalyzed using modern cheminformatics workflows to build updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol-water partition coefficient (log P), water solubility (log S), boiling point (BP), melting point (MP), vapor pressure (log VP) and bioconcentration factor (log BCF). The coefficient of determination (R 2 ) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite™ models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals. There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure-property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol-water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R^sup 2^) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals. There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure-property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol-water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R2) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals.There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure-property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol-water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R2) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals. |
Author | Williams, Antony J Casey, Warren M Zang, Qingda Allen, David G Mansouri, Kamel Judson, Richard S Kleinstreuer, Nicole C |
AuthorAffiliation | National Institute of Environmental Health Sciences National Toxicology Program U.S. Environmental Protection Agency National Center for Computational Toxicology, Office of Research and Development |
AuthorAffiliation_xml | – name: National Toxicology Program – name: National Institute of Environmental Health Sciences – name: U.S. Environmental Protection Agency – name: National Center for Computational Toxicology, Office of Research and Development – name: National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA – name: National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA – name: Integrated Laboratory Systems, Inc., Research Triangle Park, NC 27709, USA |
Author_xml | – sequence: 1 givenname: Qingda orcidid: 0000-0003-1543-8307 surname: Zang fullname: Zang, Qingda – sequence: 2 givenname: Kamel orcidid: 0000-0002-6426-8036 surname: Mansouri fullname: Mansouri, Kamel – sequence: 3 givenname: Antony J surname: Williams fullname: Williams, Antony J – sequence: 4 givenname: Richard S surname: Judson fullname: Judson, Richard S – sequence: 5 givenname: David G surname: Allen fullname: Allen, David G – sequence: 6 givenname: Warren M surname: Casey fullname: Casey, Warren M – sequence: 7 givenname: Nicole C orcidid: 0000-0002-7914-3682 surname: Kleinstreuer fullname: Kleinstreuer, Nicole C email: nicole.kleinstreuer@nih.gov |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28006899$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1r3DAQxUVJaJJt7z0VQS89dLeSbcn2pRCWfMGGBtpAb0KWxlkttrSV7EBO_dc7m90NSaA96eP93vCkmRNy4IMHQj5wNuMs41-1SbOVcf1MNozJTLwhx1wU9bSW7NfBfi9qeUROUloxlue1zN6So6xCvKrrY_LnytMfrnMm0JsI1pnBBU9DS2-WDwlvzRJ6Z3SHalhDHBykjXrm710Mvgc_oDbfQYneJufv6HXowIydjvQcjxDX0fkhUe0tvdZm6TzQBejoUXxHDls0wvvdOiG352c_55fTxfeLq_npYqqFLIZpAWBN1ugmb2xRM264YLoUHDS3YIsiF61l1mZtw_MSTF1aY5ESbSFF21ZVPiHftnXXY9NjLQwedacwWa_jgwraqZeKd0t1F-6V5Dkv8ecm5POuQAy_R0iD6l0y0HXaQxiT4pXIyoplUiD66RW6CmP0-DykZCYl53WB1MfniZ6i7HuDgNwCJoaUIrTKuEFv-oMBXac4U5shUDgEajMEajcEaGSvjPva_7F82Voelae0_8L_Aot1yYA |
CitedBy_id | crossref_primary_10_1111_cbdd_14121 crossref_primary_10_1080_07391102_2022_2144456 crossref_primary_10_1186_s13321_018_0263_1 crossref_primary_10_2174_1381612828666220608141049 crossref_primary_10_3390_molecules28227457 crossref_primary_10_1016_j_jpha_2025_101263 crossref_primary_10_3390_molecules29040903 crossref_primary_10_1016_j_yrtph_2022_105169 crossref_primary_10_1002_cem_3349 crossref_primary_10_1016_j_envint_2020_106108 crossref_primary_10_1021_acs_jpca_4c04121 crossref_primary_10_1111_cbdd_14639 crossref_primary_10_3390_molecules25010044 crossref_primary_10_3389_fphar_2024_1459954 crossref_primary_10_1080_1062936X_2019_1699602 crossref_primary_10_1038_s41563_019_0338_z crossref_primary_10_1002_minf_202000062 crossref_primary_10_1016_j_heliyon_2020_e04639 crossref_primary_10_1111_cbdd_13600 crossref_primary_10_1002_minf_202100247 crossref_primary_10_1021_acs_estlett_0c00640 crossref_primary_10_1007_s40199_024_00548_5 crossref_primary_10_1016_j_engappai_2024_108783 crossref_primary_10_1007_s11030_021_10217_3 crossref_primary_10_1021_acs_est_3c03860 crossref_primary_10_1016_j_compbiomed_2023_107452 crossref_primary_10_1002_cjce_25525 crossref_primary_10_1016_j_scitotenv_2020_143082 crossref_primary_10_1021_acs_chemrev_8b00728 crossref_primary_10_1021_acs_iecr_2c00442 crossref_primary_10_1134_S1070363224090251 crossref_primary_10_2174_1381612829666230428110542 crossref_primary_10_1016_j_chemosphere_2017_11_137 crossref_primary_10_1093_bib_bbab430 crossref_primary_10_1021_acs_jpcc_0c00406 crossref_primary_10_1016_j_scitotenv_2018_04_266 crossref_primary_10_1016_j_scitotenv_2024_170204 crossref_primary_10_1208_s12249_025_03051_5 crossref_primary_10_1021_acs_chemrestox_8b00347 crossref_primary_10_3390_bdcc7010010 crossref_primary_10_1016_j_supflu_2021_105421 crossref_primary_10_1021_acsomega_3c07722 crossref_primary_10_1007_s11356_023_29962_z crossref_primary_10_1021_acs_jcim_8b00553 crossref_primary_10_1021_acs_jcim_9b00646 crossref_primary_10_47470_0016_9900_2024_103_9_1056_1061 crossref_primary_10_1007_s13762_024_05498_8 crossref_primary_10_1007_s10822_020_00279_0 crossref_primary_10_1016_j_jocs_2023_102173 crossref_primary_10_1016_j_procbio_2021_08_001 crossref_primary_10_52711_0974_4150_2023_00014 crossref_primary_10_1093_toxsci_kfad012 crossref_primary_10_1021_acs_molpharmaceut_8b00083 crossref_primary_10_1016_j_drudis_2020_10_010 crossref_primary_10_3389_fchem_2018_00082 crossref_primary_10_1002_cite_202200172 crossref_primary_10_3390_molecules24081604 crossref_primary_10_1080_02786826_2024_2326547 crossref_primary_10_1016_j_jmgm_2021_107848 crossref_primary_10_1080_10426507_2022_2061970 crossref_primary_10_1080_17460441_2024_2367014 crossref_primary_10_1289_EHP4200 crossref_primary_10_1016_j_vascn_2019_106624 crossref_primary_10_3390_technologies12070095 crossref_primary_10_1021_acs_jcim_0c00574 crossref_primary_10_1016_j_ejmech_2024_117164 crossref_primary_10_1016_j_ces_2023_119623 crossref_primary_10_1016_j_indenv_2024_100031 crossref_primary_10_2174_1381612828666220729101103 crossref_primary_10_1016_j_aichem_2023_100039 crossref_primary_10_1080_15287394_2021_1956661 crossref_primary_10_3389_fphys_2019_00514 crossref_primary_10_1002_adts_202300159 crossref_primary_10_2174_0118722083297406240313090140 crossref_primary_10_1039_D0SC03115A crossref_primary_10_1038_s41370_018_0046_9 crossref_primary_10_1002_med_21764 crossref_primary_10_1039_C9EM00556K crossref_primary_10_1016_j_toxrep_2024_101805 crossref_primary_10_1016_j_jmgm_2022_108149 crossref_primary_10_1021_acs_accounts_0c00736 crossref_primary_10_1016_j_watres_2024_122252 crossref_primary_10_1002_ejoc_202100829 crossref_primary_10_1080_10590501_2018_1537563 crossref_primary_10_1080_07391102_2021_1985614 crossref_primary_10_3390_catal12070746 crossref_primary_10_1021_acs_molpharmaceut_1c00791 crossref_primary_10_1080_10408444_2018_1429385 crossref_primary_10_1021_acs_iecr_2c04567 crossref_primary_10_1080_10408444_2018_1429386 crossref_primary_10_1038_s41370_017_0012_y crossref_primary_10_1039_D0RA05873D crossref_primary_10_1088_2632_2153_acee42 crossref_primary_10_1016_j_fluid_2023_113734 crossref_primary_10_1186_s13321_017_0247_6 crossref_primary_10_1289_EHP1759 crossref_primary_10_1080_00498254_2023_2295361 crossref_primary_10_1002_cem_70003 crossref_primary_10_1007_s00726_023_03304_2 crossref_primary_10_1021_acs_jcim_2c00260 crossref_primary_10_1021_acs_chemrestox_1c00410 crossref_primary_10_1016_j_heliyon_2023_e17575 crossref_primary_10_1021_acs_est_4c11085 crossref_primary_10_1016_j_commatsci_2023_112443 crossref_primary_10_1039_D2CC01549H crossref_primary_10_1016_j_jwpe_2024_106482 crossref_primary_10_1016_j_compbiomed_2024_108810 crossref_primary_10_1088_2632_2153_ab8aa3 crossref_primary_10_3390_app13095617 crossref_primary_10_1002_ps_4935 crossref_primary_10_1002_wcms_1516 crossref_primary_10_3390_molecules27217608 crossref_primary_10_1016_j_comtox_2019_100096 |
Cites_doi | 10.1038/nbt.2914 10.1080/10937404.2010.483935 10.1007/s00216-011-5155-4 10.1080/1062936X.2016.1253611 10.1002/jcc.21707 10.37285/ijddd.2.3.1 10.1093/toxsci/kfr254 10.2174/1573409910666140410110241 10.1186/s13321-016-0113-y 10.1021/ci049744c 10.1002/etc.2141 10.12921/cmst.2012.18.02.81-88 10.2174/138620711795508331 10.1289/ehp.0901157 10.1186/1752-153X-4-S1-S1 10.3390/molecules17054791 10.3390/ijms13021805 10.1016/j.scitotenv.2011.10.046 10.1007/978-1-62703-050-2_6 10.1016/j.taap.2007.12.037 10.1021/ci010287z 10.1371/journal.pbio.1002156 10.1289/ehp.0901392 10.1289/ehp.1510267 10.1021/ci700257y 10.1080/10937404.2010.483938 10.1021/ci034184n 10.1016/j.jhazmat.2005.05.035 10.1021/tx100428e 10.1016/j.yrtph.2013.10.003 10.1002/minf.201000133 10.1021/ci970289c 10.1021/ci060164k 10.1021/ci900286s 10.1007/s00216-010-4268-5 10.1021/ci700307p 10.1289/ehp.0800168 10.1021/ci9901338 10.1002/cem.1321 10.1080/10937404.2010.483947 10.1021/tx900325g 10.1021/ci800436c 10.14573/altex.1305221 10.1021/ci00057a005 10.1093/toxsci/kfl103 10.1021/ci400527b 10.1021/tx7002382 10.1021/ci000152d 10.1021/ci034006u 10.1186/1758-2946-5-27 10.1002/cem.2587 10.1021/ci034107s 10.1023/A:1008715521862 10.1021/tx400021f 10.1016/j.tox.2010.12.010 10.1002/qsar.200390007 10.1021/acs.est.5b02641 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society Copyright American Chemical Society Jan 23, 2017 |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society – notice: Copyright American Chemical Society Jan 23, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1021/acs.jcim.6b00625 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1549-960X |
EndPage | 49 |
ExternalDocumentID | PMC6131700 4309552631 28006899 10_1021_acs_jcim_6b00625 a27714125 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: HHSN273201500010C – fundername: Intramural EPA grantid: EPA999999 |
GroupedDBID | - 55A 5GY 7~N AABXI ABFLS ABMVS ABUCX ACGFS ACIWK ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ D0L DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P PQEST PQQKQ RNS ROL UI2 VF5 VG9 W1F X --- -~X 4.4 5VS AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-a564t-4eedc2bab3bd4901c150a751ea1ded4435fd0dd2fb137ec97dcd01c5f465ff883 |
IEDL.DBID | ACS |
ISSN | 1549-9596 1549-960X |
IngestDate | Thu Aug 21 18:41:45 EDT 2025 Fri Jul 11 05:43:50 EDT 2025 Mon Jun 30 10:54:16 EDT 2025 Mon Jul 21 06:02:29 EDT 2025 Thu Apr 24 23:05:57 EDT 2025 Thu Jul 03 08:29:30 EDT 2025 Thu Aug 27 13:42:05 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a564t-4eedc2bab3bd4901c150a751ea1ded4435fd0dd2fb137ec97dcd01c5f465ff883 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1543-8307 0000-0002-7914-3682 0000-0002-6426-8036 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6131700 |
PMID | 28006899 |
PQID | 1862661194 |
PQPubID | 28739 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6131700 proquest_miscellaneous_1852780265 proquest_journals_1862661194 pubmed_primary_28006899 crossref_citationtrail_10_1021_acs_jcim_6b00625 crossref_primary_10_1021_acs_jcim_6b00625 acs_journals_10_1021_acs_jcim_6b00625 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2017-01-23 |
PublicationDateYYYYMMDD | 2017-01-23 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of chemical information and modeling |
PublicationTitleAlternate | J. Chem. Inf. Model |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 Dearden J. C. (ref44/cit44) 2012; 929 ref3/cit3 ref27/cit27 ref63/cit63 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 R Development Core Team R (ref66/cit66) 2011 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 Veerasamy R. (ref62/cit62) 2011; 2 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 Varmuza K. (ref56/cit56) 2009 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 Judson R. S. (ref53/cit53) 1997 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref18/cit18 doi: 10.1038/nbt.2914 – ident: ref10/cit10 doi: 10.1080/10937404.2010.483935 – ident: ref60/cit60 doi: 10.1007/s00216-011-5155-4 – ident: ref47/cit47 doi: 10.1080/1062936X.2016.1253611 – ident: ref51/cit51 doi: 10.1002/jcc.21707 – volume: 2 start-page: 511 issue: 3 year: 2011 ident: ref62/cit62 publication-title: Int. J. Drug Des. Discovery doi: 10.37285/ijddd.2.3.1 – ident: ref11/cit11 doi: 10.1093/toxsci/kfr254 – ident: ref64/cit64 doi: 10.2174/1573409910666140410110241 – volume-title: A Language and Environment for Statistical Computing year: 2011 ident: ref66/cit66 – ident: ref67/cit67 doi: 10.1186/s13321-016-0113-y – ident: ref39/cit39 doi: 10.1021/ci049744c – ident: ref50/cit50 – ident: ref19/cit19 doi: 10.1002/etc.2141 – ident: ref27/cit27 doi: 10.12921/cmst.2012.18.02.81-88 – ident: ref20/cit20 doi: 10.2174/138620711795508331 – ident: ref24/cit24 doi: 10.1289/ehp.0901157 – ident: ref37/cit37 doi: 10.1186/1752-153X-4-S1-S1 – volume-title: Introduction to Multivariate Statistical Analysis in Chemometrics year: 2009 ident: ref56/cit56 – ident: ref63/cit63 doi: 10.3390/molecules17054791 – ident: ref4/cit4 doi: 10.3390/ijms13021805 – ident: ref3/cit3 doi: 10.1016/j.scitotenv.2011.10.046 – volume: 929 start-page: 93 volume-title: Computational Toxicology year: 2012 ident: ref44/cit44 doi: 10.1007/978-1-62703-050-2_6 – ident: ref5/cit5 doi: 10.1016/j.taap.2007.12.037 – ident: ref36/cit36 doi: 10.1021/ci010287z – ident: ref31/cit31 doi: 10.1371/journal.pbio.1002156 – ident: ref14/cit14 doi: 10.1289/ehp.0901392 – ident: ref6/cit6 doi: 10.1289/ehp.1510267 – ident: ref40/cit40 doi: 10.1021/ci700257y – ident: ref25/cit25 doi: 10.1080/10937404.2010.483938 – ident: ref42/cit42 doi: 10.1021/ci034184n – ident: ref26/cit26 doi: 10.1016/j.jhazmat.2005.05.035 – ident: ref12/cit12 doi: 10.1021/tx100428e – ident: ref49/cit49 – ident: ref30/cit30 doi: 10.1016/j.yrtph.2013.10.003 – ident: ref32/cit32 doi: 10.1002/minf.201000133 – ident: ref34/cit34 doi: 10.1021/ci970289c – ident: ref58/cit58 doi: 10.1021/ci060164k – ident: ref21/cit21 doi: 10.1021/ci900286s – ident: ref55/cit55 doi: 10.1007/s00216-010-4268-5 – ident: ref2/cit2 – ident: ref35/cit35 doi: 10.1021/ci700307p – ident: ref9/cit9 doi: 10.1289/ehp.0800168 – ident: ref38/cit38 doi: 10.1021/ci9901338 – start-page: 1 volume-title: Reviews in Computational Chemistry year: 1997 ident: ref53/cit53 – ident: ref57/cit57 doi: 10.1002/cem.1321 – ident: ref7/cit7 doi: 10.1080/10937404.2010.483947 – ident: ref13/cit13 doi: 10.1021/tx900325g – ident: ref22/cit22 doi: 10.1021/ci800436c – ident: ref23/cit23 doi: 10.14573/altex.1305221 – ident: ref45/cit45 – ident: ref46/cit46 – ident: ref48/cit48 doi: 10.1021/ci00057a005 – ident: ref1/cit1 – ident: ref15/cit15 doi: 10.1093/toxsci/kfl103 – ident: ref28/cit28 doi: 10.1021/ci400527b – ident: ref29/cit29 doi: 10.1021/tx7002382 – ident: ref43/cit43 doi: 10.1021/ci000152d – ident: ref54/cit54 doi: 10.1021/ci034006u – ident: ref65/cit65 doi: 10.1186/1758-2946-5-27 – ident: ref33/cit33 doi: 10.1002/cem.2587 – ident: ref59/cit59 doi: 10.1021/ci034107s – ident: ref41/cit41 doi: 10.1023/A:1008715521862 – ident: ref16/cit16 doi: 10.1021/tx400021f – ident: ref8/cit8 doi: 10.1016/j.tox.2010.12.010 – ident: ref52/cit52 – ident: ref61/cit61 doi: 10.1002/qsar.200390007 – ident: ref17/cit17 doi: 10.1021/acs.est.5b02641 |
SSID | ssj0033962 |
Score | 2.5332456 |
Snippet | There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried... There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as being carried out by... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 36 |
SubjectTerms | Artificial intelligence Chemical Phenomena Chemicals Chemistry Computer Simulation Environmental Pollutants - chemistry Environmental Pollutants - toxicity Informatics Machine Learning Molecules Quantitative Structure-Activity Relationship Solubility Transition Temperature Vapor Pressure Water - chemistry |
