Gallium(III)–Salophen as a Dual Inhibitor of Pseudomonas aeruginosa Heme Sensing and Iron Acquisition

Pseudomonas aeruginosa is an opportunistic bacterium that causes life-threatening infections in immunocompromised patients. In infection, it uses heme as a primary iron source and senses the availability of exogenous heme through the heme assimilation system (Has), an extra cytoplasmic function σ-fa...

Full description

Saved in:
Bibliographic Details
Published inACS infectious diseases Vol. 6; no. 8; pp. 2073 - 2085
Main Authors Centola, Garrick, Deredge, Daniel J, Hom, Kellie, Ai, Yong, Dent, Alecia T, Xue, Fengtian, Wilks, Angela
Format Journal Article
LanguageEnglish
Published American Chemical Society 14.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pseudomonas aeruginosa is an opportunistic bacterium that causes life-threatening infections in immunocompromised patients. In infection, it uses heme as a primary iron source and senses the availability of exogenous heme through the heme assimilation system (Has), an extra cytoplasmic function σ-factor system. A secreted hemophore HasAp scavenges heme and, upon interaction with the outer-membrane receptor HasR, activates a signaling cascade, which in turn creates a positive feedback loop critical for sensing and adaptation within the host. The ability to sense and respond to heme as an iron source contributes to virulence. Consequently, the inhibition of this system will lead to a disruption in iron homeostasis, decreasing virulence. We have identified a salophen scaffold that successfully inhibits the activation of the Has signaling system while simultaneously targeting iron uptake via xenosiderophore receptors. We propose this dual mechanism wherein free Ga3+–salophen reduces growth through uptake and iron mimicry. A dual mechanism targeting extracellular heme signaling and uptake together with Ga3+-induced toxicity following active Ga3+salophen uptake provides a significant therapeutic advantage while reducing the propensity to develop resistance.
AbstractList Pseudomonas aeruginosa is an opportunistic bacterium that causes life-threatening infections in immunocompromised patients. In infection, it uses heme as a primary iron source and senses the availability of exogenous heme through the heme assimilation system (Has), an extra cytoplasmic function σ-factor system. A secreted hemophore HasAp scavenges heme and, upon interaction with the outer-membrane receptor HasR, activates a signaling cascade, which in turn creates a positive feedback loop critical for sensing and adaptation within the host. The ability to sense and respond to heme as an iron source contributes to virulence. Consequently, the inhibition of this system will lead to a disruption in iron homeostasis, decreasing virulence. We have identified a salophen scaffold that successfully inhibits the activation of the Has signaling system while simultaneously targeting iron uptake via xenosiderophore receptors. We propose this dual mechanism wherein free Ga3+–salophen reduces growth through uptake and iron mimicry. A dual mechanism targeting extracellular heme signaling and uptake together with Ga3+-induced toxicity following active Ga3+salophen uptake provides a significant therapeutic advantage while reducing the propensity to develop resistance.
Pseudomonas aeruginosa is an opportunistic bacterium that causes life-threatening infections in immunocompromised patients. In infection, it uses heme as a primary iron source and senses the availability of exogenous heme through the heme assimilation system (Has), an extra cytoplasmic function σ-factor system. A secreted hemophore HasAp scavenges heme and, upon interaction with the outer-membrane receptor HasR, activates a signaling cascade, which in turn creates a positive feedback loop critical for sensing and adaptation within the host. The ability to sense and respond to heme as an iron source contributes to virulence. Consequently, the inhibition of this system will lead to a disruption in iron homeostasis, decreasing virulence. We have identified a salophen scaffold that successfully inhibits the activation of the Has signaling system while simultaneously targeting iron uptake via xenosiderophore receptors. We propose this dual mechanism wherein free Ga 3+ -salophen reduces growth through uptake and iron mimicry. A dual mechanism targeting extracellular heme signaling and uptake together with Ga 3+ -induced toxicity following active Ga 3+ salophen uptake provides a significant therapeutic advantage while reducing the propensity to develop resistance.
Author Deredge, Daniel J
Wilks, Angela
Centola, Garrick
Hom, Kellie
Ai, Yong
Xue, Fengtian
Dent, Alecia T
AuthorAffiliation Department of Pharmaceutical Sciences
AuthorAffiliation_xml – name: Department of Pharmaceutical Sciences
Author_xml – sequence: 1
  givenname: Garrick
  surname: Centola
  fullname: Centola, Garrick
– sequence: 2
  givenname: Daniel J
  orcidid: 0000-0002-6897-6523
  surname: Deredge
  fullname: Deredge, Daniel J
– sequence: 3
  givenname: Kellie
  surname: Hom
  fullname: Hom, Kellie
– sequence: 4
  givenname: Yong
  surname: Ai
  fullname: Ai, Yong
– sequence: 5
  givenname: Alecia T
  surname: Dent
  fullname: Dent, Alecia T
– sequence: 6
  givenname: Fengtian
  orcidid: 0000-0002-4132-9887
  surname: Xue
  fullname: Xue, Fengtian
  email: fxue@rx.umaryland.edu
– sequence: 7
  givenname: Angela
  surname: Wilks
  fullname: Wilks, Angela
  email: awilks@rx.umaryland.edu
BookMark eNp9UctKxDAUDaL4_gI3WepiNGmapt0I4mMsCArqOqTpzUykTcakEdz5D_6hX2J1BtGNq3vhPO7hnh207rwDhA4oOaYkoydKR-sM6NbGY6IJoaxcQ9sZE2xSZplY_7Vvof0Yn8g3h-c530RbLOOc5pXYRrOp6jqb-sO6ro8-3t7vVecXc3BYRazwRVIdrt3cNnbwAXuD7yKk1vfefeEQ0sw6HxW-hh7wPbgx1Awr1-I6eIfP9HOy0Q7Wuz20YVQXYX81d9Hj1eXD-fXk5nZan5_dTBTn5TDJATSpFKOiqIqiEbyhnOUmY6zNeWl0QzIQbUUF4YVoqTKk1KSoDIeWGWoI20WnS99FanpoNbghqE4ugu1VeJVeWfkXcXYuZ_5FipwXnLLR4HBlEPxzgjjI3kYNXacc-BRllo-JSFmU5UhlS6oOPsYA5ucMJfKrJfmrJblqaVSdLFUjKJ98Cm78x7-KT5LtmrA
CitedBy_id crossref_primary_10_1016_j_ccr_2022_214793
crossref_primary_10_1039_d0mt00206b
crossref_primary_10_1111_1462_2920_16328
crossref_primary_10_3390_pathogens9120980
crossref_primary_10_1021_acsinfecdis_0c00896
crossref_primary_10_1111_1751_7915_14241
crossref_primary_10_3389_fmicb_2021_787609
crossref_primary_10_1016_j_jinorgbio_2023_112282
crossref_primary_10_1021_acs_biochem_0c00895
crossref_primary_10_1016_j_ijbiomac_2023_124756
crossref_primary_10_1021_acsinfecdis_3c00050
crossref_primary_10_1097_QCO_0000000000000727
crossref_primary_10_1021_acsinfecdis_0c00669
crossref_primary_10_1016_j_cej_2024_150902
crossref_primary_10_1016_j_ccr_2024_215698
crossref_primary_10_1016_j_ab_2022_114788
crossref_primary_10_1111_nyas_14596
crossref_primary_10_3390_pharmaceutics14040790
crossref_primary_10_1016_j_ccr_2022_214464
crossref_primary_10_1021_acs_molpharmaceut_3c00223
crossref_primary_10_1021_acs_biochem_1c00389
crossref_primary_10_1039_D2CB00004K
crossref_primary_10_1016_j_ejmech_2020_112907
crossref_primary_10_3390_ijms24076181
crossref_primary_10_1021_acs_accounts_1c00588
crossref_primary_10_1021_acsinfecdis_1c00525
Cites_doi 10.3389/fcimb.2017.00012
10.1073/pnas.0808608105
10.1039/C8SC03969K
10.1074/jbc.M114.633495
10.1038/jp.2010.173
10.1073/pnas.1606931114
10.1038/s41467-019-11508-y
10.1128/IAI.00418-13
10.1021/acs.biochem.5b00017
10.1074/jbc.RA118.006185
10.1021/bi500030p
10.3390/ph9010016
10.1128/mBio.00061-12
10.1128/AAC.04238-14
10.1042/BCJ20160131
10.3389/fcimb.2013.00075
10.1046/j.1365-2958.1999.01348.x
10.1021/ja804783x
10.1016/j.leukres.2010.12.027
10.1128/JB.00010-09
10.1128/JB.01491-14
10.1016/j.jhin.2009.04.020
10.1002/jobm.3620330412
10.1172/JCI30783
10.1021/ja0100120
10.1371/journal.ppat.1000949
10.1128/IAI.68.4.1834-1839.2000
10.1046/j.1365-2958.1999.01411.x
10.1016/j.jinorgbio.2014.10.002
10.1021/acs.biochem.6b00239
10.1016/S1369-5274(00)00078-3
10.1074/jbc.M116.728527
10.1016/S0966-842X(00)01918-1
10.1046/j.1365-2958.1998.00885.x
10.1021/ja103498z
10.1128/AAC.01405-16
10.1099/00221287-13-3-572
10.1046/j.1365-2958.1999.01175.x
10.1021/acs.jmedchem.9b01388
10.1038/ng.3148
10.1002/biof.1159
10.1111/2049-632X.12105
10.1128/AAC.02643-18
10.1093/femsle/fnw166
10.1007/978-0-387-78518-9_9
10.1038/nchembio.740
10.1038/nrd.2017.23
10.1021/acschembio.9b00373
10.1021/acs.jmedchem.9b00814
10.1016/j.jmb.2007.11.072
10.3389/fmicb.2015.00282
10.1038/srep39172
10.1016/j.pep.2010.03.010
10.1002/anie.201307889
10.1126/scitranslmed.aat7520
10.1021/acsinfecdis.8b00112
10.1128/AAC.00097-18
10.1126/science.1099930
10.3389/fcimb.2013.00055
10.1002/jps.22432
10.1007/s00775-018-1609-x
10.1016/j.pep.2005.01.016
10.1097/00045391-199911000-00008
ContentType Journal Article
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsinfecdis.0c00138
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2373-8227
EndPage 2085
ExternalDocumentID 10_1021_acsinfecdis_0c00138
d246611399
GroupedDBID ABMVS
ABUCX
ACGFS
ACS
AEESW
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
UI2
VF5
VG9
W1F
53G
AAYXX
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
GGK
7X8
5PM
ID FETCH-LOGICAL-a558t-4eec09a3176966b75b1534f233d458fcb02e7d9170567d1af08c069f5ed3f1f03
IEDL.DBID ACS
ISSN 2373-8227
IngestDate Tue Sep 17 21:17:02 EDT 2024
Fri Aug 16 08:54:17 EDT 2024
Fri Aug 23 03:00:21 EDT 2024
Thu Aug 20 10:21:01 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords Pseudomonas aeruginosa
heme sensing
antimicrobials
heme uptake
metallotherapeutics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a558t-4eec09a3176966b75b1534f233d458fcb02e7d9170567d1af08c069f5ed3f1f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author Contributions
G.C. designed and performed the experiments, analyzed the data, and prepared the manuscript. D.D. designed and supervised HDXMS experiments. K.H. designed and supervised NMR experiments. Y.A. developed the synthesis of GaSal. A.D. designed and contributed to the HasR-SMALPS expression protocol. F.X. and A.W. contributed to project conceptualization, supervision, funding acquisition, and manuscript revision.
ORCID 0000-0002-4132-9887
0000-0002-6897-6523
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456513
PMID 32551497
PQID 2415308688
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7456513
proquest_miscellaneous_2415308688
crossref_primary_10_1021_acsinfecdis_0c00138
acs_journals_10_1021_acsinfecdis_0c00138
ProviderPackageCode ACS
AEESW
AFEFF
VF5
VG9
ABMVS
ABUCX
AQSVZ
W1F
UI2
PublicationCentury 2000
PublicationDate 2020-08-14
PublicationDateYYYYMMDD 2020-08-14
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-14
  day: 14
PublicationDecade 2020
PublicationTitle ACS infectious diseases
PublicationTitleAlternate ACS Infect. Dis
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
Fuhrop J. H. (ref62/cit62) 1975
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref38/cit38
  doi: 10.3389/fcimb.2017.00012
– ident: ref39/cit39
  doi: 10.1073/pnas.0808608105
– ident: ref61/cit61
  doi: 10.1039/C8SC03969K
– ident: ref18/cit18
  doi: 10.1074/jbc.M114.633495
– ident: ref54/cit54
  doi: 10.1038/jp.2010.173
– ident: ref52/cit52
  doi: 10.1073/pnas.1606931114
– ident: ref58/cit58
  doi: 10.1038/s41467-019-11508-y
– ident: ref15/cit15
  doi: 10.1128/IAI.00418-13
– ident: ref65/cit65
  doi: 10.1021/acs.biochem.5b00017
– ident: ref20/cit20
  doi: 10.1074/jbc.RA118.006185
– ident: ref27/cit27
  doi: 10.1021/bi500030p
– ident: ref37/cit37
  doi: 10.3390/ph9010016
– ident: ref4/cit4
  doi: 10.1128/mBio.00061-12
– ident: ref22/cit22
  doi: 10.1128/AAC.04238-14
– ident: ref29/cit29
  doi: 10.1042/BCJ20160131
– ident: ref57/cit57
  doi: 10.3389/fcimb.2013.00075
– ident: ref9/cit9
  doi: 10.1046/j.1365-2958.1999.01348.x
– ident: ref28/cit28
  doi: 10.1021/ja804783x
– ident: ref32/cit32
  doi: 10.1016/j.leukres.2010.12.027
– ident: ref48/cit48
  doi: 10.1128/JB.00010-09
– ident: ref17/cit17
  doi: 10.1128/JB.01491-14
– ident: ref2/cit2
  doi: 10.1016/j.jhin.2009.04.020
– ident: ref63/cit63
  doi: 10.1002/jobm.3620330412
– ident: ref35/cit35
  doi: 10.1172/JCI30783
– ident: ref49/cit49
  doi: 10.1021/ja0100120
– ident: ref12/cit12
  doi: 10.1371/journal.ppat.1000949
– ident: ref13/cit13
  doi: 10.1128/IAI.68.4.1834-1839.2000
– volume-title: Porphyrins and Metalloporphyrins
  year: 1975
  ident: ref62/cit62
  contributor:
    fullname: Fuhrop J. H.
– ident: ref10/cit10
  doi: 10.1046/j.1365-2958.1999.01411.x
– ident: ref33/cit33
  doi: 10.1016/j.jinorgbio.2014.10.002
– ident: ref26/cit26
  doi: 10.1021/acs.biochem.6b00239
– ident: ref42/cit42
– ident: ref11/cit11
  doi: 10.1016/S1369-5274(00)00078-3
– ident: ref19/cit19
  doi: 10.1074/jbc.M116.728527
– ident: ref3/cit3
  doi: 10.1016/S0966-842X(00)01918-1
– ident: ref24/cit24
  doi: 10.1046/j.1365-2958.1998.00885.x
– ident: ref25/cit25
  doi: 10.1021/ja103498z
– ident: ref45/cit45
  doi: 10.1128/AAC.01405-16
– ident: ref60/cit60
  doi: 10.1099/00221287-13-3-572
– ident: ref50/cit50
  doi: 10.1046/j.1365-2958.1999.01175.x
– ident: ref40/cit40
  doi: 10.1021/acs.jmedchem.9b01388
– ident: ref16/cit16
  doi: 10.1038/ng.3148
– ident: ref46/cit46
  doi: 10.1002/biof.1159
– ident: ref43/cit43
  doi: 10.1111/2049-632X.12105
– ident: ref59/cit59
  doi: 10.1128/AAC.02643-18
– ident: ref23/cit23
  doi: 10.1093/femsle/fnw166
– ident: ref55/cit55
  doi: 10.1007/978-0-387-78518-9_9
– ident: ref1/cit1
– ident: ref6/cit6
  doi: 10.1038/nchembio.740
– ident: ref7/cit7
  doi: 10.1038/nrd.2017.23
– ident: ref31/cit31
  doi: 10.1021/acschembio.9b00373
– ident: ref34/cit34
  doi: 10.1021/acs.jmedchem.9b00814
– ident: ref51/cit51
  doi: 10.1016/j.jmb.2007.11.072
– ident: ref47/cit47
  doi: 10.3389/fmicb.2015.00282
– ident: ref21/cit21
  doi: 10.1038/srep39172
– ident: ref56/cit56
  doi: 10.1016/j.pep.2010.03.010
– ident: ref30/cit30
  doi: 10.1002/anie.201307889
– ident: ref41/cit41
  doi: 10.1126/scitranslmed.aat7520
– ident: ref5/cit5
  doi: 10.1021/acsinfecdis.8b00112
– ident: ref44/cit44
  doi: 10.1128/AAC.00097-18
– ident: ref14/cit14
  doi: 10.1126/science.1099930
– ident: ref8/cit8
  doi: 10.3389/fcimb.2013.00055
– ident: ref64/cit64
  doi: 10.1002/jps.22432
– ident: ref53/cit53
  doi: 10.1007/s00775-018-1609-x
– ident: ref66/cit66
  doi: 10.1016/j.pep.2005.01.016
– ident: ref36/cit36
  doi: 10.1097/00045391-199911000-00008
SSID ssj0001385445
Score 2.348511
Snippet Pseudomonas aeruginosa is an opportunistic bacterium that causes life-threatening infections in immunocompromised patients. In infection, it uses heme as a...
Pseudomonas aeruginosa is an opportunistic bacterium that causes life-threatening infections in immunocompromised patients. In infection, it uses heme as a...
SourceID pubmedcentral
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 2073
Title Gallium(III)–Salophen as a Dual Inhibitor of Pseudomonas aeruginosa Heme Sensing and Iron Acquisition
URI http://dx.doi.org/10.1021/acsinfecdis.0c00138
https://search.proquest.com/docview/2415308688
https://pubmed.ncbi.nlm.nih.gov/PMC7456513
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTtswFLagSBM3_AwQjG0y0i5AWkoS23FyWcGgmQSaVJC4i2zHhojiQNPc7GrvsDfck-w4TaEFhLi2Yzk-f599jj8j9I2LiFPJmKdCX3qUa-MJCs4wCSMlQUEMyd2B_tl51L-kP6_Y1cxl9WcZ_DA4FKpq6pLyour6qsmsLaKlkIN5OCR0NHg6UiGxo5ZpnpPjxIPQx6c8Q6-P4yKSquYj0hPMnC-SnIk6J6vofHp3Z1Jsctutx7Krfr-kcnzfD62hlRZ_4t5EYdbRgrYf0YezNsO-ga5PxXBY1Hf7aZoe_PvzdyCGjnnAYlFhgY9r-Da1N4UERzDCpcG_Kl3nJeiya9ejGiZWVgL39Z3GA1ccb6-xsDlOR6XFPfVQF5MisU10efLj4qjvtY8xeIKxeOxRrZWfCIAbEeyQJGcSfCU1ISE5ZbFR0g81zxPHzhPxPBDGj5UfJYbpnJjA-GQLdWxp9TbCTBIKqMRxEWoaaZG4-7ySEJMYobnwd9A-rFHWGlOVNXnyMMhmFi5rF24HfZ_KLruf0HO83X1vKt8MzMjlRoTVZV1lDsjAhKIY-vA5wT-O64i451tscdMQcnMHiwPy6f3z3kXLodu4O25d-hl1xqNafwF0M5ZfG53-D8IU-Ic
link.rule.ids 230,315,783,787,888,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELZakNpeKP1TgdK6Ug9UapYktuPkiKB007Ko0rISt8h2bIi6OO16c-HEO_CGPAnjbJZlq6pqr_GPJuOx57Nn_BmhD1wknErGAhWHMqBcm0BQWAyzOFESDMSQ0h_oD46T_oh-PWWn3aUwfxcGhHDQk2uD-At2gWgXvrXpSWXleqFqA2wP0Srj4DI9INofLk5WSOoZZtpX5TgJwAPyOd3Qn_vxjkm5Zce0QJvLuZL3nM_hUzS6E7vNOfnRa6aypy5_Y3T83_9aR2sdGsV7M_N5hh5o-xw9GnTx9hfo7IsYj6vmYifP8483V9dDMfY8BBYLhwU-aKBtbs8rCcvCBNcGf3e6KWuwbF-uJw3IVzuB-_pC46FPlbdnWNgS55Pa4j31q6lmKWMv0ejw88l-P-ieZggEY-k0oFqrMBMAPhLYL0nOJKyc1MSElJSlRskw1rzMPFdPwstImDBVYZIZpktiIhOSV2jF1la_RphJQgGjeGZCTRMtMn-7VxJiMiM0F-EG2gEdFd3UckUbNY-j4p7iik5xG-jTfAiLnzOyjr9Xfz8f5gImlY-UCKvrxhUe1oBASQp1-NL43_XrabmXS2x13tJzcw-SI7L573K_Q4_7J4Oj4ig__raFnsR-S-9Zd-kbtDKdNHobcM9Uvm3N_Ba0xAD7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkSouvBHlUYzEoUhkSWI7To6rtssGaFVpqVROkZ9txNYpm82FE_-Bf9hf0rE323YRQohr_NBkPPZ89ow_I_SGi4xTyVik0lhGlBsbCQqLYZFmSoKBWKL9gf7-QTY-oh-P2fEaypd3YUCIFnpqQxDfz-pzbXuGgeQ9fA8pSrpuB7EKQbZb6DbjSQjQDncm16crJPcsM-FlOU4i8IJ8STn05368c1LtqnO6Rpyr-ZI3HNDoHvp6JXrIO_k26OZyoH78xur4P_92H93tUSkeLszoAVoz7iHa2O_j7o_QyQcxndbd2XZZlm8vfv6aiKnnI3BYtFjg3Q7alu60lrA8zHBj8WFrOt2AhftyM-tAxqYVeGzODJ74lHl3goXTuJw1Dg_V965epI49RkejvS8746h_oiESjOXziBqj4kIACMlg3yQ5k7CCUpsSoinLrZJxarguPGdPxnUibJyrOCssM5rYxMbkCVp3jTNPEWaSUMAqnqHQ0MyIwt_ylYTYwgrDRbyJtkFHVT_F2ipEz9OkuqG4qlfcJnq3HMbqfEHa8ffqr5dDXcHk8hET4UzTtZWHNyBQlkMdvmIDV_16eu7VElefBppu7sFyQp79u9yv0Mbh7qj6XB58eo7upH5n78l36Qu0Pp915iXAn7ncCpZ-Cc7yA3U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gallium%28III%29%E2%80%93Salophen+as+a+Dual+Inhibitor+of+Pseudomonas+aeruginosa+Heme+Sensing+and+Iron+Acquisition&rft.jtitle=ACS+infectious+diseases&rft.au=Centola%2C+Garrick&rft.au=Deredge%2C+Daniel+J.&rft.au=Hom%2C+Kellie&rft.au=Ai%2C+Yong&rft.date=2020-08-14&rft.issn=2373-8227&rft.eissn=2373-8227&rft.volume=6&rft.issue=8&rft.spage=2073&rft.epage=2085&rft_id=info:doi/10.1021%2Facsinfecdis.0c00138&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsinfecdis_0c00138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-8227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-8227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-8227&client=summon