Facies changes and diagenetic processes across the Permian-Triassic boundary event horizon, Great Bank of Guizhou, South China: a controversy of erosion and dissolution
The Permian-Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global sea-level rose across the Permian-Triassic boundary, but an irregular top-Permian erosion surface across a 10 km north-south transect of the...
Saved in:
Published in | Sedimentology Vol. 56; no. 3; pp. 677 - 693 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.04.2009
Blackwell Publishing Ltd Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Permian-Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global sea-level rose across the Permian-Triassic boundary, but an irregular top-Permian erosion surface across a 10 km north-south transect of the Great Bank of Guizhou contains evidence of sea-level fluctuation. The surface represents the 'event horizon' of mass extinction, below the biostratigraphic Permian-Triassic boundary defined by first appearance datum of conodont Hindeodus parvus. An Upper Permian foraminiferal grainstone beneath this surface contains geopetal sediments, etched grains, and pendent and meniscus cements interpreted here as vadose. However, these latter diagenetic processes occurred before the event horizon and were followed by erosion of the final Permian surface. This erosion cuts previous fabrics but lacks evidence of weathering or bioerosion. A few centimetres below is an earlier grainstone that was also eroded but lacks proof of sub-aerial processes. Samples therefore reveal one, or possibly two, small-scale relative sea-level changes before the Triassic transgression in this area, and these may relate to local tectonics. The final Permian surface is subject to at least four interpretations: (i) sub-aerial physical erosion and dissolution by carbon dioxide-enriched fresh water or carbon dioxide-enriched mixed water, prior to Triassic transgression; (ii) sub-aerial physical erosion overprinted by dissolution related to carbon dioxide-enriched sea water in the Early Triassic transgression; (iii) submarine dissolution affected by acidified sea water due to rapid increase in volcanically-derived carbon dioxide and oxidized methane released from marine clathrates; (iv) submarine dissolution due to acid anoxic waters rising across the continental shelf, unrelated to atmospheric carbon dioxide or oxidized methane. Field and petrographic evidence suggests that (i) is the simplest option; and it is possible that (ii) and (iii) occurred, but none are proved. Option (iv) is unlikely given the evidence and modelling of supersaturation of upwelled waters with respect to bicarbonate. |
---|---|
AbstractList | The Permian–Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global sea‐level rose across the Permian–Triassic boundary, but an irregular top‐Permian erosion surface across a 10 km north–south transect of the Great Bank of Guizhou contains evidence of sea‐level fluctuation. The surface represents the ‘event horizon’ of mass extinction, below the biostratigraphic Permian–Triassic boundary defined by first appearance datum of conodont Hindeodus parvus. An Upper Permian foraminiferal grainstone beneath this surface contains geopetal sediments, etched grains, and pendent and meniscus cements interpreted here as vadose. However, these latter diagenetic processes occurred before the event horizon and were followed by erosion of the final Permian surface. This erosion cuts previous fabrics but lacks evidence of weathering or bioerosion. A few centimetres below is an earlier grainstone that was also eroded but lacks proof of sub‐aerial processes. Samples therefore reveal one, or possibly two, small‐scale relative sea‐level changes before the Triassic transgression in this area, and these may relate to local tectonics. The final Permian surface is subject to at least four interpretations: (i) sub‐aerial physical erosion and dissolution by carbon dioxide‐enriched fresh water or carbon dioxide‐enriched mixed water, prior to Triassic transgression; (ii) sub‐aerial physical erosion overprinted by dissolution related to carbon dioxide‐enriched sea water in the Early Triassic transgression; (iii) submarine dissolution affected by acidified sea water due to rapid increase in volcanically‐derived carbon dioxide and oxidized methane released from marine clathrates; (iv) submarine dissolution due to acid anoxic waters rising across the continental shelf, unrelated to atmospheric carbon dioxide or oxidized methane. Field and petrographic evidence suggests that (i) is the simplest option; and it is possible that (ii) and (iii) occurred, but none are proved. Option (iv) is unlikely given the evidence and modelling of supersaturation of upwelled waters with respect to bicarbonate. The Permian-Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global sea-level rose across the Permian-Triassic boundary, but an irregular top-Permian erosion surface across a 10km north-south transect of the Great Bank of Guizhou contains evidence of sea-level fluctuation. The surface represents the 'event horizon' of mass extinction, below the biostratigraphic Permian-Triassic boundary defined by first appearance datum of conodont Hindeodus parvus. An Upper Permian foraminiferal grainstone beneath this surface contains geopetal sediments, etched grains, and pendent and meniscus cements interpreted here as vadose. However, these latter diagenetic processes occurred before the event horizon and were followed by erosion of the final Permian surface. This erosion cuts previous fabrics but lacks evidence of weathering or bioerosion. A few centimetres below is an earlier grainstone that was also eroded but lacks proof of sub-aerial processes. Samples therefore reveal one, or possibly two, small-scale relative sea-level changes before the Triassic transgression in this area, and these may relate to local tectonics. The final Permian surface is subject to at least four interpretations: (i) sub-aerial physical erosion and dissolution by carbon dioxide-enriched fresh water or carbon dioxide-enriched mixed water, prior to Triassic transgression; (ii) sub-aerial physical erosion overprinted by dissolution related to carbon dioxide-enriched sea water in the Early Triassic transgression; (iii) submarine dissolution affected by acidified sea water due to rapid increase in volcanically-derived carbon dioxide and oxidized methane released from marine clathrates; (iv) submarine dissolution due to acid anoxic waters rising across the continental shelf, unrelated to atmospheric carbon dioxide or oxidized methane. Field and petrographic evidence suggests that (i) is the simplest option; and it is possible that (ii) and (iii) occurred, but none are proved. Option (iv) is unlikely given the evidence and modelling of supersaturation of upwelled waters with respect to bicarbonate. The Permian–Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global sea‐level rose across the Permian–Triassic boundary, but an irregular top‐Permian erosion surface across a 10 km north–south transect of the Great Bank of Guizhou contains evidence of sea‐level fluctuation. The surface represents the ‘event horizon’ of mass extinction, below the biostratigraphic Permian–Triassic boundary defined by first appearance datum of conodont Hindeodus parvus . An Upper Permian foraminiferal grainstone beneath this surface contains geopetal sediments, etched grains, and pendent and meniscus cements interpreted here as vadose. However, these latter diagenetic processes occurred before the event horizon and were followed by erosion of the final Permian surface. This erosion cuts previous fabrics but lacks evidence of weathering or bioerosion. A few centimetres below is an earlier grainstone that was also eroded but lacks proof of sub‐aerial processes. Samples therefore reveal one, or possibly two, small‐scale relative sea‐level changes before the Triassic transgression in this area, and these may relate to local tectonics. The final Permian surface is subject to at least four interpretations: (i) sub‐aerial physical erosion and dissolution by carbon dioxide‐enriched fresh water or carbon dioxide‐enriched mixed water, prior to Triassic transgression; (ii) sub‐aerial physical erosion overprinted by dissolution related to carbon dioxide‐enriched sea water in the Early Triassic transgression; (iii) submarine dissolution affected by acidified sea water due to rapid increase in volcanically‐derived carbon dioxide and oxidized methane released from marine clathrates; (iv) submarine dissolution due to acid anoxic waters rising across the continental shelf, unrelated to atmospheric carbon dioxide or oxidized methane. Field and petrographic evidence suggests that (i) is the simplest option; and it is possible that (ii) and (iii) occurred, but none are proved. Option (iv) is unlikely given the evidence and modelling of supersaturation of upwelled waters with respect to bicarbonate. |
Author | KERSHAW, STEVE COLLIN, PIERRE-YVES CRASQUIN-SOLEAU, SYLVIE FENG, QINGLAI |
Author_xml | – sequence: 1 fullname: COLLIN, PIERRE-YVES – sequence: 2 fullname: KERSHAW, STEVE – sequence: 3 fullname: CRASQUIN-SOLEAU, SYLVIE – sequence: 4 fullname: FENG, QINGLAI |
BackLink | https://hal.science/hal-00410512$$DView record in HAL |
BookMark | eNqNkl1v0zAUhiM0JLrBb8BXSEhLseM4HwghjbJ2SNVA6qZxZ526J4271N7spKz7RfxMnGXsghvmG3-c5z32Oa8PowNjDUYRYXTMwviwGTOeiZjTko0TSosxpWWZjO9eRKOnwEE0opTnMc3T7FV06P2GUpalRTmKfk9BafRE1WDWYQazIisNazTYakVunFXofR9QznpP2hrJD3RbDSa-cBq8D9TSdmYFbk9wh6YltXX63ppjMnMILfkC5prYisw6fV_b7pgsbNfWZFJrAx8JEGVN6-wOnd_3GIZ7tDWPL_HeNl0b9q-jlxU0Ht88zkfR5fT0YnIWz7_Pvk1O5jEIUSbxUhVplQqeJVmqMgWU0XSFPC0VVsslUFSZWAklEiaKgtGy4hUiJBwQBZZpxo-i90PeGhp54_Q21CUtaHl2Mpf9GaUpo4IlOxbYdwMb2nTboW_lVnuFTQMGbedlmiWMFqz8L5hQIXgh-ts_D-BDtx1WUukW-vpbB7qRjMredbmRvbmyN1f2rssH1-VdSFD8k-BvDc-Qfhqkv3SD-2fr5OL0a1gEeTzItW_x7kkO7lpmOc-FvDqfyTzPp-c_8ys5Cfzbga_ASlg77eXlIqGMh69JU5Hn_A-KF-EL |
CitedBy_id | crossref_primary_10_1016_j_earscirev_2014_05_007 crossref_primary_10_1016_j_sedgeo_2013_10_009 crossref_primary_10_1016_j_palaeo_2016_06_007 crossref_primary_10_1016_j_earscirev_2019_01_015 crossref_primary_10_1016_j_gloplacha_2012_12_008 crossref_primary_10_1111_sed_12741 crossref_primary_10_1016_j_earscirev_2013_08_015 crossref_primary_10_1016_j_earscirev_2020_103329 crossref_primary_10_1016_j_palaeo_2016_07_027 crossref_primary_10_1016_j_quageo_2020_101075 crossref_primary_10_1029_2021GL096998 crossref_primary_10_1016_j_earscirev_2014_12_006 crossref_primary_10_1093_nsr_nwad273 crossref_primary_10_1666_08_175_1 crossref_primary_10_1016_j_palaeo_2016_11_012 crossref_primary_10_1016_j_sedgeo_2024_106727 crossref_primary_10_1007_s12583_015_0554_7 crossref_primary_10_1007_s10347_019_0554_7 crossref_primary_10_1016_j_gloplacha_2023_104344 crossref_primary_10_1007_s11430_013_4731_1 crossref_primary_10_1016_j_chemgeo_2015_12_013 crossref_primary_10_1016_j_gloplacha_2011_09_009 crossref_primary_10_1016_j_gloplacha_2020_103176 crossref_primary_10_1016_j_gloplacha_2017_02_011 crossref_primary_10_1111_sed_13088 crossref_primary_10_1111_j_1472_4669_2011_00302_x crossref_primary_10_1016_j_palaeo_2010_10_035 crossref_primary_10_1007_s12583_014_0444_4 crossref_primary_10_1016_j_palaeo_2010_05_029 crossref_primary_10_1016_j_chemgeo_2019_119434 crossref_primary_10_1016_j_gloplacha_2012_11_015 crossref_primary_10_1016_j_palaeo_2017_05_015 crossref_primary_10_1016_j_palaeo_2017_07_020 crossref_primary_10_1007_s00531_014_1125_3 crossref_primary_10_1007_s13146_020_00626_0 crossref_primary_10_1007_s13369_021_05863_6 crossref_primary_10_3390_geosciences2040221 crossref_primary_10_1007_s12583_015_0523_1 crossref_primary_10_1016_j_jop_2017_10_001 crossref_primary_10_1016_j_palaeo_2011_11_023 crossref_primary_10_1016_j_palaeo_2016_11_044 crossref_primary_10_1111_let_12122 crossref_primary_10_1016_j_palaeo_2010_08_014 |
Cites_doi | 10.1046/j.1365-3121.2001.00311.x 10.1016/j.gloplacha.2006.06.008 10.1007/BF01135940 10.1016/S0031-0182(03)00732-6 10.1669/0883-1351(2003)18<138:PBSFSC>2.0.CO;2 10.1046/j.1365-3091.1997.d01-34.x 10.1016/j.earscirev.2006.05.002 10.1130/B26091.1 10.1016/j.palaeo.2004.11.027 10.1016/j.palaeo.2006.11.049 10.1007/s00531-006-0135-1 10.1016/j.sedgeo.2003.10.007 10.1130/0091-7613(1999)027<0359:ETCMAB>2.3.CO;2 10.1016/j.palaeo.2004.11.018 10.1127/nos/34/1996/81 10.2110/jsr.68.311 10.1130/G22827A.1 10.1016/j.gca.2005.03.021 10.1007/978-3-662-08726-8 10.1016/j.palaeo.2006.11.036 10.1126/science.1097023 10.1126/science.273.5274.452 10.1007/s10347-007-0105-5 10.1016/S0012-8252(99)00055-0 10.1130/0-8137-2356-6.395 10.1669/0883-1351(2003)018<0388:ETMMTM>2.0.CO;2 10.1016/S0037-0738(98)00005-0 10.1007/BF02667707 10.1016/j.gloplacha.2006.06.014 10.1016/S0031-0182(02)00670-3 10.1016/S0031-0182(03)00476-0 10.1016/j.sedgeo.2005.12.016 10.1016/j.palaeo.2006.11.052 10.1016/S0012-821X(01)00398-3 10.1007/978-3-642-78590-0_12 10.1016/S0031-0182(03)00667-9 10.1002/9781444314175 10.1016/S0031-0182(98)00139-4 10.1016/j.palaeo.2005.07.005 |
ContentType | Journal Article |
Copyright | 2008 The Authors. Journal compilation © 2008 International Association of Sedimentologists Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2008 The Authors. Journal compilation © 2008 International Association of Sedimentologists – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ BSCLL AAYXX CITATION 7T7 7TN 8FD C1K F1W FR3 H96 L.G P64 7S9 L.6 1XC |
DOI | 10.1111/j.1365-3091.2008.00992.x |
DatabaseName | AGRIS Istex CrossRef Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1365-3091 |
EndPage | 693 |
ExternalDocumentID | oai_HAL_hal_00410512v1 10_1111_j_1365_3091_2008_00992_x SED992 ark_67375_WNG_777FNX7W_C US201301604577 |
Genre | article |
GeographicLocations | China, People's Rep., Nanpanjiang Basin, Great Bank of Guizhou |
GeographicLocations_xml | – name: China, People's Rep., Nanpanjiang Basin, Great Bank of Guizhou |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPPZ ABPTK ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFMIJ AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OHT OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TN5 UB1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XJT XOL Y6R ZCA ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ABJIA ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION 7T7 7TN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 L.G P64 7S9 L.6 1XC UMC |
ID | FETCH-LOGICAL-a5592-bc84f4536264c6ca0104de349cefbba0ec65d5c521588109f3feea23aee5e9463 |
IEDL.DBID | DR2 |
ISSN | 0037-0746 |
IngestDate | Fri May 09 12:24:17 EDT 2025 Thu Jul 10 23:53:10 EDT 2025 Thu Jul 10 23:06:49 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Tue Jul 01 01:22:54 EDT 2025 Wed Jan 22 16:19:56 EST 2025 Wed Oct 30 09:50:45 EDT 2024 Wed Dec 27 19:09:42 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a5592-bc84f4536264c6ca0104de349cefbba0ec65d5c521588109f3feea23aee5e9463 |
Notes | http://dx.doi.org/10.1111/j.1365-3091.2008.00992.x ark:/67375/WNG-777FNX7W-C ArticleID:SED992 istex:7A34921EA55A1079980DC729A6DE7CD4C42D8A2E ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4358-3827 |
PQID | 20553856 |
PQPubID | 23462 |
PageCount | 17 |
ParticipantIDs | hal_primary_oai_HAL_hal_00410512v1 proquest_miscellaneous_46210819 proquest_miscellaneous_20553856 crossref_citationtrail_10_1111_j_1365_3091_2008_00992_x crossref_primary_10_1111_j_1365_3091_2008_00992_x wiley_primary_10_1111_j_1365_3091_2008_00992_x_SED992 istex_primary_ark_67375_WNG_777FNX7W_C fao_agris_US201301604577 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2009 |
PublicationDateYYYYMMDD | 2009-04-01 |
PublicationDate_xml | – month: 04 year: 2009 text: April 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK |
PublicationTitle | Sedimentology |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Wiley |
References | Weidlich, O. and Bernecker, M. (2007) Differential severity of Permian-Triassic environmental changes on Tethyan shallow-water carbonate platforms. Global Planet. Change, 55, 209-235. Riding, R. and Liang, L. (2005) Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol., 219, 101-115. Kershaw, S., Guo, L., Swift, A. and Fan, J. (2002) ?Microbialites in the Permian-Triassic boundary interval in central China: structure, age and distribution. Facies, 47, 83-90. Kidler, D.L. and Worsley, T.R. (2004) Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to Permo-Triassic extinction and recovery. Palaeogeogr. Palaeoclimatol. Palaeoecol., 203, 207-237. Payne, J.L., Lehrmann, D.J., Follett, D., Seibel, M., Kump, L.R., Riccardi, A., Altiner, D., Sano, H. and Wei, J. (2007) Erosional truncation of uppermost permian shallow-marine carbonates and implications for Permian-Triassic boundary events. Geol. Soc. Am. Bull., 119, 771-784. Enos, P., Wei, J. and Yan, Y. (1997) Facies distribution and retreat of Middle triassic platform margin, Guizhou Province, South China. Sedimentology, 44, 563-584. Payne, J., Lehrmann, D.J., Wei, J., Orchard, M.J., Schrag, D.P. and Knoll, A.H. (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 305, 506-509. Crasquin-Soleau, S., Broutin, J., Besse, J. and Berthelin, M. (2001) Ostracodes and paleobotany from Middle Permian of Oman. Implications on Pangeae reconstruction. Terra Nova, 13, 38-43. Ezaki, Y., Liu, J. and Adachi, N. (2003) Earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan Province, south China: implications for the nature of oceanic conditions after the end-Permian extinction. Palaios, 18, 388-402. Kolar-Jurkovsek, T. and Jurkovsek, B. (2007) First record of Hindeodus-Isarcicella population in Lower Triassic of Slovenia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 72-81. Hips, K. and Haas, J. (2006) Calcimicrobial associations at the Permian-Triassic boundary in a western Tethyan section, Bukk Mountains, Hungary. J. Sed. Geol., 185, 239-253. Lehrmann, D.J., Wei, J. and Enos, P. (1998) Controls on facies architecture of a large Triassic carbonate platform: the Great Bank of Guizhou, Nanpanjing basin, South China. J. Sed. Res., 68, 311-326. Krystyn, L., Richoz, S., Baud, A. and Twitchett, R.J. (2003) A unique Permian-Triassic boundary section from the Neothethyan Hawasina Basin, Central Oman Mountains. Palaeogeogr. Palaeoclimatol. Palaeoecol., 191, 329-344. Horacek, M., Brandner, R. and Abart, R. (2007a) Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: evidence for rapid changes in storage of organic carbon. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 347-354. Kakuwa, Y. and Matsumoto, R. (2006) Cerium negative anomaly just before the Permian and Triassic boundary event - the upward expansion of anoxia in the water column. Palaeogeogr. Palaeoclimatol. Palaeoecol., 229, 335-344. Lehrmann, D.J., Ramezani, J., Bowring, S.A., Martin, M.W., Montgomery, P., Enos, P., Payne, J.L., Orchard, M.J., Hongmei, W. and Jiayong, W. (2006) Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from South China. Geology, 34, 1053-1056. Musashi, M., Isozaki, Y., Koike, T. and Kreulen, R. (2001) Stable carbon isotope signatures in mid-Panthalassa shallow-water carbonates across the Permo-Triassic boundary: evidence for 13C-depleted superocean. Earth Planet. Sci. Lett., 191, 9-20. Flügel, E. (2004) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer-Verlag, Berlin, 976 pp. Kempe, S. (1990) Alkalinity: the link between anaerobic basins and shallow water carbonates? Naturwissenschaften, 77, 426-427. Tucker, M.E. and Wright, V.P. (1990) Carbonate Sedimentology. Blackwell Science, Oxford, 482 pp. Lehrmann, D.J. (1999) Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China. Geology, 27, 359-362. Crasquin-Soleau, S. and Kershaw, S. (2005) Ostracod fauna from the Permian-Triassic Boundary Interval of South China (Huaying Mountains, eastern Sichuan Province): palaeoenvironmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol., 217, 131-141. Lehrmann, D.L., Payne, J.L., Felix, S.V., Dillett, P.M., Wang, H., Yu, Y. and Wei, J. (2003) Permian-Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, south China: implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaios, 18, 138-152. Baud, A., Richoz, S. and Pruss, S. (2007) The Lower Triassic anachronistic facies in space and time. Global Planet. Change, 55, 81-89. Adachi, N., Ezaki, Y. and Liu, J. (2004) The fabrics and origins of peloids immediately after the end-Permian extinction, Guizhou Province, South China. Sed. Geol., 164, 161-178. Forti, P. (1993) Meccanismi genetici ed evolutivi delle grotte marine. Speleologia, 28, 63-67. Pruss, S., Bottjer, D.J., Corsetti, F.A. and Baud, A. (2006) A global marine sedimentary response to the end-Permian mass extinction: examples from southern Turkey and the western United States. Earth Sci. Rev., 78, 193-206. Riding, R. (2005) Phanerozoic reefal microbial carbonate abundance: comparisons with metazoan diversity, mass extinction events, and seawater saturation state. Rev. Esp. Micropaleontol., 37, 23-39. Forti, P. and Francavilla, F. (1993) The hydrogeology of some coastal paleodunes in an equatorial area and their karst-related morphologies: the case of Gesira (Somalia). Hydrogeological Processes in Karst Terrains: proceedings of the Antalya Symposium and field seminar, October 1990. AHS Publ., 207, 133-138. Erwin, D.H. (2006) Extinction. Princeton University Press, Princeton, NJ, 296 pp. Kershaw, S., Zhang, T. and Lan, G. (1999) A ?microbialite crust at the Permian-Triassic boundary in south China, and its palaeoenvironmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol., 146, 1-18. Kershaw, S., Li, Y., Crasquin-Soleau, S., Feng, Q., Mu, X., Collin, P.Y., Reynolds, A. and Guo, L. (2007) Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution. Facies, 53, 409-425. Yin, H., Sweet, W.C., Glenister, B.F., Kotlyar, G., Kozur, H., Newell, N.D., Sheng, J., Yang, Z. and Zakharov, Y.D. (1996) Recommendation of the Meishan section as global stratotype section and point for basal boundary of Triassic system. Newsl. Stratigr., 34, 81-108. Brookfield, M.E., Twitchett, R.J. and Goodings, C. (2003) Palaeoenvironments of the Permian-Triassic transition sections in Kashmir, India. Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 131-141. Horacek, M., Richoz, S., Brandner, R., Krystyn, L. and Spötl, C. (2007b) Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys: the 13C record from marine sections in Iran. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 355-359. Yin, H., Feng, Q., Baud, A., Xie, S., Benton, M.J., Lai, L. and Bottjer, D. (2007) The prelude of the end-Permian mass extinction predates a postulated bolide impact. Int. J. Earth Sci., 96, 903-909. Berner, R.A. (2005) The carbon and sulphur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim. Cosmochim. Acta, 69, 3211-3217. Baud, A., Cirilli, S. and Marcoux, J. (1997) Biotic response to mass extinction: the lowermost Triassic microbialites. Facies, 36, 238-242. Krull, E.S., Lehrmann, D.J., Druke, D., Kessel, B., Yu, Y. and Li, R. (2004) Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 204, 297-315. Hallam, A. and Wignall, P.B. (1999) Mass extinctions and sea-level changes. Earth-Sci. Rev., 48, 217-250. Enos, P., Wei, J. and Lehrmann, D.J. (1998) Death in Guizhou - Late Triassic drowning of the Yangtze carbonate platform. Sed. Geol., 118, 55-76. Knoll, A.H., Bambach, R.K., Canfield, D.E. and Grotzinger, J.P. (1996) Comparative Earth History and Late Permian mass extinction. Science, 273, 452-457. 2004; 164 1990; 77 2004; 204 2004; 203 1991; 58 1993; 28 1993; 207 1997; 44 2006; 34 2006; 78 1999; 27 2002; 356 1999; 48 2005; 217 1998; 118 2005; 219 1995 2006 1999; 146 2003; 191 2003; 18 2004 2007; 96 2007; 53 2007; 55 2004; 305 2003; 198 2007a; 252 1996; 34 2005; 69 1998; 68 1995; 63 2002; 47 2006; 229 2007; 119 2007b; 252 2001; 191 1990 1997; 36 2007; 252 2006; 185 1996; 273 2005; 37 2001; 13 e_1_2_8_28_1 e_1_2_8_29_1 Forti P. (e_1_2_8_16_1) 1993; 28 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_2_1 Baird G.C. (e_1_2_8_3_1) 1991 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 Mylroie J.E. (e_1_2_8_37_1) 1995 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 Forti P. (e_1_2_8_17_1) 1993; 207 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 Erwin D.H. (e_1_2_8_13_1) 2006 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 Baud A. (e_1_2_8_4_1) 1997; 36 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Riding R. (e_1_2_8_41_1) 2005; 37 e_1_2_8_30_1 |
References_xml | – reference: Kempe, S. (1990) Alkalinity: the link between anaerobic basins and shallow water carbonates? Naturwissenschaften, 77, 426-427. – reference: Krull, E.S., Lehrmann, D.J., Druke, D., Kessel, B., Yu, Y. and Li, R. (2004) Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 204, 297-315. – reference: Lehrmann, D.J. (1999) Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China. Geology, 27, 359-362. – reference: Berner, R.A. (2005) The carbon and sulphur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim. Cosmochim. Acta, 69, 3211-3217. – reference: Lehrmann, D.J., Ramezani, J., Bowring, S.A., Martin, M.W., Montgomery, P., Enos, P., Payne, J.L., Orchard, M.J., Hongmei, W. and Jiayong, W. (2006) Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from South China. Geology, 34, 1053-1056. – reference: Musashi, M., Isozaki, Y., Koike, T. and Kreulen, R. (2001) Stable carbon isotope signatures in mid-Panthalassa shallow-water carbonates across the Permo-Triassic boundary: evidence for 13C-depleted superocean. Earth Planet. Sci. Lett., 191, 9-20. – reference: Forti, P. and Francavilla, F. (1993) The hydrogeology of some coastal paleodunes in an equatorial area and their karst-related morphologies: the case of Gesira (Somalia). Hydrogeological Processes in Karst Terrains: proceedings of the Antalya Symposium and field seminar, October 1990. AHS Publ., 207, 133-138. – reference: Kershaw, S., Guo, L., Swift, A. and Fan, J. (2002) ?Microbialites in the Permian-Triassic boundary interval in central China: structure, age and distribution. Facies, 47, 83-90. – reference: Knoll, A.H., Bambach, R.K., Canfield, D.E. and Grotzinger, J.P. (1996) Comparative Earth History and Late Permian mass extinction. Science, 273, 452-457. – reference: Baud, A., Richoz, S. and Pruss, S. (2007) The Lower Triassic anachronistic facies in space and time. Global Planet. Change, 55, 81-89. – reference: Kolar-Jurkovsek, T. and Jurkovsek, B. (2007) First record of Hindeodus-Isarcicella population in Lower Triassic of Slovenia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 72-81. – reference: Erwin, D.H. (2006) Extinction. Princeton University Press, Princeton, NJ, 296 pp. – reference: Yin, H., Sweet, W.C., Glenister, B.F., Kotlyar, G., Kozur, H., Newell, N.D., Sheng, J., Yang, Z. and Zakharov, Y.D. (1996) Recommendation of the Meishan section as global stratotype section and point for basal boundary of Triassic system. Newsl. Stratigr., 34, 81-108. – reference: Adachi, N., Ezaki, Y. and Liu, J. (2004) The fabrics and origins of peloids immediately after the end-Permian extinction, Guizhou Province, South China. Sed. Geol., 164, 161-178. – reference: Kershaw, S., Li, Y., Crasquin-Soleau, S., Feng, Q., Mu, X., Collin, P.Y., Reynolds, A. and Guo, L. (2007) Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution. Facies, 53, 409-425. – reference: Baud, A., Cirilli, S. and Marcoux, J. (1997) Biotic response to mass extinction: the lowermost Triassic microbialites. Facies, 36, 238-242. – reference: Tucker, M.E. and Wright, V.P. (1990) Carbonate Sedimentology. Blackwell Science, Oxford, 482 pp. – reference: Brookfield, M.E., Twitchett, R.J. and Goodings, C. (2003) Palaeoenvironments of the Permian-Triassic transition sections in Kashmir, India. Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 131-141. – reference: Krystyn, L., Richoz, S., Baud, A. and Twitchett, R.J. (2003) A unique Permian-Triassic boundary section from the Neothethyan Hawasina Basin, Central Oman Mountains. Palaeogeogr. Palaeoclimatol. Palaeoecol., 191, 329-344. – reference: Forti, P. (1993) Meccanismi genetici ed evolutivi delle grotte marine. Speleologia, 28, 63-67. – reference: Weidlich, O. and Bernecker, M. (2007) Differential severity of Permian-Triassic environmental changes on Tethyan shallow-water carbonate platforms. Global Planet. Change, 55, 209-235. – reference: Crasquin-Soleau, S., Broutin, J., Besse, J. and Berthelin, M. (2001) Ostracodes and paleobotany from Middle Permian of Oman. Implications on Pangeae reconstruction. Terra Nova, 13, 38-43. – reference: Kakuwa, Y. and Matsumoto, R. (2006) Cerium negative anomaly just before the Permian and Triassic boundary event - the upward expansion of anoxia in the water column. Palaeogeogr. Palaeoclimatol. Palaeoecol., 229, 335-344. – reference: Enos, P., Wei, J. and Lehrmann, D.J. (1998) Death in Guizhou - Late Triassic drowning of the Yangtze carbonate platform. Sed. Geol., 118, 55-76. – reference: Payne, J., Lehrmann, D.J., Wei, J., Orchard, M.J., Schrag, D.P. and Knoll, A.H. (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 305, 506-509. – reference: Payne, J.L., Lehrmann, D.J., Follett, D., Seibel, M., Kump, L.R., Riccardi, A., Altiner, D., Sano, H. and Wei, J. (2007) Erosional truncation of uppermost permian shallow-marine carbonates and implications for Permian-Triassic boundary events. Geol. Soc. Am. Bull., 119, 771-784. – reference: Pruss, S., Bottjer, D.J., Corsetti, F.A. and Baud, A. (2006) A global marine sedimentary response to the end-Permian mass extinction: examples from southern Turkey and the western United States. Earth Sci. Rev., 78, 193-206. – reference: Hallam, A. and Wignall, P.B. (1999) Mass extinctions and sea-level changes. Earth-Sci. Rev., 48, 217-250. – reference: Kidler, D.L. and Worsley, T.R. (2004) Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to Permo-Triassic extinction and recovery. Palaeogeogr. Palaeoclimatol. Palaeoecol., 203, 207-237. – reference: Crasquin-Soleau, S. and Kershaw, S. (2005) Ostracod fauna from the Permian-Triassic Boundary Interval of South China (Huaying Mountains, eastern Sichuan Province): palaeoenvironmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol., 217, 131-141. – reference: Enos, P., Wei, J. and Yan, Y. (1997) Facies distribution and retreat of Middle triassic platform margin, Guizhou Province, South China. Sedimentology, 44, 563-584. – reference: Ezaki, Y., Liu, J. and Adachi, N. (2003) Earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan Province, south China: implications for the nature of oceanic conditions after the end-Permian extinction. Palaios, 18, 388-402. – reference: Horacek, M., Richoz, S., Brandner, R., Krystyn, L. and Spötl, C. (2007b) Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys: the 13C record from marine sections in Iran. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 355-359. – reference: Lehrmann, D.J., Wei, J. and Enos, P. (1998) Controls on facies architecture of a large Triassic carbonate platform: the Great Bank of Guizhou, Nanpanjing basin, South China. J. Sed. Res., 68, 311-326. – reference: Riding, R. and Liang, L. (2005) Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol., 219, 101-115. – reference: Flügel, E. (2004) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer-Verlag, Berlin, 976 pp. – reference: Yin, H., Feng, Q., Baud, A., Xie, S., Benton, M.J., Lai, L. and Bottjer, D. (2007) The prelude of the end-Permian mass extinction predates a postulated bolide impact. Int. J. Earth Sci., 96, 903-909. – reference: Hips, K. and Haas, J. (2006) Calcimicrobial associations at the Permian-Triassic boundary in a western Tethyan section, Bukk Mountains, Hungary. J. Sed. Geol., 185, 239-253. – reference: Lehrmann, D.L., Payne, J.L., Felix, S.V., Dillett, P.M., Wang, H., Yu, Y. and Wei, J. (2003) Permian-Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, south China: implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaios, 18, 138-152. – reference: Horacek, M., Brandner, R. and Abart, R. (2007a) Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: evidence for rapid changes in storage of organic carbon. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 347-354. – reference: Kershaw, S., Zhang, T. and Lan, G. (1999) A ?microbialite crust at the Permian-Triassic boundary in south China, and its palaeoenvironmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol., 146, 1-18. – reference: Riding, R. (2005) Phanerozoic reefal microbial carbonate abundance: comparisons with metazoan diversity, mass extinction events, and seawater saturation state. Rev. Esp. Micropaleontol., 37, 23-39. – volume: 229 start-page: 335 year: 2006 end-page: 344 article-title: Cerium negative anomaly just before the Permian and Triassic boundary event – the upward expansion of anoxia in the water column publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 191 start-page: 9 year: 2001 end-page: 20 article-title: Stable carbon isotope signatures in mid‐Panthalassa shallow‐water carbonates across the Permo‐Triassic boundary: evidence for C‐depleted superocean publication-title: Earth Planet. Sci. Lett. – volume: 252 start-page: 355 year: 2007b end-page: 359 article-title: Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys: the C record from marine sections in Iran publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 68 start-page: 311 year: 1998 end-page: 326 article-title: Controls on facies architecture of a large Triassic carbonate platform: the Great Bank of Guizhou, Nanpanjing basin, South China publication-title: J. Sed. Res. – volume: 55 start-page: 81 year: 2007 end-page: 89 article-title: The Lower Triassic anachronistic facies in space and time publication-title: Global Planet. Change – volume: 27 start-page: 359 year: 1999 end-page: 362 article-title: Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China publication-title: Geology – volume: 119 start-page: 771 year: 2007 end-page: 784 article-title: Erosional truncation of uppermost permian shallow‐marine carbonates and implications for Permian–Triassic boundary events publication-title: Geol. Soc. Am. Bull. – volume: 185 start-page: 239 year: 2006 end-page: 253 article-title: Calcimicrobial associations at the Permian–Triassic boundary in a western Tethyan section, Bukk Mountains, Hungary publication-title: J. Sed. Geol. – volume: 219 start-page: 101 year: 2005 end-page: 115 article-title: Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 198 start-page: 131 year: 2003 end-page: 141 article-title: Palaeoenvironments of the Permian–Triassic transition sections in Kashmir, India publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 164 start-page: 161 year: 2004 end-page: 178 article-title: The fabrics and origins of peloids immediately after the end‐Permian extinction, Guizhou Province, South China publication-title: Sed. Geol. – volume: 36 start-page: 238 year: 1997 end-page: 242 article-title: Biotic response to mass extinction: the lowermost Triassic microbialites publication-title: Facies – volume: 55 start-page: 209 year: 2007 end-page: 235 article-title: Differential severity of Permian–Triassic environmental changes on Tethyan shallow‐water carbonate platforms publication-title: Global Planet. Change – year: 1990 – volume: 356 start-page: 395 year: 2002 end-page: 413 – volume: 48 start-page: 217 year: 1999 end-page: 250 article-title: Mass extinctions and sea‐level changes publication-title: Earth-Sci. Rev. – volume: 203 start-page: 207 year: 2004 end-page: 237 article-title: Causes and consequences of extreme Permo‐Triassic warming to globally equable climate and relation to Permo‐Triassic extinction and recovery publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 252 start-page: 72 year: 2007 end-page: 81 article-title: First record of population in Lower Triassic of Slovenia publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 204 start-page: 297 year: 2004 end-page: 315 article-title: Stable carbon isotope stratigraphy across the Permian–Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, South China publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 305 start-page: 506 year: 2004 end-page: 509 article-title: Large perturbations of the carbon cycle during recovery from the end‐Permian extinction publication-title: Science – volume: 37 start-page: 23 year: 2005 end-page: 39 article-title: Phanerozoic reefal microbial carbonate abundance: comparisons with metazoan diversity, mass extinction events, and seawater saturation state publication-title: Rev. Esp. Micropaleontol. – volume: 18 start-page: 138 year: 2003 end-page: 152 article-title: Permian–Triassic boundary sections from shallow‐marine carbonate platforms of the Nanpanjiang Basin, south China: implications for oceanic conditions associated with the end‐Permian extinction and its aftermath publication-title: Palaios – start-page: 225 year: 1995 end-page: 256 – volume: 53 start-page: 409 year: 2007 end-page: 425 article-title: Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution publication-title: Facies – volume: 69 start-page: 3211 year: 2005 end-page: 3217 article-title: The carbon and sulphur cycles and atmospheric oxygen from middle Permian to middle Triassic publication-title: Geochim. Cosmochim. Acta – volume: 34 start-page: 81 year: 1996 end-page: 108 article-title: Recommendation of the Meishan section as global stratotype section and point for basal boundary of Triassic system publication-title: Newsl. Stratigr. – volume: 58 start-page: 233 year: 1991 end-page: 257 – volume: 118 start-page: 55 year: 1998 end-page: 76 article-title: Death in Guizhou – Late Triassic drowning of the Yangtze carbonate platform publication-title: Sed. Geol. – year: 2006 – year: 2004 – volume: 146 start-page: 1 year: 1999 end-page: 18 article-title: A ?microbialite crust at the Permian–Triassic boundary in south China, and its palaeoenvironmental significance publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 18 start-page: 388 year: 2003 end-page: 402 article-title: Earliest Triassic microbialite micro‐ to megastructures in the Huaying area of Sichuan Province, south China: implications for the nature of oceanic conditions after the end‐Permian extinction publication-title: Palaios – volume: 78 start-page: 193 year: 2006 end-page: 206 article-title: A global marine sedimentary response to the end‐Permian mass extinction: examples from southern Turkey and the western United States publication-title: Earth Sci. Rev. – volume: 47 start-page: 83 year: 2002 end-page: 90 article-title: ?Microbialites in the Permian–Triassic boundary interval in central China: structure, age and distribution publication-title: Facies – volume: 96 start-page: 903 year: 2007 end-page: 909 article-title: The prelude of the end‐Permian mass extinction predates a postulated bolide impact publication-title: Int. J. Earth Sci. – volume: 252 start-page: 347 year: 2007a end-page: 354 article-title: Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: evidence for rapid changes in storage of organic carbon publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 34 start-page: 1053 year: 2006 end-page: 1056 article-title: Timing of recovery from the end‐Permian extinction: Geochronologic and biostratigraphic constraints from South China publication-title: Geology – volume: 13 start-page: 38 year: 2001 end-page: 43 article-title: Ostracodes and paleobotany from Middle Permian of Oman. Implications on Pangeae reconstruction publication-title: Terra Nova – volume: 191 start-page: 329 year: 2003 end-page: 344 article-title: A unique Permian–Triassic boundary section from the Neothethyan Hawasina Basin, Central Oman Mountains publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 63 start-page: 55 year: 1995 end-page: 76 – volume: 217 start-page: 131 year: 2005 end-page: 141 article-title: Ostracod fauna from the Permian–Triassic Boundary Interval of South China (Huaying Mountains, eastern Sichuan Province): palaeoenvironmental significance publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 44 start-page: 563 year: 1997 end-page: 584 article-title: Facies distribution and retreat of Middle triassic platform margin, Guizhou Province, South China publication-title: Sedimentology – volume: 28 start-page: 63 year: 1993 end-page: 67 article-title: Meccanismi genetici ed evolutivi delle grotte marine publication-title: Speleologia – volume: 77 start-page: 426 year: 1990 end-page: 427 article-title: Alkalinity: the link between anaerobic basins and shallow water carbonates? publication-title: Naturwissenschaften – volume: 207 start-page: 133 year: 1993 end-page: 138 article-title: The hydrogeology of some coastal paleodunes in an equatorial area and their karst‐related morphologies: the case of Gesira (Somalia). Hydrogeological Processes in Karst Terrains: proceedings of the Antalya Symposium and field seminar, October 1990 publication-title: AHS Publ. – volume: 273 start-page: 452 year: 1996 end-page: 457 article-title: Comparative Earth History and Late Permian mass extinction publication-title: Science – ident: e_1_2_8_9_1 doi: 10.1046/j.1365-3121.2001.00311.x – ident: e_1_2_8_5_1 doi: 10.1016/j.gloplacha.2006.06.008 – ident: e_1_2_8_23_1 doi: 10.1007/BF01135940 – ident: e_1_2_8_30_1 doi: 10.1016/S0031-0182(03)00732-6 – ident: e_1_2_8_34_1 doi: 10.1669/0883-1351(2003)18<138:PBSFSC>2.0.CO;2 – volume: 36 start-page: 238 year: 1997 ident: e_1_2_8_4_1 article-title: Biotic response to mass extinction: the lowermost Triassic microbialites publication-title: Facies – ident: e_1_2_8_11_1 doi: 10.1046/j.1365-3091.1997.d01-34.x – ident: e_1_2_8_40_1 doi: 10.1016/j.earscirev.2006.05.002 – ident: e_1_2_8_39_1 doi: 10.1130/B26091.1 – ident: e_1_2_8_8_1 doi: 10.1016/j.palaeo.2004.11.027 – ident: e_1_2_8_20_1 doi: 10.1016/j.palaeo.2006.11.049 – volume-title: Extinction year: 2006 ident: e_1_2_8_13_1 – volume: 207 start-page: 133 year: 1993 ident: e_1_2_8_17_1 article-title: The hydrogeology of some coastal paleodunes in an equatorial area and their karst‐related morphologies: the case of Gesira (Somalia). Hydrogeological Processes in Karst Terrains: proceedings of the Antalya Symposium and field seminar, October 1990 publication-title: AHS Publ. – ident: e_1_2_8_47_1 doi: 10.1007/s00531-006-0135-1 – ident: e_1_2_8_2_1 doi: 10.1016/j.sedgeo.2003.10.007 – ident: e_1_2_8_32_1 doi: 10.1130/0091-7613(1999)027<0359:ETCMAB>2.3.CO;2 – ident: e_1_2_8_42_1 doi: 10.1016/j.palaeo.2004.11.018 – ident: e_1_2_8_46_1 doi: 10.1127/nos/34/1996/81 – ident: e_1_2_8_33_1 doi: 10.2110/jsr.68.311 – ident: e_1_2_8_35_1 doi: 10.1130/G22827A.1 – ident: e_1_2_8_6_1 doi: 10.1016/j.gca.2005.03.021 – ident: e_1_2_8_15_1 doi: 10.1007/978-3-662-08726-8 – ident: e_1_2_8_29_1 doi: 10.1016/j.palaeo.2006.11.036 – ident: e_1_2_8_38_1 doi: 10.1126/science.1097023 – ident: e_1_2_8_28_1 doi: 10.1126/science.273.5274.452 – ident: e_1_2_8_26_1 doi: 10.1007/s10347-007-0105-5 – volume: 37 start-page: 23 year: 2005 ident: e_1_2_8_41_1 article-title: Phanerozoic reefal microbial carbonate abundance: comparisons with metazoan diversity, mass extinction events, and seawater saturation state publication-title: Rev. Esp. Micropaleontol. – ident: e_1_2_8_18_1 doi: 10.1016/S0012-8252(99)00055-0 – ident: e_1_2_8_45_1 doi: 10.1130/0-8137-2356-6.395 – start-page: 233 volume-title: Modern and Ancient Continental Shelf Anoxia year: 1991 ident: e_1_2_8_3_1 – ident: e_1_2_8_14_1 doi: 10.1669/0883-1351(2003)018<0388:ETMMTM>2.0.CO;2 – ident: e_1_2_8_12_1 doi: 10.1016/S0037-0738(98)00005-0 – ident: e_1_2_8_25_1 doi: 10.1007/BF02667707 – start-page: 55 volume-title: Unconformities and Porosity in Carbonate Strata year: 1995 ident: e_1_2_8_37_1 – ident: e_1_2_8_44_1 doi: 10.1016/j.gloplacha.2006.06.014 – ident: e_1_2_8_31_1 doi: 10.1016/S0031-0182(02)00670-3 – ident: e_1_2_8_7_1 doi: 10.1016/S0031-0182(03)00476-0 – ident: e_1_2_8_19_1 doi: 10.1016/j.sedgeo.2005.12.016 – ident: e_1_2_8_21_1 doi: 10.1016/j.palaeo.2006.11.052 – ident: e_1_2_8_36_1 doi: 10.1016/S0012-821X(01)00398-3 – ident: e_1_2_8_10_1 doi: 10.1007/978-3-642-78590-0_12 – volume: 28 start-page: 63 year: 1993 ident: e_1_2_8_16_1 article-title: Meccanismi genetici ed evolutivi delle grotte marine publication-title: Speleologia – ident: e_1_2_8_27_1 doi: 10.1016/S0031-0182(03)00667-9 – ident: e_1_2_8_43_1 doi: 10.1002/9781444314175 – ident: e_1_2_8_24_1 doi: 10.1016/S0031-0182(98)00139-4 – ident: e_1_2_8_22_1 doi: 10.1016/j.palaeo.2005.07.005 |
SSID | ssj0016489 |
Score | 2.1104777 |
Snippet | The Permian-Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global... The Permian–Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global... |
SourceID | hal proquest crossref wiley istex fao |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 677 |
SubjectTerms | Conodonta Earth Sciences Hindeodus Marine Marine dissolution microbialite Paleontology Permian-Triassic boundary Sciences of the Universe South China sub-aerial exposure |
Title | Facies changes and diagenetic processes across the Permian-Triassic boundary event horizon, Great Bank of Guizhou, South China: a controversy of erosion and dissolution |
URI | https://api.istex.fr/ark:/67375/WNG-777FNX7W-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-3091.2008.00992.x https://www.proquest.com/docview/20553856 https://www.proquest.com/docview/46210819 https://hal.science/hal-00410512 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgCIkXGDctXC2EeFqqJbHjhLcx1lYIKsRWrW-W49jrVJRMbYPWPvEf-Bf8LH7JznEuWhFIE-IlqhI7jXVu37HPhZDXPNWW5Yn1reKJz8CH8LPEhn4O1lpjxl7i8tY-jeLhmH2Y8EkT_4S5MHV9iG7DDSXD6WsUcJUtNoUcI7QiMHhtSGSahj3Ek_gA8dGXrpIUOAVJjYQj3Jlj8WZQzx9ftGGpblpVwnWK0ZK3kAAXG5D0KrB1lql_j8zaNdUBKbNetcx6ev1bucf_s-htcrcBsHS_5rj75IYpHpDbA9cgePWQ_Owr0BYLWicUL6gqcgosCGyK2ZL0vM5LwAdu1RTwJ_2MATmq-PX9xzGIAwipppnr9jRfUVdgik7L-dm6LHap29Gg71Qxo6Wlg-psPS2rXeoaAVLXC_wtVbSOv8eAkxUOM_BPwH7Nt3TS9oiM-4fHB0O_6QfhK_B7Qj_TCbOMYwEdpmOt0JXMTcRSbWyWqT2jY55zDYCEJ8BiqY2sMSqMlDHcpCyOHpOtoizMDtCeBzZTCedcaMZZCENA2wF6jmMlbJJ6RLS0l7oplo49O77KK04TUEIiJZpWnkgJeeGRoJt5XhcMucacHWAvqU5Br8vxUYinyUEMYFsIj7wCnuvehMXAh_sfJd7DUmmgUsNvgUfeOJbshqn5DAP2BJcno4EUQvRHE3EiDzzysuVZCWoEz4ZUYcpqAZ_DwfTx-O8jWBwGiB89wh2HXnt18ujwPfx48o_znpI77QneXvCMbC3nlXkOQHCZvXAifgm0PE14 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgE4IX7tPCgFkI8bRUS2LnwtsYawt0FWKt1jfLcWw6dUqmtpnWPvEf-Bf8LH4J5zhptCKQJsRLVKV2EuvcvmOfCyGveaIMy2LjGsljl4EP4aax8d0MrLXCjL3Y5q0d98PukH0c8VHdDghzYar6EM2GG0qG1dco4LghvS7lGKIVgMVbxUQmid8CQLmJDb6tf_WlqSUFbkFcYeEA9-ZYuB7W88cnrdmq20YWcB1jvOQmkuBqDZReh7bWNrUfkPPVqqqQlEmrnKcttfyt4ON_WvZDcr_GsPSgYrpH5JbOH5M7HdsjePGE_GhLUBgzWuUUz6jMMwpcCJyKCZP0okpNwD_ssilAUPoZY3Jk_vPb9wFIBMipoqlt-DRdUFtjio6L6dmyyPeo3dSg72Q-oYWhnfJsOS7KPWp7AVLbDvwtlbQKwceYkwUO0_Am4MD6WxqBe0qG7aPBYdetW0K4Elwf301VzAzjWEOHqVBJ9CYzHbBEaZOmcl-rkGdcASbhMXBZYgKjtfQDqTXXCQuDLbKRF7neBuJzz6Qy5pxHinHmwxBQeACgw1BGJk4cEq2IL1RdLx3bdpyLa34TUEIgJepunkgJceUQr5l5UdUMucGcbeAvIb-CahfDEx8PlL0Q8HYUOeQVMF3zJKwH3j3oCbyH1dJAq_qXnkPeWJ5shsnpBGP2Ii5O-x0RRVG7P4pOxaFDdldMK0CT4PGQzHVRzuBzOFg_Hv59BAt9DyGkQ7hl0RuvTpwcvYcfz_5x3i652x0c90TvQ__TDrm3OtDb956Tjfm01C8AF87Tl1befwF8DlGT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgE4gX7tPCbRZCPC1Vk9i58DbWtQVGNbFV65vlODadipKqbdDaJ_4D_4KfxS_hHCeNVgTShHiJqtROYp3vHH-2z4WQVzxRhmWxcY3ksctgDeGmsfHdDGZrhRF7sY1b-zgI-0P2fsRHtf8TxsJU-SGaDTfUDGuvUcGnmdlUcvTQCmDCW7tEJonfAj65zcJ2jAjvfGpSScGqIK6ocIBbcyzc9Or545M2pqqbRhZwHaO75DZK4HKDk15ltnZq6t4jk_WgKo-USatcpC21-i3f4_8Z9X1yt2aw9KCC3ANyQ-cPya2erRC8fER-dCWYizmtIornVOYZBQwCTjFckk6rwAT8w46aAgGlJ-iRI_Of376fgT6Aliqa2nJPsyW1GabouJhdrIp8n9otDfpW5hNaGNorL1bjotynthIgtcXA31BJKwd89DhZYjMNbwL81d_SqNtjMuwenR323boghCth4eO7qYqZYRwz6DAVKolryUwHLFHapKlsaxXyjCtgJDwGjCUmMFpLP5Bac52wMNghW3mR612QPfdMKmPOeaQYZz40AXMH9DkMZWTixCHRWvZC1dnSsWjHF3Fl1QSSECiJupYnSkJcOsRrek6rjCHX6LML8BLyMxh2MTz18TjZC4FtR5FDXgLmmidhNvD-wbHAe5grDWyq_9VzyGsLyaaZnE3QYy_i4nzQE1EUdQej6FwcOmRvjVkBdgQPh2Sui3IOn8Nh7uPh31uw0PeQQDqEW4Ree3Ti9KgDP578Y789cvuk0xXH7wYfnpI769O8tveMbC1mpX4OpHCRvrDa_gtUSFBL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facies+changes+and+diagenetic+processes+across+the+Permian-Triassic+boundary+event+horizon%2C+Great+Bank+of+Guizhou%2C+South+China%3A+a+controversy+of+erosion+and+dissolution&rft.jtitle=Sedimentology&rft.au=Collin%2C+Pierre-Yves&rft.au=Kershaw%2C+Steve&rft.au=Crasquin-Soleau%2C+Sylvie&rft.au=Feng%2C+Qinglai&rft.date=2009-04-01&rft.issn=0037-0746&rft.eissn=1365-3091&rft.volume=56&rft.issue=3&rft.spage=677&rft.epage=693&rft_id=info:doi/10.1111%2Fj.1365-3091.2008.00992.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0037-0746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0037-0746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0037-0746&client=summon |