The Driving Force: Nuclear Mechanotransduction in Cellular Function, Fate, and Disease

Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal...

Full description

Saved in:
Bibliographic Details
Published inAnnual review of biomedical engineering Vol. 21; p. 443
Main Authors Maurer, Melanie, Lammerding, Jan
Format Journal Article
LanguageEnglish
Published United States 04.06.2019
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal forces and mediating downstream biochemical responses. The nucleus responds through a host of mechanisms, including partial unfolding, conformational changes, and phosphorylation of nuclear envelope proteins; modulation of nuclear import/export; and altered chromatin organization, resulting in transcriptional changes. It is unclear which of these events present direct mechanotransduction processes and which are downstream of other mechanotransduction pathways. We critically review and discuss the current evidence for nuclear mechanotransduction, particularly in the context of stem cell fate, a largely unexplored topic, and in disease, where an improved understanding of nuclear mechanotransduction is beginning to open new treatment avenues. Finally, we discuss innovative technological developments that will allow outstanding questions in the rapidly growing field of nuclear mechanotransduction to be answered.
AbstractList Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal forces and mediating downstream biochemical responses. The nucleus responds through a host of mechanisms, including partial unfolding, conformational changes, and phosphorylation of nuclear envelope proteins; modulation of nuclear import/export; and altered chromatin organization, resulting in transcriptional changes. It is unclear which of these events present direct mechanotransduction processes and which are downstream of other mechanotransduction pathways. We critically review and discuss the current evidence for nuclear mechanotransduction, particularly in the context of stem cell fate, a largely unexplored topic, and in disease, where an improved understanding of nuclear mechanotransduction is beginning to open new treatment avenues. Finally, we discuss innovative technological developments that will allow outstanding questions in the rapidly growing field of nuclear mechanotransduction to be answered.
Author Maurer, Melanie
Lammerding, Jan
Author_xml – sequence: 1
  givenname: Melanie
  surname: Maurer
  fullname: Maurer, Melanie
  email: mem529@cornell.edu, jan.lammerding@cornell.edu
  organization: Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; email: mem529@cornell.edu , jan.lammerding@cornell.edu
– sequence: 2
  givenname: Jan
  surname: Lammerding
  fullname: Lammerding, Jan
  email: mem529@cornell.edu, jan.lammerding@cornell.edu
  organization: Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; email: mem529@cornell.edu , jan.lammerding@cornell.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30916994$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tOwzAURC0Eog_4BeQFyxrsxE5idqglgFRgU9hW1_ZNa5Q6lZ1U4u-peKxGmiONzkzIaegCEnIt-I0QsriFEIaIB2Z8h2HDeMGlqBhXmcj1CRkLJRWTWSlHZJLSJ-dc57k8J6Oca1FoLcfkY7VFuoj-4MOG1l20eEdfB9siRPqCdguh6yOE5Abb-y5QH-gc23Zoj7wewk85ozX0OKMQHF34hJDwgpw10Ca8_Mspea8fVvMntnx7fJ7fLxkoVfRMG5RSVsKYysocXcOhRFOWR29uNXKlnNPo8koAZlo1peUFSgsGKlFUCNmUXP3u7gezQ7feR7-D-LX-P5h9A2oKV_E
CitedBy_id crossref_primary_10_1111_cpr_12810
crossref_primary_10_1016_j_actbio_2022_01_020
crossref_primary_10_3390_genes12050658
crossref_primary_10_3748_wjg_v30_i4_290
crossref_primary_10_1016_j_devcel_2024_11_008
crossref_primary_10_1097_ICO_0000000000002319
crossref_primary_10_1002_advs_202204594
crossref_primary_10_1016_j_bone_2021_116023
crossref_primary_10_1016_j_ceb_2020_03_001
crossref_primary_10_1631_jzus_B2300497
crossref_primary_10_3389_fbioe_2022_1042030
crossref_primary_10_15252_embr_202152963
crossref_primary_10_1136_gutjnl_2024_334133
crossref_primary_10_14336_AD_2023_1115
crossref_primary_10_1016_j_jmb_2020_11_019
crossref_primary_10_1021_acs_nanolett_4c00732
crossref_primary_10_3389_fimmu_2024_1438726
crossref_primary_10_3390_ijms25168712
crossref_primary_10_3390_bioengineering10030323
crossref_primary_10_1093_gbe_evae244
crossref_primary_10_3390_ph16020138
crossref_primary_10_1007_s43152_020_00027_4
crossref_primary_10_1063_5_0127122
crossref_primary_10_1063_5_0082656
crossref_primary_10_1091_mbc_E21_10_0527
crossref_primary_10_3390_biom12040567
crossref_primary_10_1016_j_cellsig_2021_110239
crossref_primary_10_1126_sciadv_aay9095
crossref_primary_10_1016_j_bpj_2021_01_020
crossref_primary_10_1039_D3BM01111A
crossref_primary_10_1002_adhm_202404345
crossref_primary_10_1038_s42255_021_00384_w
crossref_primary_10_1016_j_semcdb_2021_03_006
crossref_primary_10_1007_s11427_019_1613_3
crossref_primary_10_26508_lsa_202402745
crossref_primary_10_3389_fcell_2021_673599
crossref_primary_10_1080_19491034_2023_2180206
crossref_primary_10_1155_2021_5524323
crossref_primary_10_3390_cells9081834
crossref_primary_10_1146_annurev_genom_121219_083616
crossref_primary_10_1186_s40364_025_00727_9
crossref_primary_10_3389_fbioe_2020_597721
crossref_primary_10_3389_fphys_2024_1464678
crossref_primary_10_1016_j_celrep_2023_112893
crossref_primary_10_3390_jcdd7040040
crossref_primary_10_3389_fphys_2023_1126111
crossref_primary_10_1002_adfm_202404786
crossref_primary_10_1177_00220345211007855
crossref_primary_10_3389_fphar_2021_671809
crossref_primary_10_1016_j_ceb_2023_102313
crossref_primary_10_1073_pnas_2121816119
crossref_primary_10_1016_j_tcb_2022_03_002
crossref_primary_10_1113_JP284128
crossref_primary_10_15252_embr_202152507
crossref_primary_10_1242_bio_059656
crossref_primary_10_1016_j_mtbio_2024_101050
crossref_primary_10_1016_j_snb_2025_137363
crossref_primary_10_1038_s41576_022_00493_6
crossref_primary_10_26508_lsa_202301998
crossref_primary_10_3389_fphar_2024_1419494
crossref_primary_10_1103_PhysRevResearch_6_043030
crossref_primary_10_3390_ijms25042135
crossref_primary_10_3390_ijms241713341
crossref_primary_10_1016_j_jbiomech_2021_110635
crossref_primary_10_1038_s41392_023_01501_9
crossref_primary_10_3390_membranes11070540
crossref_primary_10_1073_pnas_2301285120
crossref_primary_10_1113_JP285906
crossref_primary_10_1039_D2CP01384C
crossref_primary_10_1101_cshperspect_a041231
crossref_primary_10_1002_nano_202000192
crossref_primary_10_1016_j_cobme_2024_100528
crossref_primary_10_1016_j_devcel_2024_03_014
crossref_primary_10_1002_jcb_30531
crossref_primary_10_1021_acsami_1c22109
crossref_primary_10_1159_000521752
crossref_primary_10_1038_s41388_022_02420_9
crossref_primary_10_1186_s40779_024_00519_6
crossref_primary_10_26508_lsa_202302031
crossref_primary_10_1089_ten_teb_2020_0044
crossref_primary_10_1016_j_molmed_2022_05_010
crossref_primary_10_3390_app14062596
crossref_primary_10_1007_s13770_021_00427_z
crossref_primary_10_1016_j_sbi_2020_06_017
crossref_primary_10_1038_s41598_024_59901_y
crossref_primary_10_1158_1541_7786_MCR_20_0413
crossref_primary_10_1038_s41467_021_22010_9
crossref_primary_10_1080_19491034_2023_2270345
crossref_primary_10_3389_fcell_2020_595849
crossref_primary_10_3390_cells11193093
crossref_primary_10_3390_cells9030580
crossref_primary_10_1073_pnas_2213837120
crossref_primary_10_1186_s12915_021_01207_w
crossref_primary_10_1016_j_cub_2024_03_049
crossref_primary_10_1021_acsnano_1c10344
crossref_primary_10_1098_rsif_2021_0880
crossref_primary_10_1371_journal_pcbi_1008300
crossref_primary_10_1016_j_ejcb_2024_151417
crossref_primary_10_3390_bioengineering10060695
crossref_primary_10_3389_fragi_2023_1058968
crossref_primary_10_3389_fphys_2022_818394
crossref_primary_10_3390_biom10030432
crossref_primary_10_1002_advs_202102757
crossref_primary_10_1016_j_jare_2024_12_036
crossref_primary_10_1109_TMECH_2023_3331704
crossref_primary_10_1093_hmg_ddac179
crossref_primary_10_1039_D2NA00420H
crossref_primary_10_1186_s12964_023_01295_x
crossref_primary_10_1016_j_apmt_2024_102332
crossref_primary_10_1002_smll_202103466
crossref_primary_10_1146_annurev_physiol_042022_031925
crossref_primary_10_1002_bies_202300075
crossref_primary_10_1083_jcb_202009042
crossref_primary_10_1371_journal_pgen_1011208
crossref_primary_10_1002_smll_202407212
crossref_primary_10_1152_physiol_00027_2024
crossref_primary_10_1002_advs_202003186
crossref_primary_10_3390_ijms22126443
crossref_primary_10_59717_j_xinn_med_2024_100076
crossref_primary_10_1016_j_trsl_2021_01_008
crossref_primary_10_1073_pnas_2217019121
crossref_primary_10_1177_1535370219884875
crossref_primary_10_1016_j_celrep_2024_115106
crossref_primary_10_1016_j_ceb_2023_102290
crossref_primary_10_3390_cells14030186
crossref_primary_10_1016_j_actbio_2021_01_042
crossref_primary_10_1016_j_cophys_2021_100482
crossref_primary_10_1242_jcs_258969
crossref_primary_10_1242_jcs_229245
crossref_primary_10_3390_polym12010161
crossref_primary_10_3389_fcell_2022_934586
crossref_primary_10_3389_fcell_2021_649899
crossref_primary_10_3390_jcm13041036
crossref_primary_10_1016_j_gde_2020_12_007
crossref_primary_10_1007_s00223_023_01088_x
crossref_primary_10_1101_cshperspect_a040113
crossref_primary_10_1016_j_jtv_2022_07_006
crossref_primary_10_3390_biom11060824
crossref_primary_10_1038_s41467_022_30388_3
crossref_primary_10_1002_adhm_202201824
crossref_primary_10_1016_j_cobme_2021_100355
crossref_primary_10_1177_00220345221132213
crossref_primary_10_1016_j_ijbiomac_2023_123426
crossref_primary_10_1016_j_jhepr_2023_100869
crossref_primary_10_1038_s41586_022_04924_6
crossref_primary_10_3389_fcell_2021_690577
crossref_primary_10_1146_annurev_cellbio_120319_030049
crossref_primary_10_1016_j_matt_2023_08_010
crossref_primary_10_3390_cells11111787
crossref_primary_10_1039_D1TB00107H
crossref_primary_10_1016_j_ceb_2023_102229
crossref_primary_10_1093_cvr_cvad076
crossref_primary_10_15407_biotech17_04_034
crossref_primary_10_1002_adhm_202000030
crossref_primary_10_1016_j_bpj_2023_05_027
crossref_primary_10_1002_adhm_202301126
crossref_primary_10_1038_s41467_024_50259_3
crossref_primary_10_1242_jcs_256156
crossref_primary_10_3390_ijms21207595
crossref_primary_10_1021_acs_jproteome_2c00281
crossref_primary_10_1021_cbmi_4c00035
crossref_primary_10_3390_cells8101285
crossref_primary_10_3390_genes14051046
crossref_primary_10_3390_antiox14030346
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1146/annurev-bioeng-060418-052139
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1545-4274
ExternalDocumentID 30916994
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U54 CA210184
– fundername: NHLBI NIH HHS
  grantid: R01 HL082792
GroupedDBID ---
-QD
-QH
0R~
1KX
23M
36B
39C
4.4
51A
53G
5FA
5FB
5FC
5FD
5FE
5FF
5GY
5RE
7A.
8NG
AABJL
AAGWO
AALHT
AALUV
AAOHI
AAQMF
AARJV
AAWJP
AAXSQ
AAYIS
ABDOG
ABGRM
ABIPL
ABJNI
ABJZP
ABKGM
ABZNY
ACAHA
ACDVT
ACGFS
ACGJV
ACJYF
ACKHT
ACMXS
ACPHO
ACQCJ
ACRLM
ACSOE
ADCZP
ADHAB
ADHEY
ADLON
ADNJN
ADSVE
AEAIQ
AEKBM
AENEX
AEPIK
AFCZG
AFERR
AFKDQ
AFKEJ
AFONB
AHIXL
AHKZM
AHVNO
AIDEK
AIJFW
AJAAW
AKYKI
ALAFQ
ALMA_UNASSIGNED_HOLDINGS
AMTJG
AOUBY
AQQLW
B9D
B9E
B9F
B9G
B9H
B9K
B9L
B9N
BCFVH
BHKIP
BJPMW
BMYRD
CGR
CS3
CUY
CVF
EBS
ECM
EIF
EMB
EST
F-Q
F-S
F-T
F-U
F-V
F-X
F-Y
F-Z
F5P
FIWKU
FIXEU
FMZAJ
FQMFW
FT0
FU.
FUEKT
FV.
FXG
GCSFC
GFGFW
GJQJI
GLOEX
GNDDA
GOAVI
GQXMV
H13
HZ~
J1V
M22
N9A
NPM
O9-
OK1
P0P
P2P
RAR
RAV
RNS
ZYWBE
ID FETCH-LOGICAL-a556t-9be44481bb8c43edf0a7eb775450c9e055dd9ed381ae295f7c06e4caba8168ea2
IngestDate Thu Apr 03 06:58:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords LINC complex
stem cells
lamin
nuclear mechanics
laminopathies
mechanotransduction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a556t-9be44481bb8c43edf0a7eb775450c9e055dd9ed381ae295f7c06e4caba8168ea2
OpenAccessLink https://www.annualreviews.org/doi/pdf/10.1146/annurev-bioeng-060418-052139
PMID 30916994
ParticipantIDs pubmed_primary_30916994
PublicationCentury 2000
PublicationDate 2019-06-04
PublicationDateYYYYMMDD 2019-06-04
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annual review of biomedical engineering
PublicationTitleAlternate Annu Rev Biomed Eng
PublicationYear 2019
SSID ssj0009334
Score 2.61769
SecondaryResourceType review_article
Snippet Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly...
SourceID pubmed
SourceType Index Database
StartPage 443
SubjectTerms Animals
Biomedical Engineering
Cell Nucleus - physiology
Cell Nucleus - ultrastructure
Chromatin - chemistry
Chromatin - physiology
Cytoskeleton - physiology
Humans
Lamins - genetics
Lamins - physiology
Mechanotransduction, Cellular - physiology
Models, Biological
Nuclear Proteins - chemistry
Nuclear Proteins - physiology
Phosphorylation
Protein Conformation
Stem Cell Niche - physiology
Stem Cells - physiology
Tissue Engineering
Title The Driving Force: Nuclear Mechanotransduction in Cellular Function, Fate, and Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/30916994
Volume 21
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ecMwH0Xm_kYc9LrOXpFt9E3WI4J6m7G00zSkMZjdkPuiv9-TStcwL6kspDZSQ8zXJSc_3fYQ0lfBCHnLJlOxIxnGJxG8OOiwIQIDvpRykJic_9KO7R34_FMOyINOwS-aynb5_ySv5T1TxGcZVs2T_ENnFS_EB3mN88YoRxuuvY3zzMjZnAr3pS2p45n2tUGzUeTSpdzrXi5GyGrGG4geTiSk97eGKZio79PY1sS55pi658sumVFl-NQYABc3FkvZNfKEUNCxPt1-dSfYDTDSFfVH1Y47JlbNRuXfAdGcOmuYUMesS3AY3T3LBeGANdoqJ1FKd3UzIrfrS5xm6Kk2M2f8Uu8m0go_fZZpIbKWNKsGbPZvohbixiWJriPxz65J-dtG0SlYxk9DWqPo8p5BlDkNeI03XsYufulUnteJVSymI2YoMtsmWyyHolQXEDlmBvEE2rKvoW4NsVjQmd8kTgoQ6kFADkkvqIEK_gAgd57SACC0g0qIaIC2K8KAOHnvksXc7uL5jzkyDJUJEcxZL4JiK-1J2Ux6CyrykA1LrHwovjcETQqkYFG7gEghikXVSLwKeJjLRziyQBPtkLZ_mcEhoFvha1i_OIsy1QSrpqSgLlcLh9OLAhyNyYIdnNLOKKaNi4I6_bTkh9RJop2Q9w08UznC_N5fnJmQfupNVqw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Driving+Force%3A+Nuclear+Mechanotransduction+in+Cellular+Function%2C+Fate%2C+and+Disease&rft.jtitle=Annual+review+of+biomedical+engineering&rft.au=Maurer%2C+Melanie&rft.au=Lammerding%2C+Jan&rft.date=2019-06-04&rft.eissn=1545-4274&rft.volume=21&rft.spage=443&rft_id=info:doi/10.1146%2Fannurev-bioeng-060418-052139&rft_id=info%3Apmid%2F30916994&rft_id=info%3Apmid%2F30916994&rft.externalDocID=30916994