Transdimensional inverse thermal history modeling for quantitative thermochronology

A new approach for inverse thermal history modeling is presented. The method uses Bayesian transdimensional Markov Chain Monte Carlo and allows us to specify a wide range of possible thermal history models to be considered as general prior information on time, temperature (and temperature offset for...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research Vol. 117; no. B2
Main Author Gallagher, Kerry
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.02.2012
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new approach for inverse thermal history modeling is presented. The method uses Bayesian transdimensional Markov Chain Monte Carlo and allows us to specify a wide range of possible thermal history models to be considered as general prior information on time, temperature (and temperature offset for multiple samples in a vertical profile). We can also incorporate more focused geological constraints in terms of more specific priors. The Bayesian approach naturally prefers simpler thermal history models (which provide an adequate fit to the observations), and so reduces the problems associated with over interpretation of inferred thermal histories. The output of the method is a collection or ensemble of thermal histories, which quantifies the range of accepted models in terms a (posterior) probability distribution. Individual models, such as the best data fitting (maximum likelihood) model or the expected model (effectively the weighted mean from the posterior distribution) can be examined. Different data types (e.g., fission track, U‐Th/He, 40Ar/39Ar) can be combined, requiring just a data‐specific predictive forward model and data fit (likelihood) function. To demonstrate the main features and implementation of the approach, examples are presented using both synthetic and real data. Key Points New method for quantifying thermal histories from multiple samples Transdimensional approach naturally prefers simpler models to explain the data Outputs are probability distributions on unknowns and fully characterise model
AbstractList A new approach for inverse thermal history modeling is presented. The method uses Bayesian transdimensional Markov Chain Monte Carlo and allows us to specify a wide range of possible thermal history models to be considered as general prior information on time, temperature (and temperature offset for multiple samples in a vertical profile). We can also incorporate more focused geological constraints in terms of more specific priors. The Bayesian approach naturally prefers simpler thermal history models (which provide an adequate fit to the observations), and so reduces the problems associated with over interpretation of inferred thermal histories. The output of the method is a collection or ensemble of thermal histories, which quantifies the range of accepted models in terms a (posterior) probability distribution. Individual models, such as the best data fitting (maximum likelihood) model or the expected model (effectively the weighted mean from the posterior distribution) can be examined. Different data types (e.g., fission track, U-Th/He, 40Ar/39Ar) can be combined, requiring just a data-specific predictive forward model and data fit (likelihood) function. To demonstrate the main features and implementation of the approach, examples are presented using both synthetic and real data.
A new approach for inverse thermal history modeling is presented. The method uses Bayesian transdimensional Markov Chain Monte Carlo and allows us to specify a wide range of possible thermal history models to be considered as general prior information on time, temperature (and temperature offset for multiple samples in a vertical profile). We can also incorporate more focused geological constraints in terms of more specific priors. The Bayesian approach naturally prefers simpler thermal history models (which provide an adequate fit to the observations), and so reduces the problems associated with over interpretation of inferred thermal histories. The output of the method is a collection or ensemble of thermal histories, which quantifies the range of accepted models in terms a (posterior) probability distribution. Individual models, such as the best data fitting (maximum likelihood) model or the expected model (effectively the weighted mean from the posterior distribution) can be examined. Different data types (e.g., fission track, U‐Th/He, 40 Ar/ 39 Ar) can be combined, requiring just a data‐specific predictive forward model and data fit (likelihood) function. To demonstrate the main features and implementation of the approach, examples are presented using both synthetic and real data. New method for quantifying thermal histories from multiple samples Transdimensional approach naturally prefers simpler models to explain the data Outputs are probability distributions on unknowns and fully characterise model
A new approach for inverse thermal history modeling is presented. The method uses Bayesian transdimensional Markov Chain Monte Carlo and allows us to specify a wide range of possible thermal history models to be considered as general prior information on time, temperature (and temperature offset for multiple samples in a vertical profile). We can also incorporate more focused geological constraints in terms of more specific priors. The Bayesian approach naturally prefers simpler thermal history models (which provide an adequate fit to the observations), and so reduces the problems associated with over interpretation of inferred thermal histories. The output of the method is a collection or ensemble of thermal histories, which quantifies the range of accepted models in terms a (posterior) probability distribution. Individual models, such as the best data fitting (maximum likelihood) model or the expected model (effectively the weighted mean from the posterior distribution) can be examined. Different data types (e.g., fission track, U‐Th/He, 40Ar/39Ar) can be combined, requiring just a data‐specific predictive forward model and data fit (likelihood) function. To demonstrate the main features and implementation of the approach, examples are presented using both synthetic and real data. Key Points New method for quantifying thermal histories from multiple samples Transdimensional approach naturally prefers simpler models to explain the data Outputs are probability distributions on unknowns and fully characterise model
Author Gallagher, Kerry
Author_xml – sequence: 1
  givenname: Kerry
  surname: Gallagher
  fullname: Gallagher, Kerry
  email: kerry.gallagher@univ-rennes1.fr
  organization: Géosciences, Université de Rennes 1, Rennes, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25982182$$DView record in Pascal Francis
https://insu.hal.science/insu-00676497$$DView record in HAL
BookMark eNp90V1v0zAUBmALbRJl2x0_IAJxgxY4duKvy21iHVM1VCgad5bjOKtHam92Wui_xyNlQkjDN5al5z22z3mB9nzwFqGXGN5hIPI9AYwvTwGEIPQZmhBMWUkIkD00AVyLEgjhz9FRSreQV01ZDXiCviyi9ql1K-uTC173hfMbG5MthqWNq3xeujSEuC1WobW98zdFF2Jxv9Z-cIMe3GYng1nG4EMfbraHaL_TfbJHu_0AfT3_sDi7KGefph_PTmalzpfL0hjZVrxiQDvRyFY2tDJEV7RuRGeEEY3lDW-MkJKCEXUrajAdt9xqS03T6eoAvR3rLnWv7qJb6bhVQTt1cTJTzqe1AmA8X8U3OONXI76L4X5t06BuwzrmDyclCQMuODyg108hDECYYIzQrN7slE5G913uoHHp8QWESkGwINmR0ZkYUoq2U-Z3y4IfonZ9LqkeJqf-nlwOHf8T-lP3CV6N_Ifr7fa_Vl1OP59iDlLmVDmm8mztz8eUjt8V4xWn6vpqqr5dLebX89lcieoXB9K5DQ
CitedBy_id crossref_primary_10_1016_j_epsl_2024_118966
crossref_primary_10_1144_jgs2023_186
crossref_primary_10_1111_bre_12207
crossref_primary_10_1029_2022TC007298
crossref_primary_10_1029_2019TC005887
crossref_primary_10_1002_gj_5027
crossref_primary_10_1016_j_precamres_2019_105587
crossref_primary_10_1016_j_tecto_2020_228647
crossref_primary_10_1111_bre_12693
crossref_primary_10_3390_min12050563
crossref_primary_10_5194_gchron_3_561_2021
crossref_primary_10_1144_SP504_2019_243
crossref_primary_10_1029_2019TC005532
crossref_primary_10_1016_j_epsl_2016_02_021
crossref_primary_10_1016_j_epsl_2016_02_024
crossref_primary_10_1016_j_epsl_2016_09_037
crossref_primary_10_1016_j_geomorph_2019_106971
crossref_primary_10_1111_bre_12580
crossref_primary_10_5194_se_15_329_2024
crossref_primary_10_1002_2017TC004498
crossref_primary_10_1016_j_jseaes_2017_04_009
crossref_primary_10_1002_2016JB013478
crossref_primary_10_1111_bre_12583
crossref_primary_10_1029_2020TC006618
crossref_primary_10_1111_bre_12301
crossref_primary_10_1029_2020TC006614
crossref_primary_10_5194_gchron_6_227_2024
crossref_primary_10_1029_2022GC010390
crossref_primary_10_1029_2019TC005988
crossref_primary_10_1029_2023TC007931
crossref_primary_10_1038_s43247_023_00861_y
crossref_primary_10_1130_GES01369_1
crossref_primary_10_1016_j_oregeorev_2024_105958
crossref_primary_10_1016_j_tecto_2019_228279
crossref_primary_10_1130_G51194_1
crossref_primary_10_3390_min11020116
crossref_primary_10_1016_j_tecto_2019_228276
crossref_primary_10_1029_2019TC005635
crossref_primary_10_1111_ter_12390
crossref_primary_10_1016_j_oregeorev_2019_103193
crossref_primary_10_1144_jgs2022_008
crossref_primary_10_1002_2015GL066780
crossref_primary_10_1002_nsg_12299
crossref_primary_10_1016_j_epsl_2016_09_053
crossref_primary_10_1144_jgs2014_026
crossref_primary_10_1016_j_oregeorev_2023_105309
crossref_primary_10_36790_epistemus_v15i31_206
crossref_primary_10_1029_2019TC005562
crossref_primary_10_1029_2022TC007252
crossref_primary_10_1038_s41597_025_04767_6
crossref_primary_10_1016_j_earscirev_2022_103951
crossref_primary_10_1029_2023WR035714
crossref_primary_10_1029_2018TC004979
crossref_primary_10_1016_j_gloplacha_2022_103897
crossref_primary_10_1016_j_jsames_2020_103051
crossref_primary_10_1016_j_marpetgeo_2020_104229
crossref_primary_10_1111_bre_12012
crossref_primary_10_1130_GES02450_1
crossref_primary_10_1029_2024TC008308
crossref_primary_10_5194_gchron_5_91_2023
crossref_primary_10_1029_2024TC008433
crossref_primary_10_3390_min13070975
crossref_primary_10_1007_s12583_020_1053_z
crossref_primary_10_5194_se_12_563_2021
crossref_primary_10_1016_j_precamres_2017_07_033
crossref_primary_10_1016_j_tecto_2023_229763
crossref_primary_10_1002_2014GL062383
crossref_primary_10_1111_bre_12589
crossref_primary_10_1016_j_jsames_2014_06_001
crossref_primary_10_1029_2019TC005782
crossref_primary_10_1016_j_chemgeo_2019_119302
crossref_primary_10_1029_2020TC006416
crossref_primary_10_1016_j_earscirev_2024_104987
crossref_primary_10_1016_j_palaeo_2023_111546
crossref_primary_10_1016_j_jsg_2024_105286
crossref_primary_10_1029_2019TC005545
crossref_primary_10_1016_j_earscirev_2024_104868
crossref_primary_10_2138_rmg_2017_83_4
crossref_primary_10_1016_j_tecto_2013_06_017
crossref_primary_10_1016_j_gsf_2019_05_011
crossref_primary_10_1016_j_tecto_2023_229998
crossref_primary_10_1029_2020TC006415
crossref_primary_10_1029_2020TC006414
crossref_primary_10_1029_2020TC006652
crossref_primary_10_1016_j_tecto_2018_01_023
crossref_primary_10_1016_j_earscirev_2019_102878
crossref_primary_10_1002_2017JB015049
crossref_primary_10_1016_j_geomorph_2015_02_022
crossref_primary_10_1016_j_epsl_2020_116593
crossref_primary_10_1130_B36266_1
crossref_primary_10_2110_jsr_2020_60
crossref_primary_10_1038_s41598_023_35776_3
crossref_primary_10_1016_j_gsf_2019_05_005
crossref_primary_10_3390_min10121111
crossref_primary_10_1016_j_lithos_2020_105597
crossref_primary_10_1016_j_tecto_2020_228439
crossref_primary_10_5194_gchron_3_321_2021
crossref_primary_10_1016_j_tecto_2021_228977
crossref_primary_10_3390_geosciences9050194
crossref_primary_10_1016_j_gsf_2025_102003
crossref_primary_10_1007_s00531_018_1644_4
crossref_primary_10_1016_j_tecto_2018_10_016
crossref_primary_10_1130_L382_1
crossref_primary_10_1016_j_gca_2017_09_006
crossref_primary_10_1016_j_epsl_2023_118281
crossref_primary_10_1016_j_jsg_2024_105177
crossref_primary_10_1002_2016TC004462
crossref_primary_10_1016_j_jseaes_2015_06_023
crossref_primary_10_1002_2017TC004525
crossref_primary_10_1029_2020TC006314
crossref_primary_10_1002_2016TC004229
crossref_primary_10_1016_j_epsl_2016_07_014
crossref_primary_10_1016_j_geomorph_2021_108025
crossref_primary_10_1016_j_jafrearsci_2019_103542
crossref_primary_10_1016_j_oregeorev_2023_105611
crossref_primary_10_1016_j_epsl_2023_118299
crossref_primary_10_1007_s11430_024_1508_2
crossref_primary_10_1029_2017JB014844
crossref_primary_10_1515_geo_2022_0725
crossref_primary_10_1016_j_tecto_2023_229841
crossref_primary_10_1016_j_earscirev_2019_103074
crossref_primary_10_1016_j_earscirev_2020_103198
crossref_primary_10_1126_sciadv_abi6031
crossref_primary_10_1130_GES02434_1
crossref_primary_10_1002_2014JB011549
crossref_primary_10_1016_j_jsames_2021_103473
crossref_primary_10_1186_s40623_020_01151_z
crossref_primary_10_1111_ggr_12545
crossref_primary_10_1144_jgs2012_146
crossref_primary_10_1007_s11631_021_00506_x
crossref_primary_10_5194_esurf_12_477_2024
crossref_primary_10_1016_j_jseaes_2024_106231
crossref_primary_10_1130_B36268_1
crossref_primary_10_1130_L1142_1
crossref_primary_10_1130_G50790_1
crossref_primary_10_1029_2021TC007113
crossref_primary_10_1002_2015TC003949
crossref_primary_10_1111_bre_12166
crossref_primary_10_1016_j_jnggs_2024_03_002
crossref_primary_10_1002_2017TC004796
crossref_primary_10_1016_j_jsames_2021_103688
crossref_primary_10_2113_2021_1052819
crossref_primary_10_1029_2019JB017570
crossref_primary_10_5194_se_11_1747_2020
crossref_primary_10_1016_j_dark_2023_101245
crossref_primary_10_1029_2020GL090623
crossref_primary_10_1016_j_gsf_2017_11_011
crossref_primary_10_1016_j_tecto_2014_05_020
crossref_primary_10_1016_j_jsg_2023_104961
crossref_primary_10_1016_j_geomorph_2021_108067
crossref_primary_10_1016_j_epsl_2016_01_020
crossref_primary_10_1016_j_jsames_2021_103333
crossref_primary_10_1130_G48699_1
crossref_primary_10_1002_2014GC005309
crossref_primary_10_3390_min11040364
crossref_primary_10_1029_2018TC005312
crossref_primary_10_1002_2013GC004951
crossref_primary_10_1016_j_tecto_2015_06_004
crossref_primary_10_1002_2017TC004693
crossref_primary_10_1016_j_epsl_2015_09_053
crossref_primary_10_1029_2021TC007058
crossref_primary_10_1016_j_oregeorev_2022_104857
crossref_primary_10_1029_2020GC009078
crossref_primary_10_1002_2017TC004574
crossref_primary_10_1002_2017TC004575
crossref_primary_10_1029_2021JB023850
crossref_primary_10_1002_2016GL070276
crossref_primary_10_1016_j_jafrearsci_2015_09_009
crossref_primary_10_1016_j_epsl_2023_118344
crossref_primary_10_1029_2018TC005444
crossref_primary_10_1016_j_gca_2018_04_005
crossref_primary_10_1130_B35767_1
crossref_primary_10_1029_2018TC005207
crossref_primary_10_1190_geo2012_0384_1
crossref_primary_10_1016_j_gca_2013_05_042
crossref_primary_10_1144_jgs2019_018
crossref_primary_10_1144_jgs2018_211
crossref_primary_10_1007_s12583_023_1836_0
crossref_primary_10_1016_j_geomorph_2019_106842
crossref_primary_10_1029_2018TC005451
crossref_primary_10_1016_j_chemgeo_2018_03_038
crossref_primary_10_1016_j_oregeorev_2021_104101
crossref_primary_10_1029_2018TC005210
crossref_primary_10_5194_gchron_4_143_2022
crossref_primary_10_1016_j_jaesx_2019_100005
crossref_primary_10_1002_2013GC004859
crossref_primary_10_1016_j_jseaes_2017_01_001
crossref_primary_10_1029_2017TC004668
crossref_primary_10_1038_s43247_025_02172_w
crossref_primary_10_5800_GT_2023_14_4_0711
crossref_primary_10_2138_gselements_16_5_337
crossref_primary_10_2113_2024_lithosphere_2023_300
crossref_primary_10_1016_j_chemgeo_2016_08_023
crossref_primary_10_1016_j_jseaes_2025_106560
crossref_primary_10_2113_2023_lithosphere_2024_114
crossref_primary_10_1016_j_gsf_2016_09_007
crossref_primary_10_5194_esurf_9_1153_2021
crossref_primary_10_1029_2017TC004878
crossref_primary_10_1051_bsgf_2021028
crossref_primary_10_1029_2020TC006151
crossref_primary_10_1029_2019TC006050
crossref_primary_10_5194_gchron_6_553_2024
crossref_primary_10_1080_00206814_2022_2121946
crossref_primary_10_3389_feart_2022_875237
crossref_primary_10_1016_j_earscirev_2014_09_010
crossref_primary_10_1016_j_tecto_2018_12_017
crossref_primary_10_1016_j_jsames_2020_102964
crossref_primary_10_1002_2013JB010429
crossref_primary_10_1073_pnas_2118682119
crossref_primary_10_1016_j_epsl_2019_04_034
crossref_primary_10_1016_j_jseaes_2025_106559
crossref_primary_10_2113_2024_lithosphere_2024_114
crossref_primary_10_1130_GES02500_1
crossref_primary_10_1029_2021JF006286
crossref_primary_10_1029_2020JB019384
crossref_primary_10_1016_j_geomorph_2023_108897
crossref_primary_10_1130_B35808_1
crossref_primary_10_1016_j_oregeorev_2016_06_034
crossref_primary_10_1016_j_tecto_2018_12_005
crossref_primary_10_1016_j_tecto_2019_06_016
crossref_primary_10_2113_2023_lithosphere_2023_210
crossref_primary_10_1002_2017TC004816
crossref_primary_10_1016_j_epsl_2019_115779
crossref_primary_10_1016_j_tecto_2015_06_014
crossref_primary_10_1051_bsgf_2021040
crossref_primary_10_1016_j_chemgeo_2018_04_028
crossref_primary_10_1016_j_earscirev_2022_104226
crossref_primary_10_1130_B35349_1
crossref_primary_10_1016_j_chemgeo_2017_02_026
crossref_primary_10_1002_2016TC004283
crossref_primary_10_1130_B37693_1
crossref_primary_10_1002_2016TC004284
crossref_primary_10_1016_j_tecto_2016_07_012
crossref_primary_10_1029_2018JF004979
crossref_primary_10_1016_j_jseaes_2018_02_004
crossref_primary_10_1016_j_epsl_2022_117608
crossref_primary_10_1029_2020TC006298
crossref_primary_10_1016_j_tecto_2024_230270
crossref_primary_10_1002_2017TC004703
crossref_primary_10_1007_s12583_020_1071_x
crossref_primary_10_1029_2018TC005258
crossref_primary_10_1016_j_gsf_2017_11_007
crossref_primary_10_5194_gchron_3_433_2021
crossref_primary_10_3389_feart_2023_1144819
crossref_primary_10_1130_B35338_1
crossref_primary_10_1029_2017TC004868
crossref_primary_10_1016_j_chemgeo_2018_04_023
crossref_primary_10_1016_j_chemgeo_2023_121459
crossref_primary_10_1016_j_jsames_2020_102990
crossref_primary_10_1016_j_tecto_2017_11_029
crossref_primary_10_1029_2018GC008102
crossref_primary_10_1016_j_gloplacha_2023_104253
crossref_primary_10_2113_2022_8099539
crossref_primary_10_1016_j_oregeorev_2021_104297
crossref_primary_10_1016_j_tecto_2023_230082
crossref_primary_10_1130_G38561_1
crossref_primary_10_1029_2018GC007555
crossref_primary_10_1029_2018TC005268
crossref_primary_10_1016_j_jog_2020_101733
crossref_primary_10_1016_j_chemgeo_2020_119784
crossref_primary_10_1016_j_epsl_2019_115872
crossref_primary_10_1144_SP534_2022_15
crossref_primary_10_1144_jgs2020_173
crossref_primary_10_3769_radioisotopes_70_189
crossref_primary_10_1007_s00531_022_02267_1
crossref_primary_10_1016_j_jafrearsci_2014_05_014
crossref_primary_10_1029_2017TC004832
crossref_primary_10_1144_jgs2018_078
crossref_primary_10_1029_2020TC006193
crossref_primary_10_1144_jgs2016_100
crossref_primary_10_1002_2016TC004147
crossref_primary_10_1002_2013GC005089
crossref_primary_10_1016_j_tecto_2019_06_004
crossref_primary_10_5194_gmd_12_4061_2019
crossref_primary_10_1029_2019JB018013
crossref_primary_10_1029_2020TC006065
crossref_primary_10_1130_B37245_1
crossref_primary_10_1130_G47364_1
crossref_primary_10_1016_j_gloplacha_2023_104114
crossref_primary_10_3769_radioisotopes_70_173
crossref_primary_10_1016_j_tecto_2016_01_012
crossref_primary_10_1038_s41598_018_34769_x
crossref_primary_10_1002_2014TC003663
crossref_primary_10_3390_min11101095
crossref_primary_10_1144_jgs2020_079
crossref_primary_10_1029_2017TC004808
crossref_primary_10_1029_2022GL100859
crossref_primary_10_1029_2021TC006916
crossref_primary_10_5800_GT_2023_14_6_0729
crossref_primary_10_1016_j_tecto_2022_229559
crossref_primary_10_1016_j_tecto_2022_229432
crossref_primary_10_1029_2020TC006093
crossref_primary_10_5194_gchron_5_35_2023
crossref_primary_10_1130_G37061_1
crossref_primary_10_1111_ter_12621
crossref_primary_10_1016_j_earscirev_2019_103044
crossref_primary_10_1029_2018TC005162
crossref_primary_10_1016_j_gca_2018_12_016
crossref_primary_10_1130_G49882_1
crossref_primary_10_2113_2023_lithosphere_2023_244
crossref_primary_10_1029_2021TC006900
crossref_primary_10_1002_2014TC003653
crossref_primary_10_1016_j_earscirev_2023_104319
crossref_primary_10_1016_j_epsl_2014_04_041
crossref_primary_10_1016_j_tecto_2022_229685
crossref_primary_10_1144_jgs2018_167
crossref_primary_10_1029_2024GC011483
crossref_primary_10_5026_jgeography_128_707
crossref_primary_10_1130_G50315_1
crossref_primary_10_1029_2018TC005294
crossref_primary_10_1016_j_jog_2019_02_001
crossref_primary_10_1029_2024TC008340
crossref_primary_10_1016_j_coal_2020_103554
crossref_primary_10_1016_j_epsl_2012_12_036
crossref_primary_10_1016_j_epsl_2019_115955
crossref_primary_10_1016_j_tecto_2024_230562
crossref_primary_10_1016_j_earscirev_2023_104325
crossref_primary_10_1016_j_epsl_2020_116146
crossref_primary_10_1029_2021TC006855
crossref_primary_10_1016_j_epsl_2023_117990
crossref_primary_10_1029_2022TC007698
crossref_primary_10_1029_2021TC006971
crossref_primary_10_1029_2024JF007636
crossref_primary_10_1016_j_gloplacha_2022_103973
crossref_primary_10_1016_j_tecto_2022_229334
crossref_primary_10_1016_j_palaeo_2023_111563
crossref_primary_10_1130_GES02528_1
crossref_primary_10_1111_ter_12441
crossref_primary_10_1017_S0954102023000287
crossref_primary_10_2138_am_2018_6156
crossref_primary_10_1016_j_oregeorev_2019_103017
crossref_primary_10_2113_RGG20204172
crossref_primary_10_1016_j_jseaes_2023_105620
crossref_primary_10_1144_jgs2020_121
crossref_primary_10_3390_geosciences10090375
crossref_primary_10_1002_gj_4587
crossref_primary_10_1029_2023TC007881
crossref_primary_10_1029_2022GL102700
crossref_primary_10_1111_iar_12219
crossref_primary_10_1029_2019JB017914
crossref_primary_10_2113_2023_lithosphere_2023_258
crossref_primary_10_3390_min14020143
crossref_primary_10_1130_G40232_1
crossref_primary_10_1130_L673_1
crossref_primary_10_2113_2023_lithosphere_2023_292
crossref_primary_10_1111_ter_12669
crossref_primary_10_1002_2015TC004016
crossref_primary_10_1016_j_tecto_2018_06_010
crossref_primary_10_1130_G49917_1
crossref_primary_10_1016_j_oregeorev_2024_106414
crossref_primary_10_2113_2024_lithosphere_2023_285
crossref_primary_10_1016_j_oregeorev_2024_106411
crossref_primary_10_1029_2024TC008688
crossref_primary_10_5194_se_14_153_2023
crossref_primary_10_1111_ter_12429
crossref_primary_10_1016_j_tecto_2022_229231
crossref_primary_10_1029_2012JB009340
crossref_primary_10_1016_j_earscirev_2023_104349
crossref_primary_10_1016_j_tecto_2024_230303
crossref_primary_10_1002_gj_4352
crossref_primary_10_1016_j_tecto_2022_229232
crossref_primary_10_1016_j_quageo_2016_01_004
crossref_primary_10_1016_j_jsames_2023_104369
crossref_primary_10_1029_2022GC010561
crossref_primary_10_1002_2014TC003572
crossref_primary_10_2113_2023_lithosphere_2023_285
crossref_primary_10_1016_j_chemgeo_2024_122042
crossref_primary_10_1130_L1104_1
crossref_primary_10_1016_j_tecto_2021_229066
crossref_primary_10_1002_gj_4488
crossref_primary_10_1016_j_jseaes_2023_105762
crossref_primary_10_1029_2018JB016079
crossref_primary_10_3390_min10010056
crossref_primary_10_1016_j_gca_2019_02_013
crossref_primary_10_1016_j_gsf_2015_06_005
crossref_primary_10_1016_j_gca_2023_12_009
crossref_primary_10_2113_2023_lithosphere_2023_279
crossref_primary_10_1016_j_jsames_2019_102438
crossref_primary_10_1093_gji_ggz078
crossref_primary_10_1111_ter_12313
crossref_primary_10_1016_j_geomorph_2020_107487
crossref_primary_10_1098_rsta_2011_0547
crossref_primary_10_1016_j_jafrearsci_2022_104605
crossref_primary_10_1111_bre_12405
crossref_primary_10_1111_bre_12769
crossref_primary_10_1002_gj_4375
crossref_primary_10_1029_2022TC007651
crossref_primary_10_1029_2023GL103218
crossref_primary_10_1007_s11004_021_09987_1
crossref_primary_10_1029_2020GC009624
crossref_primary_10_1016_j_gsf_2023_101628
crossref_primary_10_1002_esp_5482
crossref_primary_10_1016_j_epsl_2016_05_048
crossref_primary_10_1016_j_earscirev_2022_104091
crossref_primary_10_1130_B36528_1
crossref_primary_10_1016_j_geomorph_2024_109431
crossref_primary_10_1111_ter_12367
crossref_primary_10_2113_2024_lithosphere_2023_211
crossref_primary_10_3389_feart_2021_636459
crossref_primary_10_1016_j_chemgeo_2020_119494
crossref_primary_10_1130_GES02548_1
crossref_primary_10_1029_2022TC007541
crossref_primary_10_1029_2022TC007662
crossref_primary_10_1016_j_tecto_2018_08_017
crossref_primary_10_1016_j_palaeo_2024_112203
crossref_primary_10_1016_j_marpetgeo_2018_03_021
crossref_primary_10_1111_ter_12252
crossref_primary_10_1016_j_gsf_2023_101610
crossref_primary_10_1130_B31384_1
crossref_primary_10_3390_min14060614
crossref_primary_10_1029_2024JB029044
crossref_primary_10_1029_2019TC005705
crossref_primary_10_1016_j_palaeo_2024_112316
crossref_primary_10_5194_gchron_4_373_2022
crossref_primary_10_1016_j_jseaes_2022_105419
crossref_primary_10_1016_j_heliyon_2024_e37218
crossref_primary_10_1111_bre_12752
crossref_primary_10_1029_2019GC008876
crossref_primary_10_1130_B37358_1
crossref_primary_10_1029_2024TC008498
crossref_primary_10_3769_radioisotopes_70_117
crossref_primary_10_1016_j_epsl_2016_11_022
crossref_primary_10_1002_2015TC004042
crossref_primary_10_1029_2021TC006989
crossref_primary_10_1144_jgs2020_100
crossref_primary_10_1111_bre_12517
crossref_primary_10_1016_j_geomorph_2019_02_026
crossref_primary_10_1016_j_chemgeo_2018_07_006
crossref_primary_10_1029_2019TC005828
crossref_primary_10_1016_j_jseaes_2019_103927
crossref_primary_10_1016_j_chemgeo_2018_07_003
crossref_primary_10_1111_ter_12231
crossref_primary_10_1016_j_epsl_2019_01_030
Cites_doi 10.2138/am-1999-0903
10.1029/91JB00514
10.1111/j.1365‐246X.2006.03155.x
10.1093/biomet/82.4.711
10.2138/rmg.2005.58.15
10.2475/08.2006.02
10.1093/oso/9780198510550.003.0017
10.1016/0168‐9622(86)90074‐6
10.1016/0012‐821X(91)90203‐T
10.1046/j.1365‐246X.2002.01847.x
10.1016/j.gca.2006.07.027
10.1016/0168‐9622(87)90057‐1
10.1214/aos/1176344136
10.1017/CBO9780511616433
10.1016/0012‐821X(95)00197‐K
10.1111/j.1365‐246X.2009.04192.x
10.1016/j.epsl.2005.06.025
10.1007/s11004‐005‐9019‐3
10.1190/1.1444411
10.1016/j.marpetgeo.2009.01.003
10.1111/j.1365‐246X.2009.04226.x
10.1515/9781501509575
10.2475/ajs.297.10.939
10.1093/oso/9780195109207.001.0001
10.2138/am-1999-0901
10.1007/BF00373790
10.1007/978-1-4899-4485-6
10.1002/9780470316870
10.1016/1359‐0189(90)90043‐W
10.1016/S0012‐821X(01)00341‐7
10.2138/am-1999-0902
10.1007/978-1-4899-4541-9
10.1016/j.epsl.2005.11.027
10.1016/0168‐9622(89)90018‐3
10.2138/rmg.2005.58.11
10.2138/am.2007.2281
10.1111/j.1365‐246X.2007.03596.x
10.1029/1999JB900348
10.1007/BF00376334
10.1016/j.gca.2003.10.021
10.1111/j.1365‐2117.2008.00369.x
ContentType Journal Article
Copyright Copyright 2012 by the American Geophysical Union
2015 INIST-CNRS
Copyright American Geophysical Union 2012
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright 2012 by the American Geophysical Union
– notice: 2015 INIST-CNRS
– notice: Copyright American Geophysical Union 2012
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7ST
7TG
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
1XC
VOOES
DOI 10.1029/2011JB008825
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep
CrossRef


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
Mathematics
EISSN 2156-2202
2169-9356
EndPage n/a
ExternalDocumentID oai_HAL_insu_00676497v1
2601422461
2638005101
25982182
10_1029_2011JB008825
JGRB17099
ark_67375_WNG_XNTQWQLQ_8
Genre article
Feature
GeographicLocations United States
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
05W
0R~
33P
3V.
52M
702
7ST
7TG
7XB
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ABJCF
ACGOD
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AFRAH
AIURR
ALVPJ
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
C1K
CCPQU
DPXWK
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
KL.
KR7
L.G
L6V
L7M
LEEKS
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PYCSY
Q9U
R.K
RJQFR
SOI
SUPJJ
WBKPD
1XC
VOOES
ID FETCH-LOGICAL-a5649-cc9d373605f8b9d9b53c2a354b8fc8c8be7b7bc89950c84d840cf7e7eae5cbfa3
IEDL.DBID BENPR
ISSN 0148-0227
2169-9313
IngestDate Thu Jul 10 08:56:22 EDT 2025
Fri Jul 25 11:12:12 EDT 2025
Fri Jul 25 11:12:07 EDT 2025
Mon Jul 21 09:14:13 EDT 2025
Tue Jul 01 02:42:22 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Wed Jan 22 16:44:27 EST 2025
Wed Oct 30 09:52:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue B2
Keywords Markov chain analysis
thermal history
models
fission tracks
Monte Carlo analysis
thermochronology
Probability distribution
North America
Modeling
Markov chain
collections
interpretation
maximum likelihood
Vertical profile
temperature
Likelihood function
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5649-cc9d373605f8b9d9b53c2a354b8fc8c8be7b7bc89950c84d840cf7e7eae5cbfa3
Notes istex:52E6C37A894027A3DD7EA281AF4C7DEEF3A0E49F
ark:/67375/WNG-XNTQWQLQ-8
ArticleID:2011JB008825
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ORCID 0000-0002-8124-6242
OpenAccessLink https://insu.hal.science/insu-00676497
PQID 1002686625
PQPubID 54731
PageCount 16
ParticipantIDs hal_primary_oai_HAL_insu_00676497v1
proquest_journals_926078701
proquest_journals_1002686625
pascalfrancis_primary_25982182
crossref_citationtrail_10_1029_2011JB008825
crossref_primary_10_1029_2011JB008825
wiley_primary_10_1029_2011JB008825_JGRB17099
istex_primary_ark_67375_WNG_XNTQWQLQ_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2012
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: February 2012
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Donelick, R. A., R. A. Ketcham, and W. D. Carlson (1999), Variability of apatite fission-track annealing kinetics II: Crystallographic orientation effects, Am. Mineral., 84, 1224-1234.
Jasra, A., D. A. Stephens, K. Gallagher, and C. C. Holmes (2006), Analysis of geochronological data with measurement error using Bayesian mixtures, Math. Geol., 38, 269-300, doi:10.1007/s11004-005-9019-3.
Malinverno, A. (2002), Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem, Geophys. J. Int., 151(3), 675-688, doi:10.1046/j.1365-246X.2002.01847.x.
Efron, B., and R. Tibshirani (1993), An Introduction to the Bootstrap, Chapman and Hall, New York.
Dodson, M. H. (1973), Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petrol., 40, 259-274, doi:10.1007/BF00373790.
Farley, K. A. (2000), Helium diffusion from apatite: General behaviour as illustrated by Durango fluorapatite, J. Geophys. Res., 105, 2903-2914, doi:10.1029/1999JB900348.
Charvin, K., K. Gallagher, G. Hampson, and R. Labourdette (2009), A Bayesian approach to infer environmental parameters from stratigraphic data 1: Methodology, Basin Res., 21, 5-25, doi:10.1111/j.1365-2117.2008.00369.x.
Piana Agostinetti, N., and A. Malinverno (2010), Receiver function inversion by transdimensional Monte Carlo sampling, Geophys. J. Int., 181, 858-872.
Scales, J., and R. Snieder (1998), What is noise?, Geophysics, 63, 1122-1124, doi:10.1190/1.1444411.
Carlson, W. D., R. A. Donelick, and R. A. Ketcham (1999), Variability of apatite fission-track annealing kinetics I: Experimental results, Am. Mineral., 84, 1213-1223.
Ketcham, R. A., R. A. Donelick, and M. B. Donelick (2000), AFTSolve: A program for multi-kinetic modeling of apatite fission-track data, Geol. Mater. Res., 2, 1-32.
Bodin, T., and M. Sambridge (2009), Seismic tomography with the reversible jump algorithm, Geophys. J. Int., 178, 1411-1436, doi:10.1111/j.1365-246X.2009.04226.x.
Ketcham, R. A., R. A. Donelick, and W. D. Carlson (1999), Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological timescales, Am. Mineral., 84, 1235-1255.
Gallagher, K., K. Charvin, S. Nielsen, M. Sambridge, and J. Stephenson (2009), Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems, Mar. Pet. Geol., 26, 525-535, doi:10.1016/j.marpetgeo.2009.01.003.
Green, P. J. (1995), Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711-732, doi:10.1093/biomet/82.4.711.
Hopcroft, P., K. Gallagher, and C. C. Pain (2009), A Bayesian partition modelling approach to resolve spatial variability in climate records from borehole temperature inversion, Geophys. J. Int., 178, 651-666, doi:10.1111/j.1365-246X.2009.04192.x.
Stephenson, J., K. Gallagher, and C. Holmes (2006a), Low temperature thermochronology and modelling strategies for multiple samples 2: Partition modelling for 2D and 3D distributions with discontinuities, Earth Planet. Sci. Lett., 241, 557-570, doi:10.1016/j.epsl.2005.11.027.
McDougall, I., and T. M. Harrison (1999), Geochronology and Thermochronology by the 40Ar/39Ar Method, 2nd ed., Oxford Univ. Press, New York.
Reiners, P. W., and T. A. Ehlers (Eds.) (2005), Low-Temperature Thermochronology: Techniques, Interpretations and Applications, Rev. Mineral. Geochem., 58, 622 pp.
Sambridge, M., K. Gallagher, A. Jackson, and P. Rickwood (2006), Transdimensional inverse problems, model comparison and the evidence, Geophys. J. Int., 167, 528-542, doi:10.1111/j.1365-246X.2006.03155.x.
Gallagher, K., J. A. Stephenson, R. W. Brown, C. C. Holmes, and P. Fitzgerald (2005), Low temperature thermochronology and strategies for multiple samples 1: Vertical profiles, Earth Planet. Sci. Lett., 237, 193-208, doi:10.1016/j.epsl.2005.06.025.
Green, P. F., I. R. Duddy, G. M. Laslett, K. A. Hegarty, A. J. W. Gleadow, and J. F. Lovering (1989), Thermal annealing of fission tracks in apatite: 4. Quantitative modelling techniques and extension to geological timescales, Chem. Geol. Isot. Geosci. Sect., 79, 155-182, doi:10.1016/0168-9622(89)90018-3.
Stephenson, J., K. Gallagher, and C. Holmes (2006b), A Bayesian approach to calibrating apatite fission track annealing models for laboratory and geological timescales, Geochim. Cosmochim. Acta, 70, 5183-5200, doi:10.1016/j.gca.2006.07.027.
Colgan, J. P., T. A. Dumitru, P. W. Reiners, J. L. Wooden, and E. L. Miller (2006), Cenozoic tectonic evolution of the basin and range province in northwestern Nevada, Am. J. Sci., 306, 616-654, doi:10.2475/08.2006.02.
Denison, D. G. T., C. C. Holmes, B. K. Mallick, and A. F. M. Smith (2002), Bayesian Methods for Nonlinear Classification and Regression, Wiley, Chichester, U. K.
Lutz, T. M., and G. I. Omar (1991), An inverse method of modelling thermal histories from apatite fission-track data, Earth Planet. Sci. Lett., 104, 181-195, doi:10.1016/0012-821X(91)90203-T.
Corrigan, J. (1991), Inversion of fission track data for thermal history information, J. Geophys. Res., 96, 10,347-10,360, doi:10.1029/91JB00514.
Laslett, G. M., P. F. Green, I. R. Duddy, and A. J. W. Gleadow (1987), Thermal annealing of fission tracks in apatite: 2. A quantitative analysis, Chem. Geol. Isot. Geosci. Sect., 65, 1-13, doi:10.1016/0168-9622(87)90057-1.
Hopcroft, P., K. Gallagher, and C. C. Pain (2007), Inference of past climate from borehole temperature data using Bayesian Reversible Jump Markov chain Monte Carlo, Geophys. J. Int., 171, 1430-1439, doi:10.1111/j.1365-246X.2007.03596.x.
Gallagher, K. (1995), Evolving temperature histories from apatite fission-track data, Earth Planet. Sci. Lett., 136, 421-435, doi:10.1016/0012-821X(95)00197-K.
Jones, S. M., and R. K. Dokka (1990), Modelling fission-track annealing in apatite-An assessment of uncertainties, Nucl. Tracks Radiat. Meas., 17(3), 255-260, doi:10.1016/1359-0189(90)90043-W.
Braun, J., P. van derBeek, and G. Batt (2006), Quantitative Thermochronology, Cambridge Univ. Press, New York, doi:10.1017/CBO9780511616433.
Harrison, T. M., M. Grove, O. M. Lobvera, and P. K. Zeitler (2005), Continuous thermal histories from inversion of closure profiles, Rev. Mineral. Geochem., 58, 389-409, doi:10.2138/rmg.2005.58.15.
Bernardo, J., and A. F. M. Smith (1994), Bayesian Theory, John Wiley, Chichester, U. K.
Gleadow, A. J. W., I. R. Duddy, P. F. Green, and J. F. Lovering (1986), Confined track lengths in apatite: A diagnostic tool for thermal history analysis, Contrib. Mineral. Petrol., 94, 405-415, doi:10.1007/BF00376334.
Schwarz, G. (1978), Estimating the dimension of a model, Ann. Stat., 6, 461-464, doi:10.1214/aos/1176344136.
Ketcham, R. A., A. Carter, R. A. Donelick, J. Barbarand, and A. J. Hurford (2007), Improved modelling of fission-track annealing in apatite, Am. Mineral., 92, 799-810, doi:10.2138/am.2007.2281.
Green, P. F., I. R. Duddy, A. J. W. Gleadow, P. R. Tingate, and G. M. Laslett (1986), Thermal annealing of fission tracks in apatite: 1. A qualitative description, Chem. Geol. Isot. Geosci. Sect., 59, 237-253, doi:10.1016/0168-9622(86)90074-6.
Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996), Markov Chain Monte Carlo in Practice, Chapman and Hall, London.
Reiners, P. W., T. L. Spell, S. Nicolescu, and K. A. Zanetti (2004), He diffusion and (U-Th)/He thermochronometry: He diffusion and comparison with 40Ar/39Ar dating, Geochim. Cosmochim. Acta, 68, 1857-1887, doi:10.1016/j.gca.2003.10.021.
Willett, S. D. (1997), Inverse modelling of annealing of fission tracks in apatite 1: A controlled random search method, Am. J. Sci., 297, 939-969, doi:10.2475/ajs.297.10.939.
Ketcham, R. A. (2005), Forward and inverse modelling of low-temperature thermochronometry data, Rev. Mineral. Geochem., 58, 275-314, doi:10.2138/rmg.2005.58.11.
Reiners, P. W., and K. A. Farley (2001), Influence of crystal size on (U-Th)/He thermochronology: Re 1 an example from the Bighorn Mountains, Wyoming, Earth Planet. Sci. Lett., 188, 413-420, doi:10.1016/S0012-821X(01)00341-7.
2001; 188
2006; 70
2009; 21
1986; 94
1990; 17
2002; 151
1991; 96
2006; 38
1997; 297
2005; 237
1986; 59
2004; 68
2009; 178
1996
2006
2007; 92
1994
2000; 2
1993
1995; 136
1999; 84
2010; 181
2002
1998; 63
2009; 26
1978; 6
1999
1973; 40
1995; 82
2006; 306
1987; 65
2000; 105
2007; 171
2003; 27
2006; 241
1989; 79
1991; 104
2006; 167
2005; 58
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
Denison D. G. T. (e_1_2_7_9_1) 2002
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
Green P. J. (e_1_2_7_22_1) 2003
e_1_2_7_16_1
McDougall I. (e_1_2_7_35_1) 1999
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Ketcham R. A. (e_1_2_7_30_1) 2000; 2
Piana Agostinetti N. (e_1_2_7_36_1) 2010; 181
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_20_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – reference: Piana Agostinetti, N., and A. Malinverno (2010), Receiver function inversion by transdimensional Monte Carlo sampling, Geophys. J. Int., 181, 858-872.
– reference: Schwarz, G. (1978), Estimating the dimension of a model, Ann. Stat., 6, 461-464, doi:10.1214/aos/1176344136.
– reference: Green, P. F., I. R. Duddy, A. J. W. Gleadow, P. R. Tingate, and G. M. Laslett (1986), Thermal annealing of fission tracks in apatite: 1. A qualitative description, Chem. Geol. Isot. Geosci. Sect., 59, 237-253, doi:10.1016/0168-9622(86)90074-6.
– reference: Sambridge, M., K. Gallagher, A. Jackson, and P. Rickwood (2006), Transdimensional inverse problems, model comparison and the evidence, Geophys. J. Int., 167, 528-542, doi:10.1111/j.1365-246X.2006.03155.x.
– reference: Ketcham, R. A., R. A. Donelick, and M. B. Donelick (2000), AFTSolve: A program for multi-kinetic modeling of apatite fission-track data, Geol. Mater. Res., 2, 1-32.
– reference: Malinverno, A. (2002), Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem, Geophys. J. Int., 151(3), 675-688, doi:10.1046/j.1365-246X.2002.01847.x.
– reference: Charvin, K., K. Gallagher, G. Hampson, and R. Labourdette (2009), A Bayesian approach to infer environmental parameters from stratigraphic data 1: Methodology, Basin Res., 21, 5-25, doi:10.1111/j.1365-2117.2008.00369.x.
– reference: Donelick, R. A., R. A. Ketcham, and W. D. Carlson (1999), Variability of apatite fission-track annealing kinetics II: Crystallographic orientation effects, Am. Mineral., 84, 1224-1234.
– reference: Bernardo, J., and A. F. M. Smith (1994), Bayesian Theory, John Wiley, Chichester, U. K.
– reference: Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996), Markov Chain Monte Carlo in Practice, Chapman and Hall, London.
– reference: Denison, D. G. T., C. C. Holmes, B. K. Mallick, and A. F. M. Smith (2002), Bayesian Methods for Nonlinear Classification and Regression, Wiley, Chichester, U. K.
– reference: Reiners, P. W., T. L. Spell, S. Nicolescu, and K. A. Zanetti (2004), He diffusion and (U-Th)/He thermochronometry: He diffusion and comparison with 40Ar/39Ar dating, Geochim. Cosmochim. Acta, 68, 1857-1887, doi:10.1016/j.gca.2003.10.021.
– reference: Reiners, P. W., and T. A. Ehlers (Eds.) (2005), Low-Temperature Thermochronology: Techniques, Interpretations and Applications, Rev. Mineral. Geochem., 58, 622 pp.
– reference: Stephenson, J., K. Gallagher, and C. Holmes (2006a), Low temperature thermochronology and modelling strategies for multiple samples 2: Partition modelling for 2D and 3D distributions with discontinuities, Earth Planet. Sci. Lett., 241, 557-570, doi:10.1016/j.epsl.2005.11.027.
– reference: Reiners, P. W., and K. A. Farley (2001), Influence of crystal size on (U-Th)/He thermochronology: Re 1 an example from the Bighorn Mountains, Wyoming, Earth Planet. Sci. Lett., 188, 413-420, doi:10.1016/S0012-821X(01)00341-7.
– reference: Scales, J., and R. Snieder (1998), What is noise?, Geophysics, 63, 1122-1124, doi:10.1190/1.1444411.
– reference: Laslett, G. M., P. F. Green, I. R. Duddy, and A. J. W. Gleadow (1987), Thermal annealing of fission tracks in apatite: 2. A quantitative analysis, Chem. Geol. Isot. Geosci. Sect., 65, 1-13, doi:10.1016/0168-9622(87)90057-1.
– reference: Gallagher, K., J. A. Stephenson, R. W. Brown, C. C. Holmes, and P. Fitzgerald (2005), Low temperature thermochronology and strategies for multiple samples 1: Vertical profiles, Earth Planet. Sci. Lett., 237, 193-208, doi:10.1016/j.epsl.2005.06.025.
– reference: Lutz, T. M., and G. I. Omar (1991), An inverse method of modelling thermal histories from apatite fission-track data, Earth Planet. Sci. Lett., 104, 181-195, doi:10.1016/0012-821X(91)90203-T.
– reference: Stephenson, J., K. Gallagher, and C. Holmes (2006b), A Bayesian approach to calibrating apatite fission track annealing models for laboratory and geological timescales, Geochim. Cosmochim. Acta, 70, 5183-5200, doi:10.1016/j.gca.2006.07.027.
– reference: Bodin, T., and M. Sambridge (2009), Seismic tomography with the reversible jump algorithm, Geophys. J. Int., 178, 1411-1436, doi:10.1111/j.1365-246X.2009.04226.x.
– reference: Dodson, M. H. (1973), Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petrol., 40, 259-274, doi:10.1007/BF00373790.
– reference: Jones, S. M., and R. K. Dokka (1990), Modelling fission-track annealing in apatite-An assessment of uncertainties, Nucl. Tracks Radiat. Meas., 17(3), 255-260, doi:10.1016/1359-0189(90)90043-W.
– reference: Hopcroft, P., K. Gallagher, and C. C. Pain (2009), A Bayesian partition modelling approach to resolve spatial variability in climate records from borehole temperature inversion, Geophys. J. Int., 178, 651-666, doi:10.1111/j.1365-246X.2009.04192.x.
– reference: Hopcroft, P., K. Gallagher, and C. C. Pain (2007), Inference of past climate from borehole temperature data using Bayesian Reversible Jump Markov chain Monte Carlo, Geophys. J. Int., 171, 1430-1439, doi:10.1111/j.1365-246X.2007.03596.x.
– reference: Willett, S. D. (1997), Inverse modelling of annealing of fission tracks in apatite 1: A controlled random search method, Am. J. Sci., 297, 939-969, doi:10.2475/ajs.297.10.939.
– reference: Braun, J., P. van derBeek, and G. Batt (2006), Quantitative Thermochronology, Cambridge Univ. Press, New York, doi:10.1017/CBO9780511616433.
– reference: Corrigan, J. (1991), Inversion of fission track data for thermal history information, J. Geophys. Res., 96, 10,347-10,360, doi:10.1029/91JB00514.
– reference: Gallagher, K., K. Charvin, S. Nielsen, M. Sambridge, and J. Stephenson (2009), Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems, Mar. Pet. Geol., 26, 525-535, doi:10.1016/j.marpetgeo.2009.01.003.
– reference: Ketcham, R. A. (2005), Forward and inverse modelling of low-temperature thermochronometry data, Rev. Mineral. Geochem., 58, 275-314, doi:10.2138/rmg.2005.58.11.
– reference: Gallagher, K. (1995), Evolving temperature histories from apatite fission-track data, Earth Planet. Sci. Lett., 136, 421-435, doi:10.1016/0012-821X(95)00197-K.
– reference: McDougall, I., and T. M. Harrison (1999), Geochronology and Thermochronology by the 40Ar/39Ar Method, 2nd ed., Oxford Univ. Press, New York.
– reference: Carlson, W. D., R. A. Donelick, and R. A. Ketcham (1999), Variability of apatite fission-track annealing kinetics I: Experimental results, Am. Mineral., 84, 1213-1223.
– reference: Gleadow, A. J. W., I. R. Duddy, P. F. Green, and J. F. Lovering (1986), Confined track lengths in apatite: A diagnostic tool for thermal history analysis, Contrib. Mineral. Petrol., 94, 405-415, doi:10.1007/BF00376334.
– reference: Ketcham, R. A., R. A. Donelick, and W. D. Carlson (1999), Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological timescales, Am. Mineral., 84, 1235-1255.
– reference: Colgan, J. P., T. A. Dumitru, P. W. Reiners, J. L. Wooden, and E. L. Miller (2006), Cenozoic tectonic evolution of the basin and range province in northwestern Nevada, Am. J. Sci., 306, 616-654, doi:10.2475/08.2006.02.
– reference: Efron, B., and R. Tibshirani (1993), An Introduction to the Bootstrap, Chapman and Hall, New York.
– reference: Green, P. F., I. R. Duddy, G. M. Laslett, K. A. Hegarty, A. J. W. Gleadow, and J. F. Lovering (1989), Thermal annealing of fission tracks in apatite: 4. Quantitative modelling techniques and extension to geological timescales, Chem. Geol. Isot. Geosci. Sect., 79, 155-182, doi:10.1016/0168-9622(89)90018-3.
– reference: Green, P. J. (1995), Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711-732, doi:10.1093/biomet/82.4.711.
– reference: Jasra, A., D. A. Stephens, K. Gallagher, and C. C. Holmes (2006), Analysis of geochronological data with measurement error using Bayesian mixtures, Math. Geol., 38, 269-300, doi:10.1007/s11004-005-9019-3.
– reference: Farley, K. A. (2000), Helium diffusion from apatite: General behaviour as illustrated by Durango fluorapatite, J. Geophys. Res., 105, 2903-2914, doi:10.1029/1999JB900348.
– reference: Ketcham, R. A., A. Carter, R. A. Donelick, J. Barbarand, and A. J. Hurford (2007), Improved modelling of fission-track annealing in apatite, Am. Mineral., 92, 799-810, doi:10.2138/am.2007.2281.
– reference: Harrison, T. M., M. Grove, O. M. Lobvera, and P. K. Zeitler (2005), Continuous thermal histories from inversion of closure profiles, Rev. Mineral. Geochem., 58, 389-409, doi:10.2138/rmg.2005.58.15.
– volume: 58
  start-page: 389
  year: 2005
  end-page: 409
  article-title: Continuous thermal histories from inversion of closure profiles
  publication-title: Rev. Mineral. Geochem.
– volume: 40
  start-page: 259
  year: 1973
  end-page: 274
  article-title: Closure temperature in cooling geochronological and petrological systems
  publication-title: Contrib. Mineral. Petrol.
– volume: 38
  start-page: 269
  year: 2006
  end-page: 300
  article-title: Analysis of geochronological data with measurement error using Bayesian mixtures
  publication-title: Math. Geol.
– volume: 59
  start-page: 237
  year: 1986
  end-page: 253
  article-title: Thermal annealing of fission tracks in apatite: 1. A qualitative description
  publication-title: Chem. Geol. Isot. Geosci. Sect.
– volume: 58
  year: 2005
– volume: 136
  start-page: 421
  year: 1995
  end-page: 435
  article-title: Evolving temperature histories from apatite fission‐track data
  publication-title: Earth Planet. Sci. Lett.
– volume: 167
  start-page: 528
  year: 2006
  end-page: 542
  article-title: Transdimensional inverse problems, model comparison and the evidence
  publication-title: Geophys. J. Int.
– volume: 84
  start-page: 1235
  year: 1999
  end-page: 1255
  article-title: Variability of apatite fission‐track annealing kinetics: III. Extrapolation to geological timescales
  publication-title: Am. Mineral.
– volume: 2
  start-page: 1
  year: 2000
  end-page: 32
  article-title: AFTSolve: A program for multi‐kinetic modeling of apatite fission‐track data
  publication-title: Geol. Mater. Res.
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– volume: 70
  start-page: 5183
  year: 2006
  end-page: 5200
  article-title: A Bayesian approach to calibrating apatite fission track annealing models for laboratory and geological timescales
  publication-title: Geochim. Cosmochim. Acta
– volume: 96
  start-page: 10,347
  year: 1991
  end-page: 10,360
  article-title: Inversion of fission track data for thermal history information
  publication-title: J. Geophys. Res.
– year: 1996
– volume: 63
  start-page: 1122
  year: 1998
  end-page: 1124
  article-title: What is noise?
  publication-title: Geophysics
– volume: 178
  start-page: 651
  year: 2009
  end-page: 666
  article-title: A Bayesian partition modelling approach to resolve spatial variability in climate records from borehole temperature inversion
  publication-title: Geophys. J. Int.
– volume: 306
  start-page: 616
  year: 2006
  end-page: 654
  article-title: Cenozoic tectonic evolution of the basin and range province in northwestern Nevada
  publication-title: Am. J. Sci.
– volume: 237
  start-page: 193
  year: 2005
  end-page: 208
  article-title: Low temperature thermochronology and strategies for multiple samples 1: Vertical profiles
  publication-title: Earth Planet. Sci. Lett.
– volume: 65
  start-page: 1
  year: 1987
  end-page: 13
  article-title: Thermal annealing of fission tracks in apatite: 2. A quantitative analysis
  publication-title: Chem. Geol. Isot. Geosci. Sect.
– volume: 21
  start-page: 5
  year: 2009
  end-page: 25
  article-title: A Bayesian approach to infer environmental parameters from stratigraphic data 1: Methodology
  publication-title: Basin Res.
– year: 1994
– volume: 241
  start-page: 557
  year: 2006
  end-page: 570
  article-title: Low temperature thermochronology and modelling strategies for multiple samples 2: Partition modelling for 2D and 3D distributions with discontinuities
  publication-title: Earth Planet. Sci. Lett.
– volume: 82
  start-page: 711
  year: 1995
  end-page: 732
  article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
  publication-title: Biometrika
– volume: 94
  start-page: 405
  year: 1986
  end-page: 415
  article-title: Confined track lengths in apatite: A diagnostic tool for thermal history analysis
  publication-title: Contrib. Mineral. Petrol.
– volume: 181
  start-page: 858
  year: 2010
  end-page: 872
  article-title: Receiver function inversion by transdimensional Monte Carlo sampling
  publication-title: Geophys. J. Int.
– volume: 297
  start-page: 939
  year: 1997
  end-page: 969
  article-title: Inverse modelling of annealing of fission tracks in apatite 1: A controlled random search method
  publication-title: Am. J. Sci.
– volume: 84
  start-page: 1213
  year: 1999
  end-page: 1223
  article-title: Variability of apatite fission‐track annealing kinetics I: Experimental results
  publication-title: Am. Mineral.
– volume: 58
  start-page: 275
  year: 2005
  end-page: 314
  article-title: Forward and inverse modelling of low‐temperature thermochronometry data
  publication-title: Rev. Mineral. Geochem.
– volume: 68
  start-page: 1857
  year: 2004
  end-page: 1887
  article-title: He diffusion and (U‐Th)/He thermochronometry: He diffusion and comparison with Ar/ Ar dating
  publication-title: Geochim. Cosmochim. Acta
– volume: 188
  start-page: 413
  year: 2001
  end-page: 420
  article-title: Influence of crystal size on (U‐Th)/He thermochronology: Re 1 an example from the Bighorn Mountains, Wyoming
  publication-title: Earth Planet. Sci. Lett.
– volume: 178
  start-page: 1411
  year: 2009
  end-page: 1436
  article-title: Seismic tomography with the reversible jump algorithm
  publication-title: Geophys. J. Int.
– volume: 105
  start-page: 2903
  year: 2000
  end-page: 2914
  article-title: Helium diffusion from apatite: General behaviour as illustrated by Durango fluorapatite
  publication-title: J. Geophys. Res.
– volume: 79
  start-page: 155
  year: 1989
  end-page: 182
  article-title: Thermal annealing of fission tracks in apatite: 4. Quantitative modelling techniques and extension to geological timescales
  publication-title: Chem. Geol. Isot. Geosci. Sect.
– year: 2002
– volume: 171
  start-page: 1430
  year: 2007
  end-page: 1439
  article-title: Inference of past climate from borehole temperature data using Bayesian Reversible Jump Markov chain Monte Carlo
  publication-title: Geophys. J. Int.
– volume: 104
  start-page: 181
  year: 1991
  end-page: 195
  article-title: An inverse method of modelling thermal histories from apatite fission‐track data
  publication-title: Earth Planet. Sci. Lett.
– year: 2006
– volume: 17
  start-page: 255
  issue: 3
  year: 1990
  end-page: 260
  article-title: Modelling fission‐track annealing in apatite—An assessment of uncertainties
  publication-title: Nucl. Tracks Radiat. Meas.
– volume: 92
  start-page: 799
  year: 2007
  end-page: 810
  article-title: Improved modelling of fission‐track annealing in apatite
  publication-title: Am. Mineral.
– volume: 26
  start-page: 525
  year: 2009
  end-page: 535
  article-title: Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems
  publication-title: Mar. Pet. Geol.
– year: 1993
– volume: 27
  start-page: 179
  year: 2003
  end-page: 196
– volume: 151
  start-page: 675
  issue: 3
  year: 2002
  end-page: 688
  article-title: Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem
  publication-title: Geophys. J. Int.
– volume: 84
  start-page: 1224
  year: 1999
  end-page: 1234
  article-title: Variability of apatite fission‐track annealing kinetics II: Crystallographic orientation effects
  publication-title: Am. Mineral.
– year: 1999
– ident: e_1_2_7_29_1
  doi: 10.2138/am-1999-0903
– ident: e_1_2_7_8_1
  doi: 10.1029/91JB00514
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1365‐246X.2006.03155.x
– ident: e_1_2_7_21_1
  doi: 10.1093/biomet/82.4.711
– ident: e_1_2_7_23_1
  doi: 10.2138/rmg.2005.58.15
– ident: e_1_2_7_7_1
  doi: 10.2475/08.2006.02
– start-page: 179
  volume-title: Highly Structured Stochastic Systems
  year: 2003
  ident: e_1_2_7_22_1
  doi: 10.1093/oso/9780198510550.003.0017
– ident: e_1_2_7_19_1
  doi: 10.1016/0168‐9622(86)90074‐6
– ident: e_1_2_7_33_1
  doi: 10.1016/0012‐821X(91)90203‐T
– ident: e_1_2_7_34_1
  doi: 10.1046/j.1365‐246X.2002.01847.x
– ident: e_1_2_7_44_1
  doi: 10.1016/j.gca.2006.07.027
– ident: e_1_2_7_32_1
  doi: 10.1016/0168‐9622(87)90057‐1
– ident: e_1_2_7_42_1
  doi: 10.1214/aos/1176344136
– ident: e_1_2_7_4_1
  doi: 10.1017/CBO9780511616433
– ident: e_1_2_7_14_1
  doi: 10.1016/0012‐821X(95)00197‐K
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1365‐246X.2009.04192.x
– ident: e_1_2_7_15_1
  doi: 10.1016/j.epsl.2005.06.025
– ident: e_1_2_7_26_1
  doi: 10.1007/s11004‐005‐9019‐3
– volume: 181
  start-page: 858
  year: 2010
  ident: e_1_2_7_36_1
  article-title: Receiver function inversion by transdimensional Monte Carlo sampling
  publication-title: Geophys. J. Int.
– ident: e_1_2_7_41_1
  doi: 10.1190/1.1444411
– volume-title: Bayesian Methods for Nonlinear Classification and Regression
  year: 2002
  ident: e_1_2_7_9_1
– ident: e_1_2_7_16_1
  doi: 10.1016/j.marpetgeo.2009.01.003
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1365‐246X.2009.04226.x
– ident: e_1_2_7_37_1
  doi: 10.1515/9781501509575
– ident: e_1_2_7_45_1
  doi: 10.2475/ajs.297.10.939
– volume-title: Geochronology and Thermochronology by the 40Ar/39Ar Method
  year: 1999
  ident: e_1_2_7_35_1
  doi: 10.1093/oso/9780195109207.001.0001
– ident: e_1_2_7_5_1
  doi: 10.2138/am-1999-0901
– ident: e_1_2_7_10_1
  doi: 10.1007/BF00373790
– ident: e_1_2_7_17_1
  doi: 10.1007/978-1-4899-4485-6
– ident: e_1_2_7_2_1
  doi: 10.1002/9780470316870
– ident: e_1_2_7_27_1
  doi: 10.1016/1359‐0189(90)90043‐W
– ident: e_1_2_7_38_1
  doi: 10.1016/S0012‐821X(01)00341‐7
– ident: e_1_2_7_11_1
  doi: 10.2138/am-1999-0902
– ident: e_1_2_7_12_1
  doi: 10.1007/978-1-4899-4541-9
– ident: e_1_2_7_43_1
  doi: 10.1016/j.epsl.2005.11.027
– ident: e_1_2_7_20_1
  doi: 10.1016/0168‐9622(89)90018‐3
– ident: e_1_2_7_28_1
  doi: 10.2138/rmg.2005.58.11
– ident: e_1_2_7_31_1
  doi: 10.2138/am.2007.2281
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1365‐246X.2007.03596.x
– ident: e_1_2_7_13_1
  doi: 10.1029/1999JB900348
– ident: e_1_2_7_18_1
  doi: 10.1007/BF00376334
– ident: e_1_2_7_39_1
  doi: 10.1016/j.gca.2003.10.021
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1365‐2117.2008.00369.x
– volume: 2
  start-page: 1
  year: 2000
  ident: e_1_2_7_30_1
  article-title: AFTSolve: A program for multi‐kinetic modeling of apatite fission‐track data
  publication-title: Geol. Mater. Res.
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816914
Score 2.5693982
Snippet A new approach for inverse thermal history modeling is presented. The method uses Bayesian transdimensional Markov Chain Monte Carlo and allows us to specify a...
SourceID hal
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Bayesian transdimensional MCMC
Earth Sciences
Earth, ocean, space
Exact sciences and technology
Geological time
Geophysics
inverse modelling
Markov chains
Mathematics
Plate tectonics
Probability distribution
Sciences of the Universe
thermochronology
Title Transdimensional inverse thermal history modeling for quantitative thermochronology
URI https://api.istex.fr/ark:/67375/WNG-XNTQWQLQ-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JB008825
https://www.proquest.com/docview/1002686625
https://www.proquest.com/docview/926078701
https://insu.hal.science/insu-00676497
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7RVkjwMMEALduoIvHjBaKlSRzbT2hFa6tqq-jYtL5ZtuMIBKTbuiH477lz0rAKsbdGvbSJz7n7zvn8HcBrmRfGyExGaSENtTAbRDrWLmKliItMOKxAaL_zySyfnGfTBVs0C26rhla5jok-UBdLS2vkByQVmosc4fqHy6uIukbR29WmhUYHehiChehCb3g0-3TarrJQWwnpBb4T_BDJdJA27Pc4kQeU_KbDmFAm28hLnS_EiuzRQP8itqRe4YCVdaeLDSh6F9D6jDR6AlsNlAwPa98_hQeu2obHJ60O62obHnqCp109g88-KRWk5V_rcIRfK2JkuJAQ4A88rpWHf4e-Nw4mtBDhbHh1qyu_DQ2DYm25tCSn6xfjn8P56Ojs4yRqGipEmuXoD2tlkfIUK5hSGInOYalNdMoyI0orrDCOG24slmAstiIrsPizJXfcacesKXX6ArrVsnI7EFrBkgJrpYSVnDZdiSLTeS6l4YVl-CMBvFsPp7KN2jg1vfiu_FvvRKq7gx_Am9b6slbZ-I_dK_RMa0LS2JPDY0W0fUV5F2-S_xwE8NZ7rrXT19-Iv8aZupiN1WJ2Nr-YH8-VCKC_4dr2hIRkDbHyCmB_7WvVPNsr9XcmBrD379cSK0SKgngZ7_3suPeO1HR8OhxwxOm79__XHjzC85KaML4P3ZvrW_cS8dCN6UNHjMb9Zur_AYTiBo8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71IQQcEBQQpqVYgnIBq47ttXcPCLVAkqZJpECq5rZ412u1Apy2boH-KX4jM-sHjRC99WbL4_V6ZzyP9cw3AC9FnCklIuGFmVDUwqzjpX5qPJZzP4u4wQiE6p1H47h_EA1mbLYEv5taGEqrbHSiVdTZXNMe-TZBhcY8Rnf93cmpR12j6O9q00KjEot9c_kTQ7by7d4H5O9WEHQ_Tt_3vbqrgJeyGCeltcjCJEQ3PudK4AxZqIM0ZJHiueaaK5OoRGmMQ5iveZRhBKTzxCQmNUyrPA1x3GVYjUK05FSZ3u21ezrUxEJYOPEADzwRdsI6194PxDaZ2sGuTz4tW7CCy0eUg7lKbP1FuZlpiezJq74aC47vVffZ2r_ufbhXO67uTiVpD2DJFGtwd9SivpZrcMumk-ryIXy2JjCjzgEV6od7XFD-h3HJ3_yO5xXO8aVrO_Gg-XTReXZPL9LCFr2hCq4o55rAe-3W_yM4uJGFfgwrxbwwT8DVnAUZRmYByxMq8eJZlMaxECrJNMNBHHjdLKfUNbY5tdj4Ju0_9kDIq4vvwFZLfVJhevyH7gVypiUhIO7-zlBSkYAkK48vmfzoOPDKcq6lS8--UrZcwuThuCdn4-nkcDKcSO7A5gJr2xsCAlHEOM-BjYbXstYkpfwr9w6s_3tZYDxKOhen8cZKx7VvJAe9T7udBKOCp9c_6znc7k9HQzncG--vwx0cI6hS1Tdg5fzswjxDT-xcbVrxd-HLTX9vfwBqn0L7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED9trUDjAcFgImyMSDBeIGqbxLH9gNDK1nVdV61j0_pmYsfRENBu6wbsq_HpuHPSsAqxt70lysVxfPb9se9-B_BaJpnWMpZBlElNJcxaQdpMbcBy0cxiYdEDoXzn_UHSPY57IzZagN-zXBgKq5zJRCeos4mhPfIGQYUmIkFzvZGXYREHW50PZ-cBVZCik9ZZOY1iiuzZ65_ovk3f724hrzfCsLN99LEblBUGgpQl2EFjZBbxCE36XGiJvWWRCdOIxVrkRhihLddcG_RJWNOIOENvyOTccptaZnSeRtjuItQ5eUU1qLe3BweH1Q4PlbSQDlw8xItARq2ojLxvhrJBirfXbpKFy-Z04uIpRWTWicm_KFIznSKz8qLKxpwZfNOYdtqw8wgelmasv1nMu8ewYMfL8GC_woCdLsM9F1xqpk_gk1OIGdURKDBA_C9jigaxPlmf3_G-QD2-9l1dHlSmPprS_vlVOnYpcCiQC8qJIShfdxDwFI7vZKhXoDaejO0z8I1gYYZ-WshyTglfIovTJJFS88wwbMSDt7PhVKZEOqeCG9-UO3EPpbo5-B5sVNRnBcLHf-heIWcqEoLl7m72FaUMKNL5-JP8R8uDN45zFV168ZVi5zhTJ4MdNRocDU-G_aESHqzPsbZ6ISRIRfT6PFib8VqVcmWq_q4CD1b_fSzROyUJjN1452bHrX-kejuH7RZHH-H57d96Cfdxran-7mBvFZawibCIW1-D2uXFlX2BZtmlXi_nvw-f73rJ_QH8uEiN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transdimensional+inverse+thermal+history+modeling+for+quantitative+thermochronology&rft.jtitle=Journal+of+Geophysical+Research%3A+Solid+Earth&rft.au=Gallagher%2C+Kerry&rft.date=2012-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=B2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2011JB008825&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XNTQWQLQ_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon