Kinetic Desorption and Sorption of U(VI) during Reactive Transport in a Contaminated Hanford Sediment
Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 μmol kg-1) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline condition...
Saved in:
Published in | Environmental science & technology Vol. 39; no. 9; pp. 3157 - 3165 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.05.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 μmol kg-1) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl−carbonate and calcium−uranyl−carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled. |
---|---|
AbstractList | Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, contaminated (22.7 µmol kg-1) capillary fringe sediment that had experienced long-term exposure to U(VI). The clay fraction mineralogy of the sediment was dominated by montmorillonite, muscovite, vermiculite, and chlorite. Saturated column experiments were performed under mildly alkaline/calcareous conditions representative of the Hanford site where uranyl–carbonate and calcium–uranyl–carbonate complexes dominate aqueous speciation. A U(VI) free solution was used to study U(VI) desorption in columns where different flow rates were applied. Uranium(VI) sorption was studied after the desorption of labile contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic behavior was observed for both U(VI) desorption and sorption. Although U(VI) is semi–mobile in mildly alkaline, calcareous subsurface environments, our results showed substantial U(VI) sorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled. Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 mumol kg-1) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium(VI) sorption was studied after the desorption of labile, contaminant U(Vl) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of shortterm U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled. [PUBLICATION ABSTRACT] Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 μmol kg-1) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl−carbonate and calcium−uranyl−carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled. Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 mu mol kg super(-1)) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium-(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled. Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 micromol kg(-1)) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium-(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of shortterm U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled. Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 micromol kg(-1)) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium-(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of shortterm U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 micromol kg(-1)) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium-(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of shortterm U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled. |
Author | Qafoku, Nikolla P Liu, Chongxuan Smith, Steven C Zachara, John M Gassman, Paul L Qafoku, Odeta S |
Author_xml | – sequence: 1 givenname: Nikolla P surname: Qafoku fullname: Qafoku, Nikolla P – sequence: 2 givenname: John M surname: Zachara fullname: Zachara, John M – sequence: 3 givenname: Chongxuan surname: Liu fullname: Liu, Chongxuan – sequence: 4 givenname: Paul L surname: Gassman fullname: Gassman, Paul L – sequence: 5 givenname: Odeta S surname: Qafoku fullname: Qafoku, Odeta S – sequence: 6 givenname: Steven C surname: Smith fullname: Smith, Steven C |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16757950$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15926566$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/15016599$$D View this record in Osti.gov |
BookMark | eNqF0k1vEzEQBmALFdG0cOAPoBWIih6W-iP2eo8oFFpRQSBp1Zs18c6C28RObQfBv8dV0kYqSJwsS8-M7Hdmj-z44JGQ54y-ZZSzI0x0qIeK3zwiAyY5raWWbIcMKGWiboW63CV7KV1RSrmg-gnZZbLlSio1IPjJeczOVu8xhbjMLvgKfFdN7i6hr87fXJweVt0qOv-9-oZgs_uJ1TSCT8sQc-VKSTUKPsPCecjYVSfg-xBLF-zcAn1-Sh73ME_4bHPuk_MPx9PRSX325ePp6N1ZDVKqXM8a3gxRa9nqViIIAOw5KhhqZVFzqhTMWmpth0LyZjbkom-pgBnHlvdd04t98mrdN6TsTLIuo_1hg_dos2GSMiXbtqiDtVrGcLPClM3CJYvzOXgMq2RUo7VQWvwXskYIUTIu8OUDeBVW0ZevmpI4U0q3vKAXG7SaLbAzy-gWEH-bu2EU8HoDIFmY9yVg69LWqUY2raTFHa6djSGliP2WUHO7EOZ-IYo9emBLKHA72RzBzf9ZUa8rXMr46741xOsSjGikmY4nZnI5_so-j5m52L4abNp-----fwCbmtCy |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_gca_2008_12_004 crossref_primary_10_1021_acs_est_5b05015 crossref_primary_10_1021_es8021045 crossref_primary_10_1021_jp062325t crossref_primary_10_1007_s11157_008_9137_8 crossref_primary_10_2134_jeq2008_0071 crossref_primary_10_1029_2007WR006617 crossref_primary_10_1016_j_jconhyd_2013_06_005 crossref_primary_10_1016_j_jconhyd_2014_06_001 crossref_primary_10_1039_C6EM00612D crossref_primary_10_1029_2009WR008168 crossref_primary_10_1021_acsearthspacechem_3c00291 crossref_primary_10_1021_jp909504n crossref_primary_10_1071_EN09046 crossref_primary_10_1021_acs_est_9b06556 crossref_primary_10_1016_j_apgeochem_2016_12_024 crossref_primary_10_1016_j_jconhyd_2007_01_004 crossref_primary_10_1021_es071113m crossref_primary_10_1016_j_gca_2010_02_001 crossref_primary_10_1029_2010WR009369 crossref_primary_10_1002_2013WR013835 crossref_primary_10_1021_es200920k crossref_primary_10_1515_ract_2018_3083 crossref_primary_10_1016_j_chemosphere_2008_10_033 crossref_primary_10_1016_j_jenvrad_2021_106539 crossref_primary_10_1021_acs_est_9b06448 crossref_primary_10_1021_acs_est_0c04429 crossref_primary_10_1021_es901306c crossref_primary_10_1088_1742_6596_78_1_012025 crossref_primary_10_3390_min13020157 crossref_primary_10_1016_j_chemosphere_2013_02_059 crossref_primary_10_1016_j_gca_2023_12_024 crossref_primary_10_1080_01496395_2012_655833 crossref_primary_10_2136_vzj2006_0180 crossref_primary_10_1021_acs_est_6b04873 crossref_primary_10_1029_2007WR006478 crossref_primary_10_1016_j_jhazmat_2021_127028 crossref_primary_10_1524_ract_2009_1569 crossref_primary_10_1016_j_chemosphere_2007_01_063 crossref_primary_10_1002_zaac_201900092 crossref_primary_10_1016_j_jconhyd_2022_103965 crossref_primary_10_1016_j_jconhyd_2013_02_001 crossref_primary_10_1016_j_gca_2013_08_017 crossref_primary_10_1016_j_jhazmat_2023_133311 crossref_primary_10_1016_j_jenvrad_2021_106708 crossref_primary_10_1007_s11004_015_9620_z crossref_primary_10_1029_2010WR010118 crossref_primary_10_1016_j_jconhyd_2012_12_011 crossref_primary_10_1021_es3025935 crossref_primary_10_1021_es2023785 crossref_primary_10_1002_wrcr_20104 crossref_primary_10_1021_acs_est_7b03823 crossref_primary_10_1021_acs_est_7b06136 crossref_primary_10_1016_j_gca_2015_11_029 crossref_primary_10_2136_vzj2011_0158 crossref_primary_10_1524_ract_2011_1876 crossref_primary_10_1021_es101822v crossref_primary_10_1016_j_scitotenv_2015_05_133 crossref_primary_10_1016_j_gca_2012_12_003 crossref_primary_10_1007_s10596_014_9457_4 crossref_primary_10_1016_j_gca_2017_03_009 crossref_primary_10_1016_j_jssc_2005_08_017 crossref_primary_10_1016_j_apgeochem_2019_01_017 crossref_primary_10_1021_es0520969 crossref_primary_10_1007_s11368_014_1018_x crossref_primary_10_1016_j_ijggc_2015_04_008 crossref_primary_10_1063_1_4948942 crossref_primary_10_1016_j_colsurfa_2012_10_030 crossref_primary_10_1021_es202677v crossref_primary_10_1029_2011WR010575 crossref_primary_10_1029_2006WR005031 crossref_primary_10_2136_vzj2007_0166 crossref_primary_10_1021_es501060d crossref_primary_10_1021_es051771b crossref_primary_10_1180_minmag_2008_072_1_381 crossref_primary_10_1021_acs_est_5b01408 crossref_primary_10_1111_gwmr_12570 crossref_primary_10_1021_es071738k crossref_primary_10_1016_j_chemosphere_2010_08_043 crossref_primary_10_1007_s11157_005_2948_y crossref_primary_10_1029_2010WR010303 crossref_primary_10_1061__ASCE_0733_9372_2008_134_4_238 crossref_primary_10_1016_j_jconhyd_2013_10_002 crossref_primary_10_1029_2009WR008819 crossref_primary_10_1016_j_jconhyd_2012_02_003 crossref_primary_10_1021_es9017333 crossref_primary_10_1029_2011WR011472 crossref_primary_10_1016_j_jconhyd_2013_10_001 crossref_primary_10_1016_j_psep_2024_12_041 crossref_primary_10_1016_j_watres_2012_08_034 crossref_primary_10_1021_acs_est_7b03475 crossref_primary_10_1002_2013WR013949 crossref_primary_10_1111_ejss_12814 crossref_primary_10_1029_2009WR008781 crossref_primary_10_1016_j_jconhyd_2012_11_011 crossref_primary_10_1021_es900666m crossref_primary_10_1111_gwat_12238 crossref_primary_10_1021_acs_est_6b02928 crossref_primary_10_1016_j_apgeochem_2013_12_001 crossref_primary_10_1016_j_chemgeo_2013_08_030 crossref_primary_10_1016_j_watres_2014_11_044 crossref_primary_10_1016_j_gca_2009_11_014 crossref_primary_10_1021_jp203091x crossref_primary_10_1016_j_jenvrad_2012_01_007 crossref_primary_10_1016_j_watres_2018_10_004 crossref_primary_10_1021_es062196u crossref_primary_10_1016_j_apgeochem_2009_10_005 crossref_primary_10_1016_j_gca_2011_03_008 crossref_primary_10_1016_j_jconhyd_2007_03_002 crossref_primary_10_1016_j_jhazmat_2021_125274 |
Cites_doi | 10.1524/ract.2000.88.9-11.665 10.1029/95WR02815 10.1021/es9600946 10.1524/ract.2000.88.9-11.799 10.1016/S0009-2541(98)00075-8 10.1021/es020935a 10.1021/es00061a018 10.1021/es970921i 10.1038/283467a0 10.1016/S0169-7722(00)00151-0 10.1021/es990048g 10.1016/S0169-7722(96)00009-5 10.1021/es00048a013 10.1007/BF00119855 10.1016/B978-012384245-9/50003-7 10.1021/es010846i 10.1016/j.gca.2003.12.017 10.1023/A:1022842808820 10.1524/ract.2000.88.9-11.603 10.1016/B978-012384245-9/50004-9 10.1524/ract.2001.89.8.511 10.1016/S0009-2541(98)00074-6 10.1021/es049963e 10.1021/cr00033a002 10.2136/sssaj2000.643908x 10.1002/jpln.3591050303 10.2172/15010052 10.1021/es0019981 10.2136/sssaj1997.03615995006100020003x 10.1021/es00007a012 10.1111/j.1365-2389.1997.tb00566.x 10.1021/es00077a013 |
ContentType | Journal Article |
Copyright | Copyright © 2005 American Chemical Society 2005 INIST-CNRS Copyright American Chemical Society May 1, 2005 |
Copyright_xml | – notice: Copyright © 2005 American Chemical Society – notice: 2005 INIST-CNRS – notice: Copyright American Chemical Society May 1, 2005 |
CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7QH 7TV 7UA F1W H97 L.G 7X8 OTOTI |
DOI | 10.1021/es048462q |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts Aqualine Pollution Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 3165 |
ExternalDocumentID | 15016599 832995121 15926566 16757950 10_1021_es048462q ark_67375_TPS_SXPQ1NP1_V c467681295 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GeographicLocations | United States North America Washington America United States--US Hanford Washington USA, Washington, Hanford Site |
GeographicLocations_xml | – name: United States--US – name: Hanford Washington – name: USA, Washington, Hanford Site |
GroupedDBID | - .K2 186 1AW 3R3 4.4 42X 4R4 53G 55A 5GY 5VS 63O 7~N 85S A AABXI ABDEX ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFMIJ AFRAH ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 K78 LG6 MS NHB PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UNC UPT UQL VF5 VG9 VOH VQA W1F WH7 X XFK XZL YZZ ZCG --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK ABJNI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ BSCLL CUPRZ GGK MS~ MW2 XSW YV5 ZCA ~A~ AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION .HR 1WB 8WZ A6W ABHMW ACKIV AETEA IQODW MVM OHT RNS TAE UBC UBX UBY VJK ZY4 CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7QH 7TV 7UA F1W H97 L.G 7X8 ABFRP OTOTI |
ID | FETCH-LOGICAL-a556t-b7274e8859895ea3aaef2e6a486ce82066ab90ccde3527b423f903ab2e92fd7f3 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Fri May 19 01:41:43 EDT 2023 Thu Jul 10 22:16:21 EDT 2025 Wed Aug 20 00:26:28 EDT 2025 Fri Jul 25 05:57:57 EDT 2025 Wed Feb 19 02:35:43 EST 2025 Mon Jul 21 09:14:37 EDT 2025 Tue Jul 01 04:04:38 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Wed Oct 30 09:15:54 EDT 2024 Thu Aug 27 13:51:22 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Radioactive pollution Sand Pollutant behavior Mobility Desorption Sediments Modeling Aquifer system Unsaturated zone Adsorption Limiting factor Uranium VI Water pollution Kinetics Ground water |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a556t-b7274e8859895ea3aaef2e6a486ce82066ab90ccde3527b423f903ab2e92fd7f3 |
Notes | istex:C2086DA730C9F594FE5281CA37CF50A0A542CDA3 ark:/67375/TPS-SXPQ1NP1-V SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 USDOE AC05-76RL01830 PNNL-SA-42960 |
PMID | 15926566 |
PQID | 230166892 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_15016599 proquest_miscellaneous_67883683 proquest_miscellaneous_17333013 proquest_journals_230166892 pubmed_primary_15926566 pascalfrancis_primary_16757950 crossref_primary_10_1021_es048462q crossref_citationtrail_10_1021_es048462q istex_primary_ark_67375_TPS_SXPQ1NP1_V acs_journals_10_1021_es048462q |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-05-01 |
PublicationDateYYYYMMDD | 2005-05-01 |
PublicationDate_xml | – month: 05 year: 2005 text: 2005-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2005 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Braithwaite A. (es048462qb00044/es048462qb00044_1) 1997; 48 Rovira M. (es048462qb00011/es048462qb00011_1) 2000; 88 Arnold T. (es048462qb00060/es048462qb00060_1) 2001; 47 Gamerdinger A. P. (es048462qb00019/es048462qb00019_1) 2001; 37 Gee G. W. (es048462qb00020/es048462qb00020_1) 1986 Hsi C. D. (es048462qb00010/es048462qb00010_1) 1985; 49 Lorden S. W. (es048462qb00037/es048462qb00037_1) 1998; 32 Zheng Z. (es048462qb00051/es048462qb00051_1) 2003; 37 Giammar D. E. (es048462qb00014/es048462qb00014_1) 2001; 35 Davis J. A. (es048462qb00034/es048462qb00034_1) 2003 Clark D. L. (es048462qb00007/es048462qb00007_1) 1995; 95 Murali V. (es048462qb00057/es048462qb00057_1) 1980; 283 Qafoku N. P. (es048462qb00026/es048462qb00026_1) 2003; 37 Schwertmann U (es048462qb00023/es048462qb00023_1) 1964; 105 Qafoku N. P. (es048462qb00027/es048462qb00027_1) 2004; 68 Pedit J. A. (es048462qb00041/es048462qb00041_1) 1995; 29 Culver T. B. (es048462qb00033/es048462qb00033_1) 1997; 31 Jury W. A. (es048462qb00032/es048462qb00032_1) 1991 Pignatello J. J (es048462qb00039/es048462qb00039_1) 2000; 69 Wang Z. (es048462qb00046/es048462qb00046_1) 2005; 39 Barnett M. O. (es048462qb00049/es048462qb00049_1) 2002; 36 Duff M. C. (es048462qb00012/es048462qb00012_1) 1996; 60 Brusseau M. L. (es048462qb00028/es048462qb00028_1) 1997; 24 Bargar J. R. (es048462qb00047/es048462qb00047_1) 1999; 33 es048462qb00053/es048462qb00053_1 es048462qb00002/es048462qb00002_1 Gabriel U. (es048462qb00017/es048462qb00017_1) 1998; 151 Riley R. G. (es048462qb00001/es048462qb00001_1) 1992 Tripathi V. S. (es048462qb00009/es048462qb00009_1) 1983 Baik M. H. (es048462qb00015/es048462qb00015_1) 2004; 260 Pedit J. A. (es048462qb00040/es048462qb00040_1) 1994; 28 Ho C. H. (es048462qb00048/es048462qb00048_1) 1986; 110 Bargar J. R. (es048462qb00013/es048462qb00013_1) 2000; 64 Toride N. (es048462qb00030/es048462qb00030_1) 1999 Gabriel U. (es048462qb00058/es048462qb00058_1) 1998; 151 Payne T. E. (es048462qb00050/es048462qb00050_1) 2000; 88 Leij F. J. (es048462qb00031/es048462qb00031_1) 1992; 56 Fey M. V. (es048462qb00022/es048462qb00022_1) 1997; 25 Allison J. D. (es048462qb00025/es048462qb00025_1) 1998 Braithwaite A. (es048462qb00016/es048462qb00016_1) 2000; 50 Grenthe I. (es048462qb00008/es048462qb00008_1) 1992 Pabalan R. T. (es048462qb00052/es048462qb00052_1) 1997; 2 Serne J. N. (es048462qb00004/es048462qb00004_1) 2002 Read D. (es048462qb00003/es048462qb00003_1) 1993; 13 Gamerdinger A. P. (es048462qb00018/es048462qb00018_1) 2001; 37 Jensen-Spaulding A. (es048462qb00042/es048462qb00042_1) 2004; 38 Parker J. C. (es048462qb00029/es048462qb00029_1) 1984 Kalmykov S. N. (es048462qb00005/es048462qb00005_1) 2000; 88 Kohler M. (es048462qb00056/es048462qb00056_1) 1996; 32 Jenne E. A. (es048462qb00055/es048462qb00055_1) 1998 Catalano J. G. (es048462qb00045/es048462qb00045_1) 2004; 38 Mehra O. P. (es048462qb00021/es048462qb00021_1) 1960; 7 es048462qb00054/es048462qb00054_1 Barnett M. O. (es048462qb00043/es048462qb00043_1) 2000; 64 Allison J. D. (es048462qb00024/es048462qb00024_1) 1991 Connaughton D. F. (es048462qb00035/es048462qb00035_1) 1993; 27 Gustafson D. I. (es048462qb00036/es048462qb00036_1) 1990; 24 Arnold T. (es048462qb00059/es048462qb00059_1) 1998; 151 Bernhard G. (es048462qb00006/es048462qb00006_1) 2001; 89 Chen W. (es048462qb00038/es048462qb00038_1) 1997; 61 |
References_xml | – volume: 88 start-page: 6671 year: 2000 ident: es048462qb00011/es048462qb00011_1 publication-title: Radiochim. Acta doi: 10.1524/ract.2000.88.9-11.665 – volume: 32 start-page: 3551 year: 1996 ident: es048462qb00056/es048462qb00056_1 publication-title: Water Resour. Res. doi: 10.1029/95WR02815 – volume: 31 start-page: 1588 year: 1997 ident: es048462qb00033/es048462qb00033_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es9600946 – volume: 88 start-page: 802 year: 2000 ident: es048462qb00050/es048462qb00050_1 publication-title: Radiochim. Acta doi: 10.1524/ract.2000.88.9-11.799 – volume: 151 start-page: 141 year: 1998 ident: es048462qb00059/es048462qb00059_1 publication-title: Chem. Geol. doi: 10.1016/S0009-2541(98)00075-8 – volume-title: The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments year: 1999 ident: es048462qb00030/es048462qb00030_1 – volume: 37 start-page: 3646 year: 2003 ident: es048462qb00026/es048462qb00026_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es020935a – volume: 64 start-page: 2749 year: 2000 ident: es048462qb00013/es048462qb00013_1 publication-title: Geochim. Cosmochim. Acta – start-page: 84 year: 1984 ident: es048462qb00029/es048462qb00029_1 publication-title: Va. Agric. Exp. Stn. Bull. – volume: 28 start-page: 2104 year: 1994 ident: es048462qb00040/es048462qb00040_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00061a018 – volume: 32 start-page: 20017 year: 1998 ident: es048462qb00037/es048462qb00037_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es970921i – volume: 39 start-page: 0000 year: 2005 ident: es048462qb00046/es048462qb00046_1 publication-title: Environ. Sci. Technol. – start-page: 73 volume-title: Adsorption of Metals by Geomedia year: 1998 ident: es048462qb00055/es048462qb00055_1 – volume: 283 start-page: 469 year: 1980 ident: es048462qb00057/es048462qb00057_1 publication-title: Nature (London) doi: 10.1038/283467a0 – volume: 47 start-page: 231 year: 2001 ident: es048462qb00060/es048462qb00060_1 publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(00)00151-0 – volume: 13 start-page: 289 year: 1993 ident: es048462qb00003/es048462qb00003_1 publication-title: J. Contam. Hydrol. – volume: 37 start-page: 5608 year: 2003 ident: es048462qb00051/es048462qb00051_1 publication-title: Environ. Sci. Technol. – volume: 60 start-page: 1400 year: 1996 ident: es048462qb00012/es048462qb00012_1 publication-title: Soil Sci. Soc. Am. J. – volume: 33 start-page: 2484 year: 1999 ident: es048462qb00047/es048462qb00047_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es990048g – volume: 24 start-page: 219 year: 1997 ident: es048462qb00028/es048462qb00028_1 publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(96)00009-5 – volume: 27 start-page: 2403 year: 1993 ident: es048462qb00035/es048462qb00035_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00048a013 – volume: 38 start-page: 2239 year: 2004 ident: es048462qb00042/es048462qb00042_1 publication-title: Water Res. – volume: 2 start-page: 226 year: 1997 ident: es048462qb00052/es048462qb00052_1 publication-title: Aquat. Geochem. doi: 10.1007/BF00119855 – volume: 260 start-page: 502 year: 2004 ident: es048462qb00015/es048462qb00015_1 publication-title: J. Radionanal. Nucl. Chem. – volume-title: Soil Physics year: 1991 ident: es048462qb00032/es048462qb00032_1 – ident: es048462qb00054/es048462qb00054_1 doi: 10.1016/B978-012384245-9/50003-7 – volume: 36 start-page: 942 year: 2002 ident: es048462qb00049/es048462qb00049_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es010846i – volume: 56 start-page: 674 year: 1992 ident: es048462qb00031/es048462qb00031_1 publication-title: Soil Sci. Soc. Am. J. – volume: 68 start-page: 2995 year: 2004 ident: es048462qb00027/es048462qb00027_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2003.12.017 – volume: 7 start-page: 327 year: 1960 ident: es048462qb00021/es048462qb00021_1 publication-title: Clays Clay Miner. – volume: 50 start-page: 269 year: 2000 ident: es048462qb00016/es048462qb00016_1 publication-title: Czech. J. Phys. doi: 10.1023/A:1022842808820 – volume-title: Chemical Contaminants on DOE Lands and Selection of Contaminant Mixtures for Subsurface Science Research year: 1992 ident: es048462qb00001/es048462qb00001_1 – volume-title: Uranium transport modeling: geochemical data and sub-models year: 1983 ident: es048462qb00009/es048462qb00009_1 – volume: 88 start-page: 606 year: 2000 ident: es048462qb00005/es048462qb00005_1 publication-title: Radiochim. Acta doi: 10.1524/ract.2000.88.9-11.603 – ident: es048462qb00053/es048462qb00053_1 doi: 10.1016/B978-012384245-9/50004-9 – volume: 37 start-page: 3153 year: 2001 ident: es048462qb00018/es048462qb00018_1 publication-title: Water Resour. Res. – volume: 37 start-page: 3162 year: 2001 ident: es048462qb00019/es048462qb00019_1 publication-title: Water Resour. Res. – start-page: 411 volume-title: Methods of Soils Analyses. Part 1: Physical and Mineralogical Methods year: 1986 ident: es048462qb00020/es048462qb00020_1 – volume: 89 start-page: 518 year: 2001 ident: es048462qb00006/es048462qb00006_1 publication-title: Radiochim. Acta doi: 10.1524/ract.2001.89.8.511 – volume: 151 start-page: 128 year: 1998 ident: es048462qb00058/es048462qb00058_1 publication-title: Chem. Geol. doi: 10.1016/S0009-2541(98)00074-6 – volume: 49 start-page: 1941 year: 1985 ident: es048462qb00010/es048462qb00010_1 publication-title: Geochim. Cosmochim. Acta – volume: 38 start-page: 2828 year: 2004 ident: es048462qb00045/es048462qb00045_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es049963e – volume-title: Chemical Thermodynamics of Uranium year: 1992 ident: es048462qb00008/es048462qb00008_1 – volume: 95 start-page: 48 year: 1995 ident: es048462qb00007/es048462qb00007_1 publication-title: Chem. Rev. doi: 10.1021/cr00033a002 – volume: 151 start-page: 128 year: 1998 ident: es048462qb00017/es048462qb00017_1 publication-title: Chem. Geol. doi: 10.1016/S0009-2541(98)00074-6 – volume: 64 start-page: 917 year: 2000 ident: es048462qb00043/es048462qb00043_1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.643908x – volume: 25 start-page: 294 year: 1997 ident: es048462qb00022/es048462qb00022_1 publication-title: Clays Clay Miner. – volume: 105 start-page: 202 year: 1964 ident: es048462qb00023/es048462qb00023_1 publication-title: Z. Pflanzenernaehr. Dueng. Bodenk. doi: 10.1002/jpln.3591050303 – volume-title: 300 Area Uranium Leach and Adsorption Project year: 2002 ident: es048462qb00004/es048462qb00004_1 doi: 10.2172/15010052 – volume: 110 start-page: 171 year: 1986 ident: es048462qb00048/es048462qb00048_1 publication-title: J. Colloid Interface Sci. – volume: 35 start-page: 3337 year: 2001 ident: es048462qb00014/es048462qb00014_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es0019981 – volume: 61 start-page: 371 year: 1997 ident: es048462qb00038/es048462qb00038_1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1997.03615995006100020003x – volume: 29 start-page: 1772 year: 1995 ident: es048462qb00041/es048462qb00041_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00007a012 – volume: 48 start-page: 673 year: 1997 ident: es048462qb00044/es048462qb00044_1 publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1997.tb00566.x – ident: es048462qb00002/es048462qb00002_1 – volume: 69 start-page: 73 year: 2000 ident: es048462qb00039/es048462qb00039_1 publication-title: Adv. Agron. – volume-title: Colorado year: 2003 ident: es048462qb00034/es048462qb00034_1 – volume: 24 start-page: 1038 year: 1990 ident: es048462qb00036/es048462qb00036_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00077a013 – volume-title: A Geochemical Assessment Model for Environmental Systems: Version 3.0 User's Manual year: 1991 ident: es048462qb00024/es048462qb00024_1 – volume-title: A Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version 4.0 year: 1998 ident: es048462qb00025/es048462qb00025_1 |
SSID | ssj0002308 |
Score | 2.1891923 |
Snippet | Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 μmol kg-1) capillary... Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 micromol kg(-1)) capillary... Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 mumol kg-1) capillary... Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 mu mol kg super(-1))... Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, contaminated (22.7 µmol kg-1) capillary fringe... |
SourceID | osti proquest pubmed pascalfrancis crossref istex acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3157 |
SubjectTerms | Applied sciences AQUIFERS Biological and physicochemical properties of pollutants. Interaction in the soil Carbonates - chemistry CLAYS Contaminated sediments DESORPTION Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Environmental science ENVIRONMENTAL SCIENCES Exact sciences and technology FLOW RATE Freshwater Geologic Sediments - chemistry Hazardous Waste KINETICS LEACHING MINERALOGY Models, Theoretical MONTMORILLONITE MUSCOVITE Pollution Pollution, environment geology SEDIMENTS Silicon Dioxide Soil and sediments pollution Soil Pollutants, Radioactive - analysis SORPTION TRANSPORT Uranium Uranium - analysis Uranium - chemistry VERMICULITE |
Title | Kinetic Desorption and Sorption of U(VI) during Reactive Transport in a Contaminated Hanford Sediment |
URI | http://dx.doi.org/10.1021/es048462q https://api.istex.fr/ark:/67375/TPS-SXPQ1NP1-V/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/15926566 https://www.proquest.com/docview/230166892 https://www.proquest.com/docview/17333013 https://www.proquest.com/docview/67883683 https://www.osti.gov/biblio/15016599 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwEB2V9gKHAoVCaCkWIFQOKRs7_jpWpdUCUrWw3WpvkZM4EmqVwCYrIX49Y-djW9GFY5LnOJ7M2M_y-BngbYH3R1IWobachrHO01DlwoTIdilFp5F55rN8z8V4Fn-e8_kGvFmzgk-jD7ZGJ4sF_XkPtqhQ0s2wjk-mQ3eLb1X9MQWaiXkvH3SzqBt6svrW0LPlrPgLO-IKQ8llRJoajVK0p1msp5t-2Dl7CB_7zTtttsnV0bJJj7Lff2s5_qtFj2C7o53kuPWTx7Bhyx14cEOMcAd2T1d73hDaBX39BOwXBGE5gnPUauG7GGLKnEz7i6ogs8PLT-9Ju-eRfLPG96JkUE4n37EIcUpYxqXeIMslY-M2QuFbcPR0VT6F2dnpxck47E5nCA3noglTZD6xVYprpbk1zBhbUCtMrERmvUq8SfUoy3KLHE-mSNsKPWImpVbTIpcF24XNsirtcyCWac4oPoqUjrWkBmkjzbXQOJnSqbIBHODvS7roqhO_cE6jZDBkAIf9n02yTtvcHbFxfRf09QD90Qp63AV6591jQJjFlcuAkzy5mEyT6XzyNTqfRMllAPvOfxKkK05zN3PJSVmTIMuOBNcaP_yWX61qxHma1HwUwF7vaKvmoUdHQihNA3g1PMWod0s5prTVEi0gGUMUW49AEqKYUIh41vrvqm6uqWPxL_5n1T2474VqfXrnPmw2i6V9iRSsSQ98CP4BoBApAw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bb9MwFD4a2wPwwGUwCBubhQBtDxmNHTv2Aw_T2NTSURXaTn0LTuJIaCiFphWXn8Jf4c9x7CbphjbxNInHJCe2Y5_Ld5TjzwDPc7zfiqLcV4ZTP1RZ4stMaB_RLqWoNFGWuirfnmiPwrdjPl6BX_VeGBxEiS2V7if-kl0geGVK1LVQ0K9VAWXX_PiG6Vn5uvMG1_IFpcdHw8O2X50g4GvOxcxPMDqHRkqupOJGM61NTo3QoRSpcUzmOlGtNM0M4pAoQWiRqxbTCTWK5lmUM2z3Bqwh6KE2sTs4HDReHj9G1qcjKCbGNWvR-aHaiJeWFyLeml287-j_J2jBthBTl7gW-eIQjatRrot2x3fhdzNPrsjlbH8-S_bTn39RSP6fE3kP7lQgmxwsrOI-rJhiHW6fo15ch42j5Q4_FK1cXPkATBeF8D2CGflk6hwq0UVGBvXFJCej3dPOHlns8CQfjHYxgzQ88eQTvkIs75e2hUaI6Ulb221f2ApiBdvlQxhdywRswGoxKcxjIIYpzig-CqQKVUQ1gmSaKaEwdVSJNB5s47rFlS8pY1cmQIO4WTgPdmuFitOKyd0eKPL5MtFnjeiXBX3JZUIvnVY2Enp6Zuv9Ih4P-4N4MO6_D3r9ID71YMuqbYzgzDIMp7YUK53FmFMEgiuFA7-gzsseMSuNFG95sFnr9_Lz0JACIaSiHuw0T9HH2R9XujCTOc5AxBhKsaslEHJJJiRKPFqYzbJvrqjNWZ78a1Z34GZ7-O4kPun0uptwy1H0usLWLVidTefmKYLPWbLtvACBj9dtLX8AuqqMpA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bb9MwFD4am4TggctgEDY2CwHaHjIaJ3bsBx6mbVVLUVXoOvUtOIkjoaFkNKm4_Bj-Cn-NYzdJN7SJp0k8tjmxHftcviMffwZ4meH_nTDMXKkZdQOZxq5IuXIR7VKKShOmia3yHfLeJHg3ZdMV-NWchcFBlNhSaTfxjVWfp1nNMOC90SXqW8Dp17qIcqB_fMMUrXzbP8L1fEVp9_jksOfWtwi4ijFeuTFG6EALwaSQTCtfKZ1RzVUgeKItm7mKZSdJUo1YJIwRXmSy46uYakmzNMx8bPcWrJntQZPcHRyOW0-PHySaGxKkz6cNc9HFoZqol5SXot6aWcDvGAMKtGJTjKlKXI9scZHG9UjXRrzuffjdzpUtdDnbn1fxfvLzLxrJ_3cyH8C9GmyTg4V1PIQVna_D3QsUjOuwcbw86YeitasrH4EeoBC-RzAzL2bWsRKVp2Tc_CgyMtk97e-RxUlP8lErGztIyxdPPuMrxPB_KVNwhNie9JQ5_oWtIGYwXT6GyY1MwAas5kWunwLRvmQ-xUeekIEMqUKwTFPJJaaQMhbagW1cu6j2KWVkywWoF7UL58Buo1RRUjO6m4tFvlwl-qIVPV_QmFwl9NpqZiuhZmem7i9k0cloHI2now_ecORFpw5sGdWNEKQZpuHElGQlVYS5hceZlDjwSyq97BGz01CyjgObjY4vPw-NyeNcSOrATvsUfZ3ZwFK5LuY4A6Hvo5R_vQRCL-FzgRJPFqaz7JtJanKXZ_-a1R24PTrqRu_7w8Em3LFMvba-dQtWq9lcP0cMWsXb1hEQ-HTTxvIHsPyPJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+desorption+and+sorption+of+U%28VI%29+during+reactive+transport+in+a+contaminated+hanford+sediment&rft.jtitle=Environmental+science+%26+technology&rft.au=QAFOKU%2C+Nikolla+P&rft.au=ZACHARA%2C+John+M&rft.au=CHONGXUAN+LIU&rft.au=GASSMAN%2C+Paul+L&rft.date=2005-05-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=39&rft.issue=9&rft.spage=3157&rft.epage=3165&rft_id=info:doi/10.1021%2Fes048462q&rft.externalDBID=n%2Fa&rft.externalDocID=16757950 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |