Transdimensional inverse thermal history modeling for quantitative thermochronology
A new approach for inverse thermal history modeling is presented. The method uses Bayesian transdimensional Markov Chain Monte Carlo and allows us to specify a wide range of possible thermal history models to be considered as general prior information on time, temperature (and temperature offset for...
Saved in:
Published in | Journal of Geophysical Research Vol. 117; no. B2 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.02.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new approach for inverse thermal history modeling is presented. The method uses Bayesian transdimensional Markov Chain Monte Carlo and allows us to specify a wide range of possible thermal history models to be considered as general prior information on time, temperature (and temperature offset for multiple samples in a vertical profile). We can also incorporate more focused geological constraints in terms of more specific priors. The Bayesian approach naturally prefers simpler thermal history models (which provide an adequate fit to the observations), and so reduces the problems associated with over interpretation of inferred thermal histories. The output of the method is a collection or ensemble of thermal histories, which quantifies the range of accepted models in terms a (posterior) probability distribution. Individual models, such as the best data fitting (maximum likelihood) model or the expected model (effectively the weighted mean from the posterior distribution) can be examined. Different data types (e.g., fission track, U‐Th/He, 40Ar/39Ar) can be combined, requiring just a data‐specific predictive forward model and data fit (likelihood) function. To demonstrate the main features and implementation of the approach, examples are presented using both synthetic and real data.
Key Points
New method for quantifying thermal histories from multiple samples
Transdimensional approach naturally prefers simpler models to explain the data
Outputs are probability distributions on unknowns and fully characterise model |
---|---|
AbstractList | A new approach for inverse thermal history modeling is presented. The method uses Bayesian transdimensional Markov Chain Monte Carlo and allows us to specify a wide range of possible thermal history models to be considered as general prior information on time, temperature (and temperature offset for multiple samples in a vertical profile). We can also incorporate more focused geological constraints in terms of more specific priors. The Bayesian approach naturally prefers simpler thermal history models (which provide an adequate fit to the observations), and so reduces the problems associated with over interpretation of inferred thermal histories. The output of the method is a collection or ensemble of thermal histories, which quantifies the range of accepted models in terms a (posterior) probability distribution. Individual models, such as the best data fitting (maximum likelihood) model or the expected model (effectively the weighted mean from the posterior distribution) can be examined. Different data types (e.g., fission track, U-Th/He, 40Ar/39Ar) can be combined, requiring just a data-specific predictive forward model and data fit (likelihood) function. To demonstrate the main features and implementation of the approach, examples are presented using both synthetic and real data. A new approach for inverse thermal history modeling is presented. The method uses Bayesian transdimensional Markov Chain Monte Carlo and allows us to specify a wide range of possible thermal history models to be considered as general prior information on time, temperature (and temperature offset for multiple samples in a vertical profile). We can also incorporate more focused geological constraints in terms of more specific priors. The Bayesian approach naturally prefers simpler thermal history models (which provide an adequate fit to the observations), and so reduces the problems associated with over interpretation of inferred thermal histories. The output of the method is a collection or ensemble of thermal histories, which quantifies the range of accepted models in terms a (posterior) probability distribution. Individual models, such as the best data fitting (maximum likelihood) model or the expected model (effectively the weighted mean from the posterior distribution) can be examined. Different data types (e.g., fission track, U‐Th/He, 40 Ar/ 39 Ar) can be combined, requiring just a data‐specific predictive forward model and data fit (likelihood) function. To demonstrate the main features and implementation of the approach, examples are presented using both synthetic and real data. New method for quantifying thermal histories from multiple samples Transdimensional approach naturally prefers simpler models to explain the data Outputs are probability distributions on unknowns and fully characterise model A new approach for inverse thermal history modeling is presented. The method uses Bayesian transdimensional Markov Chain Monte Carlo and allows us to specify a wide range of possible thermal history models to be considered as general prior information on time, temperature (and temperature offset for multiple samples in a vertical profile). We can also incorporate more focused geological constraints in terms of more specific priors. The Bayesian approach naturally prefers simpler thermal history models (which provide an adequate fit to the observations), and so reduces the problems associated with over interpretation of inferred thermal histories. The output of the method is a collection or ensemble of thermal histories, which quantifies the range of accepted models in terms a (posterior) probability distribution. Individual models, such as the best data fitting (maximum likelihood) model or the expected model (effectively the weighted mean from the posterior distribution) can be examined. Different data types (e.g., fission track, U‐Th/He, 40Ar/39Ar) can be combined, requiring just a data‐specific predictive forward model and data fit (likelihood) function. To demonstrate the main features and implementation of the approach, examples are presented using both synthetic and real data. Key Points New method for quantifying thermal histories from multiple samples Transdimensional approach naturally prefers simpler models to explain the data Outputs are probability distributions on unknowns and fully characterise model |
Author | Gallagher, Kerry |
Author_xml | – sequence: 1 givenname: Kerry surname: Gallagher fullname: Gallagher, Kerry email: kerry.gallagher@univ-rennes1.fr organization: Géosciences, Université de Rennes 1, Rennes, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25982182$$DView record in Pascal Francis https://insu.hal.science/insu-00676497$$DView record in HAL |
BookMark | eNp90V1v0zAUBmALbRJl2x0_IAJxgxY4duKvy21iHVM1VCgad5bjOKtHam92Wui_xyNlQkjDN5al5z22z3mB9nzwFqGXGN5hIPI9AYwvTwGEIPQZmhBMWUkIkD00AVyLEgjhz9FRSreQV01ZDXiCviyi9ql1K-uTC173hfMbG5MthqWNq3xeujSEuC1WobW98zdFF2Jxv9Z-cIMe3GYng1nG4EMfbraHaL_TfbJHu_0AfT3_sDi7KGefph_PTmalzpfL0hjZVrxiQDvRyFY2tDJEV7RuRGeEEY3lDW-MkJKCEXUrajAdt9xqS03T6eoAvR3rLnWv7qJb6bhVQTt1cTJTzqe1AmA8X8U3OONXI76L4X5t06BuwzrmDyclCQMuODyg108hDECYYIzQrN7slE5G913uoHHp8QWESkGwINmR0ZkYUoq2U-Z3y4IfonZ9LqkeJqf-nlwOHf8T-lP3CV6N_Ifr7fa_Vl1OP59iDlLmVDmm8mztz8eUjt8V4xWn6vpqqr5dLebX89lcieoXB9K5DQ |
CitedBy_id | crossref_primary_10_1016_j_epsl_2024_118966 crossref_primary_10_1144_jgs2023_186 crossref_primary_10_1111_bre_12207 crossref_primary_10_1029_2022TC007298 crossref_primary_10_1029_2019TC005887 crossref_primary_10_1002_gj_5027 crossref_primary_10_1016_j_precamres_2019_105587 crossref_primary_10_1016_j_tecto_2020_228647 crossref_primary_10_1111_bre_12693 crossref_primary_10_3390_min12050563 crossref_primary_10_5194_gchron_3_561_2021 crossref_primary_10_1144_SP504_2019_243 crossref_primary_10_1029_2019TC005532 crossref_primary_10_1016_j_epsl_2016_02_021 crossref_primary_10_1016_j_epsl_2016_02_024 crossref_primary_10_1016_j_epsl_2016_09_037 crossref_primary_10_1016_j_geomorph_2019_106971 crossref_primary_10_1111_bre_12580 crossref_primary_10_5194_se_15_329_2024 crossref_primary_10_1002_2017TC004498 crossref_primary_10_1016_j_jseaes_2017_04_009 crossref_primary_10_1002_2016JB013478 crossref_primary_10_1111_bre_12583 crossref_primary_10_1029_2020TC006618 crossref_primary_10_1111_bre_12301 crossref_primary_10_1029_2020TC006614 crossref_primary_10_5194_gchron_6_227_2024 crossref_primary_10_1029_2022GC010390 crossref_primary_10_1029_2019TC005988 crossref_primary_10_1029_2023TC007931 crossref_primary_10_1038_s43247_023_00861_y crossref_primary_10_1130_GES01369_1 crossref_primary_10_1016_j_oregeorev_2024_105958 crossref_primary_10_1016_j_tecto_2019_228279 crossref_primary_10_1130_G51194_1 crossref_primary_10_3390_min11020116 crossref_primary_10_1016_j_tecto_2019_228276 crossref_primary_10_1029_2019TC005635 crossref_primary_10_1111_ter_12390 crossref_primary_10_1016_j_oregeorev_2019_103193 crossref_primary_10_1144_jgs2022_008 crossref_primary_10_1002_2015GL066780 crossref_primary_10_1002_nsg_12299 crossref_primary_10_1016_j_epsl_2016_09_053 crossref_primary_10_1144_jgs2014_026 crossref_primary_10_1016_j_oregeorev_2023_105309 crossref_primary_10_36790_epistemus_v15i31_206 crossref_primary_10_1029_2019TC005562 crossref_primary_10_1029_2022TC007252 crossref_primary_10_1038_s41597_025_04767_6 crossref_primary_10_1016_j_earscirev_2022_103951 crossref_primary_10_1029_2023WR035714 crossref_primary_10_1029_2018TC004979 crossref_primary_10_1016_j_gloplacha_2022_103897 crossref_primary_10_1016_j_jsames_2020_103051 crossref_primary_10_1016_j_marpetgeo_2020_104229 crossref_primary_10_1111_bre_12012 crossref_primary_10_1130_GES02450_1 crossref_primary_10_1029_2024TC008308 crossref_primary_10_5194_gchron_5_91_2023 crossref_primary_10_1029_2024TC008433 crossref_primary_10_3390_min13070975 crossref_primary_10_1007_s12583_020_1053_z crossref_primary_10_5194_se_12_563_2021 crossref_primary_10_1016_j_precamres_2017_07_033 crossref_primary_10_1016_j_tecto_2023_229763 crossref_primary_10_1002_2014GL062383 crossref_primary_10_1111_bre_12589 crossref_primary_10_1016_j_jsames_2014_06_001 crossref_primary_10_1029_2019TC005782 crossref_primary_10_1016_j_chemgeo_2019_119302 crossref_primary_10_1029_2020TC006416 crossref_primary_10_1016_j_earscirev_2024_104987 crossref_primary_10_1016_j_palaeo_2023_111546 crossref_primary_10_1016_j_jsg_2024_105286 crossref_primary_10_1029_2019TC005545 crossref_primary_10_1016_j_earscirev_2024_104868 crossref_primary_10_2138_rmg_2017_83_4 crossref_primary_10_1016_j_tecto_2013_06_017 crossref_primary_10_1016_j_gsf_2019_05_011 crossref_primary_10_1016_j_tecto_2023_229998 crossref_primary_10_1029_2020TC006415 crossref_primary_10_1029_2020TC006414 crossref_primary_10_1029_2020TC006652 crossref_primary_10_1016_j_tecto_2018_01_023 crossref_primary_10_1016_j_earscirev_2019_102878 crossref_primary_10_1002_2017JB015049 crossref_primary_10_1016_j_geomorph_2015_02_022 crossref_primary_10_1016_j_epsl_2020_116593 crossref_primary_10_1130_B36266_1 crossref_primary_10_2110_jsr_2020_60 crossref_primary_10_1038_s41598_023_35776_3 crossref_primary_10_1016_j_gsf_2019_05_005 crossref_primary_10_3390_min10121111 crossref_primary_10_1016_j_lithos_2020_105597 crossref_primary_10_1016_j_tecto_2020_228439 crossref_primary_10_5194_gchron_3_321_2021 crossref_primary_10_1016_j_tecto_2021_228977 crossref_primary_10_3390_geosciences9050194 crossref_primary_10_1016_j_gsf_2025_102003 crossref_primary_10_1007_s00531_018_1644_4 crossref_primary_10_1016_j_tecto_2018_10_016 crossref_primary_10_1130_L382_1 crossref_primary_10_1016_j_gca_2017_09_006 crossref_primary_10_1016_j_epsl_2023_118281 crossref_primary_10_1016_j_jsg_2024_105177 crossref_primary_10_1002_2016TC004462 crossref_primary_10_1016_j_jseaes_2015_06_023 crossref_primary_10_1002_2017TC004525 crossref_primary_10_1029_2020TC006314 crossref_primary_10_1002_2016TC004229 crossref_primary_10_1016_j_epsl_2016_07_014 crossref_primary_10_1016_j_geomorph_2021_108025 crossref_primary_10_1016_j_jafrearsci_2019_103542 crossref_primary_10_1016_j_oregeorev_2023_105611 crossref_primary_10_1016_j_epsl_2023_118299 crossref_primary_10_1007_s11430_024_1508_2 crossref_primary_10_1029_2017JB014844 crossref_primary_10_1515_geo_2022_0725 crossref_primary_10_1016_j_tecto_2023_229841 crossref_primary_10_1016_j_earscirev_2019_103074 crossref_primary_10_1016_j_earscirev_2020_103198 crossref_primary_10_1126_sciadv_abi6031 crossref_primary_10_1130_GES02434_1 crossref_primary_10_1002_2014JB011549 crossref_primary_10_1016_j_jsames_2021_103473 crossref_primary_10_1186_s40623_020_01151_z crossref_primary_10_1111_ggr_12545 crossref_primary_10_1144_jgs2012_146 crossref_primary_10_1007_s11631_021_00506_x crossref_primary_10_5194_esurf_12_477_2024 crossref_primary_10_1016_j_jseaes_2024_106231 crossref_primary_10_1130_B36268_1 crossref_primary_10_1130_L1142_1 crossref_primary_10_1130_G50790_1 crossref_primary_10_1029_2021TC007113 crossref_primary_10_1002_2015TC003949 crossref_primary_10_1111_bre_12166 crossref_primary_10_1016_j_jnggs_2024_03_002 crossref_primary_10_1002_2017TC004796 crossref_primary_10_1016_j_jsames_2021_103688 crossref_primary_10_2113_2021_1052819 crossref_primary_10_1029_2019JB017570 crossref_primary_10_5194_se_11_1747_2020 crossref_primary_10_1016_j_dark_2023_101245 crossref_primary_10_1029_2020GL090623 crossref_primary_10_1016_j_gsf_2017_11_011 crossref_primary_10_1016_j_tecto_2014_05_020 crossref_primary_10_1016_j_jsg_2023_104961 crossref_primary_10_1016_j_geomorph_2021_108067 crossref_primary_10_1016_j_epsl_2016_01_020 crossref_primary_10_1016_j_jsames_2021_103333 crossref_primary_10_1130_G48699_1 crossref_primary_10_1002_2014GC005309 crossref_primary_10_3390_min11040364 crossref_primary_10_1029_2018TC005312 crossref_primary_10_1002_2013GC004951 crossref_primary_10_1016_j_tecto_2015_06_004 crossref_primary_10_1002_2017TC004693 crossref_primary_10_1016_j_epsl_2015_09_053 crossref_primary_10_1029_2021TC007058 crossref_primary_10_1016_j_oregeorev_2022_104857 crossref_primary_10_1029_2020GC009078 crossref_primary_10_1002_2017TC004574 crossref_primary_10_1002_2017TC004575 crossref_primary_10_1029_2021JB023850 crossref_primary_10_1002_2016GL070276 crossref_primary_10_1016_j_jafrearsci_2015_09_009 crossref_primary_10_1016_j_epsl_2023_118344 crossref_primary_10_1029_2018TC005444 crossref_primary_10_1016_j_gca_2018_04_005 crossref_primary_10_1130_B35767_1 crossref_primary_10_1029_2018TC005207 crossref_primary_10_1190_geo2012_0384_1 crossref_primary_10_1016_j_gca_2013_05_042 crossref_primary_10_1144_jgs2019_018 crossref_primary_10_1144_jgs2018_211 crossref_primary_10_1007_s12583_023_1836_0 crossref_primary_10_1016_j_geomorph_2019_106842 crossref_primary_10_1029_2018TC005451 crossref_primary_10_1016_j_chemgeo_2018_03_038 crossref_primary_10_1016_j_oregeorev_2021_104101 crossref_primary_10_1029_2018TC005210 crossref_primary_10_5194_gchron_4_143_2022 crossref_primary_10_1016_j_jaesx_2019_100005 crossref_primary_10_1002_2013GC004859 crossref_primary_10_1016_j_jseaes_2017_01_001 crossref_primary_10_1029_2017TC004668 crossref_primary_10_1038_s43247_025_02172_w crossref_primary_10_5800_GT_2023_14_4_0711 crossref_primary_10_2138_gselements_16_5_337 crossref_primary_10_2113_2024_lithosphere_2023_300 crossref_primary_10_1016_j_chemgeo_2016_08_023 crossref_primary_10_1016_j_jseaes_2025_106560 crossref_primary_10_2113_2023_lithosphere_2024_114 crossref_primary_10_1016_j_gsf_2016_09_007 crossref_primary_10_5194_esurf_9_1153_2021 crossref_primary_10_1029_2017TC004878 crossref_primary_10_1051_bsgf_2021028 crossref_primary_10_1029_2020TC006151 crossref_primary_10_1029_2019TC006050 crossref_primary_10_5194_gchron_6_553_2024 crossref_primary_10_1080_00206814_2022_2121946 crossref_primary_10_3389_feart_2022_875237 crossref_primary_10_1016_j_earscirev_2014_09_010 crossref_primary_10_1016_j_tecto_2018_12_017 crossref_primary_10_1016_j_jsames_2020_102964 crossref_primary_10_1002_2013JB010429 crossref_primary_10_1073_pnas_2118682119 crossref_primary_10_1016_j_epsl_2019_04_034 crossref_primary_10_1016_j_jseaes_2025_106559 crossref_primary_10_2113_2024_lithosphere_2024_114 crossref_primary_10_1130_GES02500_1 crossref_primary_10_1029_2021JF006286 crossref_primary_10_1029_2020JB019384 crossref_primary_10_1016_j_geomorph_2023_108897 crossref_primary_10_1130_B35808_1 crossref_primary_10_1016_j_oregeorev_2016_06_034 crossref_primary_10_1016_j_tecto_2018_12_005 crossref_primary_10_1016_j_tecto_2019_06_016 crossref_primary_10_2113_2023_lithosphere_2023_210 crossref_primary_10_1002_2017TC004816 crossref_primary_10_1016_j_epsl_2019_115779 crossref_primary_10_1016_j_tecto_2015_06_014 crossref_primary_10_1051_bsgf_2021040 crossref_primary_10_1016_j_chemgeo_2018_04_028 crossref_primary_10_1016_j_earscirev_2022_104226 crossref_primary_10_1130_B35349_1 crossref_primary_10_1016_j_chemgeo_2017_02_026 crossref_primary_10_1002_2016TC004283 crossref_primary_10_1130_B37693_1 crossref_primary_10_1002_2016TC004284 crossref_primary_10_1016_j_tecto_2016_07_012 crossref_primary_10_1029_2018JF004979 crossref_primary_10_1016_j_jseaes_2018_02_004 crossref_primary_10_1016_j_epsl_2022_117608 crossref_primary_10_1029_2020TC006298 crossref_primary_10_1016_j_tecto_2024_230270 crossref_primary_10_1002_2017TC004703 crossref_primary_10_1007_s12583_020_1071_x crossref_primary_10_1029_2018TC005258 crossref_primary_10_1016_j_gsf_2017_11_007 crossref_primary_10_5194_gchron_3_433_2021 crossref_primary_10_3389_feart_2023_1144819 crossref_primary_10_1130_B35338_1 crossref_primary_10_1029_2017TC004868 crossref_primary_10_1016_j_chemgeo_2018_04_023 crossref_primary_10_1016_j_chemgeo_2023_121459 crossref_primary_10_1016_j_jsames_2020_102990 crossref_primary_10_1016_j_tecto_2017_11_029 crossref_primary_10_1029_2018GC008102 crossref_primary_10_1016_j_gloplacha_2023_104253 crossref_primary_10_2113_2022_8099539 crossref_primary_10_1016_j_oregeorev_2021_104297 crossref_primary_10_1016_j_tecto_2023_230082 crossref_primary_10_1130_G38561_1 crossref_primary_10_1029_2018GC007555 crossref_primary_10_1029_2018TC005268 crossref_primary_10_1016_j_jog_2020_101733 crossref_primary_10_1016_j_chemgeo_2020_119784 crossref_primary_10_1016_j_epsl_2019_115872 crossref_primary_10_1144_SP534_2022_15 crossref_primary_10_1144_jgs2020_173 crossref_primary_10_3769_radioisotopes_70_189 crossref_primary_10_1007_s00531_022_02267_1 crossref_primary_10_1016_j_jafrearsci_2014_05_014 crossref_primary_10_1029_2017TC004832 crossref_primary_10_1144_jgs2018_078 crossref_primary_10_1029_2020TC006193 crossref_primary_10_1144_jgs2016_100 crossref_primary_10_1002_2016TC004147 crossref_primary_10_1002_2013GC005089 crossref_primary_10_1016_j_tecto_2019_06_004 crossref_primary_10_5194_gmd_12_4061_2019 crossref_primary_10_1029_2019JB018013 crossref_primary_10_1029_2020TC006065 crossref_primary_10_1130_B37245_1 crossref_primary_10_1130_G47364_1 crossref_primary_10_1016_j_gloplacha_2023_104114 crossref_primary_10_3769_radioisotopes_70_173 crossref_primary_10_1016_j_tecto_2016_01_012 crossref_primary_10_1038_s41598_018_34769_x crossref_primary_10_1002_2014TC003663 crossref_primary_10_3390_min11101095 crossref_primary_10_1144_jgs2020_079 crossref_primary_10_1029_2017TC004808 crossref_primary_10_1029_2022GL100859 crossref_primary_10_1029_2021TC006916 crossref_primary_10_5800_GT_2023_14_6_0729 crossref_primary_10_1016_j_tecto_2022_229559 crossref_primary_10_1016_j_tecto_2022_229432 crossref_primary_10_1029_2020TC006093 crossref_primary_10_5194_gchron_5_35_2023 crossref_primary_10_1130_G37061_1 crossref_primary_10_1111_ter_12621 crossref_primary_10_1016_j_earscirev_2019_103044 crossref_primary_10_1029_2018TC005162 crossref_primary_10_1016_j_gca_2018_12_016 crossref_primary_10_1130_G49882_1 crossref_primary_10_2113_2023_lithosphere_2023_244 crossref_primary_10_1029_2021TC006900 crossref_primary_10_1002_2014TC003653 crossref_primary_10_1016_j_earscirev_2023_104319 crossref_primary_10_1016_j_epsl_2014_04_041 crossref_primary_10_1016_j_tecto_2022_229685 crossref_primary_10_1144_jgs2018_167 crossref_primary_10_1029_2024GC011483 crossref_primary_10_5026_jgeography_128_707 crossref_primary_10_1130_G50315_1 crossref_primary_10_1029_2018TC005294 crossref_primary_10_1016_j_jog_2019_02_001 crossref_primary_10_1029_2024TC008340 crossref_primary_10_1016_j_coal_2020_103554 crossref_primary_10_1016_j_epsl_2012_12_036 crossref_primary_10_1016_j_epsl_2019_115955 crossref_primary_10_1016_j_tecto_2024_230562 crossref_primary_10_1016_j_earscirev_2023_104325 crossref_primary_10_1016_j_epsl_2020_116146 crossref_primary_10_1029_2021TC006855 crossref_primary_10_1016_j_epsl_2023_117990 crossref_primary_10_1029_2022TC007698 crossref_primary_10_1029_2021TC006971 crossref_primary_10_1029_2024JF007636 crossref_primary_10_1016_j_gloplacha_2022_103973 crossref_primary_10_1016_j_tecto_2022_229334 crossref_primary_10_1016_j_palaeo_2023_111563 crossref_primary_10_1130_GES02528_1 crossref_primary_10_1111_ter_12441 crossref_primary_10_1017_S0954102023000287 crossref_primary_10_2138_am_2018_6156 crossref_primary_10_1016_j_oregeorev_2019_103017 crossref_primary_10_2113_RGG20204172 crossref_primary_10_1016_j_jseaes_2023_105620 crossref_primary_10_1144_jgs2020_121 crossref_primary_10_3390_geosciences10090375 crossref_primary_10_1002_gj_4587 crossref_primary_10_1029_2023TC007881 crossref_primary_10_1029_2022GL102700 crossref_primary_10_1111_iar_12219 crossref_primary_10_1029_2019JB017914 crossref_primary_10_2113_2023_lithosphere_2023_258 crossref_primary_10_3390_min14020143 crossref_primary_10_1130_G40232_1 crossref_primary_10_1130_L673_1 crossref_primary_10_2113_2023_lithosphere_2023_292 crossref_primary_10_1111_ter_12669 crossref_primary_10_1002_2015TC004016 crossref_primary_10_1016_j_tecto_2018_06_010 crossref_primary_10_1130_G49917_1 crossref_primary_10_1016_j_oregeorev_2024_106414 crossref_primary_10_2113_2024_lithosphere_2023_285 crossref_primary_10_1016_j_oregeorev_2024_106411 crossref_primary_10_1029_2024TC008688 crossref_primary_10_5194_se_14_153_2023 crossref_primary_10_1111_ter_12429 crossref_primary_10_1016_j_tecto_2022_229231 crossref_primary_10_1029_2012JB009340 crossref_primary_10_1016_j_earscirev_2023_104349 crossref_primary_10_1016_j_tecto_2024_230303 crossref_primary_10_1002_gj_4352 crossref_primary_10_1016_j_tecto_2022_229232 crossref_primary_10_1016_j_quageo_2016_01_004 crossref_primary_10_1016_j_jsames_2023_104369 crossref_primary_10_1029_2022GC010561 crossref_primary_10_1002_2014TC003572 crossref_primary_10_2113_2023_lithosphere_2023_285 crossref_primary_10_1016_j_chemgeo_2024_122042 crossref_primary_10_1130_L1104_1 crossref_primary_10_1016_j_tecto_2021_229066 crossref_primary_10_1002_gj_4488 crossref_primary_10_1016_j_jseaes_2023_105762 crossref_primary_10_1029_2018JB016079 crossref_primary_10_3390_min10010056 crossref_primary_10_1016_j_gca_2019_02_013 crossref_primary_10_1016_j_gsf_2015_06_005 crossref_primary_10_1016_j_gca_2023_12_009 crossref_primary_10_2113_2023_lithosphere_2023_279 crossref_primary_10_1016_j_jsames_2019_102438 crossref_primary_10_1093_gji_ggz078 crossref_primary_10_1111_ter_12313 crossref_primary_10_1016_j_geomorph_2020_107487 crossref_primary_10_1098_rsta_2011_0547 crossref_primary_10_1016_j_jafrearsci_2022_104605 crossref_primary_10_1111_bre_12405 crossref_primary_10_1111_bre_12769 crossref_primary_10_1002_gj_4375 crossref_primary_10_1029_2022TC007651 crossref_primary_10_1029_2023GL103218 crossref_primary_10_1007_s11004_021_09987_1 crossref_primary_10_1029_2020GC009624 crossref_primary_10_1016_j_gsf_2023_101628 crossref_primary_10_1002_esp_5482 crossref_primary_10_1016_j_epsl_2016_05_048 crossref_primary_10_1016_j_earscirev_2022_104091 crossref_primary_10_1130_B36528_1 crossref_primary_10_1016_j_geomorph_2024_109431 crossref_primary_10_1111_ter_12367 crossref_primary_10_2113_2024_lithosphere_2023_211 crossref_primary_10_3389_feart_2021_636459 crossref_primary_10_1016_j_chemgeo_2020_119494 crossref_primary_10_1130_GES02548_1 crossref_primary_10_1029_2022TC007541 crossref_primary_10_1029_2022TC007662 crossref_primary_10_1016_j_tecto_2018_08_017 crossref_primary_10_1016_j_palaeo_2024_112203 crossref_primary_10_1016_j_marpetgeo_2018_03_021 crossref_primary_10_1111_ter_12252 crossref_primary_10_1016_j_gsf_2023_101610 crossref_primary_10_1130_B31384_1 crossref_primary_10_3390_min14060614 crossref_primary_10_1029_2024JB029044 crossref_primary_10_1029_2019TC005705 crossref_primary_10_1016_j_palaeo_2024_112316 crossref_primary_10_5194_gchron_4_373_2022 crossref_primary_10_1016_j_jseaes_2022_105419 crossref_primary_10_1016_j_heliyon_2024_e37218 crossref_primary_10_1111_bre_12752 crossref_primary_10_1029_2019GC008876 crossref_primary_10_1130_B37358_1 crossref_primary_10_1029_2024TC008498 crossref_primary_10_3769_radioisotopes_70_117 crossref_primary_10_1016_j_epsl_2016_11_022 crossref_primary_10_1002_2015TC004042 crossref_primary_10_1029_2021TC006989 crossref_primary_10_1144_jgs2020_100 crossref_primary_10_1111_bre_12517 crossref_primary_10_1016_j_geomorph_2019_02_026 crossref_primary_10_1016_j_chemgeo_2018_07_006 crossref_primary_10_1029_2019TC005828 crossref_primary_10_1016_j_jseaes_2019_103927 crossref_primary_10_1016_j_chemgeo_2018_07_003 crossref_primary_10_1111_ter_12231 crossref_primary_10_1016_j_epsl_2019_01_030 |
Cites_doi | 10.2138/am-1999-0903 10.1029/91JB00514 10.1111/j.1365‐246X.2006.03155.x 10.1093/biomet/82.4.711 10.2138/rmg.2005.58.15 10.2475/08.2006.02 10.1093/oso/9780198510550.003.0017 10.1016/0168‐9622(86)90074‐6 10.1016/0012‐821X(91)90203‐T 10.1046/j.1365‐246X.2002.01847.x 10.1016/j.gca.2006.07.027 10.1016/0168‐9622(87)90057‐1 10.1214/aos/1176344136 10.1017/CBO9780511616433 10.1016/0012‐821X(95)00197‐K 10.1111/j.1365‐246X.2009.04192.x 10.1016/j.epsl.2005.06.025 10.1007/s11004‐005‐9019‐3 10.1190/1.1444411 10.1016/j.marpetgeo.2009.01.003 10.1111/j.1365‐246X.2009.04226.x 10.1515/9781501509575 10.2475/ajs.297.10.939 10.1093/oso/9780195109207.001.0001 10.2138/am-1999-0901 10.1007/BF00373790 10.1007/978-1-4899-4485-6 10.1002/9780470316870 10.1016/1359‐0189(90)90043‐W 10.1016/S0012‐821X(01)00341‐7 10.2138/am-1999-0902 10.1007/978-1-4899-4541-9 10.1016/j.epsl.2005.11.027 10.1016/0168‐9622(89)90018‐3 10.2138/rmg.2005.58.11 10.2138/am.2007.2281 10.1111/j.1365‐246X.2007.03596.x 10.1029/1999JB900348 10.1007/BF00376334 10.1016/j.gca.2003.10.021 10.1111/j.1365‐2117.2008.00369.x |
ContentType | Journal Article |
Copyright | Copyright 2012 by the American Geophysical Union 2015 INIST-CNRS Copyright American Geophysical Union 2012 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright 2012 by the American Geophysical Union – notice: 2015 INIST-CNRS – notice: Copyright American Geophysical Union 2012 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION IQODW 3V. 7ST 7TG 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 1XC VOOES |
DOI | 10.1029/2011JB008825 |
DatabaseName | Istex CrossRef Pascal-Francis ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library SciTech Premium Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Health Research Premium Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics Mathematics |
EISSN | 2156-2202 2169-9356 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_insu_00676497v1 2601422461 2638005101 25982182 10_1029_2011JB008825 JGRB17099 ark_67375_WNG_XNTQWQLQ_8 |
Genre | article Feature |
GeographicLocations | United States |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION IQODW 05W 0R~ 33P 3V. 52M 702 7ST 7TG 7XB 8FD 8FG 8FK AAESR AASGY AAZKR ABJCF ACGOD ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AFRAH AIURR ALVPJ ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ BMXJE C1K CCPQU DPXWK F1W FEDTE FR3 H8D H96 HGLYW HVGLF HZ~ KL. KR7 L.G L6V L7M LEEKS M7R M7S MBDVC MY~ O9- P2W P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS PYCSY Q9U R.K RJQFR SOI SUPJJ WBKPD 1XC VOOES |
ID | FETCH-LOGICAL-a5649-cc9d373605f8b9d9b53c2a354b8fc8c8be7b7bc89950c84d840cf7e7eae5cbfa3 |
IEDL.DBID | BENPR |
ISSN | 0148-0227 2169-9313 |
IngestDate | Thu Jul 10 08:56:22 EDT 2025 Fri Jul 25 11:12:12 EDT 2025 Fri Jul 25 11:12:07 EDT 2025 Mon Jul 21 09:14:13 EDT 2025 Tue Jul 01 02:42:22 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Wed Jan 22 16:44:27 EST 2025 Wed Oct 30 09:52:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | B2 |
Keywords | Markov chain analysis thermal history models fission tracks Monte Carlo analysis thermochronology Probability distribution North America Modeling Markov chain collections interpretation maximum likelihood Vertical profile temperature Likelihood function |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a5649-cc9d373605f8b9d9b53c2a354b8fc8c8be7b7bc89950c84d840cf7e7eae5cbfa3 |
Notes | istex:52E6C37A894027A3DD7EA281AF4C7DEEF3A0E49F ark:/67375/WNG-XNTQWQLQ-8 ArticleID:2011JB008825 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
ORCID | 0000-0002-8124-6242 |
OpenAccessLink | https://insu.hal.science/insu-00676497 |
PQID | 1002686625 |
PQPubID | 54731 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_insu_00676497v1 proquest_journals_926078701 proquest_journals_1002686625 pascalfrancis_primary_25982182 crossref_citationtrail_10_1029_2011JB008825 crossref_primary_10_1029_2011JB008825 wiley_primary_10_1029_2011JB008825_JGRB17099 istex_primary_ark_67375_WNG_XNTQWQLQ_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2012 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 02 year: 2012 text: February 2012 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Washington |
PublicationTitle | Journal of Geophysical Research |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Donelick, R. A., R. A. Ketcham, and W. D. Carlson (1999), Variability of apatite fission-track annealing kinetics II: Crystallographic orientation effects, Am. Mineral., 84, 1224-1234. Jasra, A., D. A. Stephens, K. Gallagher, and C. C. Holmes (2006), Analysis of geochronological data with measurement error using Bayesian mixtures, Math. Geol., 38, 269-300, doi:10.1007/s11004-005-9019-3. Malinverno, A. (2002), Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem, Geophys. J. Int., 151(3), 675-688, doi:10.1046/j.1365-246X.2002.01847.x. Efron, B., and R. Tibshirani (1993), An Introduction to the Bootstrap, Chapman and Hall, New York. Dodson, M. H. (1973), Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petrol., 40, 259-274, doi:10.1007/BF00373790. Farley, K. A. (2000), Helium diffusion from apatite: General behaviour as illustrated by Durango fluorapatite, J. Geophys. Res., 105, 2903-2914, doi:10.1029/1999JB900348. Charvin, K., K. Gallagher, G. Hampson, and R. Labourdette (2009), A Bayesian approach to infer environmental parameters from stratigraphic data 1: Methodology, Basin Res., 21, 5-25, doi:10.1111/j.1365-2117.2008.00369.x. Piana Agostinetti, N., and A. Malinverno (2010), Receiver function inversion by transdimensional Monte Carlo sampling, Geophys. J. Int., 181, 858-872. Scales, J., and R. Snieder (1998), What is noise?, Geophysics, 63, 1122-1124, doi:10.1190/1.1444411. Carlson, W. D., R. A. Donelick, and R. A. Ketcham (1999), Variability of apatite fission-track annealing kinetics I: Experimental results, Am. Mineral., 84, 1213-1223. Ketcham, R. A., R. A. Donelick, and M. B. Donelick (2000), AFTSolve: A program for multi-kinetic modeling of apatite fission-track data, Geol. Mater. Res., 2, 1-32. Bodin, T., and M. Sambridge (2009), Seismic tomography with the reversible jump algorithm, Geophys. J. Int., 178, 1411-1436, doi:10.1111/j.1365-246X.2009.04226.x. Ketcham, R. A., R. A. Donelick, and W. D. Carlson (1999), Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological timescales, Am. Mineral., 84, 1235-1255. Gallagher, K., K. Charvin, S. Nielsen, M. Sambridge, and J. Stephenson (2009), Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems, Mar. Pet. Geol., 26, 525-535, doi:10.1016/j.marpetgeo.2009.01.003. Green, P. J. (1995), Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711-732, doi:10.1093/biomet/82.4.711. Hopcroft, P., K. Gallagher, and C. C. Pain (2009), A Bayesian partition modelling approach to resolve spatial variability in climate records from borehole temperature inversion, Geophys. J. Int., 178, 651-666, doi:10.1111/j.1365-246X.2009.04192.x. Stephenson, J., K. Gallagher, and C. Holmes (2006a), Low temperature thermochronology and modelling strategies for multiple samples 2: Partition modelling for 2D and 3D distributions with discontinuities, Earth Planet. Sci. Lett., 241, 557-570, doi:10.1016/j.epsl.2005.11.027. McDougall, I., and T. M. Harrison (1999), Geochronology and Thermochronology by the 40Ar/39Ar Method, 2nd ed., Oxford Univ. Press, New York. Reiners, P. W., and T. A. Ehlers (Eds.) (2005), Low-Temperature Thermochronology: Techniques, Interpretations and Applications, Rev. Mineral. Geochem., 58, 622 pp. Sambridge, M., K. Gallagher, A. Jackson, and P. Rickwood (2006), Transdimensional inverse problems, model comparison and the evidence, Geophys. J. Int., 167, 528-542, doi:10.1111/j.1365-246X.2006.03155.x. Gallagher, K., J. A. Stephenson, R. W. Brown, C. C. Holmes, and P. Fitzgerald (2005), Low temperature thermochronology and strategies for multiple samples 1: Vertical profiles, Earth Planet. Sci. Lett., 237, 193-208, doi:10.1016/j.epsl.2005.06.025. Green, P. F., I. R. Duddy, G. M. Laslett, K. A. Hegarty, A. J. W. Gleadow, and J. F. Lovering (1989), Thermal annealing of fission tracks in apatite: 4. Quantitative modelling techniques and extension to geological timescales, Chem. Geol. Isot. Geosci. Sect., 79, 155-182, doi:10.1016/0168-9622(89)90018-3. Stephenson, J., K. Gallagher, and C. Holmes (2006b), A Bayesian approach to calibrating apatite fission track annealing models for laboratory and geological timescales, Geochim. Cosmochim. Acta, 70, 5183-5200, doi:10.1016/j.gca.2006.07.027. Colgan, J. P., T. A. Dumitru, P. W. Reiners, J. L. Wooden, and E. L. Miller (2006), Cenozoic tectonic evolution of the basin and range province in northwestern Nevada, Am. J. Sci., 306, 616-654, doi:10.2475/08.2006.02. Denison, D. G. T., C. C. Holmes, B. K. Mallick, and A. F. M. Smith (2002), Bayesian Methods for Nonlinear Classification and Regression, Wiley, Chichester, U. K. Lutz, T. M., and G. I. Omar (1991), An inverse method of modelling thermal histories from apatite fission-track data, Earth Planet. Sci. Lett., 104, 181-195, doi:10.1016/0012-821X(91)90203-T. Corrigan, J. (1991), Inversion of fission track data for thermal history information, J. Geophys. Res., 96, 10,347-10,360, doi:10.1029/91JB00514. Laslett, G. M., P. F. Green, I. R. Duddy, and A. J. W. Gleadow (1987), Thermal annealing of fission tracks in apatite: 2. A quantitative analysis, Chem. Geol. Isot. Geosci. Sect., 65, 1-13, doi:10.1016/0168-9622(87)90057-1. Hopcroft, P., K. Gallagher, and C. C. Pain (2007), Inference of past climate from borehole temperature data using Bayesian Reversible Jump Markov chain Monte Carlo, Geophys. J. Int., 171, 1430-1439, doi:10.1111/j.1365-246X.2007.03596.x. Gallagher, K. (1995), Evolving temperature histories from apatite fission-track data, Earth Planet. Sci. Lett., 136, 421-435, doi:10.1016/0012-821X(95)00197-K. Jones, S. M., and R. K. Dokka (1990), Modelling fission-track annealing in apatite-An assessment of uncertainties, Nucl. Tracks Radiat. Meas., 17(3), 255-260, doi:10.1016/1359-0189(90)90043-W. Braun, J., P. van derBeek, and G. Batt (2006), Quantitative Thermochronology, Cambridge Univ. Press, New York, doi:10.1017/CBO9780511616433. Harrison, T. M., M. Grove, O. M. Lobvera, and P. K. Zeitler (2005), Continuous thermal histories from inversion of closure profiles, Rev. Mineral. Geochem., 58, 389-409, doi:10.2138/rmg.2005.58.15. Bernardo, J., and A. F. M. Smith (1994), Bayesian Theory, John Wiley, Chichester, U. K. Gleadow, A. J. W., I. R. Duddy, P. F. Green, and J. F. Lovering (1986), Confined track lengths in apatite: A diagnostic tool for thermal history analysis, Contrib. Mineral. Petrol., 94, 405-415, doi:10.1007/BF00376334. Schwarz, G. (1978), Estimating the dimension of a model, Ann. Stat., 6, 461-464, doi:10.1214/aos/1176344136. Ketcham, R. A., A. Carter, R. A. Donelick, J. Barbarand, and A. J. Hurford (2007), Improved modelling of fission-track annealing in apatite, Am. Mineral., 92, 799-810, doi:10.2138/am.2007.2281. Green, P. F., I. R. Duddy, A. J. W. Gleadow, P. R. Tingate, and G. M. Laslett (1986), Thermal annealing of fission tracks in apatite: 1. A qualitative description, Chem. Geol. Isot. Geosci. Sect., 59, 237-253, doi:10.1016/0168-9622(86)90074-6. Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996), Markov Chain Monte Carlo in Practice, Chapman and Hall, London. Reiners, P. W., T. L. Spell, S. Nicolescu, and K. A. Zanetti (2004), He diffusion and (U-Th)/He thermochronometry: He diffusion and comparison with 40Ar/39Ar dating, Geochim. Cosmochim. Acta, 68, 1857-1887, doi:10.1016/j.gca.2003.10.021. Willett, S. D. (1997), Inverse modelling of annealing of fission tracks in apatite 1: A controlled random search method, Am. J. Sci., 297, 939-969, doi:10.2475/ajs.297.10.939. Ketcham, R. A. (2005), Forward and inverse modelling of low-temperature thermochronometry data, Rev. Mineral. Geochem., 58, 275-314, doi:10.2138/rmg.2005.58.11. Reiners, P. W., and K. A. Farley (2001), Influence of crystal size on (U-Th)/He thermochronology: Re 1 an example from the Bighorn Mountains, Wyoming, Earth Planet. Sci. Lett., 188, 413-420, doi:10.1016/S0012-821X(01)00341-7. 2001; 188 2006; 70 2009; 21 1986; 94 1990; 17 2002; 151 1991; 96 2006; 38 1997; 297 2005; 237 1986; 59 2004; 68 2009; 178 1996 2006 2007; 92 1994 2000; 2 1993 1995; 136 1999; 84 2010; 181 2002 1998; 63 2009; 26 1978; 6 1999 1973; 40 1995; 82 2006; 306 1987; 65 2000; 105 2007; 171 2003; 27 2006; 241 1989; 79 1991; 104 2006; 167 2005; 58 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_1 e_1_2_7_7_1 Denison D. G. T. (e_1_2_7_9_1) 2002 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 Green P. J. (e_1_2_7_22_1) 2003 e_1_2_7_16_1 McDougall I. (e_1_2_7_35_1) 1999 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Ketcham R. A. (e_1_2_7_30_1) 2000; 2 Piana Agostinetti N. (e_1_2_7_36_1) 2010; 181 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_20_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – reference: Piana Agostinetti, N., and A. Malinverno (2010), Receiver function inversion by transdimensional Monte Carlo sampling, Geophys. J. Int., 181, 858-872. – reference: Schwarz, G. (1978), Estimating the dimension of a model, Ann. Stat., 6, 461-464, doi:10.1214/aos/1176344136. – reference: Green, P. F., I. R. Duddy, A. J. W. Gleadow, P. R. Tingate, and G. M. Laslett (1986), Thermal annealing of fission tracks in apatite: 1. A qualitative description, Chem. Geol. Isot. Geosci. Sect., 59, 237-253, doi:10.1016/0168-9622(86)90074-6. – reference: Sambridge, M., K. Gallagher, A. Jackson, and P. Rickwood (2006), Transdimensional inverse problems, model comparison and the evidence, Geophys. J. Int., 167, 528-542, doi:10.1111/j.1365-246X.2006.03155.x. – reference: Ketcham, R. A., R. A. Donelick, and M. B. Donelick (2000), AFTSolve: A program for multi-kinetic modeling of apatite fission-track data, Geol. Mater. Res., 2, 1-32. – reference: Malinverno, A. (2002), Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem, Geophys. J. Int., 151(3), 675-688, doi:10.1046/j.1365-246X.2002.01847.x. – reference: Charvin, K., K. Gallagher, G. Hampson, and R. Labourdette (2009), A Bayesian approach to infer environmental parameters from stratigraphic data 1: Methodology, Basin Res., 21, 5-25, doi:10.1111/j.1365-2117.2008.00369.x. – reference: Donelick, R. A., R. A. Ketcham, and W. D. Carlson (1999), Variability of apatite fission-track annealing kinetics II: Crystallographic orientation effects, Am. Mineral., 84, 1224-1234. – reference: Bernardo, J., and A. F. M. Smith (1994), Bayesian Theory, John Wiley, Chichester, U. K. – reference: Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996), Markov Chain Monte Carlo in Practice, Chapman and Hall, London. – reference: Denison, D. G. T., C. C. Holmes, B. K. Mallick, and A. F. M. Smith (2002), Bayesian Methods for Nonlinear Classification and Regression, Wiley, Chichester, U. K. – reference: Reiners, P. W., T. L. Spell, S. Nicolescu, and K. A. Zanetti (2004), He diffusion and (U-Th)/He thermochronometry: He diffusion and comparison with 40Ar/39Ar dating, Geochim. Cosmochim. Acta, 68, 1857-1887, doi:10.1016/j.gca.2003.10.021. – reference: Reiners, P. W., and T. A. Ehlers (Eds.) (2005), Low-Temperature Thermochronology: Techniques, Interpretations and Applications, Rev. Mineral. Geochem., 58, 622 pp. – reference: Stephenson, J., K. Gallagher, and C. Holmes (2006a), Low temperature thermochronology and modelling strategies for multiple samples 2: Partition modelling for 2D and 3D distributions with discontinuities, Earth Planet. Sci. Lett., 241, 557-570, doi:10.1016/j.epsl.2005.11.027. – reference: Reiners, P. W., and K. A. Farley (2001), Influence of crystal size on (U-Th)/He thermochronology: Re 1 an example from the Bighorn Mountains, Wyoming, Earth Planet. Sci. Lett., 188, 413-420, doi:10.1016/S0012-821X(01)00341-7. – reference: Scales, J., and R. Snieder (1998), What is noise?, Geophysics, 63, 1122-1124, doi:10.1190/1.1444411. – reference: Laslett, G. M., P. F. Green, I. R. Duddy, and A. J. W. Gleadow (1987), Thermal annealing of fission tracks in apatite: 2. A quantitative analysis, Chem. Geol. Isot. Geosci. Sect., 65, 1-13, doi:10.1016/0168-9622(87)90057-1. – reference: Gallagher, K., J. A. Stephenson, R. W. Brown, C. C. Holmes, and P. Fitzgerald (2005), Low temperature thermochronology and strategies for multiple samples 1: Vertical profiles, Earth Planet. Sci. Lett., 237, 193-208, doi:10.1016/j.epsl.2005.06.025. – reference: Lutz, T. M., and G. I. Omar (1991), An inverse method of modelling thermal histories from apatite fission-track data, Earth Planet. Sci. Lett., 104, 181-195, doi:10.1016/0012-821X(91)90203-T. – reference: Stephenson, J., K. Gallagher, and C. Holmes (2006b), A Bayesian approach to calibrating apatite fission track annealing models for laboratory and geological timescales, Geochim. Cosmochim. Acta, 70, 5183-5200, doi:10.1016/j.gca.2006.07.027. – reference: Bodin, T., and M. Sambridge (2009), Seismic tomography with the reversible jump algorithm, Geophys. J. Int., 178, 1411-1436, doi:10.1111/j.1365-246X.2009.04226.x. – reference: Dodson, M. H. (1973), Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petrol., 40, 259-274, doi:10.1007/BF00373790. – reference: Jones, S. M., and R. K. Dokka (1990), Modelling fission-track annealing in apatite-An assessment of uncertainties, Nucl. Tracks Radiat. Meas., 17(3), 255-260, doi:10.1016/1359-0189(90)90043-W. – reference: Hopcroft, P., K. Gallagher, and C. C. Pain (2009), A Bayesian partition modelling approach to resolve spatial variability in climate records from borehole temperature inversion, Geophys. J. Int., 178, 651-666, doi:10.1111/j.1365-246X.2009.04192.x. – reference: Hopcroft, P., K. Gallagher, and C. C. Pain (2007), Inference of past climate from borehole temperature data using Bayesian Reversible Jump Markov chain Monte Carlo, Geophys. J. Int., 171, 1430-1439, doi:10.1111/j.1365-246X.2007.03596.x. – reference: Willett, S. D. (1997), Inverse modelling of annealing of fission tracks in apatite 1: A controlled random search method, Am. J. Sci., 297, 939-969, doi:10.2475/ajs.297.10.939. – reference: Braun, J., P. van derBeek, and G. Batt (2006), Quantitative Thermochronology, Cambridge Univ. Press, New York, doi:10.1017/CBO9780511616433. – reference: Corrigan, J. (1991), Inversion of fission track data for thermal history information, J. Geophys. Res., 96, 10,347-10,360, doi:10.1029/91JB00514. – reference: Gallagher, K., K. Charvin, S. Nielsen, M. Sambridge, and J. Stephenson (2009), Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems, Mar. Pet. Geol., 26, 525-535, doi:10.1016/j.marpetgeo.2009.01.003. – reference: Ketcham, R. A. (2005), Forward and inverse modelling of low-temperature thermochronometry data, Rev. Mineral. Geochem., 58, 275-314, doi:10.2138/rmg.2005.58.11. – reference: Gallagher, K. (1995), Evolving temperature histories from apatite fission-track data, Earth Planet. Sci. Lett., 136, 421-435, doi:10.1016/0012-821X(95)00197-K. – reference: McDougall, I., and T. M. Harrison (1999), Geochronology and Thermochronology by the 40Ar/39Ar Method, 2nd ed., Oxford Univ. Press, New York. – reference: Carlson, W. D., R. A. Donelick, and R. A. Ketcham (1999), Variability of apatite fission-track annealing kinetics I: Experimental results, Am. Mineral., 84, 1213-1223. – reference: Gleadow, A. J. W., I. R. Duddy, P. F. Green, and J. F. Lovering (1986), Confined track lengths in apatite: A diagnostic tool for thermal history analysis, Contrib. Mineral. Petrol., 94, 405-415, doi:10.1007/BF00376334. – reference: Ketcham, R. A., R. A. Donelick, and W. D. Carlson (1999), Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological timescales, Am. Mineral., 84, 1235-1255. – reference: Colgan, J. P., T. A. Dumitru, P. W. Reiners, J. L. Wooden, and E. L. Miller (2006), Cenozoic tectonic evolution of the basin and range province in northwestern Nevada, Am. J. Sci., 306, 616-654, doi:10.2475/08.2006.02. – reference: Efron, B., and R. Tibshirani (1993), An Introduction to the Bootstrap, Chapman and Hall, New York. – reference: Green, P. F., I. R. Duddy, G. M. Laslett, K. A. Hegarty, A. J. W. Gleadow, and J. F. Lovering (1989), Thermal annealing of fission tracks in apatite: 4. Quantitative modelling techniques and extension to geological timescales, Chem. Geol. Isot. Geosci. Sect., 79, 155-182, doi:10.1016/0168-9622(89)90018-3. – reference: Green, P. J. (1995), Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711-732, doi:10.1093/biomet/82.4.711. – reference: Jasra, A., D. A. Stephens, K. Gallagher, and C. C. Holmes (2006), Analysis of geochronological data with measurement error using Bayesian mixtures, Math. Geol., 38, 269-300, doi:10.1007/s11004-005-9019-3. – reference: Farley, K. A. (2000), Helium diffusion from apatite: General behaviour as illustrated by Durango fluorapatite, J. Geophys. Res., 105, 2903-2914, doi:10.1029/1999JB900348. – reference: Ketcham, R. A., A. Carter, R. A. Donelick, J. Barbarand, and A. J. Hurford (2007), Improved modelling of fission-track annealing in apatite, Am. Mineral., 92, 799-810, doi:10.2138/am.2007.2281. – reference: Harrison, T. M., M. Grove, O. M. Lobvera, and P. K. Zeitler (2005), Continuous thermal histories from inversion of closure profiles, Rev. Mineral. Geochem., 58, 389-409, doi:10.2138/rmg.2005.58.15. – volume: 58 start-page: 389 year: 2005 end-page: 409 article-title: Continuous thermal histories from inversion of closure profiles publication-title: Rev. Mineral. Geochem. – volume: 40 start-page: 259 year: 1973 end-page: 274 article-title: Closure temperature in cooling geochronological and petrological systems publication-title: Contrib. Mineral. Petrol. – volume: 38 start-page: 269 year: 2006 end-page: 300 article-title: Analysis of geochronological data with measurement error using Bayesian mixtures publication-title: Math. Geol. – volume: 59 start-page: 237 year: 1986 end-page: 253 article-title: Thermal annealing of fission tracks in apatite: 1. A qualitative description publication-title: Chem. Geol. Isot. Geosci. Sect. – volume: 58 year: 2005 – volume: 136 start-page: 421 year: 1995 end-page: 435 article-title: Evolving temperature histories from apatite fission‐track data publication-title: Earth Planet. Sci. Lett. – volume: 167 start-page: 528 year: 2006 end-page: 542 article-title: Transdimensional inverse problems, model comparison and the evidence publication-title: Geophys. J. Int. – volume: 84 start-page: 1235 year: 1999 end-page: 1255 article-title: Variability of apatite fission‐track annealing kinetics: III. Extrapolation to geological timescales publication-title: Am. Mineral. – volume: 2 start-page: 1 year: 2000 end-page: 32 article-title: AFTSolve: A program for multi‐kinetic modeling of apatite fission‐track data publication-title: Geol. Mater. Res. – volume: 6 start-page: 461 year: 1978 end-page: 464 article-title: Estimating the dimension of a model publication-title: Ann. Stat. – volume: 70 start-page: 5183 year: 2006 end-page: 5200 article-title: A Bayesian approach to calibrating apatite fission track annealing models for laboratory and geological timescales publication-title: Geochim. Cosmochim. Acta – volume: 96 start-page: 10,347 year: 1991 end-page: 10,360 article-title: Inversion of fission track data for thermal history information publication-title: J. Geophys. Res. – year: 1996 – volume: 63 start-page: 1122 year: 1998 end-page: 1124 article-title: What is noise? publication-title: Geophysics – volume: 178 start-page: 651 year: 2009 end-page: 666 article-title: A Bayesian partition modelling approach to resolve spatial variability in climate records from borehole temperature inversion publication-title: Geophys. J. Int. – volume: 306 start-page: 616 year: 2006 end-page: 654 article-title: Cenozoic tectonic evolution of the basin and range province in northwestern Nevada publication-title: Am. J. Sci. – volume: 237 start-page: 193 year: 2005 end-page: 208 article-title: Low temperature thermochronology and strategies for multiple samples 1: Vertical profiles publication-title: Earth Planet. Sci. Lett. – volume: 65 start-page: 1 year: 1987 end-page: 13 article-title: Thermal annealing of fission tracks in apatite: 2. A quantitative analysis publication-title: Chem. Geol. Isot. Geosci. Sect. – volume: 21 start-page: 5 year: 2009 end-page: 25 article-title: A Bayesian approach to infer environmental parameters from stratigraphic data 1: Methodology publication-title: Basin Res. – year: 1994 – volume: 241 start-page: 557 year: 2006 end-page: 570 article-title: Low temperature thermochronology and modelling strategies for multiple samples 2: Partition modelling for 2D and 3D distributions with discontinuities publication-title: Earth Planet. Sci. Lett. – volume: 82 start-page: 711 year: 1995 end-page: 732 article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination publication-title: Biometrika – volume: 94 start-page: 405 year: 1986 end-page: 415 article-title: Confined track lengths in apatite: A diagnostic tool for thermal history analysis publication-title: Contrib. Mineral. Petrol. – volume: 181 start-page: 858 year: 2010 end-page: 872 article-title: Receiver function inversion by transdimensional Monte Carlo sampling publication-title: Geophys. J. Int. – volume: 297 start-page: 939 year: 1997 end-page: 969 article-title: Inverse modelling of annealing of fission tracks in apatite 1: A controlled random search method publication-title: Am. J. Sci. – volume: 84 start-page: 1213 year: 1999 end-page: 1223 article-title: Variability of apatite fission‐track annealing kinetics I: Experimental results publication-title: Am. Mineral. – volume: 58 start-page: 275 year: 2005 end-page: 314 article-title: Forward and inverse modelling of low‐temperature thermochronometry data publication-title: Rev. Mineral. Geochem. – volume: 68 start-page: 1857 year: 2004 end-page: 1887 article-title: He diffusion and (U‐Th)/He thermochronometry: He diffusion and comparison with Ar/ Ar dating publication-title: Geochim. Cosmochim. Acta – volume: 188 start-page: 413 year: 2001 end-page: 420 article-title: Influence of crystal size on (U‐Th)/He thermochronology: Re 1 an example from the Bighorn Mountains, Wyoming publication-title: Earth Planet. Sci. Lett. – volume: 178 start-page: 1411 year: 2009 end-page: 1436 article-title: Seismic tomography with the reversible jump algorithm publication-title: Geophys. J. Int. – volume: 105 start-page: 2903 year: 2000 end-page: 2914 article-title: Helium diffusion from apatite: General behaviour as illustrated by Durango fluorapatite publication-title: J. Geophys. Res. – volume: 79 start-page: 155 year: 1989 end-page: 182 article-title: Thermal annealing of fission tracks in apatite: 4. Quantitative modelling techniques and extension to geological timescales publication-title: Chem. Geol. Isot. Geosci. Sect. – year: 2002 – volume: 171 start-page: 1430 year: 2007 end-page: 1439 article-title: Inference of past climate from borehole temperature data using Bayesian Reversible Jump Markov chain Monte Carlo publication-title: Geophys. J. Int. – volume: 104 start-page: 181 year: 1991 end-page: 195 article-title: An inverse method of modelling thermal histories from apatite fission‐track data publication-title: Earth Planet. Sci. Lett. – year: 2006 – volume: 17 start-page: 255 issue: 3 year: 1990 end-page: 260 article-title: Modelling fission‐track annealing in apatite—An assessment of uncertainties publication-title: Nucl. Tracks Radiat. Meas. – volume: 92 start-page: 799 year: 2007 end-page: 810 article-title: Improved modelling of fission‐track annealing in apatite publication-title: Am. Mineral. – volume: 26 start-page: 525 year: 2009 end-page: 535 article-title: Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems publication-title: Mar. Pet. Geol. – year: 1993 – volume: 27 start-page: 179 year: 2003 end-page: 196 – volume: 151 start-page: 675 issue: 3 year: 2002 end-page: 688 article-title: Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem publication-title: Geophys. J. Int. – volume: 84 start-page: 1224 year: 1999 end-page: 1234 article-title: Variability of apatite fission‐track annealing kinetics II: Crystallographic orientation effects publication-title: Am. Mineral. – year: 1999 – ident: e_1_2_7_29_1 doi: 10.2138/am-1999-0903 – ident: e_1_2_7_8_1 doi: 10.1029/91JB00514 – ident: e_1_2_7_40_1 doi: 10.1111/j.1365‐246X.2006.03155.x – ident: e_1_2_7_21_1 doi: 10.1093/biomet/82.4.711 – ident: e_1_2_7_23_1 doi: 10.2138/rmg.2005.58.15 – ident: e_1_2_7_7_1 doi: 10.2475/08.2006.02 – start-page: 179 volume-title: Highly Structured Stochastic Systems year: 2003 ident: e_1_2_7_22_1 doi: 10.1093/oso/9780198510550.003.0017 – ident: e_1_2_7_19_1 doi: 10.1016/0168‐9622(86)90074‐6 – ident: e_1_2_7_33_1 doi: 10.1016/0012‐821X(91)90203‐T – ident: e_1_2_7_34_1 doi: 10.1046/j.1365‐246X.2002.01847.x – ident: e_1_2_7_44_1 doi: 10.1016/j.gca.2006.07.027 – ident: e_1_2_7_32_1 doi: 10.1016/0168‐9622(87)90057‐1 – ident: e_1_2_7_42_1 doi: 10.1214/aos/1176344136 – ident: e_1_2_7_4_1 doi: 10.1017/CBO9780511616433 – ident: e_1_2_7_14_1 doi: 10.1016/0012‐821X(95)00197‐K – ident: e_1_2_7_25_1 doi: 10.1111/j.1365‐246X.2009.04192.x – ident: e_1_2_7_15_1 doi: 10.1016/j.epsl.2005.06.025 – ident: e_1_2_7_26_1 doi: 10.1007/s11004‐005‐9019‐3 – volume: 181 start-page: 858 year: 2010 ident: e_1_2_7_36_1 article-title: Receiver function inversion by transdimensional Monte Carlo sampling publication-title: Geophys. J. Int. – ident: e_1_2_7_41_1 doi: 10.1190/1.1444411 – volume-title: Bayesian Methods for Nonlinear Classification and Regression year: 2002 ident: e_1_2_7_9_1 – ident: e_1_2_7_16_1 doi: 10.1016/j.marpetgeo.2009.01.003 – ident: e_1_2_7_3_1 doi: 10.1111/j.1365‐246X.2009.04226.x – ident: e_1_2_7_37_1 doi: 10.1515/9781501509575 – ident: e_1_2_7_45_1 doi: 10.2475/ajs.297.10.939 – volume-title: Geochronology and Thermochronology by the 40Ar/39Ar Method year: 1999 ident: e_1_2_7_35_1 doi: 10.1093/oso/9780195109207.001.0001 – ident: e_1_2_7_5_1 doi: 10.2138/am-1999-0901 – ident: e_1_2_7_10_1 doi: 10.1007/BF00373790 – ident: e_1_2_7_17_1 doi: 10.1007/978-1-4899-4485-6 – ident: e_1_2_7_2_1 doi: 10.1002/9780470316870 – ident: e_1_2_7_27_1 doi: 10.1016/1359‐0189(90)90043‐W – ident: e_1_2_7_38_1 doi: 10.1016/S0012‐821X(01)00341‐7 – ident: e_1_2_7_11_1 doi: 10.2138/am-1999-0902 – ident: e_1_2_7_12_1 doi: 10.1007/978-1-4899-4541-9 – ident: e_1_2_7_43_1 doi: 10.1016/j.epsl.2005.11.027 – ident: e_1_2_7_20_1 doi: 10.1016/0168‐9622(89)90018‐3 – ident: e_1_2_7_28_1 doi: 10.2138/rmg.2005.58.11 – ident: e_1_2_7_31_1 doi: 10.2138/am.2007.2281 – ident: e_1_2_7_24_1 doi: 10.1111/j.1365‐246X.2007.03596.x – ident: e_1_2_7_13_1 doi: 10.1029/1999JB900348 – ident: e_1_2_7_18_1 doi: 10.1007/BF00376334 – ident: e_1_2_7_39_1 doi: 10.1016/j.gca.2003.10.021 – ident: e_1_2_7_6_1 doi: 10.1111/j.1365‐2117.2008.00369.x – volume: 2 start-page: 1 year: 2000 ident: e_1_2_7_30_1 article-title: AFTSolve: A program for multi‐kinetic modeling of apatite fission‐track data publication-title: Geol. Mater. Res. |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816914 |
Score | 2.5693982 |
Snippet | A new approach for inverse thermal history modeling is presented. The method uses Bayesian transdimensional Markov Chain Monte Carlo and allows us to specify a... |
SourceID | hal proquest pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Bayesian transdimensional MCMC Earth Sciences Earth, ocean, space Exact sciences and technology Geological time Geophysics inverse modelling Markov chains Mathematics Plate tectonics Probability distribution Sciences of the Universe thermochronology |
Title | Transdimensional inverse thermal history modeling for quantitative thermochronology |
URI | https://api.istex.fr/ark:/67375/WNG-XNTQWQLQ-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JB008825 https://www.proquest.com/docview/1002686625 https://www.proquest.com/docview/926078701 https://insu.hal.science/insu-00676497 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7RVkjwMMEALduoIvHjBaKlSRzbT2hFa6tqq-jYtL5ZtuMIBKTbuiH477lz0rAKsbdGvbSJz7n7zvn8HcBrmRfGyExGaSENtTAbRDrWLmKliItMOKxAaL_zySyfnGfTBVs0C26rhla5jok-UBdLS2vkByQVmosc4fqHy6uIukbR29WmhUYHehiChehCb3g0-3TarrJQWwnpBb4T_BDJdJA27Pc4kQeU_KbDmFAm28hLnS_EiuzRQP8itqRe4YCVdaeLDSh6F9D6jDR6AlsNlAwPa98_hQeu2obHJ60O62obHnqCp109g88-KRWk5V_rcIRfK2JkuJAQ4A88rpWHf4e-Nw4mtBDhbHh1qyu_DQ2DYm25tCSn6xfjn8P56Ojs4yRqGipEmuXoD2tlkfIUK5hSGInOYalNdMoyI0orrDCOG24slmAstiIrsPizJXfcacesKXX6ArrVsnI7EFrBkgJrpYSVnDZdiSLTeS6l4YVl-CMBvFsPp7KN2jg1vfiu_FvvRKq7gx_Am9b6slbZ-I_dK_RMa0LS2JPDY0W0fUV5F2-S_xwE8NZ7rrXT19-Iv8aZupiN1WJ2Nr-YH8-VCKC_4dr2hIRkDbHyCmB_7WvVPNsr9XcmBrD379cSK0SKgngZ7_3suPeO1HR8OhxwxOm79__XHjzC85KaML4P3ZvrW_cS8dCN6UNHjMb9Zur_AYTiBo8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71IQQcEBQQpqVYgnIBq47ttXcPCLVAkqZJpECq5rZ412u1Apy2boH-KX4jM-sHjRC99WbL4_V6ZzyP9cw3AC9FnCklIuGFmVDUwqzjpX5qPJZzP4u4wQiE6p1H47h_EA1mbLYEv5taGEqrbHSiVdTZXNMe-TZBhcY8Rnf93cmpR12j6O9q00KjEot9c_kTQ7by7d4H5O9WEHQ_Tt_3vbqrgJeyGCeltcjCJEQ3PudK4AxZqIM0ZJHiueaaK5OoRGmMQ5iveZRhBKTzxCQmNUyrPA1x3GVYjUK05FSZ3u21ezrUxEJYOPEADzwRdsI6194PxDaZ2sGuTz4tW7CCy0eUg7lKbP1FuZlpiezJq74aC47vVffZ2r_ufbhXO67uTiVpD2DJFGtwd9SivpZrcMumk-ryIXy2JjCjzgEV6od7XFD-h3HJ3_yO5xXO8aVrO_Gg-XTReXZPL9LCFr2hCq4o55rAe-3W_yM4uJGFfgwrxbwwT8DVnAUZRmYByxMq8eJZlMaxECrJNMNBHHjdLKfUNbY5tdj4Ju0_9kDIq4vvwFZLfVJhevyH7gVypiUhIO7-zlBSkYAkK48vmfzoOPDKcq6lS8--UrZcwuThuCdn4-nkcDKcSO7A5gJr2xsCAlHEOM-BjYbXstYkpfwr9w6s_3tZYDxKOhen8cZKx7VvJAe9T7udBKOCp9c_6znc7k9HQzncG--vwx0cI6hS1Tdg5fzswjxDT-xcbVrxd-HLTX9vfwBqn0L7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED9trUDjAcFgImyMSDBeIGqbxLH9gNDK1nVdV61j0_pmYsfRENBu6wbsq_HpuHPSsAqxt70lysVxfPb9se9-B_BaJpnWMpZBlElNJcxaQdpMbcBy0cxiYdEDoXzn_UHSPY57IzZagN-zXBgKq5zJRCeos4mhPfIGQYUmIkFzvZGXYREHW50PZ-cBVZCik9ZZOY1iiuzZ65_ovk3f724hrzfCsLN99LEblBUGgpQl2EFjZBbxCE36XGiJvWWRCdOIxVrkRhihLddcG_RJWNOIOENvyOTccptaZnSeRtjuItQ5eUU1qLe3BweH1Q4PlbSQDlw8xItARq2ojLxvhrJBirfXbpKFy-Z04uIpRWTWicm_KFIznSKz8qLKxpwZfNOYdtqw8wgelmasv1nMu8ewYMfL8GC_woCdLsM9F1xqpk_gk1OIGdURKDBA_C9jigaxPlmf3_G-QD2-9l1dHlSmPprS_vlVOnYpcCiQC8qJIShfdxDwFI7vZKhXoDaejO0z8I1gYYZ-WshyTglfIovTJJFS88wwbMSDt7PhVKZEOqeCG9-UO3EPpbo5-B5sVNRnBcLHf-heIWcqEoLl7m72FaUMKNL5-JP8R8uDN45zFV168ZVi5zhTJ4MdNRocDU-G_aESHqzPsbZ6ISRIRfT6PFib8VqVcmWq_q4CD1b_fSzROyUJjN1452bHrX-kejuH7RZHH-H57d96Cfdxran-7mBvFZawibCIW1-D2uXFlX2BZtmlXi_nvw-f73rJ_QH8uEiN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transdimensional+inverse+thermal+history+modeling+for+quantitative+thermochronology&rft.jtitle=Journal+of+Geophysical+Research%3A+Solid+Earth&rft.au=Gallagher%2C+Kerry&rft.date=2012-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=B2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2011JB008825&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XNTQWQLQ_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |