Facies changes and diagenetic processes across the Permian-Triassic boundary event horizon, Great Bank of Guizhou, South China: a controversy of erosion and dissolution

The Permian-Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global sea-level rose across the Permian-Triassic boundary, but an irregular top-Permian erosion surface across a 10 km north-south transect of the...

Full description

Saved in:
Bibliographic Details
Published inSedimentology Vol. 56; no. 3; pp. 677 - 693
Main Authors COLLIN, PIERRE-YVES, KERSHAW, STEVE, CRASQUIN-SOLEAU, SYLVIE, FENG, QINGLAI
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.04.2009
Blackwell Publishing Ltd
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Permian-Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global sea-level rose across the Permian-Triassic boundary, but an irregular top-Permian erosion surface across a 10 km north-south transect of the Great Bank of Guizhou contains evidence of sea-level fluctuation. The surface represents the 'event horizon' of mass extinction, below the biostratigraphic Permian-Triassic boundary defined by first appearance datum of conodont Hindeodus parvus. An Upper Permian foraminiferal grainstone beneath this surface contains geopetal sediments, etched grains, and pendent and meniscus cements interpreted here as vadose. However, these latter diagenetic processes occurred before the event horizon and were followed by erosion of the final Permian surface. This erosion cuts previous fabrics but lacks evidence of weathering or bioerosion. A few centimetres below is an earlier grainstone that was also eroded but lacks proof of sub-aerial processes. Samples therefore reveal one, or possibly two, small-scale relative sea-level changes before the Triassic transgression in this area, and these may relate to local tectonics. The final Permian surface is subject to at least four interpretations: (i) sub-aerial physical erosion and dissolution by carbon dioxide-enriched fresh water or carbon dioxide-enriched mixed water, prior to Triassic transgression; (ii) sub-aerial physical erosion overprinted by dissolution related to carbon dioxide-enriched sea water in the Early Triassic transgression; (iii) submarine dissolution affected by acidified sea water due to rapid increase in volcanically-derived carbon dioxide and oxidized methane released from marine clathrates; (iv) submarine dissolution due to acid anoxic waters rising across the continental shelf, unrelated to atmospheric carbon dioxide or oxidized methane. Field and petrographic evidence suggests that (i) is the simplest option; and it is possible that (ii) and (iii) occurred, but none are proved. Option (iv) is unlikely given the evidence and modelling of supersaturation of upwelled waters with respect to bicarbonate.
AbstractList The Permian–Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global sea‐level rose across the Permian–Triassic boundary, but an irregular top‐Permian erosion surface across a 10 km north–south transect of the Great Bank of Guizhou contains evidence of sea‐level fluctuation. The surface represents the ‘event horizon’ of mass extinction, below the biostratigraphic Permian–Triassic boundary defined by first appearance datum of conodont Hindeodus parvus. An Upper Permian foraminiferal grainstone beneath this surface contains geopetal sediments, etched grains, and pendent and meniscus cements interpreted here as vadose. However, these latter diagenetic processes occurred before the event horizon and were followed by erosion of the final Permian surface. This erosion cuts previous fabrics but lacks evidence of weathering or bioerosion. A few centimetres below is an earlier grainstone that was also eroded but lacks proof of sub‐aerial processes. Samples therefore reveal one, or possibly two, small‐scale relative sea‐level changes before the Triassic transgression in this area, and these may relate to local tectonics. The final Permian surface is subject to at least four interpretations: (i) sub‐aerial physical erosion and dissolution by carbon dioxide‐enriched fresh water or carbon dioxide‐enriched mixed water, prior to Triassic transgression; (ii) sub‐aerial physical erosion overprinted by dissolution related to carbon dioxide‐enriched sea water in the Early Triassic transgression; (iii) submarine dissolution affected by acidified sea water due to rapid increase in volcanically‐derived carbon dioxide and oxidized methane released from marine clathrates; (iv) submarine dissolution due to acid anoxic waters rising across the continental shelf, unrelated to atmospheric carbon dioxide or oxidized methane. Field and petrographic evidence suggests that (i) is the simplest option; and it is possible that (ii) and (iii) occurred, but none are proved. Option (iv) is unlikely given the evidence and modelling of supersaturation of upwelled waters with respect to bicarbonate.
The Permian-Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global sea-level rose across the Permian-Triassic boundary, but an irregular top-Permian erosion surface across a 10km north-south transect of the Great Bank of Guizhou contains evidence of sea-level fluctuation. The surface represents the 'event horizon' of mass extinction, below the biostratigraphic Permian-Triassic boundary defined by first appearance datum of conodont Hindeodus parvus. An Upper Permian foraminiferal grainstone beneath this surface contains geopetal sediments, etched grains, and pendent and meniscus cements interpreted here as vadose. However, these latter diagenetic processes occurred before the event horizon and were followed by erosion of the final Permian surface. This erosion cuts previous fabrics but lacks evidence of weathering or bioerosion. A few centimetres below is an earlier grainstone that was also eroded but lacks proof of sub-aerial processes. Samples therefore reveal one, or possibly two, small-scale relative sea-level changes before the Triassic transgression in this area, and these may relate to local tectonics. The final Permian surface is subject to at least four interpretations: (i) sub-aerial physical erosion and dissolution by carbon dioxide-enriched fresh water or carbon dioxide-enriched mixed water, prior to Triassic transgression; (ii) sub-aerial physical erosion overprinted by dissolution related to carbon dioxide-enriched sea water in the Early Triassic transgression; (iii) submarine dissolution affected by acidified sea water due to rapid increase in volcanically-derived carbon dioxide and oxidized methane released from marine clathrates; (iv) submarine dissolution due to acid anoxic waters rising across the continental shelf, unrelated to atmospheric carbon dioxide or oxidized methane. Field and petrographic evidence suggests that (i) is the simplest option; and it is possible that (ii) and (iii) occurred, but none are proved. Option (iv) is unlikely given the evidence and modelling of supersaturation of upwelled waters with respect to bicarbonate.
The Permian–Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global sea‐level rose across the Permian–Triassic boundary, but an irregular top‐Permian erosion surface across a 10 km north–south transect of the Great Bank of Guizhou contains evidence of sea‐level fluctuation. The surface represents the ‘event horizon’ of mass extinction, below the biostratigraphic Permian–Triassic boundary defined by first appearance datum of conodont Hindeodus parvus . An Upper Permian foraminiferal grainstone beneath this surface contains geopetal sediments, etched grains, and pendent and meniscus cements interpreted here as vadose. However, these latter diagenetic processes occurred before the event horizon and were followed by erosion of the final Permian surface. This erosion cuts previous fabrics but lacks evidence of weathering or bioerosion. A few centimetres below is an earlier grainstone that was also eroded but lacks proof of sub‐aerial processes. Samples therefore reveal one, or possibly two, small‐scale relative sea‐level changes before the Triassic transgression in this area, and these may relate to local tectonics. The final Permian surface is subject to at least four interpretations: (i) sub‐aerial physical erosion and dissolution by carbon dioxide‐enriched fresh water or carbon dioxide‐enriched mixed water, prior to Triassic transgression; (ii) sub‐aerial physical erosion overprinted by dissolution related to carbon dioxide‐enriched sea water in the Early Triassic transgression; (iii) submarine dissolution affected by acidified sea water due to rapid increase in volcanically‐derived carbon dioxide and oxidized methane released from marine clathrates; (iv) submarine dissolution due to acid anoxic waters rising across the continental shelf, unrelated to atmospheric carbon dioxide or oxidized methane. Field and petrographic evidence suggests that (i) is the simplest option; and it is possible that (ii) and (iii) occurred, but none are proved. Option (iv) is unlikely given the evidence and modelling of supersaturation of upwelled waters with respect to bicarbonate.
Author KERSHAW, STEVE
COLLIN, PIERRE-YVES
CRASQUIN-SOLEAU, SYLVIE
FENG, QINGLAI
Author_xml – sequence: 1
  fullname: COLLIN, PIERRE-YVES
– sequence: 2
  fullname: KERSHAW, STEVE
– sequence: 3
  fullname: CRASQUIN-SOLEAU, SYLVIE
– sequence: 4
  fullname: FENG, QINGLAI
BackLink https://hal.science/hal-00410512$$DView record in HAL
BookMark eNqNkl1v0zAUhiM0JLrBb8BXSEhLseM4HwghjbJ2SNVA6qZxZ526J4271N7spKz7RfxMnGXsghvmG3-c5z32Oa8PowNjDUYRYXTMwviwGTOeiZjTko0TSosxpWWZjO9eRKOnwEE0opTnMc3T7FV06P2GUpalRTmKfk9BafRE1WDWYQazIisNazTYakVunFXofR9QznpP2hrJD3RbDSa-cBq8D9TSdmYFbk9wh6YltXX63ppjMnMILfkC5prYisw6fV_b7pgsbNfWZFJrAx8JEGVN6-wOnd_3GIZ7tDWPL_HeNl0b9q-jlxU0Ht88zkfR5fT0YnIWz7_Pvk1O5jEIUSbxUhVplQqeJVmqMgWU0XSFPC0VVsslUFSZWAklEiaKgtGy4hUiJBwQBZZpxo-i90PeGhp54_Q21CUtaHl2Mpf9GaUpo4IlOxbYdwMb2nTboW_lVnuFTQMGbedlmiWMFqz8L5hQIXgh-ts_D-BDtx1WUukW-vpbB7qRjMredbmRvbmyN1f2rssH1-VdSFD8k-BvDc-Qfhqkv3SD-2fr5OL0a1gEeTzItW_x7kkO7lpmOc-FvDqfyTzPp-c_8ys5Cfzbga_ASlg77eXlIqGMh69JU5Hn_A-KF-EL
CitedBy_id crossref_primary_10_1016_j_earscirev_2014_05_007
crossref_primary_10_1016_j_sedgeo_2013_10_009
crossref_primary_10_1016_j_palaeo_2016_06_007
crossref_primary_10_1016_j_earscirev_2019_01_015
crossref_primary_10_1016_j_gloplacha_2012_12_008
crossref_primary_10_1111_sed_12741
crossref_primary_10_1016_j_earscirev_2013_08_015
crossref_primary_10_1016_j_earscirev_2020_103329
crossref_primary_10_1016_j_palaeo_2016_07_027
crossref_primary_10_1016_j_quageo_2020_101075
crossref_primary_10_1029_2021GL096998
crossref_primary_10_1016_j_earscirev_2014_12_006
crossref_primary_10_1093_nsr_nwad273
crossref_primary_10_1666_08_175_1
crossref_primary_10_1016_j_palaeo_2016_11_012
crossref_primary_10_1016_j_sedgeo_2024_106727
crossref_primary_10_1007_s12583_015_0554_7
crossref_primary_10_1007_s10347_019_0554_7
crossref_primary_10_1016_j_gloplacha_2023_104344
crossref_primary_10_1007_s11430_013_4731_1
crossref_primary_10_1016_j_chemgeo_2015_12_013
crossref_primary_10_1016_j_gloplacha_2011_09_009
crossref_primary_10_1016_j_gloplacha_2020_103176
crossref_primary_10_1016_j_gloplacha_2017_02_011
crossref_primary_10_1111_sed_13088
crossref_primary_10_1111_j_1472_4669_2011_00302_x
crossref_primary_10_1016_j_palaeo_2010_10_035
crossref_primary_10_1007_s12583_014_0444_4
crossref_primary_10_1016_j_palaeo_2010_05_029
crossref_primary_10_1016_j_chemgeo_2019_119434
crossref_primary_10_1016_j_gloplacha_2012_11_015
crossref_primary_10_1016_j_palaeo_2017_05_015
crossref_primary_10_1016_j_palaeo_2017_07_020
crossref_primary_10_1007_s00531_014_1125_3
crossref_primary_10_1007_s13146_020_00626_0
crossref_primary_10_1007_s13369_021_05863_6
crossref_primary_10_3390_geosciences2040221
crossref_primary_10_1007_s12583_015_0523_1
crossref_primary_10_1016_j_jop_2017_10_001
crossref_primary_10_1016_j_palaeo_2011_11_023
crossref_primary_10_1016_j_palaeo_2016_11_044
crossref_primary_10_1111_let_12122
crossref_primary_10_1016_j_palaeo_2010_08_014
Cites_doi 10.1046/j.1365-3121.2001.00311.x
10.1016/j.gloplacha.2006.06.008
10.1007/BF01135940
10.1016/S0031-0182(03)00732-6
10.1669/0883-1351(2003)18<138:PBSFSC>2.0.CO;2
10.1046/j.1365-3091.1997.d01-34.x
10.1016/j.earscirev.2006.05.002
10.1130/B26091.1
10.1016/j.palaeo.2004.11.027
10.1016/j.palaeo.2006.11.049
10.1007/s00531-006-0135-1
10.1016/j.sedgeo.2003.10.007
10.1130/0091-7613(1999)027<0359:ETCMAB>2.3.CO;2
10.1016/j.palaeo.2004.11.018
10.1127/nos/34/1996/81
10.2110/jsr.68.311
10.1130/G22827A.1
10.1016/j.gca.2005.03.021
10.1007/978-3-662-08726-8
10.1016/j.palaeo.2006.11.036
10.1126/science.1097023
10.1126/science.273.5274.452
10.1007/s10347-007-0105-5
10.1016/S0012-8252(99)00055-0
10.1130/0-8137-2356-6.395
10.1669/0883-1351(2003)018<0388:ETMMTM>2.0.CO;2
10.1016/S0037-0738(98)00005-0
10.1007/BF02667707
10.1016/j.gloplacha.2006.06.014
10.1016/S0031-0182(02)00670-3
10.1016/S0031-0182(03)00476-0
10.1016/j.sedgeo.2005.12.016
10.1016/j.palaeo.2006.11.052
10.1016/S0012-821X(01)00398-3
10.1007/978-3-642-78590-0_12
10.1016/S0031-0182(03)00667-9
10.1002/9781444314175
10.1016/S0031-0182(98)00139-4
10.1016/j.palaeo.2005.07.005
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 International Association of Sedimentologists
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 International Association of Sedimentologists
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
BSCLL
AAYXX
CITATION
7T7
7TN
8FD
C1K
F1W
FR3
H96
L.G
P64
7S9
L.6
1XC
DOI 10.1111/j.1365-3091.2008.00992.x
DatabaseName AGRIS
Istex
CrossRef
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1365-3091
EndPage 693
ExternalDocumentID oai_HAL_hal_00410512v1
10_1111_j_1365_3091_2008_00992_x
SED992
ark_67375_WNG_777FNX7W_C
US201301604577
Genre article
GeographicLocations China, People's Rep., Nanpanjiang Basin, Great Bank of Guizhou
GeographicLocations_xml – name: China, People's Rep., Nanpanjiang Basin, Great Bank of Guizhou
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPPZ
ABPTK
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFMIJ
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TN5
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XJT
XOL
Y6R
ZCA
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ABJIA
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7T7
7TN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
L.G
P64
7S9
L.6
1XC
UMC
ID FETCH-LOGICAL-a5592-bc84f4536264c6ca0104de349cefbba0ec65d5c521588109f3feea23aee5e9463
IEDL.DBID DR2
ISSN 0037-0746
IngestDate Fri May 09 12:24:17 EDT 2025
Thu Jul 10 23:53:10 EDT 2025
Thu Jul 10 23:06:49 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Tue Jul 01 01:22:54 EDT 2025
Wed Jan 22 16:19:56 EST 2025
Wed Oct 30 09:50:45 EDT 2024
Wed Dec 27 19:09:42 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5592-bc84f4536264c6ca0104de349cefbba0ec65d5c521588109f3feea23aee5e9463
Notes http://dx.doi.org/10.1111/j.1365-3091.2008.00992.x
ark:/67375/WNG-777FNX7W-C
ArticleID:SED992
istex:7A34921EA55A1079980DC729A6DE7CD4C42D8A2E
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4358-3827
PQID 20553856
PQPubID 23462
PageCount 17
ParticipantIDs hal_primary_oai_HAL_hal_00410512v1
proquest_miscellaneous_46210819
proquest_miscellaneous_20553856
crossref_citationtrail_10_1111_j_1365_3091_2008_00992_x
crossref_primary_10_1111_j_1365_3091_2008_00992_x
wiley_primary_10_1111_j_1365_3091_2008_00992_x_SED992
istex_primary_ark_67375_WNG_777FNX7W_C
fao_agris_US201301604577
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2009
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: April 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Sedimentology
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Wiley
References Weidlich, O. and Bernecker, M. (2007) Differential severity of Permian-Triassic environmental changes on Tethyan shallow-water carbonate platforms. Global Planet. Change, 55, 209-235.
Riding, R. and Liang, L. (2005) Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol., 219, 101-115.
Kershaw, S., Guo, L., Swift, A. and Fan, J. (2002) ?Microbialites in the Permian-Triassic boundary interval in central China: structure, age and distribution. Facies, 47, 83-90.
Kidler, D.L. and Worsley, T.R. (2004) Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to Permo-Triassic extinction and recovery. Palaeogeogr. Palaeoclimatol. Palaeoecol., 203, 207-237.
Payne, J.L., Lehrmann, D.J., Follett, D., Seibel, M., Kump, L.R., Riccardi, A., Altiner, D., Sano, H. and Wei, J. (2007) Erosional truncation of uppermost permian shallow-marine carbonates and implications for Permian-Triassic boundary events. Geol. Soc. Am. Bull., 119, 771-784.
Enos, P., Wei, J. and Yan, Y. (1997) Facies distribution and retreat of Middle triassic platform margin, Guizhou Province, South China. Sedimentology, 44, 563-584.
Payne, J., Lehrmann, D.J., Wei, J., Orchard, M.J., Schrag, D.P. and Knoll, A.H. (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 305, 506-509.
Crasquin-Soleau, S., Broutin, J., Besse, J. and Berthelin, M. (2001) Ostracodes and paleobotany from Middle Permian of Oman. Implications on Pangeae reconstruction. Terra Nova, 13, 38-43.
Ezaki, Y., Liu, J. and Adachi, N. (2003) Earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan Province, south China: implications for the nature of oceanic conditions after the end-Permian extinction. Palaios, 18, 388-402.
Kolar-Jurkovsek, T. and Jurkovsek, B. (2007) First record of Hindeodus-Isarcicella population in Lower Triassic of Slovenia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 72-81.
Hips, K. and Haas, J. (2006) Calcimicrobial associations at the Permian-Triassic boundary in a western Tethyan section, Bukk Mountains, Hungary. J. Sed. Geol., 185, 239-253.
Lehrmann, D.J., Wei, J. and Enos, P. (1998) Controls on facies architecture of a large Triassic carbonate platform: the Great Bank of Guizhou, Nanpanjing basin, South China. J. Sed. Res., 68, 311-326.
Krystyn, L., Richoz, S., Baud, A. and Twitchett, R.J. (2003) A unique Permian-Triassic boundary section from the Neothethyan Hawasina Basin, Central Oman Mountains. Palaeogeogr. Palaeoclimatol. Palaeoecol., 191, 329-344.
Horacek, M., Brandner, R. and Abart, R. (2007a) Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: evidence for rapid changes in storage of organic carbon. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 347-354.
Kakuwa, Y. and Matsumoto, R. (2006) Cerium negative anomaly just before the Permian and Triassic boundary event - the upward expansion of anoxia in the water column. Palaeogeogr. Palaeoclimatol. Palaeoecol., 229, 335-344.
Lehrmann, D.J., Ramezani, J., Bowring, S.A., Martin, M.W., Montgomery, P., Enos, P., Payne, J.L., Orchard, M.J., Hongmei, W. and Jiayong, W. (2006) Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from South China. Geology, 34, 1053-1056.
Musashi, M., Isozaki, Y., Koike, T. and Kreulen, R. (2001) Stable carbon isotope signatures in mid-Panthalassa shallow-water carbonates across the Permo-Triassic boundary: evidence for 13C-depleted superocean. Earth Planet. Sci. Lett., 191, 9-20.
Flügel, E. (2004) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer-Verlag, Berlin, 976 pp.
Kempe, S. (1990) Alkalinity: the link between anaerobic basins and shallow water carbonates? Naturwissenschaften, 77, 426-427.
Tucker, M.E. and Wright, V.P. (1990) Carbonate Sedimentology. Blackwell Science, Oxford, 482 pp.
Lehrmann, D.J. (1999) Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China. Geology, 27, 359-362.
Crasquin-Soleau, S. and Kershaw, S. (2005) Ostracod fauna from the Permian-Triassic Boundary Interval of South China (Huaying Mountains, eastern Sichuan Province): palaeoenvironmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol., 217, 131-141.
Lehrmann, D.L., Payne, J.L., Felix, S.V., Dillett, P.M., Wang, H., Yu, Y. and Wei, J. (2003) Permian-Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, south China: implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaios, 18, 138-152.
Baud, A., Richoz, S. and Pruss, S. (2007) The Lower Triassic anachronistic facies in space and time. Global Planet. Change, 55, 81-89.
Adachi, N., Ezaki, Y. and Liu, J. (2004) The fabrics and origins of peloids immediately after the end-Permian extinction, Guizhou Province, South China. Sed. Geol., 164, 161-178.
Forti, P. (1993) Meccanismi genetici ed evolutivi delle grotte marine. Speleologia, 28, 63-67.
Pruss, S., Bottjer, D.J., Corsetti, F.A. and Baud, A. (2006) A global marine sedimentary response to the end-Permian mass extinction: examples from southern Turkey and the western United States. Earth Sci. Rev., 78, 193-206.
Riding, R. (2005) Phanerozoic reefal microbial carbonate abundance: comparisons with metazoan diversity, mass extinction events, and seawater saturation state. Rev. Esp. Micropaleontol., 37, 23-39.
Forti, P. and Francavilla, F. (1993) The hydrogeology of some coastal paleodunes in an equatorial area and their karst-related morphologies: the case of Gesira (Somalia). Hydrogeological Processes in Karst Terrains: proceedings of the Antalya Symposium and field seminar, October 1990. AHS Publ., 207, 133-138.
Erwin, D.H. (2006) Extinction. Princeton University Press, Princeton, NJ, 296 pp.
Kershaw, S., Zhang, T. and Lan, G. (1999) A ?microbialite crust at the Permian-Triassic boundary in south China, and its palaeoenvironmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol., 146, 1-18.
Kershaw, S., Li, Y., Crasquin-Soleau, S., Feng, Q., Mu, X., Collin, P.Y., Reynolds, A. and Guo, L. (2007) Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution. Facies, 53, 409-425.
Yin, H., Sweet, W.C., Glenister, B.F., Kotlyar, G., Kozur, H., Newell, N.D., Sheng, J., Yang, Z. and Zakharov, Y.D. (1996) Recommendation of the Meishan section as global stratotype section and point for basal boundary of Triassic system. Newsl. Stratigr., 34, 81-108.
Brookfield, M.E., Twitchett, R.J. and Goodings, C. (2003) Palaeoenvironments of the Permian-Triassic transition sections in Kashmir, India. Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 131-141.
Horacek, M., Richoz, S., Brandner, R., Krystyn, L. and Spötl, C. (2007b) Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys: the 13C record from marine sections in Iran. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 355-359.
Yin, H., Feng, Q., Baud, A., Xie, S., Benton, M.J., Lai, L. and Bottjer, D. (2007) The prelude of the end-Permian mass extinction predates a postulated bolide impact. Int. J. Earth Sci., 96, 903-909.
Berner, R.A. (2005) The carbon and sulphur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim. Cosmochim. Acta, 69, 3211-3217.
Baud, A., Cirilli, S. and Marcoux, J. (1997) Biotic response to mass extinction: the lowermost Triassic microbialites. Facies, 36, 238-242.
Krull, E.S., Lehrmann, D.J., Druke, D., Kessel, B., Yu, Y. and Li, R. (2004) Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 204, 297-315.
Hallam, A. and Wignall, P.B. (1999) Mass extinctions and sea-level changes. Earth-Sci. Rev., 48, 217-250.
Enos, P., Wei, J. and Lehrmann, D.J. (1998) Death in Guizhou - Late Triassic drowning of the Yangtze carbonate platform. Sed. Geol., 118, 55-76.
Knoll, A.H., Bambach, R.K., Canfield, D.E. and Grotzinger, J.P. (1996) Comparative Earth History and Late Permian mass extinction. Science, 273, 452-457.
2004; 164
1990; 77
2004; 204
2004; 203
1991; 58
1993; 28
1993; 207
1997; 44
2006; 34
2006; 78
1999; 27
2002; 356
1999; 48
2005; 217
1998; 118
2005; 219
1995
2006
1999; 146
2003; 191
2003; 18
2004
2007; 96
2007; 53
2007; 55
2004; 305
2003; 198
2007a; 252
1996; 34
2005; 69
1998; 68
1995; 63
2002; 47
2006; 229
2007; 119
2007b; 252
2001; 191
1990
1997; 36
2007; 252
2006; 185
1996; 273
2005; 37
2001; 13
e_1_2_8_28_1
e_1_2_8_29_1
Forti P. (e_1_2_8_16_1) 1993; 28
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
Baird G.C. (e_1_2_8_3_1) 1991
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
Mylroie J.E. (e_1_2_8_37_1) 1995
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
Forti P. (e_1_2_8_17_1) 1993; 207
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
Erwin D.H. (e_1_2_8_13_1) 2006
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
Baud A. (e_1_2_8_4_1) 1997; 36
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Riding R. (e_1_2_8_41_1) 2005; 37
e_1_2_8_30_1
References_xml – reference: Kempe, S. (1990) Alkalinity: the link between anaerobic basins and shallow water carbonates? Naturwissenschaften, 77, 426-427.
– reference: Krull, E.S., Lehrmann, D.J., Druke, D., Kessel, B., Yu, Y. and Li, R. (2004) Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 204, 297-315.
– reference: Lehrmann, D.J. (1999) Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China. Geology, 27, 359-362.
– reference: Berner, R.A. (2005) The carbon and sulphur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim. Cosmochim. Acta, 69, 3211-3217.
– reference: Lehrmann, D.J., Ramezani, J., Bowring, S.A., Martin, M.W., Montgomery, P., Enos, P., Payne, J.L., Orchard, M.J., Hongmei, W. and Jiayong, W. (2006) Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from South China. Geology, 34, 1053-1056.
– reference: Musashi, M., Isozaki, Y., Koike, T. and Kreulen, R. (2001) Stable carbon isotope signatures in mid-Panthalassa shallow-water carbonates across the Permo-Triassic boundary: evidence for 13C-depleted superocean. Earth Planet. Sci. Lett., 191, 9-20.
– reference: Forti, P. and Francavilla, F. (1993) The hydrogeology of some coastal paleodunes in an equatorial area and their karst-related morphologies: the case of Gesira (Somalia). Hydrogeological Processes in Karst Terrains: proceedings of the Antalya Symposium and field seminar, October 1990. AHS Publ., 207, 133-138.
– reference: Kershaw, S., Guo, L., Swift, A. and Fan, J. (2002) ?Microbialites in the Permian-Triassic boundary interval in central China: structure, age and distribution. Facies, 47, 83-90.
– reference: Knoll, A.H., Bambach, R.K., Canfield, D.E. and Grotzinger, J.P. (1996) Comparative Earth History and Late Permian mass extinction. Science, 273, 452-457.
– reference: Baud, A., Richoz, S. and Pruss, S. (2007) The Lower Triassic anachronistic facies in space and time. Global Planet. Change, 55, 81-89.
– reference: Kolar-Jurkovsek, T. and Jurkovsek, B. (2007) First record of Hindeodus-Isarcicella population in Lower Triassic of Slovenia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 72-81.
– reference: Erwin, D.H. (2006) Extinction. Princeton University Press, Princeton, NJ, 296 pp.
– reference: Yin, H., Sweet, W.C., Glenister, B.F., Kotlyar, G., Kozur, H., Newell, N.D., Sheng, J., Yang, Z. and Zakharov, Y.D. (1996) Recommendation of the Meishan section as global stratotype section and point for basal boundary of Triassic system. Newsl. Stratigr., 34, 81-108.
– reference: Adachi, N., Ezaki, Y. and Liu, J. (2004) The fabrics and origins of peloids immediately after the end-Permian extinction, Guizhou Province, South China. Sed. Geol., 164, 161-178.
– reference: Kershaw, S., Li, Y., Crasquin-Soleau, S., Feng, Q., Mu, X., Collin, P.Y., Reynolds, A. and Guo, L. (2007) Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution. Facies, 53, 409-425.
– reference: Baud, A., Cirilli, S. and Marcoux, J. (1997) Biotic response to mass extinction: the lowermost Triassic microbialites. Facies, 36, 238-242.
– reference: Tucker, M.E. and Wright, V.P. (1990) Carbonate Sedimentology. Blackwell Science, Oxford, 482 pp.
– reference: Brookfield, M.E., Twitchett, R.J. and Goodings, C. (2003) Palaeoenvironments of the Permian-Triassic transition sections in Kashmir, India. Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 131-141.
– reference: Krystyn, L., Richoz, S., Baud, A. and Twitchett, R.J. (2003) A unique Permian-Triassic boundary section from the Neothethyan Hawasina Basin, Central Oman Mountains. Palaeogeogr. Palaeoclimatol. Palaeoecol., 191, 329-344.
– reference: Forti, P. (1993) Meccanismi genetici ed evolutivi delle grotte marine. Speleologia, 28, 63-67.
– reference: Weidlich, O. and Bernecker, M. (2007) Differential severity of Permian-Triassic environmental changes on Tethyan shallow-water carbonate platforms. Global Planet. Change, 55, 209-235.
– reference: Crasquin-Soleau, S., Broutin, J., Besse, J. and Berthelin, M. (2001) Ostracodes and paleobotany from Middle Permian of Oman. Implications on Pangeae reconstruction. Terra Nova, 13, 38-43.
– reference: Kakuwa, Y. and Matsumoto, R. (2006) Cerium negative anomaly just before the Permian and Triassic boundary event - the upward expansion of anoxia in the water column. Palaeogeogr. Palaeoclimatol. Palaeoecol., 229, 335-344.
– reference: Enos, P., Wei, J. and Lehrmann, D.J. (1998) Death in Guizhou - Late Triassic drowning of the Yangtze carbonate platform. Sed. Geol., 118, 55-76.
– reference: Payne, J., Lehrmann, D.J., Wei, J., Orchard, M.J., Schrag, D.P. and Knoll, A.H. (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 305, 506-509.
– reference: Payne, J.L., Lehrmann, D.J., Follett, D., Seibel, M., Kump, L.R., Riccardi, A., Altiner, D., Sano, H. and Wei, J. (2007) Erosional truncation of uppermost permian shallow-marine carbonates and implications for Permian-Triassic boundary events. Geol. Soc. Am. Bull., 119, 771-784.
– reference: Pruss, S., Bottjer, D.J., Corsetti, F.A. and Baud, A. (2006) A global marine sedimentary response to the end-Permian mass extinction: examples from southern Turkey and the western United States. Earth Sci. Rev., 78, 193-206.
– reference: Hallam, A. and Wignall, P.B. (1999) Mass extinctions and sea-level changes. Earth-Sci. Rev., 48, 217-250.
– reference: Kidler, D.L. and Worsley, T.R. (2004) Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to Permo-Triassic extinction and recovery. Palaeogeogr. Palaeoclimatol. Palaeoecol., 203, 207-237.
– reference: Crasquin-Soleau, S. and Kershaw, S. (2005) Ostracod fauna from the Permian-Triassic Boundary Interval of South China (Huaying Mountains, eastern Sichuan Province): palaeoenvironmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol., 217, 131-141.
– reference: Enos, P., Wei, J. and Yan, Y. (1997) Facies distribution and retreat of Middle triassic platform margin, Guizhou Province, South China. Sedimentology, 44, 563-584.
– reference: Ezaki, Y., Liu, J. and Adachi, N. (2003) Earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan Province, south China: implications for the nature of oceanic conditions after the end-Permian extinction. Palaios, 18, 388-402.
– reference: Horacek, M., Richoz, S., Brandner, R., Krystyn, L. and Spötl, C. (2007b) Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys: the 13C record from marine sections in Iran. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 355-359.
– reference: Lehrmann, D.J., Wei, J. and Enos, P. (1998) Controls on facies architecture of a large Triassic carbonate platform: the Great Bank of Guizhou, Nanpanjing basin, South China. J. Sed. Res., 68, 311-326.
– reference: Riding, R. and Liang, L. (2005) Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol., 219, 101-115.
– reference: Flügel, E. (2004) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer-Verlag, Berlin, 976 pp.
– reference: Yin, H., Feng, Q., Baud, A., Xie, S., Benton, M.J., Lai, L. and Bottjer, D. (2007) The prelude of the end-Permian mass extinction predates a postulated bolide impact. Int. J. Earth Sci., 96, 903-909.
– reference: Hips, K. and Haas, J. (2006) Calcimicrobial associations at the Permian-Triassic boundary in a western Tethyan section, Bukk Mountains, Hungary. J. Sed. Geol., 185, 239-253.
– reference: Lehrmann, D.L., Payne, J.L., Felix, S.V., Dillett, P.M., Wang, H., Yu, Y. and Wei, J. (2003) Permian-Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, south China: implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaios, 18, 138-152.
– reference: Horacek, M., Brandner, R. and Abart, R. (2007a) Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: evidence for rapid changes in storage of organic carbon. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 347-354.
– reference: Kershaw, S., Zhang, T. and Lan, G. (1999) A ?microbialite crust at the Permian-Triassic boundary in south China, and its palaeoenvironmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol., 146, 1-18.
– reference: Riding, R. (2005) Phanerozoic reefal microbial carbonate abundance: comparisons with metazoan diversity, mass extinction events, and seawater saturation state. Rev. Esp. Micropaleontol., 37, 23-39.
– volume: 229
  start-page: 335
  year: 2006
  end-page: 344
  article-title: Cerium negative anomaly just before the Permian and Triassic boundary event – the upward expansion of anoxia in the water column
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 191
  start-page: 9
  year: 2001
  end-page: 20
  article-title: Stable carbon isotope signatures in mid‐Panthalassa shallow‐water carbonates across the Permo‐Triassic boundary: evidence for C‐depleted superocean
  publication-title: Earth Planet. Sci. Lett.
– volume: 252
  start-page: 355
  year: 2007b
  end-page: 359
  article-title: Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys: the C record from marine sections in Iran
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 68
  start-page: 311
  year: 1998
  end-page: 326
  article-title: Controls on facies architecture of a large Triassic carbonate platform: the Great Bank of Guizhou, Nanpanjing basin, South China
  publication-title: J. Sed. Res.
– volume: 55
  start-page: 81
  year: 2007
  end-page: 89
  article-title: The Lower Triassic anachronistic facies in space and time
  publication-title: Global Planet. Change
– volume: 27
  start-page: 359
  year: 1999
  end-page: 362
  article-title: Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China
  publication-title: Geology
– volume: 119
  start-page: 771
  year: 2007
  end-page: 784
  article-title: Erosional truncation of uppermost permian shallow‐marine carbonates and implications for Permian–Triassic boundary events
  publication-title: Geol. Soc. Am. Bull.
– volume: 185
  start-page: 239
  year: 2006
  end-page: 253
  article-title: Calcimicrobial associations at the Permian–Triassic boundary in a western Tethyan section, Bukk Mountains, Hungary
  publication-title: J. Sed. Geol.
– volume: 219
  start-page: 101
  year: 2005
  end-page: 115
  article-title: Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 198
  start-page: 131
  year: 2003
  end-page: 141
  article-title: Palaeoenvironments of the Permian–Triassic transition sections in Kashmir, India
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 164
  start-page: 161
  year: 2004
  end-page: 178
  article-title: The fabrics and origins of peloids immediately after the end‐Permian extinction, Guizhou Province, South China
  publication-title: Sed. Geol.
– volume: 36
  start-page: 238
  year: 1997
  end-page: 242
  article-title: Biotic response to mass extinction: the lowermost Triassic microbialites
  publication-title: Facies
– volume: 55
  start-page: 209
  year: 2007
  end-page: 235
  article-title: Differential severity of Permian–Triassic environmental changes on Tethyan shallow‐water carbonate platforms
  publication-title: Global Planet. Change
– year: 1990
– volume: 356
  start-page: 395
  year: 2002
  end-page: 413
– volume: 48
  start-page: 217
  year: 1999
  end-page: 250
  article-title: Mass extinctions and sea‐level changes
  publication-title: Earth-Sci. Rev.
– volume: 203
  start-page: 207
  year: 2004
  end-page: 237
  article-title: Causes and consequences of extreme Permo‐Triassic warming to globally equable climate and relation to Permo‐Triassic extinction and recovery
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 252
  start-page: 72
  year: 2007
  end-page: 81
  article-title: First record of population in Lower Triassic of Slovenia
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 204
  start-page: 297
  year: 2004
  end-page: 315
  article-title: Stable carbon isotope stratigraphy across the Permian–Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, South China
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 305
  start-page: 506
  year: 2004
  end-page: 509
  article-title: Large perturbations of the carbon cycle during recovery from the end‐Permian extinction
  publication-title: Science
– volume: 37
  start-page: 23
  year: 2005
  end-page: 39
  article-title: Phanerozoic reefal microbial carbonate abundance: comparisons with metazoan diversity, mass extinction events, and seawater saturation state
  publication-title: Rev. Esp. Micropaleontol.
– volume: 18
  start-page: 138
  year: 2003
  end-page: 152
  article-title: Permian–Triassic boundary sections from shallow‐marine carbonate platforms of the Nanpanjiang Basin, south China: implications for oceanic conditions associated with the end‐Permian extinction and its aftermath
  publication-title: Palaios
– start-page: 225
  year: 1995
  end-page: 256
– volume: 53
  start-page: 409
  year: 2007
  end-page: 425
  article-title: Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution
  publication-title: Facies
– volume: 69
  start-page: 3211
  year: 2005
  end-page: 3217
  article-title: The carbon and sulphur cycles and atmospheric oxygen from middle Permian to middle Triassic
  publication-title: Geochim. Cosmochim. Acta
– volume: 34
  start-page: 81
  year: 1996
  end-page: 108
  article-title: Recommendation of the Meishan section as global stratotype section and point for basal boundary of Triassic system
  publication-title: Newsl. Stratigr.
– volume: 58
  start-page: 233
  year: 1991
  end-page: 257
– volume: 118
  start-page: 55
  year: 1998
  end-page: 76
  article-title: Death in Guizhou – Late Triassic drowning of the Yangtze carbonate platform
  publication-title: Sed. Geol.
– year: 2006
– year: 2004
– volume: 146
  start-page: 1
  year: 1999
  end-page: 18
  article-title: A ?microbialite crust at the Permian–Triassic boundary in south China, and its palaeoenvironmental significance
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 18
  start-page: 388
  year: 2003
  end-page: 402
  article-title: Earliest Triassic microbialite micro‐ to megastructures in the Huaying area of Sichuan Province, south China: implications for the nature of oceanic conditions after the end‐Permian extinction
  publication-title: Palaios
– volume: 78
  start-page: 193
  year: 2006
  end-page: 206
  article-title: A global marine sedimentary response to the end‐Permian mass extinction: examples from southern Turkey and the western United States
  publication-title: Earth Sci. Rev.
– volume: 47
  start-page: 83
  year: 2002
  end-page: 90
  article-title: ?Microbialites in the Permian–Triassic boundary interval in central China: structure, age and distribution
  publication-title: Facies
– volume: 96
  start-page: 903
  year: 2007
  end-page: 909
  article-title: The prelude of the end‐Permian mass extinction predates a postulated bolide impact
  publication-title: Int. J. Earth Sci.
– volume: 252
  start-page: 347
  year: 2007a
  end-page: 354
  article-title: Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: evidence for rapid changes in storage of organic carbon
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 34
  start-page: 1053
  year: 2006
  end-page: 1056
  article-title: Timing of recovery from the end‐Permian extinction: Geochronologic and biostratigraphic constraints from South China
  publication-title: Geology
– volume: 13
  start-page: 38
  year: 2001
  end-page: 43
  article-title: Ostracodes and paleobotany from Middle Permian of Oman. Implications on Pangeae reconstruction
  publication-title: Terra Nova
– volume: 191
  start-page: 329
  year: 2003
  end-page: 344
  article-title: A unique Permian–Triassic boundary section from the Neothethyan Hawasina Basin, Central Oman Mountains
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 63
  start-page: 55
  year: 1995
  end-page: 76
– volume: 217
  start-page: 131
  year: 2005
  end-page: 141
  article-title: Ostracod fauna from the Permian–Triassic Boundary Interval of South China (Huaying Mountains, eastern Sichuan Province): palaeoenvironmental significance
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 44
  start-page: 563
  year: 1997
  end-page: 584
  article-title: Facies distribution and retreat of Middle triassic platform margin, Guizhou Province, South China
  publication-title: Sedimentology
– volume: 28
  start-page: 63
  year: 1993
  end-page: 67
  article-title: Meccanismi genetici ed evolutivi delle grotte marine
  publication-title: Speleologia
– volume: 77
  start-page: 426
  year: 1990
  end-page: 427
  article-title: Alkalinity: the link between anaerobic basins and shallow water carbonates?
  publication-title: Naturwissenschaften
– volume: 207
  start-page: 133
  year: 1993
  end-page: 138
  article-title: The hydrogeology of some coastal paleodunes in an equatorial area and their karst‐related morphologies: the case of Gesira (Somalia). Hydrogeological Processes in Karst Terrains: proceedings of the Antalya Symposium and field seminar, October 1990
  publication-title: AHS Publ.
– volume: 273
  start-page: 452
  year: 1996
  end-page: 457
  article-title: Comparative Earth History and Late Permian mass extinction
  publication-title: Science
– ident: e_1_2_8_9_1
  doi: 10.1046/j.1365-3121.2001.00311.x
– ident: e_1_2_8_5_1
  doi: 10.1016/j.gloplacha.2006.06.008
– ident: e_1_2_8_23_1
  doi: 10.1007/BF01135940
– ident: e_1_2_8_30_1
  doi: 10.1016/S0031-0182(03)00732-6
– ident: e_1_2_8_34_1
  doi: 10.1669/0883-1351(2003)18<138:PBSFSC>2.0.CO;2
– volume: 36
  start-page: 238
  year: 1997
  ident: e_1_2_8_4_1
  article-title: Biotic response to mass extinction: the lowermost Triassic microbialites
  publication-title: Facies
– ident: e_1_2_8_11_1
  doi: 10.1046/j.1365-3091.1997.d01-34.x
– ident: e_1_2_8_40_1
  doi: 10.1016/j.earscirev.2006.05.002
– ident: e_1_2_8_39_1
  doi: 10.1130/B26091.1
– ident: e_1_2_8_8_1
  doi: 10.1016/j.palaeo.2004.11.027
– ident: e_1_2_8_20_1
  doi: 10.1016/j.palaeo.2006.11.049
– volume-title: Extinction
  year: 2006
  ident: e_1_2_8_13_1
– volume: 207
  start-page: 133
  year: 1993
  ident: e_1_2_8_17_1
  article-title: The hydrogeology of some coastal paleodunes in an equatorial area and their karst‐related morphologies: the case of Gesira (Somalia). Hydrogeological Processes in Karst Terrains: proceedings of the Antalya Symposium and field seminar, October 1990
  publication-title: AHS Publ.
– ident: e_1_2_8_47_1
  doi: 10.1007/s00531-006-0135-1
– ident: e_1_2_8_2_1
  doi: 10.1016/j.sedgeo.2003.10.007
– ident: e_1_2_8_32_1
  doi: 10.1130/0091-7613(1999)027<0359:ETCMAB>2.3.CO;2
– ident: e_1_2_8_42_1
  doi: 10.1016/j.palaeo.2004.11.018
– ident: e_1_2_8_46_1
  doi: 10.1127/nos/34/1996/81
– ident: e_1_2_8_33_1
  doi: 10.2110/jsr.68.311
– ident: e_1_2_8_35_1
  doi: 10.1130/G22827A.1
– ident: e_1_2_8_6_1
  doi: 10.1016/j.gca.2005.03.021
– ident: e_1_2_8_15_1
  doi: 10.1007/978-3-662-08726-8
– ident: e_1_2_8_29_1
  doi: 10.1016/j.palaeo.2006.11.036
– ident: e_1_2_8_38_1
  doi: 10.1126/science.1097023
– ident: e_1_2_8_28_1
  doi: 10.1126/science.273.5274.452
– ident: e_1_2_8_26_1
  doi: 10.1007/s10347-007-0105-5
– volume: 37
  start-page: 23
  year: 2005
  ident: e_1_2_8_41_1
  article-title: Phanerozoic reefal microbial carbonate abundance: comparisons with metazoan diversity, mass extinction events, and seawater saturation state
  publication-title: Rev. Esp. Micropaleontol.
– ident: e_1_2_8_18_1
  doi: 10.1016/S0012-8252(99)00055-0
– ident: e_1_2_8_45_1
  doi: 10.1130/0-8137-2356-6.395
– start-page: 233
  volume-title: Modern and Ancient Continental Shelf Anoxia
  year: 1991
  ident: e_1_2_8_3_1
– ident: e_1_2_8_14_1
  doi: 10.1669/0883-1351(2003)018<0388:ETMMTM>2.0.CO;2
– ident: e_1_2_8_12_1
  doi: 10.1016/S0037-0738(98)00005-0
– ident: e_1_2_8_25_1
  doi: 10.1007/BF02667707
– start-page: 55
  volume-title: Unconformities and Porosity in Carbonate Strata
  year: 1995
  ident: e_1_2_8_37_1
– ident: e_1_2_8_44_1
  doi: 10.1016/j.gloplacha.2006.06.014
– ident: e_1_2_8_31_1
  doi: 10.1016/S0031-0182(02)00670-3
– ident: e_1_2_8_7_1
  doi: 10.1016/S0031-0182(03)00476-0
– ident: e_1_2_8_19_1
  doi: 10.1016/j.sedgeo.2005.12.016
– ident: e_1_2_8_21_1
  doi: 10.1016/j.palaeo.2006.11.052
– ident: e_1_2_8_36_1
  doi: 10.1016/S0012-821X(01)00398-3
– ident: e_1_2_8_10_1
  doi: 10.1007/978-3-642-78590-0_12
– volume: 28
  start-page: 63
  year: 1993
  ident: e_1_2_8_16_1
  article-title: Meccanismi genetici ed evolutivi delle grotte marine
  publication-title: Speleologia
– ident: e_1_2_8_27_1
  doi: 10.1016/S0031-0182(03)00667-9
– ident: e_1_2_8_43_1
  doi: 10.1002/9781444314175
– ident: e_1_2_8_24_1
  doi: 10.1016/S0031-0182(98)00139-4
– ident: e_1_2_8_22_1
  doi: 10.1016/j.palaeo.2005.07.005
SSID ssj0016489
Score 2.1104777
Snippet The Permian-Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global...
The Permian–Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global...
SourceID hal
proquest
crossref
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 677
SubjectTerms Conodonta
Earth Sciences
Hindeodus
Marine
Marine dissolution
microbialite
Paleontology
Permian-Triassic boundary
Sciences of the Universe
South China
sub-aerial exposure
Title Facies changes and diagenetic processes across the Permian-Triassic boundary event horizon, Great Bank of Guizhou, South China: a controversy of erosion and dissolution
URI https://api.istex.fr/ark:/67375/WNG-777FNX7W-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-3091.2008.00992.x
https://www.proquest.com/docview/20553856
https://www.proquest.com/docview/46210819
https://hal.science/hal-00410512
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgCIkXGDctXC2EeFqqJbHjhLcx1lYIKsRWrW-W49jrVJRMbYPWPvEf-Bf8LH7JznEuWhFIE-IlqhI7jXVu37HPhZDXPNWW5Yn1reKJz8CH8LPEhn4O1lpjxl7i8tY-jeLhmH2Y8EkT_4S5MHV9iG7DDSXD6WsUcJUtNoUcI7QiMHhtSGSahj3Ek_gA8dGXrpIUOAVJjYQj3Jlj8WZQzx9ftGGpblpVwnWK0ZK3kAAXG5D0KrB1lql_j8zaNdUBKbNetcx6ev1bucf_s-htcrcBsHS_5rj75IYpHpDbA9cgePWQ_Owr0BYLWicUL6gqcgosCGyK2ZL0vM5LwAdu1RTwJ_2MATmq-PX9xzGIAwipppnr9jRfUVdgik7L-dm6LHap29Gg71Qxo6Wlg-psPS2rXeoaAVLXC_wtVbSOv8eAkxUOM_BPwH7Nt3TS9oiM-4fHB0O_6QfhK_B7Qj_TCbOMYwEdpmOt0JXMTcRSbWyWqT2jY55zDYCEJ8BiqY2sMSqMlDHcpCyOHpOtoizMDtCeBzZTCedcaMZZCENA2wF6jmMlbJJ6RLS0l7oplo49O77KK04TUEIiJZpWnkgJeeGRoJt5XhcMucacHWAvqU5Br8vxUYinyUEMYFsIj7wCnuvehMXAh_sfJd7DUmmgUsNvgUfeOJbshqn5DAP2BJcno4EUQvRHE3EiDzzysuVZCWoEz4ZUYcpqAZ_DwfTx-O8jWBwGiB89wh2HXnt18ujwPfx48o_znpI77QneXvCMbC3nlXkOQHCZvXAifgm0PE14
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgE4IX7tPCgFkI8bRUS2LnwtsYawt0FWKt1jfLcWw6dUqmtpnWPvEf-Bf8LH4J5zhptCKQJsRLVKV2EuvcvmOfCyGveaIMy2LjGsljl4EP4aax8d0MrLXCjL3Y5q0d98PukH0c8VHdDghzYar6EM2GG0qG1dco4LghvS7lGKIVgMVbxUQmid8CQLmJDb6tf_WlqSUFbkFcYeEA9-ZYuB7W88cnrdmq20YWcB1jvOQmkuBqDZReh7bWNrUfkPPVqqqQlEmrnKcttfyt4ON_WvZDcr_GsPSgYrpH5JbOH5M7HdsjePGE_GhLUBgzWuUUz6jMMwpcCJyKCZP0okpNwD_ssilAUPoZY3Jk_vPb9wFIBMipoqlt-DRdUFtjio6L6dmyyPeo3dSg72Q-oYWhnfJsOS7KPWp7AVLbDvwtlbQKwceYkwUO0_Am4MD6WxqBe0qG7aPBYdetW0K4Elwf301VzAzjWEOHqVBJ9CYzHbBEaZOmcl-rkGdcASbhMXBZYgKjtfQDqTXXCQuDLbKRF7neBuJzz6Qy5pxHinHmwxBQeACgw1BGJk4cEq2IL1RdLx3bdpyLa34TUEIgJepunkgJceUQr5l5UdUMucGcbeAvIb-CahfDEx8PlL0Q8HYUOeQVMF3zJKwH3j3oCbyH1dJAq_qXnkPeWJ5shsnpBGP2Ii5O-x0RRVG7P4pOxaFDdldMK0CT4PGQzHVRzuBzOFg_Hv59BAt9DyGkQ7hl0RuvTpwcvYcfz_5x3i652x0c90TvQ__TDrm3OtDb956Tjfm01C8AF87Tl1befwF8DlGT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgE4gX7tPCbRZCPC1Vk9i58DbWtQVGNbFV65vlODadipKqbdDaJ_4D_4KfxS_hHCeNVgTShHiJqtROYp3vHH-2z4WQVzxRhmWxcY3ksctgDeGmsfHdDGZrhRF7sY1b-zgI-0P2fsRHtf8TxsJU-SGaDTfUDGuvUcGnmdlUcvTQCmDCW7tEJonfAj65zcJ2jAjvfGpSScGqIK6ocIBbcyzc9Or545M2pqqbRhZwHaO75DZK4HKDk15ltnZq6t4jk_WgKo-USatcpC21-i3f4_8Z9X1yt2aw9KCC3ANyQ-cPya2erRC8fER-dCWYizmtIornVOYZBQwCTjFckk6rwAT8w46aAgGlJ-iRI_Of376fgT6Aliqa2nJPsyW1GabouJhdrIp8n9otDfpW5hNaGNorL1bjotynthIgtcXA31BJKwd89DhZYjMNbwL81d_SqNtjMuwenR323boghCth4eO7qYqZYRwz6DAVKolryUwHLFHapKlsaxXyjCtgJDwGjCUmMFpLP5Bac52wMNghW3mR612QPfdMKmPOeaQYZz40AXMH9DkMZWTixCHRWvZC1dnSsWjHF3Fl1QSSECiJupYnSkJcOsRrek6rjCHX6LML8BLyMxh2MTz18TjZC4FtR5FDXgLmmidhNvD-wbHAe5grDWyq_9VzyGsLyaaZnE3QYy_i4nzQE1EUdQej6FwcOmRvjVkBdgQPh2Sui3IOn8Nh7uPh31uw0PeQQDqEW4Ree3Ti9KgDP578Y789cvuk0xXH7wYfnpI769O8tveMbC1mpX4OpHCRvrDa_gtUSFBL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facies+changes+and+diagenetic+processes+across+the+Permian-Triassic+boundary+event+horizon%2C+Great+Bank+of+Guizhou%2C+South+China%3A+a+controversy+of+erosion+and+dissolution&rft.jtitle=Sedimentology&rft.au=Collin%2C+Pierre-Yves&rft.au=Kershaw%2C+Steve&rft.au=Crasquin-Soleau%2C+Sylvie&rft.au=Feng%2C+Qinglai&rft.date=2009-04-01&rft.issn=0037-0746&rft.eissn=1365-3091&rft.volume=56&rft.issue=3&rft.spage=677&rft.epage=693&rft_id=info:doi/10.1111%2Fj.1365-3091.2008.00992.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0037-0746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0037-0746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0037-0746&client=summon