The Driving Force: Nuclear Mechanotransduction in Cellular Function, Fate, and Disease
Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal...
Saved in:
Published in | Annual review of biomedical engineering Vol. 21; p. 443 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
04.06.2019
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal forces and mediating downstream biochemical responses. The nucleus responds through a host of mechanisms, including partial unfolding, conformational changes, and phosphorylation of nuclear envelope proteins; modulation of nuclear import/export; and altered chromatin organization, resulting in transcriptional changes. It is unclear which of these events present direct mechanotransduction processes and which are downstream of other mechanotransduction pathways. We critically review and discuss the current evidence for nuclear mechanotransduction, particularly in the context of stem cell fate, a largely unexplored topic, and in disease, where an improved understanding of nuclear mechanotransduction is beginning to open new treatment avenues. Finally, we discuss innovative technological developments that will allow outstanding questions in the rapidly growing field of nuclear mechanotransduction to be answered. |
---|---|
AbstractList | Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal forces and mediating downstream biochemical responses. The nucleus responds through a host of mechanisms, including partial unfolding, conformational changes, and phosphorylation of nuclear envelope proteins; modulation of nuclear import/export; and altered chromatin organization, resulting in transcriptional changes. It is unclear which of these events present direct mechanotransduction processes and which are downstream of other mechanotransduction pathways. We critically review and discuss the current evidence for nuclear mechanotransduction, particularly in the context of stem cell fate, a largely unexplored topic, and in disease, where an improved understanding of nuclear mechanotransduction is beginning to open new treatment avenues. Finally, we discuss innovative technological developments that will allow outstanding questions in the rapidly growing field of nuclear mechanotransduction to be answered. |
Author | Maurer, Melanie Lammerding, Jan |
Author_xml | – sequence: 1 givenname: Melanie surname: Maurer fullname: Maurer, Melanie email: mem529@cornell.edu, jan.lammerding@cornell.edu organization: Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; email: mem529@cornell.edu , jan.lammerding@cornell.edu – sequence: 2 givenname: Jan surname: Lammerding fullname: Lammerding, Jan email: mem529@cornell.edu, jan.lammerding@cornell.edu organization: Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; email: mem529@cornell.edu , jan.lammerding@cornell.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30916994$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tOwzAURC0Eog_4BeQFyxrsxE5idqglgFRgU9hW1_ZNa5Q6lZ1U4u-peKxGmiONzkzIaegCEnIt-I0QsriFEIaIB2Z8h2HDeMGlqBhXmcj1CRkLJRWTWSlHZJLSJ-dc57k8J6Oca1FoLcfkY7VFuoj-4MOG1l20eEdfB9siRPqCdguh6yOE5Abb-y5QH-gc23Zoj7wewk85ozX0OKMQHF34hJDwgpw10Ca8_Mspea8fVvMntnx7fJ7fLxkoVfRMG5RSVsKYysocXcOhRFOWR29uNXKlnNPo8koAZlo1peUFSgsGKlFUCNmUXP3u7gezQ7feR7-D-LX-P5h9A2oKV_E |
CitedBy_id | crossref_primary_10_1111_cpr_12810 crossref_primary_10_1016_j_actbio_2022_01_020 crossref_primary_10_3390_genes12050658 crossref_primary_10_3748_wjg_v30_i4_290 crossref_primary_10_1016_j_devcel_2024_11_008 crossref_primary_10_1097_ICO_0000000000002319 crossref_primary_10_1002_advs_202204594 crossref_primary_10_1016_j_bone_2021_116023 crossref_primary_10_1016_j_ceb_2020_03_001 crossref_primary_10_1631_jzus_B2300497 crossref_primary_10_3389_fbioe_2022_1042030 crossref_primary_10_15252_embr_202152963 crossref_primary_10_1136_gutjnl_2024_334133 crossref_primary_10_14336_AD_2023_1115 crossref_primary_10_1016_j_jmb_2020_11_019 crossref_primary_10_1021_acs_nanolett_4c00732 crossref_primary_10_3389_fimmu_2024_1438726 crossref_primary_10_3390_ijms25168712 crossref_primary_10_3390_bioengineering10030323 crossref_primary_10_1093_gbe_evae244 crossref_primary_10_3390_ph16020138 crossref_primary_10_1007_s43152_020_00027_4 crossref_primary_10_1063_5_0127122 crossref_primary_10_1063_5_0082656 crossref_primary_10_1091_mbc_E21_10_0527 crossref_primary_10_3390_biom12040567 crossref_primary_10_1016_j_cellsig_2021_110239 crossref_primary_10_1126_sciadv_aay9095 crossref_primary_10_1016_j_bpj_2021_01_020 crossref_primary_10_1039_D3BM01111A crossref_primary_10_1002_adhm_202404345 crossref_primary_10_1038_s42255_021_00384_w crossref_primary_10_1016_j_semcdb_2021_03_006 crossref_primary_10_1007_s11427_019_1613_3 crossref_primary_10_26508_lsa_202402745 crossref_primary_10_3389_fcell_2021_673599 crossref_primary_10_1080_19491034_2023_2180206 crossref_primary_10_1155_2021_5524323 crossref_primary_10_3390_cells9081834 crossref_primary_10_1146_annurev_genom_121219_083616 crossref_primary_10_1186_s40364_025_00727_9 crossref_primary_10_3389_fbioe_2020_597721 crossref_primary_10_3389_fphys_2024_1464678 crossref_primary_10_1016_j_celrep_2023_112893 crossref_primary_10_3390_jcdd7040040 crossref_primary_10_3389_fphys_2023_1126111 crossref_primary_10_1002_adfm_202404786 crossref_primary_10_1177_00220345211007855 crossref_primary_10_3389_fphar_2021_671809 crossref_primary_10_1016_j_ceb_2023_102313 crossref_primary_10_1073_pnas_2121816119 crossref_primary_10_1016_j_tcb_2022_03_002 crossref_primary_10_1113_JP284128 crossref_primary_10_15252_embr_202152507 crossref_primary_10_1242_bio_059656 crossref_primary_10_1016_j_mtbio_2024_101050 crossref_primary_10_1016_j_snb_2025_137363 crossref_primary_10_1038_s41576_022_00493_6 crossref_primary_10_26508_lsa_202301998 crossref_primary_10_3389_fphar_2024_1419494 crossref_primary_10_1103_PhysRevResearch_6_043030 crossref_primary_10_3390_ijms25042135 crossref_primary_10_3390_ijms241713341 crossref_primary_10_1016_j_jbiomech_2021_110635 crossref_primary_10_1038_s41392_023_01501_9 crossref_primary_10_3390_membranes11070540 crossref_primary_10_1073_pnas_2301285120 crossref_primary_10_1113_JP285906 crossref_primary_10_1039_D2CP01384C crossref_primary_10_1101_cshperspect_a041231 crossref_primary_10_1002_nano_202000192 crossref_primary_10_1016_j_cobme_2024_100528 crossref_primary_10_1016_j_devcel_2024_03_014 crossref_primary_10_1002_jcb_30531 crossref_primary_10_1021_acsami_1c22109 crossref_primary_10_1159_000521752 crossref_primary_10_1038_s41388_022_02420_9 crossref_primary_10_1186_s40779_024_00519_6 crossref_primary_10_26508_lsa_202302031 crossref_primary_10_1089_ten_teb_2020_0044 crossref_primary_10_1016_j_molmed_2022_05_010 crossref_primary_10_3390_app14062596 crossref_primary_10_1007_s13770_021_00427_z crossref_primary_10_1016_j_sbi_2020_06_017 crossref_primary_10_1038_s41598_024_59901_y crossref_primary_10_1158_1541_7786_MCR_20_0413 crossref_primary_10_1038_s41467_021_22010_9 crossref_primary_10_1080_19491034_2023_2270345 crossref_primary_10_3389_fcell_2020_595849 crossref_primary_10_3390_cells11193093 crossref_primary_10_3390_cells9030580 crossref_primary_10_1073_pnas_2213837120 crossref_primary_10_1186_s12915_021_01207_w crossref_primary_10_1016_j_cub_2024_03_049 crossref_primary_10_1021_acsnano_1c10344 crossref_primary_10_1098_rsif_2021_0880 crossref_primary_10_1371_journal_pcbi_1008300 crossref_primary_10_1016_j_ejcb_2024_151417 crossref_primary_10_3390_bioengineering10060695 crossref_primary_10_3389_fragi_2023_1058968 crossref_primary_10_3389_fphys_2022_818394 crossref_primary_10_3390_biom10030432 crossref_primary_10_1002_advs_202102757 crossref_primary_10_1016_j_jare_2024_12_036 crossref_primary_10_1109_TMECH_2023_3331704 crossref_primary_10_1093_hmg_ddac179 crossref_primary_10_1039_D2NA00420H crossref_primary_10_1186_s12964_023_01295_x crossref_primary_10_1016_j_apmt_2024_102332 crossref_primary_10_1002_smll_202103466 crossref_primary_10_1146_annurev_physiol_042022_031925 crossref_primary_10_1002_bies_202300075 crossref_primary_10_1083_jcb_202009042 crossref_primary_10_1371_journal_pgen_1011208 crossref_primary_10_1002_smll_202407212 crossref_primary_10_1152_physiol_00027_2024 crossref_primary_10_1002_advs_202003186 crossref_primary_10_3390_ijms22126443 crossref_primary_10_59717_j_xinn_med_2024_100076 crossref_primary_10_1016_j_trsl_2021_01_008 crossref_primary_10_1073_pnas_2217019121 crossref_primary_10_1177_1535370219884875 crossref_primary_10_1016_j_celrep_2024_115106 crossref_primary_10_1016_j_ceb_2023_102290 crossref_primary_10_3390_cells14030186 crossref_primary_10_1016_j_actbio_2021_01_042 crossref_primary_10_1016_j_cophys_2021_100482 crossref_primary_10_1242_jcs_258969 crossref_primary_10_1242_jcs_229245 crossref_primary_10_3390_polym12010161 crossref_primary_10_3389_fcell_2022_934586 crossref_primary_10_3389_fcell_2021_649899 crossref_primary_10_3390_jcm13041036 crossref_primary_10_1016_j_gde_2020_12_007 crossref_primary_10_1007_s00223_023_01088_x crossref_primary_10_1101_cshperspect_a040113 crossref_primary_10_1016_j_jtv_2022_07_006 crossref_primary_10_3390_biom11060824 crossref_primary_10_1038_s41467_022_30388_3 crossref_primary_10_1002_adhm_202201824 crossref_primary_10_1016_j_cobme_2021_100355 crossref_primary_10_1177_00220345221132213 crossref_primary_10_1016_j_ijbiomac_2023_123426 crossref_primary_10_1016_j_jhepr_2023_100869 crossref_primary_10_1038_s41586_022_04924_6 crossref_primary_10_3389_fcell_2021_690577 crossref_primary_10_1146_annurev_cellbio_120319_030049 crossref_primary_10_1016_j_matt_2023_08_010 crossref_primary_10_3390_cells11111787 crossref_primary_10_1039_D1TB00107H crossref_primary_10_1016_j_ceb_2023_102229 crossref_primary_10_1093_cvr_cvad076 crossref_primary_10_15407_biotech17_04_034 crossref_primary_10_1002_adhm_202000030 crossref_primary_10_1016_j_bpj_2023_05_027 crossref_primary_10_1002_adhm_202301126 crossref_primary_10_1038_s41467_024_50259_3 crossref_primary_10_1242_jcs_256156 crossref_primary_10_3390_ijms21207595 crossref_primary_10_1021_acs_jproteome_2c00281 crossref_primary_10_1021_cbmi_4c00035 crossref_primary_10_3390_cells8101285 crossref_primary_10_3390_genes14051046 crossref_primary_10_3390_antiox14030346 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1146/annurev-bioeng-060418-052139 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1545-4274 |
ExternalDocumentID | 30916994 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U54 CA210184 – fundername: NHLBI NIH HHS grantid: R01 HL082792 |
GroupedDBID | --- -QD -QH 0R~ 1KX 23M 36B 39C 4.4 51A 53G 5FA 5FB 5FC 5FD 5FE 5FF 5GY 5RE 7A. 8NG AABJL AAGWO AALHT AALUV AAOHI AAQMF AARJV AAWJP AAXSQ AAYIS ABDOG ABGRM ABIPL ABJNI ABJZP ABKGM ABZNY ACAHA ACDVT ACGFS ACGJV ACJYF ACKHT ACMXS ACPHO ACQCJ ACRLM ACSOE ADCZP ADHAB ADHEY ADLON ADNJN ADSVE AEAIQ AEKBM AENEX AEPIK AFCZG AFERR AFKDQ AFKEJ AFONB AHIXL AHKZM AHVNO AIDEK AIJFW AJAAW AKYKI ALAFQ ALMA_UNASSIGNED_HOLDINGS AMTJG AOUBY AQQLW B9D B9E B9F B9G B9H B9K B9L B9N BCFVH BHKIP BJPMW BMYRD CGR CS3 CUY CVF EBS ECM EIF EMB EST F-Q F-S F-T F-U F-V F-X F-Y F-Z F5P FIWKU FIXEU FMZAJ FQMFW FT0 FU. FUEKT FV. FXG GCSFC GFGFW GJQJI GLOEX GNDDA GOAVI GQXMV H13 HZ~ J1V M22 N9A NPM O9- OK1 P0P P2P RAR RAV RNS ZYWBE |
ID | FETCH-LOGICAL-a556t-9be44481bb8c43edf0a7eb775450c9e055dd9ed381ae295f7c06e4caba8168ea2 |
IngestDate | Thu Apr 03 06:58:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | LINC complex stem cells lamin nuclear mechanics laminopathies mechanotransduction |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a556t-9be44481bb8c43edf0a7eb775450c9e055dd9ed381ae295f7c06e4caba8168ea2 |
OpenAccessLink | https://www.annualreviews.org/doi/pdf/10.1146/annurev-bioeng-060418-052139 |
PMID | 30916994 |
ParticipantIDs | pubmed_primary_30916994 |
PublicationCentury | 2000 |
PublicationDate | 2019-06-04 |
PublicationDateYYYYMMDD | 2019-06-04 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Annual review of biomedical engineering |
PublicationTitleAlternate | Annu Rev Biomed Eng |
PublicationYear | 2019 |
SSID | ssj0009334 |
Score | 2.61769 |
SecondaryResourceType | review_article |
Snippet | Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 443 |
SubjectTerms | Animals Biomedical Engineering Cell Nucleus - physiology Cell Nucleus - ultrastructure Chromatin - chemistry Chromatin - physiology Cytoskeleton - physiology Humans Lamins - genetics Lamins - physiology Mechanotransduction, Cellular - physiology Models, Biological Nuclear Proteins - chemistry Nuclear Proteins - physiology Phosphorylation Protein Conformation Stem Cell Niche - physiology Stem Cells - physiology Tissue Engineering |
Title | The Driving Force: Nuclear Mechanotransduction in Cellular Function, Fate, and Disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30916994 |
Volume | 21 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ecMwH0Xm_kYc9LrOXpFt9E3WI4J6m7G00zSkMZjdkPuiv9-TStcwL6kspDZSQ8zXJSc_3fYQ0lfBCHnLJlOxIxnGJxG8OOiwIQIDvpRykJic_9KO7R34_FMOyINOwS-aynb5_ySv5T1TxGcZVs2T_ENnFS_EB3mN88YoRxuuvY3zzMjZnAr3pS2p45n2tUGzUeTSpdzrXi5GyGrGG4geTiSk97eGKZio79PY1sS55pi658sumVFl-NQYABc3FkvZNfKEUNCxPt1-dSfYDTDSFfVH1Y47JlbNRuXfAdGcOmuYUMesS3AY3T3LBeGANdoqJ1FKd3UzIrfrS5xm6Kk2M2f8Uu8m0go_fZZpIbKWNKsGbPZvohbixiWJriPxz65J-dtG0SlYxk9DWqPo8p5BlDkNeI03XsYufulUnteJVSymI2YoMtsmWyyHolQXEDlmBvEE2rKvoW4NsVjQmd8kTgoQ6kFADkkvqIEK_gAgd57SACC0g0qIaIC2K8KAOHnvksXc7uL5jzkyDJUJEcxZL4JiK-1J2Ux6CyrykA1LrHwovjcETQqkYFG7gEghikXVSLwKeJjLRziyQBPtkLZ_mcEhoFvha1i_OIsy1QSrpqSgLlcLh9OLAhyNyYIdnNLOKKaNi4I6_bTkh9RJop2Q9w08UznC_N5fnJmQfupNVqw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Driving+Force%3A+Nuclear+Mechanotransduction+in+Cellular+Function%2C+Fate%2C+and+Disease&rft.jtitle=Annual+review+of+biomedical+engineering&rft.au=Maurer%2C+Melanie&rft.au=Lammerding%2C+Jan&rft.date=2019-06-04&rft.eissn=1545-4274&rft.volume=21&rft.spage=443&rft_id=info:doi/10.1146%2Fannurev-bioeng-060418-052139&rft_id=info%3Apmid%2F30916994&rft_id=info%3Apmid%2F30916994&rft.externalDocID=30916994 |