Title | In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning |
URI | http://dx.doi.org/10.1021/acs.jcim.6b00625 https://www.ncbi.nlm.nih.gov/pubmed/28006899 https://www.proquest.com/docview/1862661194 https://www.proquest.com/docview/1852780265 https://pubmed.ncbi.nlm.nih.gov/PMC6131700 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaemgv0DdbaOVK7aGHLNix4_iIVqygElUlisQt8rNsS7OIZC-99K93xkkWFhDimhk7iWfsGXvG3xDyiUnlVGQigxWyzITf9Zl1WmbSRKcFNzp0CbLfioMT8fVUnl7B5NyM4HO2Y1wz_uVmf8YFagiXj8kTXpQKN1p7k-Nh1c1znYqHIuJYpqUeQpJ39YCGyDWrhuiWd3kzSfKa1ZludOWLmgRWiMkmv8eL1o7d39tQjg_4oedkvXc-6V6nLS_Io1C_JE8nQ823V-TfYU2PZ-egHfT7JYZwUGx0HmlKFHVYXSvBCwB1foEZ2aFB6v7VbTmgDRgEDU35CPRoqMBLp-kMEY8S24aa2tOjlMoZaI_y-vM1OZnu_5gcZH2JhszIQrSZABPruDU2t16Aa-HAvzRKsmCYD16ALxZB_J5Hy3IVnFbeeeCSURQyxrLM35C1el6HTUJLm0cldWnAegjhvfWwFYqqjF4Lw5Ubkc8wclU_xZoqRc85q9JDGM6qH84R2RnkWrke5xzLbZzf0-LLssVFh_FxD-_2oCrXPgW3hQVjWozIxyUZRIfBF1OH-QJ5JFcl7Hihi7edZi1fxku8qaP1iKgVnVsyIAb4KqWenSUscPDGEGHx3QMHZ4s84-iX7LKM59tkrb1chPfgVbX2Q5pO_wFLmCHh |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VciiX8g8LBYxEDxyyrR17Ex84VEtXu7RbIbWVeguOf2BLyVZNVgguPAuvwpMx9iZpt6CKSyWuGcfr9Yw9M_HnbwBeUZHoxFEe4Q6ZRtxsmijXUkRCOS05U9LOAbJ7veEhf3ckjpbgZ3MXBgdRYk9lOMQ_ZxegG_7ZsZ586fa8obAGR7ljv33FLK18M3qLKl1nbLB90B9GdSGBSIkeryKOjkCzXOVxbjg6QI1RkEoEtYoaazhGDA4HaZjLaZxYLROjDbYSjveEc2kaY7834CbGPsznd1v9_Wazj2MZapZ6orNICtmchP5txN7_6XLR__0R1F7GZl5wdoPb8KudpoBx-dydVXlXf7_EIPlfz-MdWK1DbbI1Xxt3YckW92Cl31S4uw8_RgXZn5zgWiDvz_yBlTdSMnUkwGK1ryUWyBRQOj31-HNbeun2-d1AlDWMCyUJ6AsybuoNk0H4Yuo_nFYlUYUh4wBctaTmtP34AA6v5f8_hOViWtjHQNI8domQqUJfybkxucHEzyWpM5IrlugOrKOmsnpDKbOAFWA0Cw9RfVmtvg5sNOaU6ZrV3RcXObnijdftG6dzRpMr2q41FnphKD4J7lEqeQdetmJUnT9qUoWdznwbXCop5vfYxaO5Qbc_xlJ_L0nKDiQLpt428Izni5Ji8ikwn2Ps6fkkn_zj5LyAleHBeDfbHe3tPIVbzEdkmzRi8RosV2cz-wzjySp_HlY0gQ_Xbfq_Abehh90 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKkYAL_4WFAkaiBw7ZNo4dxwcO1barLqVVpVKpt-D4BxZKdtVkheDC0_AqPBcz3iR0C6q4VOKacRzHM_bMeMbfEPIiFtJIH_MIdsgs4nbDRoVRIhLaG8WZVm6eILuf7hzx18fieIn8aO_CwCAq6KkKQXxc1VPrG4SBeB2ffzTjz_0UhYW1uZS77usX8NSqV6MtYOsaY8Ptt4OdqCkmEGmR8jrioAwMK3SRFJaDEjRgCWkpYqdj6ywHq8HDQC3zRZxIZ5S0xkIr4XkqvM-yBPq9Qq5ilBB9vM3BYbvhJ4kKdUsR7CxSQrXR0L-NGHWgqRZ14B-G7fn8zDMKb3iL_OymKuS5fOrP6qJvvp1Dkfzv5_I2udmY3HRzvkbukCVX3iXXB22lu3vk-6ikh-MTWBP04BQDVyisdOJpSI81WFMsgCoAdTLFPHRXIXX79x1BoLXICxUNWRh0r607TIfh5BQPUOuK6tLSvZDA6miDbfv-Pjm6lP9fIcvlpHQPCc2KxEuhMg06k3NrCwsOoJeZt4prJk2PrAGn8mZjqfKQM8DiPDwE9uUN-3pkvRWp3DTo7lhk5OSCN152b0znyCYXtF1tpfTMUNAZTuNY8R553pGBdRhy0qWbzLCNYDIDPx-6eDAX6u5jLMP7SUr1iFwQ964BIp8vUsrxh4CADjYo4ko--sfJeUauHWwN8zej_d3H5AZDw2wjjliySpbr05l7AmZlXTwNi5qSd5ct-b8AOHWKYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Silico+Prediction+of+Physicochemical+Properties+of+Environmental+Chemicals+Using+Molecular+Fingerprints+and+Machine+Learning&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Zang%2C+Qingda&rft.au=Mansouri%2C+Kamel&rft.au=Williams%2C+Antony+J&rft.au=Judson%2C+Richard+S&rft.date=2017-01-23&rft.issn=1549-960X&rft.eissn=1549-960X&rft.volume=57&rft.issue=1&rft.spage=36&rft_id=info:doi/10.1021%2Facs.jcim.6b00625&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon |