The Molecule-Metal Interface
Reviewing recent progress in the fundamental understanding of the molecule-metal interface, this useful addition to the literature focuses on experimental studies and introduces the latest analytical techniques as applied to this interface. The first part covers basic theory and initial principle st...
Saved in:
Main Authors | , , |
---|---|
Format | eBook Book |
Language | English |
Published |
Weinheim
Wiley-VCH
2013
John Wiley & Sons, Incorporated |
Edition | 1. Aufl. |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Table of Contents:
- 3.5 Two Examples of Collective Effects at Metal-Molecule Interfaces -- 3.5.1 Quantum-Confined Stark Effect in Monolayers of Molecules Consisting of Polar Repeating Units -- 3.5.2 Magnetic Molecule/MagneticMetal Interfaces -- 3.6 Concluding Remarks -- References -- Part Two Atomic Structure -- 4 STM Studies of Molecule-Metal Interfaces -- 4.1 Introduction to Scanning Tunneling Microscopy -- 4.1.1 Basic STM Operation -- 4.1.2 Theory of STM -- 4.1.3 Scanning Tunneling Spectroscopy -- 4.2 Factors Affecting Molecular Packing on Perfect Surfaces -- 4.2.1 Molecule-Substrate vs. Intermolecular Interactions -- 4.2.2 Commensurability with Substrate -- 4.2.3 Molecular Density Dependent Phase Transitions -- 4.3 Influence of Inhomogeneity at Metal Surfaces -- 4.3.1 Physical Inhomogeneity at Crystalline Interfaces -- 4.3.2 Surface Electronic States -- 4.3.3 Molecule-Induced Modification of Surface Topography -- 4.4 Manipulation of Molecules Using STM -- 4.5 Summary -- References -- 5 NEXAFS Studies of Molecular Orientations at Molecule-Substrate Interfaces -- 5.1 Principles of NEXAFS -- 5.1.1 The X-Ray Absorption Process -- 5.1.2 Molecular Orbitals and Characteristic Resonances in -- 5.1.3 Molecular Orientation and Polarization Dependence of the Resonance Intensities -- 5.1.4 Techniques and Instrumentation of NEXAFS -- 5.1.5 Radiation Damage of NEXAFS -- 5.2 Molecular Orientations at Interfaces: the Effect of Molecule-Substrate Interactions -- 5.2.1 Organic/Metal Interfaces -- 5.2.2 Organic/Semiconductor Interfaces -- 5.2.3 Organic/Organic Heterojunction Interfaces -- 5.2.4 CuPc on Other Technologically Important Substrates -- 5.3 Molecular Orientations at Interfaces: the Effect of Strong Intermolecular Interactions -- 5.4 Molecular Orientations of Self-Assembled Monolayers -- 5.5 Summary and Outlook -- References
- 6 X-Ray Standing Waves and Surfaces X-Ray Scattering Studies of Molecule-Metal Interfaces -- 6.1 Introduction -- 6.2 X-Ray Standing Wave Theory -- 6.2.1 General Considerations on Wave Fields in Crystals -- 6.2.2 The Two-Beam Approximation -- 6.2.3 The Darwin Curve -- 6.2.4 X-Ray Absorption and Dipole Approximation -- 6.2.5 The Coherent Position and the Coherent Fraction -- 6.3 X-Ray Standing Wave Experiments -- 6.3.1 Beamline Setup at ID32 -- 6.3.2 Experimental Details -- 6.4 Examples: Organic Monolayers on Metals -- References -- Part Three Electronic Structure -- 7 Fundamental Electronic Structure of Organic Solids and Their Interfaces by Photoemission Spectroscopy and Related Methods -- 7.1 Introduction -- 7.2 General View of Electronic Structure of Organic Solids -- 7.2.1 From Single Molecule to Molecular Solid -- 7.2.2 Contribution of Polaron -- 7.2.3 Requirement from Thermodynamic Equilibrium -- 7.3 Electronic Structure in Relation to Charge Transport -- 7.3.1 Ultraviolet Photoemission Spectroscopy -- 7.3.1.1 Energy and Momentum Conservation -- 7.3.1.2 Energy Band Dispersion and Estimation of Band Transport Mobility -- 7.3.1.3 Density of States Effects in Polycrystalline Films -- 7.3.2 Electron Spectroscopy Using Metastable Atom Beam: Characterization of the Molecular Orientation via Wavefunction Spread -- 7.3.2.1 Principle and Characteristics -- 7.3.2.2 Characterization of the Molecular Orientation -- 7.3.2.3 Spatial Wavefunction Distribution of Band Gap States -- 7.3.3 Inverse Photoemission Spectroscopy (IPES) -- 7.3.3.1 Characteristics of IPES -- 7.3.3.2 Comparison between UPS-IPES and Tunneling Spectroscopy -- 7.3.3.3 Comparison with Near-Edge X-Ray Absorption Fine Structure Spectroscopy (NEXAFS) -- 7.3.4 Probing Electron-Phonon Coupling, Hopping Mobility and Polaron by UPS -- 7.3.4.1 Basic Background
- 7.3.4.2 Experimental Reorganization Energy and Polaron Binding Energy -- 7.4 Electronic Structure at Weakly Interacting Interfaces -- 7.4.1 Effects of Inhomogeneity of the Substrate Surface on the Energy -- 7.4.2 Strange Band Bending -- 7.4.3 Radiation Effects on the Energy Level Alignment -- 7.4.4 Mysterious Phenomena: Fermi Level Alignment Issue -- 7.4.4.1 Impacts of Interface Dipole Layer on the Energy Level Alignment -- 7.4.4.2 Impacts of Disorder on the Energy Level Alignment and Band Bending -- 7.5 Summary -- References -- 8 Energy Levels at Molecule-Metal Interfaces -- 8.1 Introduction -- 8.2 The Organic-Electrode Interface -- 8.3 Gap States -- 8.4 Metal Electrodes -- 8.5 Tuning of Charge Injection Barriers -- 8.5.1 Strong Electron Acceptor and Donor Molecules -- 8.5.2 Self-Assembled Monolayers with Dipoles -- 8.6 Conductive Polymer Electrodes -- References -- 9 Vibrational Spectroscopies for Future Studies of Molecule-Metal Interface -- 9.1 Introduction -- 9.2 Selection Rules for Infrared and Raman Spectra -- 9.3 Raman/IR Application in Organic Films -- References -- 10 General Outlook -- Index
- Intro -- Title Page -- Contents -- Preface -- List of Contributors -- 1 Introduction to the Molecule-Metal Interface -- 1.1 From Organic Semiconductors to Organic Electronic Devices -- 1.2 Role and Function of Interfaces in Organic Electronic Devices -- 1.3 What Will We Learn about the Interfaces? -- 1.4 The Fermi Level and Related Fundamentals -- 1.4.1 Definition of the Fermi Level in this Book -- 1.4.2 Measuring the Fermi Level of Organic Semiconductors -- 1.4.3 The Work Function and the Vacuum Level of a Solid with Finite Size -- References -- Part One Theory -- 2 Basic Theory of the Molecule-Metal Interface -- 2.1 Introduction -- 2.2 The Molecule Energy Gap Problem: Image Potential Effects -- 2.2.1 Molecule Self-Interaction Energy -- 2.2.2 Image Potential Effects -- 2.3 The Unified IDIS Model: Charge Transfer, Pauli Exclusion Principle ("Pillow") Effect and Molecular Dipoles -- 2.3.1 The IDIS Model -- 2.3.2 Pauli Repulsion ("Pillow") Effect and the Unified IDIS-Model -- 2.3.3 Molecular Dipole Corrections and the Unified IDIS Model -- 2.4 DFT Calculations for a Single Molecule on a Surface -- 2.4.1 C60 on Au(111) -- 2.4.2 TCNQ/Au(111) -- 2.4.3 TTF on Au(111) -- 2.5 From a Single Molecule to a Monolayer -- 2.5.1 The Unified IDIS Model for an Organic Ad-layer on a Metal -- 2.5.2 C60/Au(111) -- 2.5.3 TTF/Au(111) -- 2.5.4 More on the Unified IDIS Model -- References -- 3 Understanding the Metal-Molecule Interface from First Principles -- 3.1 Introduction -- 3.2 A Brief Overview of Density Functional Theory -- 3.3 Electronic Structure of Metal-Molecule Interfaces from Density Functional Theory: Challenges and Progress -- 3.4 Understanding Metal-Molecule Interface Dipoles from First Principles -- 3.4.1 n- Alkane/Metal Interfaces -- 3.4.2 Benzene/Metal Interfaces -- 3.4.3 Pentacene/Metal Interfaces -- 3.4.4 PTCDA/Metal Interfaces