Age of Jupiter inferred from the distinct genetics and formation times of meteorites
The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which lik...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 26; pp. 6712 - 6716 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
27.06.2017
National Academy of Sciences, Washington, DC (United States) |
Series | From the Cover |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1704461114 |
Cover
Loading…
Abstract | The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ∼1 My and ∼3–4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter’s core grew to ∼20 Earth masses within <1 My, followed by a more protracted growth to ∼50 Earth masses until at least ∼3–4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation. |
---|---|
AbstractList | The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ∼1 My and ∼3-4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter's core grew to ∼20 Earth masses within <1 My, followed by a more protracted growth to ∼50 Earth masses until at least ∼3-4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation. Jupiter is the most massive planet of the Solar System and its presence had an immense effect on the dynamics of the solar accretion disk. Knowing the age of Jupiter, therefore, is key for understanding how the Solar System evolved toward its present-day architecture. However, although models predict that Jupiter formed relatively early, until now, its formation has never been dated. Here we show through isotope analyses of meteorites that Jupiter’s solid core formed within only ∼1 My after the start of Solar System history, making it the oldest planet. Through its rapid formation, Jupiter acted as an effective barrier against inward transport of material across the disk, potentially explaining why our Solar System lacks any super-Earths. The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ∼1 My and ∼3–4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter’s core grew to ∼20 Earth masses within <1 My, followed by a more protracted growth to ∼50 Earth masses until at least ∼3–4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation. The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ~1 My and ~3-4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter's core grew to ~20 Earth masses within <1 My, followed by a more protracted growth to ~50 Earth masses until at least ~3-4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation. The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ∼1 My and ∼3-4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter's core grew to ∼20 Earth masses within <1 My, followed by a more protracted growth to ∼50 Earth masses until at least ∼3-4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation.The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ∼1 My and ∼3-4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter's core grew to ∼20 Earth masses within <1 My, followed by a more protracted growth to ∼50 Earth masses until at least ∼3-4 My after Solar System formation. Thus, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation. The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ~1 My and ~3–4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter’s core grew to ~20 Earth masses within <1 My, followed by a more protracted growth to ~50 Earth masses until at least ~3–4 My after Solar System formation. Furthermore, Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation. |
Author | Kleine, Thorsten Budde, Gerrit Burkhardt, Christoph Kruijer, Thomas S. |
Author_xml | – sequence: 1 givenname: Thomas S. surname: Kruijer fullname: Kruijer, Thomas S. organization: Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 – sequence: 2 givenname: Christoph surname: Burkhardt fullname: Burkhardt, Christoph organization: Institut für Planetologie, University of Münster, 48149 Muenster, Germany – sequence: 3 givenname: Gerrit surname: Budde fullname: Budde, Gerrit organization: Institut für Planetologie, University of Münster, 48149 Muenster, Germany – sequence: 4 givenname: Thorsten surname: Kleine fullname: Kleine, Thorsten organization: Institut für Planetologie, University of Münster, 48149 Muenster, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28607079$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1399762$$D View this record in Osti.gov |
BookMark | eNp1kTtvFDEUhS0URDaBmgpkQUMziV_jsZtIURReikQTasvjubPr1Yy92B4k_j3ebEIgEo1d-DvH595zgo5CDIDQa0rOKOn4-S7YfEY7IoSklIpnaEWJpo0UmhyhFSGsa5Rg4hid5LwlhOhWkRfomClJOtLpFbq9XAOOI_667HyBhH0YISUY8JjijMsG8OBz8cEVvIYAxbuMbajPMc22-Bhw8TPkvcUMBWKqLvklej7aKcOr-_sUff94fXv1ubn59unL1eVNY9tWl4b1YBXTTI0UaCc4t1Yy2g4OHPTKyn5k2gFnA5cVEo5TIgalXK_GseOd5afo4uC7W_oZqi6UZCezS3626ZeJ1pt_X4LfmHX8aVqhWyZ5NXh3MIh1RpNdDe82LoYArhjKte4kq9CH-19S_LFALmb22cE02QBxyYZqohmvq20r-v4Juo1LCnUHlRJS1EOrSr39O_afvA-tVKA9AC7FnBOMpia723adwk-GErNv3-zbN4_tV935E92D9f8Vbw6KbS4xPSaRQgldK_kNlC-8Aw |
CitedBy_id | crossref_primary_10_3847_1538_4357_ac6dcc crossref_primary_10_1016_j_icarus_2021_114497 crossref_primary_10_1029_2019GC008865 crossref_primary_10_1051_0004_6361_202452152 crossref_primary_10_1051_0004_6361_202452394 crossref_primary_10_1007_s11214_022_00872_9 crossref_primary_10_3847_1538_4357_abd9c8 crossref_primary_10_1029_2021AV000486 crossref_primary_10_3847_1538_4357_ab76c3 crossref_primary_10_1111_maps_14134 crossref_primary_10_1029_2018GL078011 crossref_primary_10_1029_2023JE007898 crossref_primary_10_3847_1538_4365_aad95f crossref_primary_10_3847_1538_4357_ad18b7 crossref_primary_10_3847_1538_4357_ab0f2a crossref_primary_10_1146_annurev_astro_081817_052028 crossref_primary_10_3847_1538_4357_ac8b85 crossref_primary_10_1039_D4JA00359D crossref_primary_10_1016_j_epsl_2018_06_040 crossref_primary_10_3847_PSJ_ad7797 crossref_primary_10_1126_sciadv_abd0511 crossref_primary_10_3847_1538_4357_ab0e0d crossref_primary_10_1016_j_gca_2020_07_009 crossref_primary_10_1038_s41550_022_01863_0 crossref_primary_10_1093_mnras_stz2497 crossref_primary_10_1016_j_icarus_2023_115805 crossref_primary_10_3847_1538_4357_ac63b4 crossref_primary_10_2138_am_2021_7632 crossref_primary_10_1016_j_epsl_2024_118985 crossref_primary_10_1016_j_gca_2022_11_020 crossref_primary_10_1021_acs_nanolett_1c02573 crossref_primary_10_1111_maps_13181 crossref_primary_10_3847_2041_8213_ac7e55 crossref_primary_10_1016_j_gca_2022_11_016 crossref_primary_10_1111_maps_14276 crossref_primary_10_1007_s11631_022_00548_9 crossref_primary_10_3847_PSJ_ad3a68 crossref_primary_10_3847_1538_4357_abea12 crossref_primary_10_2138_rmg_2024_90_03 crossref_primary_10_2138_rmg_2024_90_02 crossref_primary_10_1016_j_epsl_2023_118551 crossref_primary_10_1016_j_icarus_2023_115910 crossref_primary_10_1016_j_epsl_2019_06_001 crossref_primary_10_1016_j_gca_2019_05_040 crossref_primary_10_2138_rmg_2024_90_04 crossref_primary_10_1051_0004_6361_202345915 crossref_primary_10_1111_maps_14142 crossref_primary_10_3847_1538_4357_aabf93 crossref_primary_10_1016_j_epsl_2021_116968 crossref_primary_10_1051_0004_6361_202141096 crossref_primary_10_1016_j_epsl_2023_118521 crossref_primary_10_1029_2021AV000568 crossref_primary_10_1051_0004_6361_202245121 crossref_primary_10_1016_j_epsl_2017_11_034 crossref_primary_10_1051_0004_6361_202245005 crossref_primary_10_3847_1538_3881_ab9f95 crossref_primary_10_1016_j_epsl_2020_116585 crossref_primary_10_1111_maps_13128 crossref_primary_10_3847_1538_4357_ab40bc crossref_primary_10_1093_mnras_stad1159 crossref_primary_10_1140_epja_s10050_023_00968_y crossref_primary_10_1016_j_chemer_2019_125537 crossref_primary_10_1111_maps_13364 crossref_primary_10_1016_j_epsl_2023_118518 crossref_primary_10_1016_j_icarus_2018_12_016 crossref_primary_10_3847_PSJ_ad92fa crossref_primary_10_1093_mnras_stae2280 crossref_primary_10_1007_s11038_023_09552_2 crossref_primary_10_1016_j_gca_2024_06_002 crossref_primary_10_3847_1538_4357_abaef2 crossref_primary_10_3847_2041_8213_ac990d crossref_primary_10_1016_j_gca_2024_06_005 crossref_primary_10_1017_S174392132100140X crossref_primary_10_1111_maps_13117 crossref_primary_10_1016_j_chemer_2019_125546 crossref_primary_10_1111_maps_13350 crossref_primary_10_1111_maps_13471 crossref_primary_10_3847_PSJ_abf7c0 crossref_primary_10_1016_j_epsl_2023_118406 crossref_primary_10_1016_j_epsl_2022_117374 crossref_primary_10_1051_0004_6361_202245341 crossref_primary_10_1051_0004_6361_201937037 crossref_primary_10_1016_j_gca_2021_02_012 crossref_primary_10_3847_2041_8213_acfdaa crossref_primary_10_1016_j_icarus_2019_113404 crossref_primary_10_3847_1538_4357_acee81 crossref_primary_10_3847_1538_4357_ac7ffd crossref_primary_10_2343_geochemj_2_0610 crossref_primary_10_1029_2018JE005698 crossref_primary_10_3847_1538_4357_ac8eb4 crossref_primary_10_1038_d41586_018_03144_1 crossref_primary_10_1007_s11214_020_00748_w crossref_primary_10_3847_1538_4357_ac4965 crossref_primary_10_3847_1538_4357_abfe0b crossref_primary_10_1126_sciadv_abo5781 crossref_primary_10_3847_1538_4357_ac87fa crossref_primary_10_3847_2041_8213_ac13a8 crossref_primary_10_1051_0004_6361_202453270 crossref_primary_10_1111_maps_14102 crossref_primary_10_1016_j_icarus_2021_114305 crossref_primary_10_1016_j_gca_2021_02_027 crossref_primary_10_1029_2019JE006260 crossref_primary_10_1016_j_gca_2022_03_001 crossref_primary_10_1038_s41550_021_01517_7 crossref_primary_10_1016_j_epsl_2020_116469 crossref_primary_10_1016_j_gca_2024_07_025 crossref_primary_10_1016_j_epsl_2024_118807 crossref_primary_10_1038_s41586_023_06135_z crossref_primary_10_3847_1538_3881_acd349 crossref_primary_10_3847_1538_4357_aaa5a5 crossref_primary_10_1016_j_chemer_2021_125746 crossref_primary_10_1038_s41561_018_0128_2 crossref_primary_10_1007_s11214_018_0533_2 crossref_primary_10_1016_j_gca_2017_09_009 crossref_primary_10_1016_j_epsl_2023_118162 crossref_primary_10_1016_j_icarus_2022_115100 crossref_primary_10_1038_s41561_019_0414_7 crossref_primary_10_1016_j_icarus_2023_115860 crossref_primary_10_1093_mnras_stad2167 crossref_primary_10_1016_j_gca_2018_04_031 crossref_primary_10_1016_j_icarus_2022_115110 crossref_primary_10_1038_s41550_019_0948_z crossref_primary_10_3847_1538_4357_acb156 crossref_primary_10_1186_s40645_021_00429_4 crossref_primary_10_1016_j_tecto_2018_10_021 crossref_primary_10_1038_s41550_024_02340_6 crossref_primary_10_1126_sciadv_abq3925 crossref_primary_10_3847_1538_4357_ab46b7 crossref_primary_10_1126_sciadv_abg9707 crossref_primary_10_1016_j_icarus_2023_115611 crossref_primary_10_3847_2041_8213_ace42e crossref_primary_10_1016_j_gca_2020_05_014 crossref_primary_10_1126_science_abc8116 crossref_primary_10_1051_0004_6361_202038458 crossref_primary_10_1016_j_gca_2017_10_014 crossref_primary_10_1007_s11214_019_0614_x crossref_primary_10_1029_2020JE006639 crossref_primary_10_3847_1538_4357_ab46a7 crossref_primary_10_1016_j_gca_2018_11_002 crossref_primary_10_1126_sciadv_aba5967 crossref_primary_10_1051_0004_6361_202346835 crossref_primary_10_1038_s41598_021_99160_9 crossref_primary_10_1111_maps_13462 crossref_primary_10_3390_rs15030681 crossref_primary_10_3390_universe8100518 crossref_primary_10_3847_1538_4357_ab899d crossref_primary_10_1007_s11214_020_0645_3 crossref_primary_10_1016_j_icarus_2023_115519 crossref_primary_10_1007_s11214_020_00675_w crossref_primary_10_1016_j_gca_2024_10_027 crossref_primary_10_1111_maps_13213 crossref_primary_10_1051_0004_6361_202346850 crossref_primary_10_1016_j_gca_2018_11_012 crossref_primary_10_1016_j_gca_2022_02_004 crossref_primary_10_1111_maps_13459 crossref_primary_10_3847_1538_4357_ac0add crossref_primary_10_3847_1538_4357_acb7db crossref_primary_10_1051_0004_6361_202039640 crossref_primary_10_1016_j_epsl_2017_10_055 crossref_primary_10_1007_s10686_021_09800_1 crossref_primary_10_1016_j_icarus_2020_114052 crossref_primary_10_1051_0004_6361_202039889 crossref_primary_10_1051_0004_6361_202038797 crossref_primary_10_1016_j_epsl_2023_118126 crossref_primary_10_1038_s41550_022_01846_1 crossref_primary_10_1126_sciadv_aba1303 crossref_primary_10_1016_j_chemer_2021_125786 crossref_primary_10_1007_s11214_019_0633_7 crossref_primary_10_1073_pnas_2005235117 crossref_primary_10_1016_j_gca_2019_07_039 crossref_primary_10_1051_0004_6361_202142490 crossref_primary_10_1029_2024GL110680 crossref_primary_10_1016_j_icarus_2024_116085 crossref_primary_10_3847_1538_4357_abfaa4 crossref_primary_10_3847_2041_8213_aab61f crossref_primary_10_1126_science_abn1783 crossref_primary_10_1007_s11214_021_00802_1 crossref_primary_10_3847_2041_8213_acc102 crossref_primary_10_1111_maps_13638 crossref_primary_10_1073_pnas_2404253121 crossref_primary_10_2138_rmg_2022_87_19 crossref_primary_10_1111_maps_13756 crossref_primary_10_1029_2020JE006643 crossref_primary_10_3847_2041_8213_ac865c crossref_primary_10_1111_maps_13990 crossref_primary_10_3847_1538_4357_ad3dff crossref_primary_10_1093_mnrasl_slae110 crossref_primary_10_2138_am_2022_8329 crossref_primary_10_3847_1538_3881_ab46a8 crossref_primary_10_1016_j_chemgeo_2018_03_024 crossref_primary_10_1051_0004_6361_202244099 crossref_primary_10_1016_j_gca_2020_07_036 crossref_primary_10_1073_pnas_2306995121 crossref_primary_10_1051_0004_6361_202244092 crossref_primary_10_1111_maps_13303 crossref_primary_10_1111_maps_13545 crossref_primary_10_3847_PSJ_ac5c44 crossref_primary_10_1016_j_gca_2023_03_018 crossref_primary_10_1016_j_gca_2022_01_008 crossref_primary_10_1007_s11214_020_00671_0 crossref_primary_10_1186_s40645_022_00482_7 crossref_primary_10_1126_science_aaz8482 crossref_primary_10_1051_0004_6361_202449847 crossref_primary_10_1007_s11214_018_0545_y crossref_primary_10_1016_j_epsl_2018_03_010 crossref_primary_10_1016_j_gca_2018_10_004 crossref_primary_10_1039_D1JA00468A crossref_primary_10_1051_0004_6361_202141169 crossref_primary_10_3847_PSJ_acb64b crossref_primary_10_1111_maps_13778 crossref_primary_10_1111_maps_13897 crossref_primary_10_1016_j_epsl_2018_10_029 crossref_primary_10_1016_j_epsl_2020_116506 crossref_primary_10_1016_j_epsl_2021_116928 crossref_primary_10_1016_j_gca_2021_08_007 crossref_primary_10_1051_0004_6361_201936591 crossref_primary_10_3847_1538_4357_ad7a65 crossref_primary_10_1038_s41550_019_0959_9 crossref_primary_10_1016_j_gca_2018_10_017 crossref_primary_10_1016_j_isci_2023_107160 crossref_primary_10_3847_2041_8213_ab46b0 crossref_primary_10_1126_science_abb3091 crossref_primary_10_3847_1538_3881_aabcc7 crossref_primary_10_1007_s11214_024_01113_x crossref_primary_10_1126_sciadv_abg8329 crossref_primary_10_1111_maps_13968 crossref_primary_10_3847_1538_4357_ab91ab crossref_primary_10_1093_mnras_stac849 crossref_primary_10_1111_maps_13602 crossref_primary_10_1016_j_epsl_2024_119010 crossref_primary_10_1007_s12036_023_09979_z crossref_primary_10_3847_1538_4357_ad9f35 crossref_primary_10_3847_1538_4357_ab38c1 crossref_primary_10_1016_j_epsl_2022_117748 crossref_primary_10_1111_ggr_12248 crossref_primary_10_1126_sciadv_abh2837 crossref_primary_10_1016_j_epsl_2021_117245 crossref_primary_10_1016_j_epsl_2018_09_030 crossref_primary_10_1016_j_gca_2020_11_003 crossref_primary_10_1016_j_epsl_2024_119120 crossref_primary_10_1016_j_gca_2024_11_011 crossref_primary_10_1093_mnras_stab986 crossref_primary_10_1016_j_gca_2024_11_010 crossref_primary_10_1111_maps_13953 crossref_primary_10_1016_j_gca_2024_11_005 crossref_primary_10_1126_sciadv_add8141 crossref_primary_10_1051_0004_6361_201834413 crossref_primary_10_1016_j_gca_2019_07_003 crossref_primary_10_3847_1538_4357_aac3e2 crossref_primary_10_1016_j_chemgeo_2022_121016 crossref_primary_10_1051_0004_6361_202037883 crossref_primary_10_1007_s11214_024_01112_y crossref_primary_10_1111_maps_13627 crossref_primary_10_1111_maps_13742 crossref_primary_10_1111_maps_13740 crossref_primary_10_1016_j_asr_2018_02_032 crossref_primary_10_1111_maps_13745 crossref_primary_10_1051_0004_6361_201935336 crossref_primary_10_1016_j_epsl_2019_115771 crossref_primary_10_1111_maps_13744 crossref_primary_10_1073_pnas_2026779118 crossref_primary_10_1016_j_icarus_2022_115171 crossref_primary_10_1016_j_gca_2019_07_013 crossref_primary_10_1007_s11214_023_00995_7 crossref_primary_10_1016_j_icarus_2019_01_027 crossref_primary_10_1038_s41550_019_0737_8 crossref_primary_10_1016_j_epsl_2022_117847 crossref_primary_10_1093_mnras_stab3107 crossref_primary_10_1002_2017JE005411 crossref_primary_10_1111_maps_13738 crossref_primary_10_2138_gselements_17_6_395 crossref_primary_10_1093_mnras_stab1390 crossref_primary_10_1051_0004_6361_202346452 crossref_primary_10_1111_maps_13975 crossref_primary_10_3847_1538_3881_ab1591 crossref_primary_10_3847_1538_4357_abd2b9 crossref_primary_10_1051_0004_6361_201834556 crossref_primary_10_1016_j_gca_2024_03_001 crossref_primary_10_1016_j_gca_2024_12_021 crossref_primary_10_1016_j_gca_2020_03_004 crossref_primary_10_3847_1538_4357_ab3e70 crossref_primary_10_1007_s11214_018_0554_x crossref_primary_10_1038_s41550_018_0557_2 crossref_primary_10_1126_sciadv_abm3045 crossref_primary_10_1016_j_gca_2023_10_010 crossref_primary_10_1051_0004_6361_202037983 crossref_primary_10_3847_2041_8213_ac2f3b crossref_primary_10_3847_1538_4357_abd725 crossref_primary_10_1038_s41550_019_0801_4 crossref_primary_10_1111_maps_12952 crossref_primary_10_1016_j_icarus_2023_115427 crossref_primary_10_1051_0004_6361_202346616 crossref_primary_10_1126_science_abn1021 crossref_primary_10_1016_j_gca_2023_01_026 crossref_primary_10_1038_s41550_023_02172_w crossref_primary_10_1016_j_gca_2024_03_032 crossref_primary_10_1111_maps_13916 crossref_primary_10_1051_0004_6361_202450464 crossref_primary_10_1051_0004_6361_202346868 crossref_primary_10_2138_am_2020_7564 crossref_primary_10_1051_0004_6361_202346748 crossref_primary_10_3847_1538_4357_adb42c crossref_primary_10_1051_0004_6361_201833127 crossref_primary_10_1016_j_gca_2023_01_012 crossref_primary_10_1051_0004_6361_202243628 crossref_primary_10_1016_j_icarus_2017_06_030 crossref_primary_10_1126_science_adk4868 crossref_primary_10_1111_maps_13947 crossref_primary_10_1016_j_gca_2021_07_038 crossref_primary_10_1073_pnas_2115726119 crossref_primary_10_1111_maps_13709 crossref_primary_10_3847_2041_8213_ab9e6a crossref_primary_10_1016_j_epsl_2024_119112 crossref_primary_10_1126_sciadv_abc0444 crossref_primary_10_1016_j_gca_2024_02_013 crossref_primary_10_1007_s10686_021_09811_y crossref_primary_10_1038_s41550_020_01283_y crossref_primary_10_3847_1538_4357_ab4a13 crossref_primary_10_1016_j_gca_2019_10_041 crossref_primary_10_1038_s41550_021_01521_x crossref_primary_10_1126_sciadv_abd3632 crossref_primary_10_1016_j_gca_2021_12_012 crossref_primary_10_3847_2041_8213_ada3d1 crossref_primary_10_1111_maps_13814 crossref_primary_10_3847_1538_3881_abfb6c crossref_primary_10_1111_maps_13939 crossref_primary_10_3847_1538_4357_ab39e7 crossref_primary_10_1016_j_epsl_2018_01_017 crossref_primary_10_1016_j_chemer_2023_126004 crossref_primary_10_1016_j_gca_2023_11_012 crossref_primary_10_1051_0004_6361_202347737 crossref_primary_10_1016_j_gca_2022_08_026 crossref_primary_10_1039_D2JA00102K crossref_primary_10_1016_j_icarus_2023_115680 crossref_primary_10_1038_s41550_019_0978_6 crossref_primary_10_3847_PSJ_ac34ee crossref_primary_10_1007_s11214_025_01135_z crossref_primary_10_1016_j_icarus_2022_114933 crossref_primary_10_1016_j_icarus_2022_114937 crossref_primary_10_1093_pasj_psae052 crossref_primary_10_1126_sciadv_abj7601 crossref_primary_10_1126_science_aao1141 crossref_primary_10_1126_sciadv_adq7848 crossref_primary_10_1007_s11214_020_00649_y crossref_primary_10_1007_s11214_020_00701_x crossref_primary_10_1016_j_gca_2019_09_010 crossref_primary_10_1111_maps_14095 crossref_primary_10_1016_j_gca_2019_09_005 crossref_primary_10_1111_1755_6724_14952 crossref_primary_10_1093_mnras_stab3766 crossref_primary_10_3847_1538_4357_acb81f crossref_primary_10_3847_1538_4357_aca96f crossref_primary_10_1029_2022GC010688 crossref_primary_10_1016_j_epsl_2019_115722 crossref_primary_10_1093_mnras_stab3753 crossref_primary_10_1038_s41561_020_0595_0 crossref_primary_10_1186_s40623_021_01438_9 crossref_primary_10_1016_j_gca_2021_03_004 crossref_primary_10_1051_0004_6361_202040096 crossref_primary_10_1051_0004_6361_202449154 crossref_primary_10_3847_1538_4357_ab0d87 crossref_primary_10_1016_j_epsl_2020_116248 crossref_primary_10_1016_j_gca_2019_02_035 crossref_primary_10_1016_j_gca_2019_02_034 crossref_primary_10_1073_pnas_2017750118 crossref_primary_10_1016_j_gca_2021_12_027 crossref_primary_10_1016_j_gca_2021_03_005 crossref_primary_10_1088_1674_4527_20_10_164 crossref_primary_10_1016_j_gca_2023_12_022 crossref_primary_10_1016_j_gca_2025_03_021 crossref_primary_10_3847_2041_8213_ac17f2 crossref_primary_10_1007_s11214_020_00700_y crossref_primary_10_1038_s41598_023_39866_0 crossref_primary_10_1007_s11214_018_0474_9 crossref_primary_10_1016_j_gca_2021_11_020 crossref_primary_10_3847_1538_4357_ad2ea7 crossref_primary_10_3847_PSJ_ace7cd crossref_primary_10_1016_j_gca_2022_05_020 crossref_primary_10_1051_0004_6361_201834168 crossref_primary_10_1038_s41586_023_05721_5 crossref_primary_10_3847_1538_4357_ac06a9 crossref_primary_10_1016_j_epsl_2022_117683 crossref_primary_10_1016_j_epsl_2022_117440 crossref_primary_10_1029_2020AV000376 crossref_primary_10_1016_j_gca_2024_08_012 crossref_primary_10_1007_s11214_022_00880_9 crossref_primary_10_1016_j_icarus_2024_116229 crossref_primary_10_1016_j_gca_2023_06_005 crossref_primary_10_1016_j_icarus_2024_116109 crossref_primary_10_1016_j_gca_2019_02_008 crossref_primary_10_3847_1538_4357_ac1e96 crossref_primary_10_1016_j_gca_2023_06_009 crossref_primary_10_1016_j_icarus_2024_116231 crossref_primary_10_1038_s41550_022_01675_2 crossref_primary_10_1360_TB_2022_0667 crossref_primary_10_1029_2023AV001077 crossref_primary_10_1016_j_gca_2020_01_011 crossref_primary_10_1051_0004_6361_202245641 crossref_primary_10_1073_pnas_1919550117 crossref_primary_10_1016_j_epsl_2022_117552 crossref_primary_10_1007_s11214_020_00669_8 crossref_primary_10_3847_1538_4357_ab5f0c crossref_primary_10_1016_j_epsl_2024_119179 crossref_primary_10_1051_0004_6361_202142926 crossref_primary_10_1016_j_epsl_2020_116065 crossref_primary_10_1016_j_gca_2021_11_035 crossref_primary_10_1051_0004_6361_202451388 crossref_primary_10_1016_j_gca_2025_02_001 crossref_primary_10_1016_j_epsl_2019_01_027 crossref_primary_10_1126_sciadv_adf3955 crossref_primary_10_1038_nature25990 crossref_primary_10_3847_1538_4357_ab1b3e crossref_primary_10_3847_PSJ_abd258 crossref_primary_10_1016_j_gca_2022_06_006 crossref_primary_10_1093_mnras_staa578 crossref_primary_10_1016_j_icarus_2024_116400 crossref_primary_10_1051_0004_6361_202348899 crossref_primary_10_1016_j_gca_2022_06_008 crossref_primary_10_1111_maps_14041 crossref_primary_10_1038_s43017_022_00370_0 crossref_primary_10_3847_1538_4357_ad891d crossref_primary_10_1038_s41586_022_05265_0 crossref_primary_10_1126_sciadv_adp2426 crossref_primary_10_3847_2041_8213_acefd1 crossref_primary_10_1016_j_gca_2022_12_020 crossref_primary_10_1016_j_gca_2020_02_014 crossref_primary_10_1016_j_epsl_2021_117211 crossref_primary_10_1007_s11214_020_00668_9 crossref_primary_10_1016_j_gca_2019_01_032 crossref_primary_10_1016_j_epsl_2020_116088 crossref_primary_10_1093_pnasnexus_pgac015 crossref_primary_10_1111_maps_14075 crossref_primary_10_1016_j_gca_2022_12_014 crossref_primary_10_1146_annurev_earth_072920_052847 crossref_primary_10_3847_1538_4357_ab1c60 crossref_primary_10_1016_j_gca_2020_02_004 crossref_primary_10_1016_j_gca_2021_10_004 crossref_primary_10_1016_j_icarus_2018_04_004 crossref_primary_10_1016_j_gca_2019_01_026 crossref_primary_10_1038_s41550_019_0779_y crossref_primary_10_1051_0004_6361_202245512 crossref_primary_10_3847_1538_3881_ac0255 crossref_primary_10_3847_2041_8213_ab1338 crossref_primary_10_3847_1538_3881_abc8ef crossref_primary_10_3847_1538_4357_ab7cd4 crossref_primary_10_1051_0004_6361_202450289 crossref_primary_10_3847_1538_4357_ac81c6 crossref_primary_10_1051_0004_6361_201834076 crossref_primary_10_1051_0004_6361_201731155 crossref_primary_10_1093_mnras_stab2967 crossref_primary_10_3847_2041_8213_ace187 |
Cites_doi | 10.1088/2041-8205/800/2/L22 10.1051/0004-6361/201220847 10.1016/j.gca.2014.05.013 10.1016/j.epsl.2012.10.014 10.1086/320685 10.1126/science.1168221 10.1016/j.epsl.2011.08.047 10.1073/pnas.1524980113 10.1051/0004-6361/201423814 10.1016/S0039-9140(96)02100-5 10.1086/164653 10.1016/j.gca.2012.09.015 10.1093/mnras/180.2.57 10.1016/j.epsl.2016.09.020 10.1086/524882 10.1016/j.gca.2015.06.012 10.1038/nature14360 10.1016/j.gca.2016.06.023 10.1051/0004-6361/201219127 10.1039/C6JA00015K 10.1016/j.epsl.2012.07.026 10.1111/j.1945-5100.2011.01264.x 10.1016/j.gca.2005.07.012 10.1088/2041-8205/753/1/L6 10.1038/nature14675 10.1016/j.epsl.2008.06.018 10.1002/2016JE005088 10.1126/science.1251766 10.1016/j.gca.2014.11.015 10.1016/S0016-7037(98)00038-6 10.1146/annurev-earth-060115-012157 10.1016/j.epsl.2011.10.010 10.1126/science.1226919 10.1086/510360 10.1038/nature04536 10.1086/522825 10.1016/j.epsl.2015.08.034 10.1086/344105 10.1073/pnas.1518183113 10.1126/science.1204656 10.1111/j.1945-5100.2006.tb00195.x 10.1038/nature08094 10.1016/j.icarus.2005.10.007 10.1051/0004-6361/201219157 10.1029/92JE01501 10.1088/0004-637X/798/1/9 10.1016/j.icarus.2015.11.027 10.1103/PhysRevLett.93.172501 10.1029/JB088iS01p0B331 10.1038/nature10399 10.1006/icar.1996.0190 10.1143/PTP.60.699 10.1016/0016-7037(93)90153-N 10.1016/j.gca.2008.11.047 10.2307/j.ctv1v7zdmm.40 10.1016/j.epsl.2012.10.013 10.1038/nature10201 10.1093/oso/9780195116946.001.0001 10.1016/j.epsl.2014.07.003 10.1016/S0016-7037(02)01091-8 10.1126/sciadv.1601658 10.1016/S0012-821X(97)00151-9 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jun 27, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jun 27, 2017 |
CorporateAuthor | Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OIOZB OTOTI 5PM |
DOI | 10.1073/pnas.1704461114 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Dating the formation of Jupiter |
EISSN | 1091-6490 |
EndPage | 6716 |
ExternalDocumentID | PMC5495263 1399762 28607079 10_1073_pnas_1704461114 26484974 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: SFB-TRR 170 (B3-1) – fundername: EC | European Research Council (ERC) grantid: 616564 – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: KL1857/3 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 79B AAPBV ABPTK ADZLD ASUFR DNJUQ DOOOF DWIUU JSODD OIOZB OTOTI PQEST RHF TAF VQA ZA5 5PM |
ID | FETCH-LOGICAL-a559t-2bea82928f1e17433aa6215dceceb8a6bf29ce32d369284c3104d88cb8ff737a3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:17:06 EDT 2025 Mon Jul 03 03:57:35 EDT 2023 Fri Jul 11 16:14:03 EDT 2025 Mon Jun 30 10:13:56 EDT 2025 Thu Apr 03 07:02:17 EDT 2025 Tue Jul 01 03:19:36 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Fri May 30 11:46:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | nucleosynthetic isotope anomalies Jupiter giant planet formation Hf-W chronometry solar nebula |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a559t-2bea82928f1e17433aa6215dceceb8a6bf29ce32d369284c3104d88cb8ff737a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 AC52-07NA27344 USDOE LLNL-JRNL-731226 Author contributions: T.S.K. and T.K. designed research; T.S.K. and C.B. performed research; T.S.K., C.B., G.B., and T.K. analyzed data; and T.S.K., C.B., G.B., and T.K. wrote the paper. Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved May 4, 2017 (received for review March 23, 2017) |
ORCID | 0000-0003-0762-779X 000000030762779X |
OpenAccessLink | https://www.osti.gov/servlets/purl/1399762 |
PMID | 28607079 |
PQID | 1946419498 |
PQPubID | 42026 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5495263 osti_scitechconnect_1399762 proquest_miscellaneous_1909230955 proquest_journals_1946419498 pubmed_primary_28607079 crossref_citationtrail_10_1073_pnas_1704461114 crossref_primary_10_1073_pnas_1704461114 jstor_primary_26484974 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-27 |
PublicationDateYYYYMMDD | 2017-06-27 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | From the Cover |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences National Academy of Sciences, Washington, DC (United States) |
Publisher_xml | – name: National Academy of Sciences – name: National Academy of Sciences, Washington, DC (United States) |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 Helled R (e_1_3_3_4_2) 2014 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 Lodders K (e_1_3_3_62_2) 1998 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 26858438 - Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2011-6 19372428 - Science. 2009 Apr 17;324(5925):374-6 26929340 - Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2886-91 15525068 - Phys Rev Lett. 2004 Oct 22;93(17):172501 23118187 - Science. 2012 Nov 2;338(6107):651-5 19606143 - Nature. 2009 Jul 16;460(7253):364-6 26289203 - Nature. 2015 Aug 20;524(7565):322-4 21901010 - Nature. 2011 Sep 07;477(7363):195-8 21642961 - Nature. 2011 Jun 05;475(7355):206-9 16482151 - Nature. 2006 Feb 16;439(7078):821-4 24904163 - Science. 2014 Jun 6;344(6188):1150-4 27957541 - Sci Adv. 2016 Dec 09;2(12 ):e1601658 21700869 - Science. 2011 Jun 24;332(6037):1533-6 18966788 - Talanta. 1997 Apr;44(4):663-72 25855296 - Nature. 2015 Apr 23;520(7548):534-7 |
References_xml | – ident: e_1_3_3_34_2 doi: 10.1088/2041-8205/800/2/L22 – ident: e_1_3_3_22_2 doi: 10.1051/0004-6361/201220847 – ident: e_1_3_3_46_2 doi: 10.1016/j.gca.2014.05.013 – ident: e_1_3_3_36_2 doi: 10.1016/j.epsl.2012.10.014 – volume-title: Giant Planet Formation, Evolution, and Internal Structure. Protostars and Planets VI year: 2014 ident: e_1_3_3_4_2 – ident: e_1_3_3_3_2 doi: 10.1086/320685 – ident: e_1_3_3_8_2 doi: 10.1126/science.1168221 – ident: e_1_3_3_11_2 doi: 10.1016/j.epsl.2011.08.047 – ident: e_1_3_3_50_2 doi: 10.1073/pnas.1524980113 – ident: e_1_3_3_24_2 doi: 10.1051/0004-6361/201423814 – ident: e_1_3_3_40_2 doi: 10.1016/S0039-9140(96)02100-5 – ident: e_1_3_3_23_2 doi: 10.1086/164653 – ident: e_1_3_3_41_2 doi: 10.1016/j.gca.2012.09.015 – ident: e_1_3_3_21_2 doi: 10.1093/mnras/180.2.57 – ident: e_1_3_3_12_2 doi: 10.1016/j.epsl.2016.09.020 – ident: e_1_3_3_52_2 doi: 10.1086/524882 – ident: e_1_3_3_54_2 doi: 10.1016/j.gca.2015.06.012 – ident: e_1_3_3_45_2 doi: 10.1038/nature14360 – ident: e_1_3_3_20_2 doi: 10.1016/j.gca.2016.06.023 – ident: e_1_3_3_28_2 doi: 10.1051/0004-6361/201219127 – ident: e_1_3_3_47_2 doi: 10.1039/C6JA00015K – ident: e_1_3_3_55_2 doi: 10.1016/j.epsl.2012.07.026 – ident: e_1_3_3_18_2 doi: 10.1111/j.1945-5100.2011.01264.x – ident: e_1_3_3_17_2 doi: 10.1016/j.gca.2005.07.012 – ident: e_1_3_3_51_2 doi: 10.1088/2041-8205/753/1/L6 – ident: e_1_3_3_29_2 doi: 10.1038/nature14675 – ident: e_1_3_3_16_2 doi: 10.1016/j.epsl.2008.06.018 – ident: e_1_3_3_35_2 doi: 10.1002/2016JE005088 – ident: e_1_3_3_15_2 doi: 10.1126/science.1251766 – ident: e_1_3_3_56_2 doi: 10.1016/j.gca.2014.11.015 – ident: e_1_3_3_37_2 doi: 10.1016/S0016-7037(98)00038-6 – ident: e_1_3_3_5_2 doi: 10.1146/annurev-earth-060115-012157 – ident: e_1_3_3_6_2 doi: 10.1016/j.epsl.2011.10.010 – ident: e_1_3_3_19_2 doi: 10.1126/science.1226919 – ident: e_1_3_3_26_2 – ident: e_1_3_3_7_2 doi: 10.1086/510360 – ident: e_1_3_3_25_2 doi: 10.1038/nature04536 – ident: e_1_3_3_31_2 doi: 10.1086/522825 – ident: e_1_3_3_43_2 doi: 10.1016/j.epsl.2015.08.034 – ident: e_1_3_3_30_2 doi: 10.1086/344105 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.1518183113 – ident: e_1_3_3_39_2 doi: 10.1126/science.1204656 – ident: e_1_3_3_60_2 doi: 10.1111/j.1945-5100.2006.tb00195.x – ident: e_1_3_3_9_2 doi: 10.1038/nature08094 – ident: e_1_3_3_27_2 doi: 10.1016/j.icarus.2005.10.007 – ident: e_1_3_3_59_2 doi: 10.1051/0004-6361/201219157 – ident: e_1_3_3_63_2 doi: 10.1029/92JE01501 – ident: e_1_3_3_32_2 doi: 10.1088/0004-637X/798/1/9 – ident: e_1_3_3_13_2 doi: 10.1016/j.icarus.2015.11.027 – ident: e_1_3_3_58_2 doi: 10.1103/PhysRevLett.93.172501 – ident: e_1_3_3_61_2 doi: 10.1029/JB088iS01p0B331 – ident: e_1_3_3_42_2 doi: 10.1038/nature10399 – ident: e_1_3_3_1_2 doi: 10.1006/icar.1996.0190 – ident: e_1_3_3_2_2 doi: 10.1143/PTP.60.699 – ident: e_1_3_3_38_2 doi: 10.1016/0016-7037(93)90153-N – ident: e_1_3_3_57_2 doi: 10.1016/j.gca.2008.11.047 – ident: e_1_3_3_64_2 doi: 10.2307/j.ctv1v7zdmm.40 – ident: e_1_3_3_53_2 doi: 10.1016/j.epsl.2012.10.013 – ident: e_1_3_3_10_2 doi: 10.1038/nature10201 – volume-title: The Planetary Scientist’s Companion year: 1998 ident: e_1_3_3_62_2 doi: 10.1093/oso/9780195116946.001.0001 – ident: e_1_3_3_44_2 doi: 10.1016/j.epsl.2014.07.003 – ident: e_1_3_3_49_2 doi: 10.1016/S0016-7037(02)01091-8 – ident: e_1_3_3_33_2 doi: 10.1126/sciadv.1601658 – ident: e_1_3_3_48_2 doi: 10.1016/S0012-821X(97)00151-9 – reference: 21642961 - Nature. 2011 Jun 05;475(7355):206-9 – reference: 15525068 - Phys Rev Lett. 2004 Oct 22;93(17):172501 – reference: 26289203 - Nature. 2015 Aug 20;524(7565):322-4 – reference: 18966788 - Talanta. 1997 Apr;44(4):663-72 – reference: 27957541 - Sci Adv. 2016 Dec 09;2(12 ):e1601658 – reference: 19372428 - Science. 2009 Apr 17;324(5925):374-6 – reference: 26858438 - Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2011-6 – reference: 24904163 - Science. 2014 Jun 6;344(6188):1150-4 – reference: 25855296 - Nature. 2015 Apr 23;520(7548):534-7 – reference: 16482151 - Nature. 2006 Feb 16;439(7078):821-4 – reference: 21700869 - Science. 2011 Jun 24;332(6037):1533-6 – reference: 19606143 - Nature. 2009 Jul 16;460(7253):364-6 – reference: 23118187 - Science. 2012 Nov 2;338(6107):651-5 – reference: 26929340 - Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2886-91 – reference: 21901010 - Nature. 2011 Sep 07;477(7363):195-8 |
SSID | ssj0009580 |
Score | 2.6741033 |
Snippet | The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores,... Jupiter is the most massive planet of the Solar System and its presence had an immense effect on the dynamics of the solar accretion disk. Knowing the age of... |
SourceID | pubmedcentral osti proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6712 |
SubjectTerms | Age ASTRONOMY AND ASTROPHYSICS Cores Deposition Dissipation Gases Genetics GEOSCIENCES giant planet formation Hf-W chronometry Iron meteorites Isotopes Jupiter Meteorites Meteors & meteorites Molybdenum nucleosynthetic isotope anomalies Physical Sciences Planet formation Planetary cores Planetary mass Planets Reservoirs Solar nebula Solar system Solar system evolution Tungsten Tungsten isotopes |
Title | Age of Jupiter inferred from the distinct genetics and formation times of meteorites |
URI | https://www.jstor.org/stable/26484974 https://www.ncbi.nlm.nih.gov/pubmed/28607079 https://www.proquest.com/docview/1946419498 https://www.proquest.com/docview/1909230955 https://www.osti.gov/servlets/purl/1399762 https://pubmed.ncbi.nlm.nih.gov/PMC5495263 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FcuGCKFAwLWiROBRVDvHaXtvHgKBVK6IeUik3y_thkVKcKLEv3PnfzHjXa6e0EnCxoux6reQ9j2fWM28IeRexQKkyk77SQeaDwYNbahKnfjxhxUTJVOhWJOnrjJ9dReeLeDEa_RpkLTW1GMufd9aV_A-q8B3gilWy_4CsWxS-gM-ALxwBYTj-FcZTE_GfN2ssJG4TqzaYT-5qRhTewZWssVGydoLMrmDRdJY3r9hrvdrAKtuht3rpnm7bLpdg1m0eTvtSFGsftif-yeWsb2x8sWmW15YRbRpSv836sdl8x3KvekffoB9VRgz4FGUjXV7OxY1emv1XWA6cVlvEZrcsgja_zigAjLUxs-Cl-DwyjUKdHTbVpJZwbGhWeWJyrf-w92CgsElxVWzHQYLvpgO7ygD99Y8WfpbyVg6wf_C5dMRu6AF5yCDawEYYp4tgoN2cTjpVqCT8cOtqKCdtz9_xbUx6KzzpV4D0XfHL7TTcgV8zf0Ie24CETg279slIV0_JfgcpPba65O-fkTnQja5KaulGO7pRpBsFctCObrSjGwW6UUc32tINl-jp9pxcffk8_3Tm26YcfgHBZ-0zoYuUZSwtA43RbFgUHNxG-BFSi7TgomSZ1CFTIYdJkYTwIVJpKkValkmYFOEB2atWlX5JqGBFouIslqoIIiW5SISMRMbBSPCyVIlHxt3fmUurWI-NU27yNnMiCXOEIu-h8MixO2FtxFrun3rQ4uPmYaZnBMG1Rw4RsBwcUFRRlphuJuscAiVw3JlHjjocc2sIYNUs4hEcstQjb90wmGl891ZUetXgnAmEUqj36JEXBvb-0pY-Hkl2COEmoAT87ki1_NZKwcdRFjMevrp3zUPyqL8Dj8hevWn0a3Cja_GmJflvnIHKvA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age+of+Jupiter+inferred+from+the+distinct+genetics+and+formation+times+of+meteorites&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kruijer%2C+Thomas+S&rft.au=Burkhardt%2C+Christoph&rft.au=Budde%2C+Gerrit&rft.au=Kleine%2C+Thorsten&rft.date=2017-06-27&rft.eissn=1091-6490&rft.volume=114&rft.issue=26&rft.spage=6712&rft_id=info:doi/10.1073%2Fpnas.1704461114&rft_id=info%3Apmid%2F28607079&rft.externalDocID=28607079 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |