Kinetic Desorption and Sorption of U(VI) during Reactive Transport in a Contaminated Hanford Sediment

Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 μmol kg-1) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline condition...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 39; no. 9; pp. 3157 - 3165
Main Authors Qafoku, Nikolla P, Zachara, John M, Liu, Chongxuan, Gassman, Paul L, Qafoku, Odeta S, Smith, Steven C
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.05.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 μmol kg-1) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl−carbonate and calcium−uranyl−carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.
AbstractList Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, contaminated (22.7 µmol kg-1) capillary fringe sediment that had experienced long-term exposure to U(VI). The clay fraction mineralogy of the sediment was dominated by montmorillonite, muscovite, vermiculite, and chlorite. Saturated column experiments were performed under mildly alkaline/calcareous conditions representative of the Hanford site where uranyl–carbonate and calcium–uranyl–carbonate complexes dominate aqueous speciation. A U(VI) free solution was used to study U(VI) desorption in columns where different flow rates were applied. Uranium(VI) sorption was studied after the desorption of labile contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic behavior was observed for both U(VI) desorption and sorption. Although U(VI) is semi–mobile in mildly alkaline, calcareous subsurface environments, our results showed substantial U(VI) sorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.
Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 mumol kg-1) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium(VI) sorption was studied after the desorption of labile, contaminant U(Vl) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of shortterm U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled. [PUBLICATION ABSTRACT]
Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 μmol kg-1) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl−carbonate and calcium−uranyl−carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.
Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 mu mol kg super(-1)) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium-(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.
Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 micromol kg(-1)) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium-(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of shortterm U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.
Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 micromol kg(-1)) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium-(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of shortterm U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 micromol kg(-1)) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium-(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of shortterm U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.
Author Qafoku, Nikolla P
Liu, Chongxuan
Smith, Steven C
Zachara, John M
Gassman, Paul L
Qafoku, Odeta S
Author_xml – sequence: 1
  givenname: Nikolla P
  surname: Qafoku
  fullname: Qafoku, Nikolla P
– sequence: 2
  givenname: John M
  surname: Zachara
  fullname: Zachara, John M
– sequence: 3
  givenname: Chongxuan
  surname: Liu
  fullname: Liu, Chongxuan
– sequence: 4
  givenname: Paul L
  surname: Gassman
  fullname: Gassman, Paul L
– sequence: 5
  givenname: Odeta S
  surname: Qafoku
  fullname: Qafoku, Odeta S
– sequence: 6
  givenname: Steven C
  surname: Smith
  fullname: Smith, Steven C
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16757950$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15926566$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/15016599$$D View this record in Osti.gov
BookMark eNqF0k1vEzEQBmALFdG0cOAPoBWIih6W-iP2eo8oFFpRQSBp1Zs18c6C28RObQfBv8dV0kYqSJwsS8-M7Hdmj-z44JGQ54y-ZZSzI0x0qIeK3zwiAyY5raWWbIcMKGWiboW63CV7KV1RSrmg-gnZZbLlSio1IPjJeczOVu8xhbjMLvgKfFdN7i6hr87fXJweVt0qOv-9-oZgs_uJ1TSCT8sQc-VKSTUKPsPCecjYVSfg-xBLF-zcAn1-Sh73ME_4bHPuk_MPx9PRSX325ePp6N1ZDVKqXM8a3gxRa9nqViIIAOw5KhhqZVFzqhTMWmpth0LyZjbkom-pgBnHlvdd04t98mrdN6TsTLIuo_1hg_dos2GSMiXbtqiDtVrGcLPClM3CJYvzOXgMq2RUo7VQWvwXskYIUTIu8OUDeBVW0ZevmpI4U0q3vKAXG7SaLbAzy-gWEH-bu2EU8HoDIFmY9yVg69LWqUY2raTFHa6djSGliP2WUHO7EOZ-IYo9emBLKHA72RzBzf9ZUa8rXMr46741xOsSjGikmY4nZnI5_so-j5m52L4abNp-----fwCbmtCy
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_gca_2008_12_004
crossref_primary_10_1021_acs_est_5b05015
crossref_primary_10_1021_es8021045
crossref_primary_10_1021_jp062325t
crossref_primary_10_1007_s11157_008_9137_8
crossref_primary_10_2134_jeq2008_0071
crossref_primary_10_1029_2007WR006617
crossref_primary_10_1016_j_jconhyd_2013_06_005
crossref_primary_10_1016_j_jconhyd_2014_06_001
crossref_primary_10_1039_C6EM00612D
crossref_primary_10_1029_2009WR008168
crossref_primary_10_1021_acsearthspacechem_3c00291
crossref_primary_10_1021_jp909504n
crossref_primary_10_1071_EN09046
crossref_primary_10_1021_acs_est_9b06556
crossref_primary_10_1016_j_apgeochem_2016_12_024
crossref_primary_10_1016_j_jconhyd_2007_01_004
crossref_primary_10_1021_es071113m
crossref_primary_10_1016_j_gca_2010_02_001
crossref_primary_10_1029_2010WR009369
crossref_primary_10_1002_2013WR013835
crossref_primary_10_1021_es200920k
crossref_primary_10_1515_ract_2018_3083
crossref_primary_10_1016_j_chemosphere_2008_10_033
crossref_primary_10_1016_j_jenvrad_2021_106539
crossref_primary_10_1021_acs_est_9b06448
crossref_primary_10_1021_acs_est_0c04429
crossref_primary_10_1021_es901306c
crossref_primary_10_1088_1742_6596_78_1_012025
crossref_primary_10_3390_min13020157
crossref_primary_10_1016_j_chemosphere_2013_02_059
crossref_primary_10_1016_j_gca_2023_12_024
crossref_primary_10_1080_01496395_2012_655833
crossref_primary_10_2136_vzj2006_0180
crossref_primary_10_1021_acs_est_6b04873
crossref_primary_10_1029_2007WR006478
crossref_primary_10_1016_j_jhazmat_2021_127028
crossref_primary_10_1524_ract_2009_1569
crossref_primary_10_1016_j_chemosphere_2007_01_063
crossref_primary_10_1002_zaac_201900092
crossref_primary_10_1016_j_jconhyd_2022_103965
crossref_primary_10_1016_j_jconhyd_2013_02_001
crossref_primary_10_1016_j_gca_2013_08_017
crossref_primary_10_1016_j_jhazmat_2023_133311
crossref_primary_10_1016_j_jenvrad_2021_106708
crossref_primary_10_1007_s11004_015_9620_z
crossref_primary_10_1029_2010WR010118
crossref_primary_10_1016_j_jconhyd_2012_12_011
crossref_primary_10_1021_es3025935
crossref_primary_10_1021_es2023785
crossref_primary_10_1002_wrcr_20104
crossref_primary_10_1021_acs_est_7b03823
crossref_primary_10_1021_acs_est_7b06136
crossref_primary_10_1016_j_gca_2015_11_029
crossref_primary_10_2136_vzj2011_0158
crossref_primary_10_1524_ract_2011_1876
crossref_primary_10_1021_es101822v
crossref_primary_10_1016_j_scitotenv_2015_05_133
crossref_primary_10_1016_j_gca_2012_12_003
crossref_primary_10_1007_s10596_014_9457_4
crossref_primary_10_1016_j_gca_2017_03_009
crossref_primary_10_1016_j_jssc_2005_08_017
crossref_primary_10_1016_j_apgeochem_2019_01_017
crossref_primary_10_1021_es0520969
crossref_primary_10_1007_s11368_014_1018_x
crossref_primary_10_1016_j_ijggc_2015_04_008
crossref_primary_10_1063_1_4948942
crossref_primary_10_1016_j_colsurfa_2012_10_030
crossref_primary_10_1021_es202677v
crossref_primary_10_1029_2011WR010575
crossref_primary_10_1029_2006WR005031
crossref_primary_10_2136_vzj2007_0166
crossref_primary_10_1021_es501060d
crossref_primary_10_1021_es051771b
crossref_primary_10_1180_minmag_2008_072_1_381
crossref_primary_10_1021_acs_est_5b01408
crossref_primary_10_1111_gwmr_12570
crossref_primary_10_1021_es071738k
crossref_primary_10_1016_j_chemosphere_2010_08_043
crossref_primary_10_1007_s11157_005_2948_y
crossref_primary_10_1029_2010WR010303
crossref_primary_10_1061__ASCE_0733_9372_2008_134_4_238
crossref_primary_10_1016_j_jconhyd_2013_10_002
crossref_primary_10_1029_2009WR008819
crossref_primary_10_1016_j_jconhyd_2012_02_003
crossref_primary_10_1021_es9017333
crossref_primary_10_1029_2011WR011472
crossref_primary_10_1016_j_jconhyd_2013_10_001
crossref_primary_10_1016_j_psep_2024_12_041
crossref_primary_10_1016_j_watres_2012_08_034
crossref_primary_10_1021_acs_est_7b03475
crossref_primary_10_1002_2013WR013949
crossref_primary_10_1111_ejss_12814
crossref_primary_10_1029_2009WR008781
crossref_primary_10_1016_j_jconhyd_2012_11_011
crossref_primary_10_1021_es900666m
crossref_primary_10_1111_gwat_12238
crossref_primary_10_1021_acs_est_6b02928
crossref_primary_10_1016_j_apgeochem_2013_12_001
crossref_primary_10_1016_j_chemgeo_2013_08_030
crossref_primary_10_1016_j_watres_2014_11_044
crossref_primary_10_1016_j_gca_2009_11_014
crossref_primary_10_1021_jp203091x
crossref_primary_10_1016_j_jenvrad_2012_01_007
crossref_primary_10_1016_j_watres_2018_10_004
crossref_primary_10_1021_es062196u
crossref_primary_10_1016_j_apgeochem_2009_10_005
crossref_primary_10_1016_j_gca_2011_03_008
crossref_primary_10_1016_j_jconhyd_2007_03_002
crossref_primary_10_1016_j_jhazmat_2021_125274
Cites_doi 10.1524/ract.2000.88.9-11.665
10.1029/95WR02815
10.1021/es9600946
10.1524/ract.2000.88.9-11.799
10.1016/S0009-2541(98)00075-8
10.1021/es020935a
10.1021/es00061a018
10.1021/es970921i
10.1038/283467a0
10.1016/S0169-7722(00)00151-0
10.1021/es990048g
10.1016/S0169-7722(96)00009-5
10.1021/es00048a013
10.1007/BF00119855
10.1016/B978-012384245-9/50003-7
10.1021/es010846i
10.1016/j.gca.2003.12.017
10.1023/A:1022842808820
10.1524/ract.2000.88.9-11.603
10.1016/B978-012384245-9/50004-9
10.1524/ract.2001.89.8.511
10.1016/S0009-2541(98)00074-6
10.1021/es049963e
10.1021/cr00033a002
10.2136/sssaj2000.643908x
10.1002/jpln.3591050303
10.2172/15010052
10.1021/es0019981
10.2136/sssaj1997.03615995006100020003x
10.1021/es00007a012
10.1111/j.1365-2389.1997.tb00566.x
10.1021/es00077a013
ContentType Journal Article
Copyright Copyright © 2005 American Chemical Society
2005 INIST-CNRS
Copyright American Chemical Society May 1, 2005
Copyright_xml – notice: Copyright © 2005 American Chemical Society
– notice: 2005 INIST-CNRS
– notice: Copyright American Chemical Society May 1, 2005
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7QH
7TV
7UA
F1W
H97
L.G
7X8
OTOTI
DOI 10.1021/es048462q
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Aqualine
Pollution Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
MEDLINE - Academic
DatabaseTitleList
Biotechnology Research Abstracts

Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 3165
ExternalDocumentID 15016599
832995121
15926566
16757950
10_1021_es048462q
ark_67375_TPS_SXPQ1NP1_V
c467681295
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GeographicLocations United States
North America
Washington
America
United States--US
Hanford Washington
USA, Washington, Hanford Site
GeographicLocations_xml – name: United States--US
– name: Hanford Washington
– name: USA, Washington, Hanford Site
GroupedDBID -
.K2
186
1AW
3R3
4.4
42X
4R4
53G
55A
5GY
5VS
63O
7~N
85S
A
AABXI
ABDEX
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFMIJ
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
K78
LG6
MS
NHB
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VOH
VQA
W1F
WH7
X
XFK
XZL
YZZ
ZCG
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
ABJNI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
MS~
MW2
XSW
YV5
ZCA
~A~
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
.HR
1WB
8WZ
A6W
ABHMW
ACKIV
AETEA
IQODW
MVM
OHT
RNS
TAE
UBC
UBX
UBY
VJK
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7QH
7TV
7UA
F1W
H97
L.G
7X8
ABFRP
OTOTI
ID FETCH-LOGICAL-a556t-b7274e8859895ea3aaef2e6a486ce82066ab90ccde3527b423f903ab2e92fd7f3
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Fri May 19 01:41:43 EDT 2023
Thu Jul 10 22:16:21 EDT 2025
Wed Aug 20 00:26:28 EDT 2025
Fri Jul 25 05:57:57 EDT 2025
Wed Feb 19 02:35:43 EST 2025
Mon Jul 21 09:14:37 EDT 2025
Tue Jul 01 04:04:38 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Wed Oct 30 09:15:54 EDT 2024
Thu Aug 27 13:51:22 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Radioactive pollution
Sand
Pollutant behavior
Mobility
Desorption
Sediments
Modeling
Aquifer system
Unsaturated zone
Adsorption
Limiting factor
Uranium VI
Water pollution
Kinetics
Ground water
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a556t-b7274e8859895ea3aaef2e6a486ce82066ab90ccde3527b423f903ab2e92fd7f3
Notes istex:C2086DA730C9F594FE5281CA37CF50A0A542CDA3
ark:/67375/TPS-SXPQ1NP1-V
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
USDOE
AC05-76RL01830
PNNL-SA-42960
PMID 15926566
PQID 230166892
PQPubID 45412
PageCount 9
ParticipantIDs osti_scitechconnect_15016599
proquest_miscellaneous_67883683
proquest_miscellaneous_17333013
proquest_journals_230166892
pubmed_primary_15926566
pascalfrancis_primary_16757950
crossref_primary_10_1021_es048462q
crossref_citationtrail_10_1021_es048462q
istex_primary_ark_67375_TPS_SXPQ1NP1_V
acs_journals_10_1021_es048462q
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-05-01
PublicationDateYYYYMMDD 2005-05-01
PublicationDate_xml – month: 05
  year: 2005
  text: 2005-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2005
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Braithwaite A. (es048462qb00044/es048462qb00044_1) 1997; 48
Rovira M. (es048462qb00011/es048462qb00011_1) 2000; 88
Arnold T. (es048462qb00060/es048462qb00060_1) 2001; 47
Gamerdinger A. P. (es048462qb00019/es048462qb00019_1) 2001; 37
Gee G. W. (es048462qb00020/es048462qb00020_1) 1986
Hsi C. D. (es048462qb00010/es048462qb00010_1) 1985; 49
Lorden S. W. (es048462qb00037/es048462qb00037_1) 1998; 32
Zheng Z. (es048462qb00051/es048462qb00051_1) 2003; 37
Giammar D. E. (es048462qb00014/es048462qb00014_1) 2001; 35
Davis J. A. (es048462qb00034/es048462qb00034_1) 2003
Clark D. L. (es048462qb00007/es048462qb00007_1) 1995; 95
Murali V. (es048462qb00057/es048462qb00057_1) 1980; 283
Qafoku N. P. (es048462qb00026/es048462qb00026_1) 2003; 37
Schwertmann U (es048462qb00023/es048462qb00023_1) 1964; 105
Qafoku N. P. (es048462qb00027/es048462qb00027_1) 2004; 68
Pedit J. A. (es048462qb00041/es048462qb00041_1) 1995; 29
Culver T. B. (es048462qb00033/es048462qb00033_1) 1997; 31
Jury W. A. (es048462qb00032/es048462qb00032_1) 1991
Pignatello J. J (es048462qb00039/es048462qb00039_1) 2000; 69
Wang Z. (es048462qb00046/es048462qb00046_1) 2005; 39
Barnett M. O. (es048462qb00049/es048462qb00049_1) 2002; 36
Duff M. C. (es048462qb00012/es048462qb00012_1) 1996; 60
Brusseau M. L. (es048462qb00028/es048462qb00028_1) 1997; 24
Bargar J. R. (es048462qb00047/es048462qb00047_1) 1999; 33
es048462qb00053/es048462qb00053_1
es048462qb00002/es048462qb00002_1
Gabriel U. (es048462qb00017/es048462qb00017_1) 1998; 151
Riley R. G. (es048462qb00001/es048462qb00001_1) 1992
Tripathi V. S. (es048462qb00009/es048462qb00009_1) 1983
Baik M. H. (es048462qb00015/es048462qb00015_1) 2004; 260
Pedit J. A. (es048462qb00040/es048462qb00040_1) 1994; 28
Ho C. H. (es048462qb00048/es048462qb00048_1) 1986; 110
Bargar J. R. (es048462qb00013/es048462qb00013_1) 2000; 64
Toride N. (es048462qb00030/es048462qb00030_1) 1999
Gabriel U. (es048462qb00058/es048462qb00058_1) 1998; 151
Payne T. E. (es048462qb00050/es048462qb00050_1) 2000; 88
Leij F. J. (es048462qb00031/es048462qb00031_1) 1992; 56
Fey M. V. (es048462qb00022/es048462qb00022_1) 1997; 25
Allison J. D. (es048462qb00025/es048462qb00025_1) 1998
Braithwaite A. (es048462qb00016/es048462qb00016_1) 2000; 50
Grenthe I. (es048462qb00008/es048462qb00008_1) 1992
Pabalan R. T. (es048462qb00052/es048462qb00052_1) 1997; 2
Serne J. N. (es048462qb00004/es048462qb00004_1) 2002
Read D. (es048462qb00003/es048462qb00003_1) 1993; 13
Gamerdinger A. P. (es048462qb00018/es048462qb00018_1) 2001; 37
Jensen-Spaulding A. (es048462qb00042/es048462qb00042_1) 2004; 38
Parker J. C. (es048462qb00029/es048462qb00029_1) 1984
Kalmykov S. N. (es048462qb00005/es048462qb00005_1) 2000; 88
Kohler M. (es048462qb00056/es048462qb00056_1) 1996; 32
Jenne E. A. (es048462qb00055/es048462qb00055_1) 1998
Catalano J. G. (es048462qb00045/es048462qb00045_1) 2004; 38
Mehra O. P. (es048462qb00021/es048462qb00021_1) 1960; 7
es048462qb00054/es048462qb00054_1
Barnett M. O. (es048462qb00043/es048462qb00043_1) 2000; 64
Allison J. D. (es048462qb00024/es048462qb00024_1) 1991
Connaughton D. F. (es048462qb00035/es048462qb00035_1) 1993; 27
Gustafson D. I. (es048462qb00036/es048462qb00036_1) 1990; 24
Arnold T. (es048462qb00059/es048462qb00059_1) 1998; 151
Bernhard G. (es048462qb00006/es048462qb00006_1) 2001; 89
Chen W. (es048462qb00038/es048462qb00038_1) 1997; 61
References_xml – volume: 88
  start-page: 6671
  year: 2000
  ident: es048462qb00011/es048462qb00011_1
  publication-title: Radiochim. Acta
  doi: 10.1524/ract.2000.88.9-11.665
– volume: 32
  start-page: 3551
  year: 1996
  ident: es048462qb00056/es048462qb00056_1
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR02815
– volume: 31
  start-page: 1588
  year: 1997
  ident: es048462qb00033/es048462qb00033_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9600946
– volume: 88
  start-page: 802
  year: 2000
  ident: es048462qb00050/es048462qb00050_1
  publication-title: Radiochim. Acta
  doi: 10.1524/ract.2000.88.9-11.799
– volume: 151
  start-page: 141
  year: 1998
  ident: es048462qb00059/es048462qb00059_1
  publication-title: Chem. Geol.
  doi: 10.1016/S0009-2541(98)00075-8
– volume-title: The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments
  year: 1999
  ident: es048462qb00030/es048462qb00030_1
– volume: 37
  start-page: 3646
  year: 2003
  ident: es048462qb00026/es048462qb00026_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es020935a
– volume: 64
  start-page: 2749
  year: 2000
  ident: es048462qb00013/es048462qb00013_1
  publication-title: Geochim. Cosmochim. Acta
– start-page: 84
  year: 1984
  ident: es048462qb00029/es048462qb00029_1
  publication-title: Va. Agric. Exp. Stn. Bull.
– volume: 28
  start-page: 2104
  year: 1994
  ident: es048462qb00040/es048462qb00040_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00061a018
– volume: 32
  start-page: 20017
  year: 1998
  ident: es048462qb00037/es048462qb00037_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es970921i
– volume: 39
  start-page: 0000
  year: 2005
  ident: es048462qb00046/es048462qb00046_1
  publication-title: Environ. Sci. Technol.
– start-page: 73
  volume-title: Adsorption of Metals by Geomedia
  year: 1998
  ident: es048462qb00055/es048462qb00055_1
– volume: 283
  start-page: 469
  year: 1980
  ident: es048462qb00057/es048462qb00057_1
  publication-title: Nature (London)
  doi: 10.1038/283467a0
– volume: 47
  start-page: 231
  year: 2001
  ident: es048462qb00060/es048462qb00060_1
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(00)00151-0
– volume: 13
  start-page: 289
  year: 1993
  ident: es048462qb00003/es048462qb00003_1
  publication-title: J. Contam. Hydrol.
– volume: 37
  start-page: 5608
  year: 2003
  ident: es048462qb00051/es048462qb00051_1
  publication-title: Environ. Sci. Technol.
– volume: 60
  start-page: 1400
  year: 1996
  ident: es048462qb00012/es048462qb00012_1
  publication-title: Soil Sci. Soc. Am. J.
– volume: 33
  start-page: 2484
  year: 1999
  ident: es048462qb00047/es048462qb00047_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es990048g
– volume: 24
  start-page: 219
  year: 1997
  ident: es048462qb00028/es048462qb00028_1
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(96)00009-5
– volume: 27
  start-page: 2403
  year: 1993
  ident: es048462qb00035/es048462qb00035_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00048a013
– volume: 38
  start-page: 2239
  year: 2004
  ident: es048462qb00042/es048462qb00042_1
  publication-title: Water Res.
– volume: 2
  start-page: 226
  year: 1997
  ident: es048462qb00052/es048462qb00052_1
  publication-title: Aquat. Geochem.
  doi: 10.1007/BF00119855
– volume: 260
  start-page: 502
  year: 2004
  ident: es048462qb00015/es048462qb00015_1
  publication-title: J. Radionanal. Nucl. Chem.
– volume-title: Soil Physics
  year: 1991
  ident: es048462qb00032/es048462qb00032_1
– ident: es048462qb00054/es048462qb00054_1
  doi: 10.1016/B978-012384245-9/50003-7
– volume: 36
  start-page: 942
  year: 2002
  ident: es048462qb00049/es048462qb00049_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010846i
– volume: 56
  start-page: 674
  year: 1992
  ident: es048462qb00031/es048462qb00031_1
  publication-title: Soil Sci. Soc. Am. J.
– volume: 68
  start-page: 2995
  year: 2004
  ident: es048462qb00027/es048462qb00027_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2003.12.017
– volume: 7
  start-page: 327
  year: 1960
  ident: es048462qb00021/es048462qb00021_1
  publication-title: Clays Clay Miner.
– volume: 50
  start-page: 269
  year: 2000
  ident: es048462qb00016/es048462qb00016_1
  publication-title: Czech. J. Phys.
  doi: 10.1023/A:1022842808820
– volume-title: Chemical Contaminants on DOE Lands and Selection of Contaminant Mixtures for Subsurface Science Research
  year: 1992
  ident: es048462qb00001/es048462qb00001_1
– volume-title: Uranium transport modeling:  geochemical data and sub-models
  year: 1983
  ident: es048462qb00009/es048462qb00009_1
– volume: 88
  start-page: 606
  year: 2000
  ident: es048462qb00005/es048462qb00005_1
  publication-title: Radiochim. Acta
  doi: 10.1524/ract.2000.88.9-11.603
– ident: es048462qb00053/es048462qb00053_1
  doi: 10.1016/B978-012384245-9/50004-9
– volume: 37
  start-page: 3153
  year: 2001
  ident: es048462qb00018/es048462qb00018_1
  publication-title: Water Resour. Res.
– volume: 37
  start-page: 3162
  year: 2001
  ident: es048462qb00019/es048462qb00019_1
  publication-title: Water Resour. Res.
– start-page: 411
  volume-title: Methods of Soils Analyses. Part 1:  Physical and Mineralogical Methods
  year: 1986
  ident: es048462qb00020/es048462qb00020_1
– volume: 89
  start-page: 518
  year: 2001
  ident: es048462qb00006/es048462qb00006_1
  publication-title: Radiochim. Acta
  doi: 10.1524/ract.2001.89.8.511
– volume: 151
  start-page: 128
  year: 1998
  ident: es048462qb00058/es048462qb00058_1
  publication-title: Chem. Geol.
  doi: 10.1016/S0009-2541(98)00074-6
– volume: 49
  start-page: 1941
  year: 1985
  ident: es048462qb00010/es048462qb00010_1
  publication-title: Geochim. Cosmochim. Acta
– volume: 38
  start-page: 2828
  year: 2004
  ident: es048462qb00045/es048462qb00045_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049963e
– volume-title: Chemical Thermodynamics of Uranium
  year: 1992
  ident: es048462qb00008/es048462qb00008_1
– volume: 95
  start-page: 48
  year: 1995
  ident: es048462qb00007/es048462qb00007_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a002
– volume: 151
  start-page: 128
  year: 1998
  ident: es048462qb00017/es048462qb00017_1
  publication-title: Chem. Geol.
  doi: 10.1016/S0009-2541(98)00074-6
– volume: 64
  start-page: 917
  year: 2000
  ident: es048462qb00043/es048462qb00043_1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.643908x
– volume: 25
  start-page: 294
  year: 1997
  ident: es048462qb00022/es048462qb00022_1
  publication-title: Clays Clay Miner.
– volume: 105
  start-page: 202
  year: 1964
  ident: es048462qb00023/es048462qb00023_1
  publication-title: Z. Pflanzenernaehr. Dueng. Bodenk.
  doi: 10.1002/jpln.3591050303
– volume-title: 300 Area Uranium Leach and Adsorption Project
  year: 2002
  ident: es048462qb00004/es048462qb00004_1
  doi: 10.2172/15010052
– volume: 110
  start-page: 171
  year: 1986
  ident: es048462qb00048/es048462qb00048_1
  publication-title: J. Colloid Interface Sci.
– volume: 35
  start-page: 3337
  year: 2001
  ident: es048462qb00014/es048462qb00014_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0019981
– volume: 61
  start-page: 371
  year: 1997
  ident: es048462qb00038/es048462qb00038_1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1997.03615995006100020003x
– volume: 29
  start-page: 1772
  year: 1995
  ident: es048462qb00041/es048462qb00041_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00007a012
– volume: 48
  start-page: 673
  year: 1997
  ident: es048462qb00044/es048462qb00044_1
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1997.tb00566.x
– ident: es048462qb00002/es048462qb00002_1
– volume: 69
  start-page: 73
  year: 2000
  ident: es048462qb00039/es048462qb00039_1
  publication-title: Adv. Agron.
– volume-title: Colorado
  year: 2003
  ident: es048462qb00034/es048462qb00034_1
– volume: 24
  start-page: 1038
  year: 1990
  ident: es048462qb00036/es048462qb00036_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00077a013
– volume-title: A Geochemical Assessment Model for Environmental Systems:  Version 3.0 User's Manual
  year: 1991
  ident: es048462qb00024/es048462qb00024_1
– volume-title: A Geochemical Assessment Model for Environmental Systems:  User Manual Supplement for Version 4.0
  year: 1998
  ident: es048462qb00025/es048462qb00025_1
SSID ssj0002308
Score 2.1891923
Snippet Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 μmol kg-1) capillary...
Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 micromol kg(-1)) capillary...
Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 mumol kg-1) capillary...
Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 mu mol kg super(-1))...
Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, contaminated (22.7 µmol kg-1) capillary fringe...
SourceID osti
proquest
pubmed
pascalfrancis
crossref
istex
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3157
SubjectTerms Applied sciences
AQUIFERS
Biological and physicochemical properties of pollutants. Interaction in the soil
Carbonates - chemistry
CLAYS
Contaminated sediments
DESORPTION
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Environmental science
ENVIRONMENTAL SCIENCES
Exact sciences and technology
FLOW RATE
Freshwater
Geologic Sediments - chemistry
Hazardous Waste
KINETICS
LEACHING
MINERALOGY
Models, Theoretical
MONTMORILLONITE
MUSCOVITE
Pollution
Pollution, environment geology
SEDIMENTS
Silicon Dioxide
Soil and sediments pollution
Soil Pollutants, Radioactive - analysis
SORPTION
TRANSPORT
Uranium
Uranium - analysis
Uranium - chemistry
VERMICULITE
Title Kinetic Desorption and Sorption of U(VI) during Reactive Transport in a Contaminated Hanford Sediment
URI http://dx.doi.org/10.1021/es048462q
https://api.istex.fr/ark:/67375/TPS-SXPQ1NP1-V/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15926566
https://www.proquest.com/docview/230166892
https://www.proquest.com/docview/17333013
https://www.proquest.com/docview/67883683
https://www.osti.gov/biblio/15016599
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwEB2V9gKHAoVCaCkWIFQOKRs7_jpWpdUCUrWw3WpvkZM4EmqVwCYrIX49Y-djW9GFY5LnOJ7M2M_y-BngbYH3R1IWobachrHO01DlwoTIdilFp5F55rN8z8V4Fn-e8_kGvFmzgk-jD7ZGJ4sF_XkPtqhQ0s2wjk-mQ3eLb1X9MQWaiXkvH3SzqBt6svrW0LPlrPgLO-IKQ8llRJoajVK0p1msp5t-2Dl7CB_7zTtttsnV0bJJj7Lff2s5_qtFj2C7o53kuPWTx7Bhyx14cEOMcAd2T1d73hDaBX39BOwXBGE5gnPUauG7GGLKnEz7i6ogs8PLT-9Ju-eRfLPG96JkUE4n37EIcUpYxqXeIMslY-M2QuFbcPR0VT6F2dnpxck47E5nCA3noglTZD6xVYprpbk1zBhbUCtMrERmvUq8SfUoy3KLHE-mSNsKPWImpVbTIpcF24XNsirtcyCWac4oPoqUjrWkBmkjzbXQOJnSqbIBHODvS7roqhO_cE6jZDBkAIf9n02yTtvcHbFxfRf09QD90Qp63AV6591jQJjFlcuAkzy5mEyT6XzyNTqfRMllAPvOfxKkK05zN3PJSVmTIMuOBNcaP_yWX61qxHma1HwUwF7vaKvmoUdHQihNA3g1PMWod0s5prTVEi0gGUMUW49AEqKYUIh41vrvqm6uqWPxL_5n1T2474VqfXrnPmw2i6V9iRSsSQ98CP4BoBApAw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bb9MwFD4a2wPwwGUwCBubhQBtDxmNHTv2Aw_T2NTSURXaTn0LTuJIaCiFphWXn8Jf4c9x7CbphjbxNInHJCe2Y5_Ld5TjzwDPc7zfiqLcV4ZTP1RZ4stMaB_RLqWoNFGWuirfnmiPwrdjPl6BX_VeGBxEiS2V7if-kl0geGVK1LVQ0K9VAWXX_PiG6Vn5uvMG1_IFpcdHw8O2X50g4GvOxcxPMDqHRkqupOJGM61NTo3QoRSpcUzmOlGtNM0M4pAoQWiRqxbTCTWK5lmUM2z3Bqwh6KE2sTs4HDReHj9G1qcjKCbGNWvR-aHaiJeWFyLeml287-j_J2jBthBTl7gW-eIQjatRrot2x3fhdzNPrsjlbH8-S_bTn39RSP6fE3kP7lQgmxwsrOI-rJhiHW6fo15ch42j5Q4_FK1cXPkATBeF8D2CGflk6hwq0UVGBvXFJCej3dPOHlns8CQfjHYxgzQ88eQTvkIs75e2hUaI6Ulb221f2ApiBdvlQxhdywRswGoxKcxjIIYpzig-CqQKVUQ1gmSaKaEwdVSJNB5s47rFlS8pY1cmQIO4WTgPdmuFitOKyd0eKPL5MtFnjeiXBX3JZUIvnVY2Enp6Zuv9Ih4P-4N4MO6_D3r9ID71YMuqbYzgzDIMp7YUK53FmFMEgiuFA7-gzsseMSuNFG95sFnr9_Lz0JACIaSiHuw0T9HH2R9XujCTOc5AxBhKsaslEHJJJiRKPFqYzbJvrqjNWZ78a1Z34GZ7-O4kPun0uptwy1H0usLWLVidTefmKYLPWbLtvACBj9dtLX8AuqqMpA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bb9MwFD4am4TggctgEDY2CwHaHjIaJ3bsBx6mbVVLUVXoOvUtOIkjoaFkNKm4_Bj-Cn-NYzdJN7SJp0k8tjmxHftcviMffwZ4meH_nTDMXKkZdQOZxq5IuXIR7VKKShOmia3yHfLeJHg3ZdMV-NWchcFBlNhSaTfxjVWfp1nNMOC90SXqW8Dp17qIcqB_fMMUrXzbP8L1fEVp9_jksOfWtwi4ijFeuTFG6EALwaSQTCtfKZ1RzVUgeKItm7mKZSdJUo1YJIwRXmSy46uYakmzNMx8bPcWrJntQZPcHRyOW0-PHySaGxKkz6cNc9HFoZqol5SXot6aWcDvGAMKtGJTjKlKXI9scZHG9UjXRrzuffjdzpUtdDnbn1fxfvLzLxrJ_3cyH8C9GmyTg4V1PIQVna_D3QsUjOuwcbw86YeitasrH4EeoBC-RzAzL2bWsRKVp2Tc_CgyMtk97e-RxUlP8lErGztIyxdPPuMrxPB_KVNwhNie9JQ5_oWtIGYwXT6GyY1MwAas5kWunwLRvmQ-xUeekIEMqUKwTFPJJaaQMhbagW1cu6j2KWVkywWoF7UL58Buo1RRUjO6m4tFvlwl-qIVPV_QmFwl9NpqZiuhZmem7i9k0cloHI2now_ecORFpw5sGdWNEKQZpuHElGQlVYS5hceZlDjwSyq97BGz01CyjgObjY4vPw-NyeNcSOrATvsUfZ3ZwFK5LuY4A6Hvo5R_vQRCL-FzgRJPFqaz7JtJanKXZ_-a1R24PTrqRu_7w8Em3LFMvba-dQtWq9lcP0cMWsXb1hEQ-HTTxvIHsPyPJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+desorption+and+sorption+of+U%28VI%29+during+reactive+transport+in+a+contaminated+hanford+sediment&rft.jtitle=Environmental+science+%26+technology&rft.au=QAFOKU%2C+Nikolla+P&rft.au=ZACHARA%2C+John+M&rft.au=CHONGXUAN+LIU&rft.au=GASSMAN%2C+Paul+L&rft.date=2005-05-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=39&rft.issue=9&rft.spage=3157&rft.epage=3165&rft_id=info:doi/10.1021%2Fes048462q&rft.externalDBID=n%2Fa&rft.externalDocID=16757950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon