Age of Jupiter inferred from the distinct genetics and formation times of meteorites

The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which lik...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 26; pp. 6712 - 6716
Main Authors Kruijer, Thomas S., Burkhardt, Christoph, Budde, Gerrit, Kleine, Thorsten
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 27.06.2017
National Academy of Sciences, Washington, DC (United States)
SeriesFrom the Cover
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1704461114

Cover

Loading…
Abstract The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ∼1 My and ∼3–4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter’s core grew to ∼20 Earth masses within <1 My, followed by a more protracted growth to ∼50 Earth masses until at least ∼3–4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation.
AbstractList The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ∼1 My and ∼3-4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter's core grew to ∼20 Earth masses within <1 My, followed by a more protracted growth to ∼50 Earth masses until at least ∼3-4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation.
Jupiter is the most massive planet of the Solar System and its presence had an immense effect on the dynamics of the solar accretion disk. Knowing the age of Jupiter, therefore, is key for understanding how the Solar System evolved toward its present-day architecture. However, although models predict that Jupiter formed relatively early, until now, its formation has never been dated. Here we show through isotope analyses of meteorites that Jupiter’s solid core formed within only ∼1 My after the start of Solar System history, making it the oldest planet. Through its rapid formation, Jupiter acted as an effective barrier against inward transport of material across the disk, potentially explaining why our Solar System lacks any super-Earths. The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ∼1 My and ∼3–4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter’s core grew to ∼20 Earth masses within <1 My, followed by a more protracted growth to ∼50 Earth masses until at least ∼3–4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation.
The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ~1 My and ~3-4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter's core grew to ~20 Earth masses within <1 My, followed by a more protracted growth to ~50 Earth masses until at least ~3-4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation.
The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ∼1 My and ∼3-4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter's core grew to ∼20 Earth masses within <1 My, followed by a more protracted growth to ∼50 Earth masses until at least ∼3-4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation.The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ∼1 My and ∼3-4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter's core grew to ∼20 Earth masses within <1 My, followed by a more protracted growth to ∼50 Earth masses until at least ∼3-4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation.
The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ~1 My and ~3–4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter’s core grew to ~20 Earth masses within <1 My, followed by a more protracted growth to ~50 Earth masses until at least ~3–4 My after Solar System formation. Furthermore, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation.
Author Kleine, Thorsten
Budde, Gerrit
Burkhardt, Christoph
Kruijer, Thomas S.
Author_xml – sequence: 1
  givenname: Thomas S.
  surname: Kruijer
  fullname: Kruijer, Thomas S.
  organization: Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
– sequence: 2
  givenname: Christoph
  surname: Burkhardt
  fullname: Burkhardt, Christoph
  organization: Institut für Planetologie, University of Münster, 48149 Muenster, Germany
– sequence: 3
  givenname: Gerrit
  surname: Budde
  fullname: Budde, Gerrit
  organization: Institut für Planetologie, University of Münster, 48149 Muenster, Germany
– sequence: 4
  givenname: Thorsten
  surname: Kleine
  fullname: Kleine, Thorsten
  organization: Institut für Planetologie, University of Münster, 48149 Muenster, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28607079$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1399762$$D View this record in Osti.gov
BookMark eNp1kTtvFDEUhS0URDaBmgpkQUMziV_jsZtIURReikQTasvjubPr1Yy92B4k_j3ebEIgEo1d-DvH595zgo5CDIDQa0rOKOn4-S7YfEY7IoSklIpnaEWJpo0UmhyhFSGsa5Rg4hid5LwlhOhWkRfomClJOtLpFbq9XAOOI_667HyBhH0YISUY8JjijMsG8OBz8cEVvIYAxbuMbajPMc22-Bhw8TPkvcUMBWKqLvklej7aKcOr-_sUff94fXv1ubn59unL1eVNY9tWl4b1YBXTTI0UaCc4t1Yy2g4OHPTKyn5k2gFnA5cVEo5TIgalXK_GseOd5afo4uC7W_oZqi6UZCezS3626ZeJ1pt_X4LfmHX8aVqhWyZ5NXh3MIh1RpNdDe82LoYArhjKte4kq9CH-19S_LFALmb22cE02QBxyYZqohmvq20r-v4Juo1LCnUHlRJS1EOrSr39O_afvA-tVKA9AC7FnBOMpia723adwk-GErNv3-zbN4_tV935E92D9f8Vbw6KbS4xPSaRQgldK_kNlC-8Aw
CitedBy_id crossref_primary_10_3847_1538_4357_ac6dcc
crossref_primary_10_1016_j_icarus_2021_114497
crossref_primary_10_1029_2019GC008865
crossref_primary_10_1051_0004_6361_202452152
crossref_primary_10_1051_0004_6361_202452394
crossref_primary_10_1007_s11214_022_00872_9
crossref_primary_10_3847_1538_4357_abd9c8
crossref_primary_10_1029_2021AV000486
crossref_primary_10_3847_1538_4357_ab76c3
crossref_primary_10_1111_maps_14134
crossref_primary_10_1029_2018GL078011
crossref_primary_10_1029_2023JE007898
crossref_primary_10_3847_1538_4365_aad95f
crossref_primary_10_3847_1538_4357_ad18b7
crossref_primary_10_3847_1538_4357_ab0f2a
crossref_primary_10_1146_annurev_astro_081817_052028
crossref_primary_10_3847_1538_4357_ac8b85
crossref_primary_10_1039_D4JA00359D
crossref_primary_10_1016_j_epsl_2018_06_040
crossref_primary_10_3847_PSJ_ad7797
crossref_primary_10_1126_sciadv_abd0511
crossref_primary_10_3847_1538_4357_ab0e0d
crossref_primary_10_1016_j_gca_2020_07_009
crossref_primary_10_1038_s41550_022_01863_0
crossref_primary_10_1093_mnras_stz2497
crossref_primary_10_1016_j_icarus_2023_115805
crossref_primary_10_3847_1538_4357_ac63b4
crossref_primary_10_2138_am_2021_7632
crossref_primary_10_1016_j_epsl_2024_118985
crossref_primary_10_1016_j_gca_2022_11_020
crossref_primary_10_1021_acs_nanolett_1c02573
crossref_primary_10_1111_maps_13181
crossref_primary_10_3847_2041_8213_ac7e55
crossref_primary_10_1016_j_gca_2022_11_016
crossref_primary_10_1111_maps_14276
crossref_primary_10_1007_s11631_022_00548_9
crossref_primary_10_3847_PSJ_ad3a68
crossref_primary_10_3847_1538_4357_abea12
crossref_primary_10_2138_rmg_2024_90_03
crossref_primary_10_2138_rmg_2024_90_02
crossref_primary_10_1016_j_epsl_2023_118551
crossref_primary_10_1016_j_icarus_2023_115910
crossref_primary_10_1016_j_epsl_2019_06_001
crossref_primary_10_1016_j_gca_2019_05_040
crossref_primary_10_2138_rmg_2024_90_04
crossref_primary_10_1051_0004_6361_202345915
crossref_primary_10_1111_maps_14142
crossref_primary_10_3847_1538_4357_aabf93
crossref_primary_10_1016_j_epsl_2021_116968
crossref_primary_10_1051_0004_6361_202141096
crossref_primary_10_1016_j_epsl_2023_118521
crossref_primary_10_1029_2021AV000568
crossref_primary_10_1051_0004_6361_202245121
crossref_primary_10_1016_j_epsl_2017_11_034
crossref_primary_10_1051_0004_6361_202245005
crossref_primary_10_3847_1538_3881_ab9f95
crossref_primary_10_1016_j_epsl_2020_116585
crossref_primary_10_1111_maps_13128
crossref_primary_10_3847_1538_4357_ab40bc
crossref_primary_10_1093_mnras_stad1159
crossref_primary_10_1140_epja_s10050_023_00968_y
crossref_primary_10_1016_j_chemer_2019_125537
crossref_primary_10_1111_maps_13364
crossref_primary_10_1016_j_epsl_2023_118518
crossref_primary_10_1016_j_icarus_2018_12_016
crossref_primary_10_3847_PSJ_ad92fa
crossref_primary_10_1093_mnras_stae2280
crossref_primary_10_1007_s11038_023_09552_2
crossref_primary_10_1016_j_gca_2024_06_002
crossref_primary_10_3847_1538_4357_abaef2
crossref_primary_10_3847_2041_8213_ac990d
crossref_primary_10_1016_j_gca_2024_06_005
crossref_primary_10_1017_S174392132100140X
crossref_primary_10_1111_maps_13117
crossref_primary_10_1016_j_chemer_2019_125546
crossref_primary_10_1111_maps_13350
crossref_primary_10_1111_maps_13471
crossref_primary_10_3847_PSJ_abf7c0
crossref_primary_10_1016_j_epsl_2023_118406
crossref_primary_10_1016_j_epsl_2022_117374
crossref_primary_10_1051_0004_6361_202245341
crossref_primary_10_1051_0004_6361_201937037
crossref_primary_10_1016_j_gca_2021_02_012
crossref_primary_10_3847_2041_8213_acfdaa
crossref_primary_10_1016_j_icarus_2019_113404
crossref_primary_10_3847_1538_4357_acee81
crossref_primary_10_3847_1538_4357_ac7ffd
crossref_primary_10_2343_geochemj_2_0610
crossref_primary_10_1029_2018JE005698
crossref_primary_10_3847_1538_4357_ac8eb4
crossref_primary_10_1038_d41586_018_03144_1
crossref_primary_10_1007_s11214_020_00748_w
crossref_primary_10_3847_1538_4357_ac4965
crossref_primary_10_3847_1538_4357_abfe0b
crossref_primary_10_1126_sciadv_abo5781
crossref_primary_10_3847_1538_4357_ac87fa
crossref_primary_10_3847_2041_8213_ac13a8
crossref_primary_10_1051_0004_6361_202453270
crossref_primary_10_1111_maps_14102
crossref_primary_10_1016_j_icarus_2021_114305
crossref_primary_10_1016_j_gca_2021_02_027
crossref_primary_10_1029_2019JE006260
crossref_primary_10_1016_j_gca_2022_03_001
crossref_primary_10_1038_s41550_021_01517_7
crossref_primary_10_1016_j_epsl_2020_116469
crossref_primary_10_1016_j_gca_2024_07_025
crossref_primary_10_1016_j_epsl_2024_118807
crossref_primary_10_1038_s41586_023_06135_z
crossref_primary_10_3847_1538_3881_acd349
crossref_primary_10_3847_1538_4357_aaa5a5
crossref_primary_10_1016_j_chemer_2021_125746
crossref_primary_10_1038_s41561_018_0128_2
crossref_primary_10_1007_s11214_018_0533_2
crossref_primary_10_1016_j_gca_2017_09_009
crossref_primary_10_1016_j_epsl_2023_118162
crossref_primary_10_1016_j_icarus_2022_115100
crossref_primary_10_1038_s41561_019_0414_7
crossref_primary_10_1016_j_icarus_2023_115860
crossref_primary_10_1093_mnras_stad2167
crossref_primary_10_1016_j_gca_2018_04_031
crossref_primary_10_1016_j_icarus_2022_115110
crossref_primary_10_1038_s41550_019_0948_z
crossref_primary_10_3847_1538_4357_acb156
crossref_primary_10_1186_s40645_021_00429_4
crossref_primary_10_1016_j_tecto_2018_10_021
crossref_primary_10_1038_s41550_024_02340_6
crossref_primary_10_1126_sciadv_abq3925
crossref_primary_10_3847_1538_4357_ab46b7
crossref_primary_10_1126_sciadv_abg9707
crossref_primary_10_1016_j_icarus_2023_115611
crossref_primary_10_3847_2041_8213_ace42e
crossref_primary_10_1016_j_gca_2020_05_014
crossref_primary_10_1126_science_abc8116
crossref_primary_10_1051_0004_6361_202038458
crossref_primary_10_1016_j_gca_2017_10_014
crossref_primary_10_1007_s11214_019_0614_x
crossref_primary_10_1029_2020JE006639
crossref_primary_10_3847_1538_4357_ab46a7
crossref_primary_10_1016_j_gca_2018_11_002
crossref_primary_10_1126_sciadv_aba5967
crossref_primary_10_1051_0004_6361_202346835
crossref_primary_10_1038_s41598_021_99160_9
crossref_primary_10_1111_maps_13462
crossref_primary_10_3390_rs15030681
crossref_primary_10_3390_universe8100518
crossref_primary_10_3847_1538_4357_ab899d
crossref_primary_10_1007_s11214_020_0645_3
crossref_primary_10_1016_j_icarus_2023_115519
crossref_primary_10_1007_s11214_020_00675_w
crossref_primary_10_1016_j_gca_2024_10_027
crossref_primary_10_1111_maps_13213
crossref_primary_10_1051_0004_6361_202346850
crossref_primary_10_1016_j_gca_2018_11_012
crossref_primary_10_1016_j_gca_2022_02_004
crossref_primary_10_1111_maps_13459
crossref_primary_10_3847_1538_4357_ac0add
crossref_primary_10_3847_1538_4357_acb7db
crossref_primary_10_1051_0004_6361_202039640
crossref_primary_10_1016_j_epsl_2017_10_055
crossref_primary_10_1007_s10686_021_09800_1
crossref_primary_10_1016_j_icarus_2020_114052
crossref_primary_10_1051_0004_6361_202039889
crossref_primary_10_1051_0004_6361_202038797
crossref_primary_10_1016_j_epsl_2023_118126
crossref_primary_10_1038_s41550_022_01846_1
crossref_primary_10_1126_sciadv_aba1303
crossref_primary_10_1016_j_chemer_2021_125786
crossref_primary_10_1007_s11214_019_0633_7
crossref_primary_10_1073_pnas_2005235117
crossref_primary_10_1016_j_gca_2019_07_039
crossref_primary_10_1051_0004_6361_202142490
crossref_primary_10_1029_2024GL110680
crossref_primary_10_1016_j_icarus_2024_116085
crossref_primary_10_3847_1538_4357_abfaa4
crossref_primary_10_3847_2041_8213_aab61f
crossref_primary_10_1126_science_abn1783
crossref_primary_10_1007_s11214_021_00802_1
crossref_primary_10_3847_2041_8213_acc102
crossref_primary_10_1111_maps_13638
crossref_primary_10_1073_pnas_2404253121
crossref_primary_10_2138_rmg_2022_87_19
crossref_primary_10_1111_maps_13756
crossref_primary_10_1029_2020JE006643
crossref_primary_10_3847_2041_8213_ac865c
crossref_primary_10_1111_maps_13990
crossref_primary_10_3847_1538_4357_ad3dff
crossref_primary_10_1093_mnrasl_slae110
crossref_primary_10_2138_am_2022_8329
crossref_primary_10_3847_1538_3881_ab46a8
crossref_primary_10_1016_j_chemgeo_2018_03_024
crossref_primary_10_1051_0004_6361_202244099
crossref_primary_10_1016_j_gca_2020_07_036
crossref_primary_10_1073_pnas_2306995121
crossref_primary_10_1051_0004_6361_202244092
crossref_primary_10_1111_maps_13303
crossref_primary_10_1111_maps_13545
crossref_primary_10_3847_PSJ_ac5c44
crossref_primary_10_1016_j_gca_2023_03_018
crossref_primary_10_1016_j_gca_2022_01_008
crossref_primary_10_1007_s11214_020_00671_0
crossref_primary_10_1186_s40645_022_00482_7
crossref_primary_10_1126_science_aaz8482
crossref_primary_10_1051_0004_6361_202449847
crossref_primary_10_1007_s11214_018_0545_y
crossref_primary_10_1016_j_epsl_2018_03_010
crossref_primary_10_1016_j_gca_2018_10_004
crossref_primary_10_1039_D1JA00468A
crossref_primary_10_1051_0004_6361_202141169
crossref_primary_10_3847_PSJ_acb64b
crossref_primary_10_1111_maps_13778
crossref_primary_10_1111_maps_13897
crossref_primary_10_1016_j_epsl_2018_10_029
crossref_primary_10_1016_j_epsl_2020_116506
crossref_primary_10_1016_j_epsl_2021_116928
crossref_primary_10_1016_j_gca_2021_08_007
crossref_primary_10_1051_0004_6361_201936591
crossref_primary_10_3847_1538_4357_ad7a65
crossref_primary_10_1038_s41550_019_0959_9
crossref_primary_10_1016_j_gca_2018_10_017
crossref_primary_10_1016_j_isci_2023_107160
crossref_primary_10_3847_2041_8213_ab46b0
crossref_primary_10_1126_science_abb3091
crossref_primary_10_3847_1538_3881_aabcc7
crossref_primary_10_1007_s11214_024_01113_x
crossref_primary_10_1126_sciadv_abg8329
crossref_primary_10_1111_maps_13968
crossref_primary_10_3847_1538_4357_ab91ab
crossref_primary_10_1093_mnras_stac849
crossref_primary_10_1111_maps_13602
crossref_primary_10_1016_j_epsl_2024_119010
crossref_primary_10_1007_s12036_023_09979_z
crossref_primary_10_3847_1538_4357_ad9f35
crossref_primary_10_3847_1538_4357_ab38c1
crossref_primary_10_1016_j_epsl_2022_117748
crossref_primary_10_1111_ggr_12248
crossref_primary_10_1126_sciadv_abh2837
crossref_primary_10_1016_j_epsl_2021_117245
crossref_primary_10_1016_j_epsl_2018_09_030
crossref_primary_10_1016_j_gca_2020_11_003
crossref_primary_10_1016_j_epsl_2024_119120
crossref_primary_10_1016_j_gca_2024_11_011
crossref_primary_10_1093_mnras_stab986
crossref_primary_10_1016_j_gca_2024_11_010
crossref_primary_10_1111_maps_13953
crossref_primary_10_1016_j_gca_2024_11_005
crossref_primary_10_1126_sciadv_add8141
crossref_primary_10_1051_0004_6361_201834413
crossref_primary_10_1016_j_gca_2019_07_003
crossref_primary_10_3847_1538_4357_aac3e2
crossref_primary_10_1016_j_chemgeo_2022_121016
crossref_primary_10_1051_0004_6361_202037883
crossref_primary_10_1007_s11214_024_01112_y
crossref_primary_10_1111_maps_13627
crossref_primary_10_1111_maps_13742
crossref_primary_10_1111_maps_13740
crossref_primary_10_1016_j_asr_2018_02_032
crossref_primary_10_1111_maps_13745
crossref_primary_10_1051_0004_6361_201935336
crossref_primary_10_1016_j_epsl_2019_115771
crossref_primary_10_1111_maps_13744
crossref_primary_10_1073_pnas_2026779118
crossref_primary_10_1016_j_icarus_2022_115171
crossref_primary_10_1016_j_gca_2019_07_013
crossref_primary_10_1007_s11214_023_00995_7
crossref_primary_10_1016_j_icarus_2019_01_027
crossref_primary_10_1038_s41550_019_0737_8
crossref_primary_10_1016_j_epsl_2022_117847
crossref_primary_10_1093_mnras_stab3107
crossref_primary_10_1002_2017JE005411
crossref_primary_10_1111_maps_13738
crossref_primary_10_2138_gselements_17_6_395
crossref_primary_10_1093_mnras_stab1390
crossref_primary_10_1051_0004_6361_202346452
crossref_primary_10_1111_maps_13975
crossref_primary_10_3847_1538_3881_ab1591
crossref_primary_10_3847_1538_4357_abd2b9
crossref_primary_10_1051_0004_6361_201834556
crossref_primary_10_1016_j_gca_2024_03_001
crossref_primary_10_1016_j_gca_2024_12_021
crossref_primary_10_1016_j_gca_2020_03_004
crossref_primary_10_3847_1538_4357_ab3e70
crossref_primary_10_1007_s11214_018_0554_x
crossref_primary_10_1038_s41550_018_0557_2
crossref_primary_10_1126_sciadv_abm3045
crossref_primary_10_1016_j_gca_2023_10_010
crossref_primary_10_1051_0004_6361_202037983
crossref_primary_10_3847_2041_8213_ac2f3b
crossref_primary_10_3847_1538_4357_abd725
crossref_primary_10_1038_s41550_019_0801_4
crossref_primary_10_1111_maps_12952
crossref_primary_10_1016_j_icarus_2023_115427
crossref_primary_10_1051_0004_6361_202346616
crossref_primary_10_1126_science_abn1021
crossref_primary_10_1016_j_gca_2023_01_026
crossref_primary_10_1038_s41550_023_02172_w
crossref_primary_10_1016_j_gca_2024_03_032
crossref_primary_10_1111_maps_13916
crossref_primary_10_1051_0004_6361_202450464
crossref_primary_10_1051_0004_6361_202346868
crossref_primary_10_2138_am_2020_7564
crossref_primary_10_1051_0004_6361_202346748
crossref_primary_10_3847_1538_4357_adb42c
crossref_primary_10_1051_0004_6361_201833127
crossref_primary_10_1016_j_gca_2023_01_012
crossref_primary_10_1051_0004_6361_202243628
crossref_primary_10_1016_j_icarus_2017_06_030
crossref_primary_10_1126_science_adk4868
crossref_primary_10_1111_maps_13947
crossref_primary_10_1016_j_gca_2021_07_038
crossref_primary_10_1073_pnas_2115726119
crossref_primary_10_1111_maps_13709
crossref_primary_10_3847_2041_8213_ab9e6a
crossref_primary_10_1016_j_epsl_2024_119112
crossref_primary_10_1126_sciadv_abc0444
crossref_primary_10_1016_j_gca_2024_02_013
crossref_primary_10_1007_s10686_021_09811_y
crossref_primary_10_1038_s41550_020_01283_y
crossref_primary_10_3847_1538_4357_ab4a13
crossref_primary_10_1016_j_gca_2019_10_041
crossref_primary_10_1038_s41550_021_01521_x
crossref_primary_10_1126_sciadv_abd3632
crossref_primary_10_1016_j_gca_2021_12_012
crossref_primary_10_3847_2041_8213_ada3d1
crossref_primary_10_1111_maps_13814
crossref_primary_10_3847_1538_3881_abfb6c
crossref_primary_10_1111_maps_13939
crossref_primary_10_3847_1538_4357_ab39e7
crossref_primary_10_1016_j_epsl_2018_01_017
crossref_primary_10_1016_j_chemer_2023_126004
crossref_primary_10_1016_j_gca_2023_11_012
crossref_primary_10_1051_0004_6361_202347737
crossref_primary_10_1016_j_gca_2022_08_026
crossref_primary_10_1039_D2JA00102K
crossref_primary_10_1016_j_icarus_2023_115680
crossref_primary_10_1038_s41550_019_0978_6
crossref_primary_10_3847_PSJ_ac34ee
crossref_primary_10_1007_s11214_025_01135_z
crossref_primary_10_1016_j_icarus_2022_114933
crossref_primary_10_1016_j_icarus_2022_114937
crossref_primary_10_1093_pasj_psae052
crossref_primary_10_1126_sciadv_abj7601
crossref_primary_10_1126_science_aao1141
crossref_primary_10_1126_sciadv_adq7848
crossref_primary_10_1007_s11214_020_00649_y
crossref_primary_10_1007_s11214_020_00701_x
crossref_primary_10_1016_j_gca_2019_09_010
crossref_primary_10_1111_maps_14095
crossref_primary_10_1016_j_gca_2019_09_005
crossref_primary_10_1111_1755_6724_14952
crossref_primary_10_1093_mnras_stab3766
crossref_primary_10_3847_1538_4357_acb81f
crossref_primary_10_3847_1538_4357_aca96f
crossref_primary_10_1029_2022GC010688
crossref_primary_10_1016_j_epsl_2019_115722
crossref_primary_10_1093_mnras_stab3753
crossref_primary_10_1038_s41561_020_0595_0
crossref_primary_10_1186_s40623_021_01438_9
crossref_primary_10_1016_j_gca_2021_03_004
crossref_primary_10_1051_0004_6361_202040096
crossref_primary_10_1051_0004_6361_202449154
crossref_primary_10_3847_1538_4357_ab0d87
crossref_primary_10_1016_j_epsl_2020_116248
crossref_primary_10_1016_j_gca_2019_02_035
crossref_primary_10_1016_j_gca_2019_02_034
crossref_primary_10_1073_pnas_2017750118
crossref_primary_10_1016_j_gca_2021_12_027
crossref_primary_10_1016_j_gca_2021_03_005
crossref_primary_10_1088_1674_4527_20_10_164
crossref_primary_10_1016_j_gca_2023_12_022
crossref_primary_10_1016_j_gca_2025_03_021
crossref_primary_10_3847_2041_8213_ac17f2
crossref_primary_10_1007_s11214_020_00700_y
crossref_primary_10_1038_s41598_023_39866_0
crossref_primary_10_1007_s11214_018_0474_9
crossref_primary_10_1016_j_gca_2021_11_020
crossref_primary_10_3847_1538_4357_ad2ea7
crossref_primary_10_3847_PSJ_ace7cd
crossref_primary_10_1016_j_gca_2022_05_020
crossref_primary_10_1051_0004_6361_201834168
crossref_primary_10_1038_s41586_023_05721_5
crossref_primary_10_3847_1538_4357_ac06a9
crossref_primary_10_1016_j_epsl_2022_117683
crossref_primary_10_1016_j_epsl_2022_117440
crossref_primary_10_1029_2020AV000376
crossref_primary_10_1016_j_gca_2024_08_012
crossref_primary_10_1007_s11214_022_00880_9
crossref_primary_10_1016_j_icarus_2024_116229
crossref_primary_10_1016_j_gca_2023_06_005
crossref_primary_10_1016_j_icarus_2024_116109
crossref_primary_10_1016_j_gca_2019_02_008
crossref_primary_10_3847_1538_4357_ac1e96
crossref_primary_10_1016_j_gca_2023_06_009
crossref_primary_10_1016_j_icarus_2024_116231
crossref_primary_10_1038_s41550_022_01675_2
crossref_primary_10_1360_TB_2022_0667
crossref_primary_10_1029_2023AV001077
crossref_primary_10_1016_j_gca_2020_01_011
crossref_primary_10_1051_0004_6361_202245641
crossref_primary_10_1073_pnas_1919550117
crossref_primary_10_1016_j_epsl_2022_117552
crossref_primary_10_1007_s11214_020_00669_8
crossref_primary_10_3847_1538_4357_ab5f0c
crossref_primary_10_1016_j_epsl_2024_119179
crossref_primary_10_1051_0004_6361_202142926
crossref_primary_10_1016_j_epsl_2020_116065
crossref_primary_10_1016_j_gca_2021_11_035
crossref_primary_10_1051_0004_6361_202451388
crossref_primary_10_1016_j_gca_2025_02_001
crossref_primary_10_1016_j_epsl_2019_01_027
crossref_primary_10_1126_sciadv_adf3955
crossref_primary_10_1038_nature25990
crossref_primary_10_3847_1538_4357_ab1b3e
crossref_primary_10_3847_PSJ_abd258
crossref_primary_10_1016_j_gca_2022_06_006
crossref_primary_10_1093_mnras_staa578
crossref_primary_10_1016_j_icarus_2024_116400
crossref_primary_10_1051_0004_6361_202348899
crossref_primary_10_1016_j_gca_2022_06_008
crossref_primary_10_1111_maps_14041
crossref_primary_10_1038_s43017_022_00370_0
crossref_primary_10_3847_1538_4357_ad891d
crossref_primary_10_1038_s41586_022_05265_0
crossref_primary_10_1126_sciadv_adp2426
crossref_primary_10_3847_2041_8213_acefd1
crossref_primary_10_1016_j_gca_2022_12_020
crossref_primary_10_1016_j_gca_2020_02_014
crossref_primary_10_1016_j_epsl_2021_117211
crossref_primary_10_1007_s11214_020_00668_9
crossref_primary_10_1016_j_gca_2019_01_032
crossref_primary_10_1016_j_epsl_2020_116088
crossref_primary_10_1093_pnasnexus_pgac015
crossref_primary_10_1111_maps_14075
crossref_primary_10_1016_j_gca_2022_12_014
crossref_primary_10_1146_annurev_earth_072920_052847
crossref_primary_10_3847_1538_4357_ab1c60
crossref_primary_10_1016_j_gca_2020_02_004
crossref_primary_10_1016_j_gca_2021_10_004
crossref_primary_10_1016_j_icarus_2018_04_004
crossref_primary_10_1016_j_gca_2019_01_026
crossref_primary_10_1038_s41550_019_0779_y
crossref_primary_10_1051_0004_6361_202245512
crossref_primary_10_3847_1538_3881_ac0255
crossref_primary_10_3847_2041_8213_ab1338
crossref_primary_10_3847_1538_3881_abc8ef
crossref_primary_10_3847_1538_4357_ab7cd4
crossref_primary_10_1051_0004_6361_202450289
crossref_primary_10_3847_1538_4357_ac81c6
crossref_primary_10_1051_0004_6361_201834076
crossref_primary_10_1051_0004_6361_201731155
crossref_primary_10_1093_mnras_stab2967
crossref_primary_10_3847_2041_8213_ace187
Cites_doi 10.1088/2041-8205/800/2/L22
10.1051/0004-6361/201220847
10.1016/j.gca.2014.05.013
10.1016/j.epsl.2012.10.014
10.1086/320685
10.1126/science.1168221
10.1016/j.epsl.2011.08.047
10.1073/pnas.1524980113
10.1051/0004-6361/201423814
10.1016/S0039-9140(96)02100-5
10.1086/164653
10.1016/j.gca.2012.09.015
10.1093/mnras/180.2.57
10.1016/j.epsl.2016.09.020
10.1086/524882
10.1016/j.gca.2015.06.012
10.1038/nature14360
10.1016/j.gca.2016.06.023
10.1051/0004-6361/201219127
10.1039/C6JA00015K
10.1016/j.epsl.2012.07.026
10.1111/j.1945-5100.2011.01264.x
10.1016/j.gca.2005.07.012
10.1088/2041-8205/753/1/L6
10.1038/nature14675
10.1016/j.epsl.2008.06.018
10.1002/2016JE005088
10.1126/science.1251766
10.1016/j.gca.2014.11.015
10.1016/S0016-7037(98)00038-6
10.1146/annurev-earth-060115-012157
10.1016/j.epsl.2011.10.010
10.1126/science.1226919
10.1086/510360
10.1038/nature04536
10.1086/522825
10.1016/j.epsl.2015.08.034
10.1086/344105
10.1073/pnas.1518183113
10.1126/science.1204656
10.1111/j.1945-5100.2006.tb00195.x
10.1038/nature08094
10.1016/j.icarus.2005.10.007
10.1051/0004-6361/201219157
10.1029/92JE01501
10.1088/0004-637X/798/1/9
10.1016/j.icarus.2015.11.027
10.1103/PhysRevLett.93.172501
10.1029/JB088iS01p0B331
10.1038/nature10399
10.1006/icar.1996.0190
10.1143/PTP.60.699
10.1016/0016-7037(93)90153-N
10.1016/j.gca.2008.11.047
10.2307/j.ctv1v7zdmm.40
10.1016/j.epsl.2012.10.013
10.1038/nature10201
10.1093/oso/9780195116946.001.0001
10.1016/j.epsl.2014.07.003
10.1016/S0016-7037(02)01091-8
10.1126/sciadv.1601658
10.1016/S0012-821X(97)00151-9
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jun 27, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jun 27, 2017
CorporateAuthor Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1073/pnas.1704461114
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Virology and AIDS Abstracts
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Dating the formation of Jupiter
EISSN 1091-6490
EndPage 6716
ExternalDocumentID PMC5495263
1399762
28607079
10_1073_pnas_1704461114
26484974
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: SFB-TRR 170 (B3-1)
– fundername: EC | European Research Council (ERC)
  grantid: 616564
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: KL1857/3
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
79B
AAPBV
ABPTK
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
JSODD
OIOZB
OTOTI
PQEST
RHF
TAF
VQA
ZA5
5PM
ID FETCH-LOGICAL-a559t-2bea82928f1e17433aa6215dceceb8a6bf29ce32d369284c3104d88cb8ff737a3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:17:06 EDT 2025
Mon Jul 03 03:57:35 EDT 2023
Fri Jul 11 16:14:03 EDT 2025
Mon Jun 30 10:13:56 EDT 2025
Thu Apr 03 07:02:17 EDT 2025
Tue Jul 01 03:19:36 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Fri May 30 11:46:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords nucleosynthetic isotope anomalies
Jupiter
giant planet formation
Hf-W chronometry
solar nebula
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a559t-2bea82928f1e17433aa6215dceceb8a6bf29ce32d369284c3104d88cb8ff737a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
AC52-07NA27344
USDOE
LLNL-JRNL-731226
Author contributions: T.S.K. and T.K. designed research; T.S.K. and C.B. performed research; T.S.K., C.B., G.B., and T.K. analyzed data; and T.S.K., C.B., G.B., and T.K. wrote the paper.
Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved May 4, 2017 (received for review March 23, 2017)
ORCID 0000-0003-0762-779X
000000030762779X
OpenAccessLink https://www.osti.gov/servlets/purl/1399762
PMID 28607079
PQID 1946419498
PQPubID 42026
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5495263
osti_scitechconnect_1399762
proquest_miscellaneous_1909230955
proquest_journals_1946419498
pubmed_primary_28607079
crossref_citationtrail_10_1073_pnas_1704461114
crossref_primary_10_1073_pnas_1704461114
jstor_primary_26484974
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-27
PublicationDateYYYYMMDD 2017-06-27
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
National Academy of Sciences, Washington, DC (United States)
Publisher_xml – name: National Academy of Sciences
– name: National Academy of Sciences, Washington, DC (United States)
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
Helled R (e_1_3_3_4_2) 2014
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
Lodders K (e_1_3_3_62_2) 1998
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
26858438 - Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2011-6
19372428 - Science. 2009 Apr 17;324(5925):374-6
26929340 - Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2886-91
15525068 - Phys Rev Lett. 2004 Oct 22;93(17):172501
23118187 - Science. 2012 Nov 2;338(6107):651-5
19606143 - Nature. 2009 Jul 16;460(7253):364-6
26289203 - Nature. 2015 Aug 20;524(7565):322-4
21901010 - Nature. 2011 Sep 07;477(7363):195-8
21642961 - Nature. 2011 Jun 05;475(7355):206-9
16482151 - Nature. 2006 Feb 16;439(7078):821-4
24904163 - Science. 2014 Jun 6;344(6188):1150-4
27957541 - Sci Adv. 2016 Dec 09;2(12 ):e1601658
21700869 - Science. 2011 Jun 24;332(6037):1533-6
18966788 - Talanta. 1997 Apr;44(4):663-72
25855296 - Nature. 2015 Apr 23;520(7548):534-7
References_xml – ident: e_1_3_3_34_2
  doi: 10.1088/2041-8205/800/2/L22
– ident: e_1_3_3_22_2
  doi: 10.1051/0004-6361/201220847
– ident: e_1_3_3_46_2
  doi: 10.1016/j.gca.2014.05.013
– ident: e_1_3_3_36_2
  doi: 10.1016/j.epsl.2012.10.014
– volume-title: Giant Planet Formation, Evolution, and Internal Structure. Protostars and Planets VI
  year: 2014
  ident: e_1_3_3_4_2
– ident: e_1_3_3_3_2
  doi: 10.1086/320685
– ident: e_1_3_3_8_2
  doi: 10.1126/science.1168221
– ident: e_1_3_3_11_2
  doi: 10.1016/j.epsl.2011.08.047
– ident: e_1_3_3_50_2
  doi: 10.1073/pnas.1524980113
– ident: e_1_3_3_24_2
  doi: 10.1051/0004-6361/201423814
– ident: e_1_3_3_40_2
  doi: 10.1016/S0039-9140(96)02100-5
– ident: e_1_3_3_23_2
  doi: 10.1086/164653
– ident: e_1_3_3_41_2
  doi: 10.1016/j.gca.2012.09.015
– ident: e_1_3_3_21_2
  doi: 10.1093/mnras/180.2.57
– ident: e_1_3_3_12_2
  doi: 10.1016/j.epsl.2016.09.020
– ident: e_1_3_3_52_2
  doi: 10.1086/524882
– ident: e_1_3_3_54_2
  doi: 10.1016/j.gca.2015.06.012
– ident: e_1_3_3_45_2
  doi: 10.1038/nature14360
– ident: e_1_3_3_20_2
  doi: 10.1016/j.gca.2016.06.023
– ident: e_1_3_3_28_2
  doi: 10.1051/0004-6361/201219127
– ident: e_1_3_3_47_2
  doi: 10.1039/C6JA00015K
– ident: e_1_3_3_55_2
  doi: 10.1016/j.epsl.2012.07.026
– ident: e_1_3_3_18_2
  doi: 10.1111/j.1945-5100.2011.01264.x
– ident: e_1_3_3_17_2
  doi: 10.1016/j.gca.2005.07.012
– ident: e_1_3_3_51_2
  doi: 10.1088/2041-8205/753/1/L6
– ident: e_1_3_3_29_2
  doi: 10.1038/nature14675
– ident: e_1_3_3_16_2
  doi: 10.1016/j.epsl.2008.06.018
– ident: e_1_3_3_35_2
  doi: 10.1002/2016JE005088
– ident: e_1_3_3_15_2
  doi: 10.1126/science.1251766
– ident: e_1_3_3_56_2
  doi: 10.1016/j.gca.2014.11.015
– ident: e_1_3_3_37_2
  doi: 10.1016/S0016-7037(98)00038-6
– ident: e_1_3_3_5_2
  doi: 10.1146/annurev-earth-060115-012157
– ident: e_1_3_3_6_2
  doi: 10.1016/j.epsl.2011.10.010
– ident: e_1_3_3_19_2
  doi: 10.1126/science.1226919
– ident: e_1_3_3_26_2
– ident: e_1_3_3_7_2
  doi: 10.1086/510360
– ident: e_1_3_3_25_2
  doi: 10.1038/nature04536
– ident: e_1_3_3_31_2
  doi: 10.1086/522825
– ident: e_1_3_3_43_2
  doi: 10.1016/j.epsl.2015.08.034
– ident: e_1_3_3_30_2
  doi: 10.1086/344105
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.1518183113
– ident: e_1_3_3_39_2
  doi: 10.1126/science.1204656
– ident: e_1_3_3_60_2
  doi: 10.1111/j.1945-5100.2006.tb00195.x
– ident: e_1_3_3_9_2
  doi: 10.1038/nature08094
– ident: e_1_3_3_27_2
  doi: 10.1016/j.icarus.2005.10.007
– ident: e_1_3_3_59_2
  doi: 10.1051/0004-6361/201219157
– ident: e_1_3_3_63_2
  doi: 10.1029/92JE01501
– ident: e_1_3_3_32_2
  doi: 10.1088/0004-637X/798/1/9
– ident: e_1_3_3_13_2
  doi: 10.1016/j.icarus.2015.11.027
– ident: e_1_3_3_58_2
  doi: 10.1103/PhysRevLett.93.172501
– ident: e_1_3_3_61_2
  doi: 10.1029/JB088iS01p0B331
– ident: e_1_3_3_42_2
  doi: 10.1038/nature10399
– ident: e_1_3_3_1_2
  doi: 10.1006/icar.1996.0190
– ident: e_1_3_3_2_2
  doi: 10.1143/PTP.60.699
– ident: e_1_3_3_38_2
  doi: 10.1016/0016-7037(93)90153-N
– ident: e_1_3_3_57_2
  doi: 10.1016/j.gca.2008.11.047
– ident: e_1_3_3_64_2
  doi: 10.2307/j.ctv1v7zdmm.40
– ident: e_1_3_3_53_2
  doi: 10.1016/j.epsl.2012.10.013
– ident: e_1_3_3_10_2
  doi: 10.1038/nature10201
– volume-title: The Planetary Scientist’s Companion
  year: 1998
  ident: e_1_3_3_62_2
  doi: 10.1093/oso/9780195116946.001.0001
– ident: e_1_3_3_44_2
  doi: 10.1016/j.epsl.2014.07.003
– ident: e_1_3_3_49_2
  doi: 10.1016/S0016-7037(02)01091-8
– ident: e_1_3_3_33_2
  doi: 10.1126/sciadv.1601658
– ident: e_1_3_3_48_2
  doi: 10.1016/S0012-821X(97)00151-9
– reference: 21642961 - Nature. 2011 Jun 05;475(7355):206-9
– reference: 15525068 - Phys Rev Lett. 2004 Oct 22;93(17):172501
– reference: 26289203 - Nature. 2015 Aug 20;524(7565):322-4
– reference: 18966788 - Talanta. 1997 Apr;44(4):663-72
– reference: 27957541 - Sci Adv. 2016 Dec 09;2(12 ):e1601658
– reference: 19372428 - Science. 2009 Apr 17;324(5925):374-6
– reference: 26858438 - Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2011-6
– reference: 24904163 - Science. 2014 Jun 6;344(6188):1150-4
– reference: 25855296 - Nature. 2015 Apr 23;520(7548):534-7
– reference: 16482151 - Nature. 2006 Feb 16;439(7078):821-4
– reference: 21700869 - Science. 2011 Jun 24;332(6037):1533-6
– reference: 19606143 - Nature. 2009 Jul 16;460(7253):364-6
– reference: 23118187 - Science. 2012 Nov 2;338(6107):651-5
– reference: 26929340 - Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2886-91
– reference: 21901010 - Nature. 2011 Sep 07;477(7363):195-8
SSID ssj0009580
Score 2.6741033
Snippet The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores,...
Jupiter is the most massive planet of the Solar System and its presence had an immense effect on the dynamics of the solar accretion disk. Knowing the age of...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6712
SubjectTerms Age
ASTRONOMY AND ASTROPHYSICS
Cores
Deposition
Dissipation
Gases
Genetics
GEOSCIENCES
giant planet formation
Hf-W chronometry
Iron meteorites
Isotopes
Jupiter
Meteorites
Meteors & meteorites
Molybdenum
nucleosynthetic isotope anomalies
Physical Sciences
Planet formation
Planetary cores
Planetary mass
Planets
Reservoirs
Solar nebula
Solar system
Solar system evolution
Tungsten
Tungsten isotopes
Title Age of Jupiter inferred from the distinct genetics and formation times of meteorites
URI https://www.jstor.org/stable/26484974
https://www.ncbi.nlm.nih.gov/pubmed/28607079
https://www.proquest.com/docview/1946419498
https://www.proquest.com/docview/1909230955
https://www.osti.gov/servlets/purl/1399762
https://pubmed.ncbi.nlm.nih.gov/PMC5495263
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FcuGCKFAwLWiROBRVDvHaXtvHgKBVK6IeUik3y_thkVKcKLEv3PnfzHjXa6e0EnCxoux6reQ9j2fWM28IeRexQKkyk77SQeaDwYNbahKnfjxhxUTJVOhWJOnrjJ9dReeLeDEa_RpkLTW1GMufd9aV_A-q8B3gilWy_4CsWxS-gM-ALxwBYTj-FcZTE_GfN2ssJG4TqzaYT-5qRhTewZWssVGydoLMrmDRdJY3r9hrvdrAKtuht3rpnm7bLpdg1m0eTvtSFGsftif-yeWsb2x8sWmW15YRbRpSv836sdl8x3KvekffoB9VRgz4FGUjXV7OxY1emv1XWA6cVlvEZrcsgja_zigAjLUxs-Cl-DwyjUKdHTbVpJZwbGhWeWJyrf-w92CgsElxVWzHQYLvpgO7ygD99Y8WfpbyVg6wf_C5dMRu6AF5yCDawEYYp4tgoN2cTjpVqCT8cOtqKCdtz9_xbUx6KzzpV4D0XfHL7TTcgV8zf0Ie24CETg279slIV0_JfgcpPba65O-fkTnQja5KaulGO7pRpBsFctCObrSjGwW6UUc32tINl-jp9pxcffk8_3Tm26YcfgHBZ-0zoYuUZSwtA43RbFgUHNxG-BFSi7TgomSZ1CFTIYdJkYTwIVJpKkValkmYFOEB2atWlX5JqGBFouIslqoIIiW5SISMRMbBSPCyVIlHxt3fmUurWI-NU27yNnMiCXOEIu-h8MixO2FtxFrun3rQ4uPmYaZnBMG1Rw4RsBwcUFRRlphuJuscAiVw3JlHjjocc2sIYNUs4hEcstQjb90wmGl891ZUetXgnAmEUqj36JEXBvb-0pY-Hkl2COEmoAT87ki1_NZKwcdRFjMevrp3zUPyqL8Dj8hevWn0a3Cja_GmJflvnIHKvA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age+of+Jupiter+inferred+from+the+distinct+genetics+and+formation+times+of+meteorites&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kruijer%2C+Thomas+S&rft.au=Burkhardt%2C+Christoph&rft.au=Budde%2C+Gerrit&rft.au=Kleine%2C+Thorsten&rft.date=2017-06-27&rft.eissn=1091-6490&rft.volume=114&rft.issue=26&rft.spage=6712&rft_id=info:doi/10.1073%2Fpnas.1704461114&rft_id=info%3Apmid%2F28607079&rft.externalDocID=28607079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon