Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics

Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neu...

Full description

Saved in:
Bibliographic Details
Published inAnnual review of biomedical engineering Vol. 20; p. 171
Main Authors He, Bin, Sohrabpour, Abbas, Brown, Emery, Liu, Zhongming
Format Journal Article
LanguageEnglish
Published United States 04.06.2018
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.
AbstractList Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.
Author Liu, Zhongming
He, Bin
Brown, Emery
Sohrabpour, Abbas
Author_xml – sequence: 1
  givenname: Bin
  surname: He
  fullname: He, Bin
  email: bhe1@andrew.cmu.edu
  organization: Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
– sequence: 2
  givenname: Abbas
  surname: Sohrabpour
  fullname: Sohrabpour, Abbas
  organization: Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
– sequence: 3
  givenname: Emery
  surname: Brown
  fullname: Brown, Emery
  organization: Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
– sequence: 4
  givenname: Zhongming
  surname: Liu
  fullname: Liu, Zhongming
  organization: Weldon School of Biomedical Engineering, School of Electrical and Computer Engineering, and Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47906, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29494213$$D View this record in MEDLINE/PubMed
BookMark eNo1z7tOwzAUgGELgegFXgF5YDX42MdpzFZKgYoKBkCMlW8JRoldJU1R354BmP7tk_4JOU45BUIugV8BYHFtUhq6sGc25pBqxgsBMGMgeKnkERmDQsVQzHBEJn3_xTnXUuIpGQmNGgXIMXlaNsHturz9PPQxN7mOzjT0NQ-dC3TVmjqm-obO6XNOMe1NH_eBfsTk8zfdZXrbmZjo3SGZNrr-jJxUpunD-V-n5P1--bZ4ZOuXh9VivmZGqWLHNBRoKq15AG2tR1eiRXBglAVeuFllAjcVSqt8WaEqvLCh5BX33ksJPIgpufh1t4Ntg99su9ia7rD5vxI_wh5UmA
CitedBy_id crossref_primary_10_3389_fnins_2022_931265
crossref_primary_10_1021_acs_chemrev_3c00425
crossref_primary_10_1088_1741_2552_ab260c
crossref_primary_10_1109_TBME_2023_3235377
crossref_primary_10_1088_1741_2552_ac697d
crossref_primary_10_3390_brainsci11010035
crossref_primary_10_3390_math11112450
crossref_primary_10_1109_TNSRE_2024_3424669
crossref_primary_10_1007_s10548_022_00891_3
crossref_primary_10_3390_app9153183
crossref_primary_10_1016_j_bios_2025_117181
crossref_primary_10_1016_j_jneumeth_2019_02_016
crossref_primary_10_69564_able_en_23012_reve
crossref_primary_10_1016_j_neuroimage_2021_118034
crossref_primary_10_1002_hbm_26638
crossref_primary_10_1038_s41467_024_48576_8
crossref_primary_10_3390_s22155865
crossref_primary_10_1360_TB_2024_0443
crossref_primary_10_1002_hbm_25262
crossref_primary_10_1016_j_brs_2022_05_002
crossref_primary_10_1016_j_neuroimage_2023_120366
crossref_primary_10_1016_j_ultrasmedbio_2021_01_025
crossref_primary_10_1109_TAFFC_2020_3006847
crossref_primary_10_3389_fnhum_2022_830221
crossref_primary_10_3389_fnins_2023_1170862
crossref_primary_10_1016_j_neubiorev_2024_105718
crossref_primary_10_1016_j_neucom_2021_06_066
crossref_primary_10_1212_WNL_0000000000011109
crossref_primary_10_1016_j_bspc_2021_103332
crossref_primary_10_3389_fnins_2022_867466
crossref_primary_10_1016_j_neuroimage_2022_118939
crossref_primary_10_1109_TBME_2019_2913928
crossref_primary_10_1038_s41467_019_08725_w
crossref_primary_10_1109_RBME_2024_3449790
crossref_primary_10_1007_s10548_023_01025_z
crossref_primary_10_1080_17434440_2020_1748008
crossref_primary_10_3390_brainsci13030485
crossref_primary_10_1016_j_neuroimage_2023_120372
crossref_primary_10_55578_joaims_231215_001
crossref_primary_10_1016_j_nicl_2018_101622
crossref_primary_10_1088_1741_2552_ad12db
crossref_primary_10_1016_j_neuroimage_2023_120490
crossref_primary_10_1016_j_compbiomed_2023_107901
crossref_primary_10_35339_ekm_2023_92_4_vli
crossref_primary_10_3344_kjp_2021_34_4_437
crossref_primary_10_1007_s00115_021_01180_3
crossref_primary_10_3389_fneur_2022_831546
crossref_primary_10_1016_j_cobme_2021_100277
crossref_primary_10_1016_j_tibtech_2020_03_003
crossref_primary_10_1007_s11571_021_09775_x
crossref_primary_10_1109_TNSRE_2022_3150834
crossref_primary_10_1002_hbm_25607
crossref_primary_10_1098_rstb_2019_0631
crossref_primary_10_1016_j_mex_2024_102766
crossref_primary_10_1088_1741_2552_ac4ed0
crossref_primary_10_1007_s10548_020_00755_8
crossref_primary_10_1088_1741_2552_acdffe
crossref_primary_10_3345_cep_2022_00962
crossref_primary_10_1523_ENEURO_0005_21_2021
crossref_primary_10_1002_advs_202405246
crossref_primary_10_1016_j_neuroimage_2020_116615
crossref_primary_10_1016_j_neubiorev_2019_11_002
crossref_primary_10_1007_s10527_024_10431_x
crossref_primary_10_1073_pnas_2201128119
crossref_primary_10_2139_ssrn_4156181
crossref_primary_10_1016_j_nicl_2020_102484
crossref_primary_10_1016_j_nicl_2024_103608
crossref_primary_10_3389_fneur_2019_00325
crossref_primary_10_1016_j_mtchem_2022_101104
crossref_primary_10_1109_RBME_2024_3376835
crossref_primary_10_1166_jmihi_2021_3339
crossref_primary_10_1016_j_clinph_2021_10_008
crossref_primary_10_1016_j_nicl_2021_102903
crossref_primary_10_3345_cep_2022_01480
crossref_primary_10_1109_TNNLS_2022_3172108
crossref_primary_10_1016_j_clinph_2024_09_021
crossref_primary_10_1016_j_cobme_2018_10_004
crossref_primary_10_3902_jnns_30_21
crossref_primary_10_1088_1741_2552_abc0b4
crossref_primary_10_1016_j_jneumeth_2024_110358
crossref_primary_10_3389_fnhum_2022_951591
crossref_primary_10_1007_s11571_024_10149_2
crossref_primary_10_1109_TETCI_2024_3359097
crossref_primary_10_1186_s40779_023_00502_7
crossref_primary_10_1016_j_clinph_2019_11_058
crossref_primary_10_1038_s41467_020_15781_0
crossref_primary_10_1002_adfm_201908999
crossref_primary_10_1016_j_cobme_2021_100298
crossref_primary_10_1016_j_neuroimage_2021_118478
crossref_primary_10_1016_j_neuroimage_2023_120424
crossref_primary_10_1126_scirobotics_aaw6844
crossref_primary_10_1088_1741_2552_ad169c
crossref_primary_10_1016_j_aei_2020_101180
crossref_primary_10_1016_j_neubiorev_2021_104520
crossref_primary_10_1088_1741_2552_aca82d
crossref_primary_10_1002_hbm_25462
crossref_primary_10_3389_fnagi_2020_596551
crossref_primary_10_1007_s00429_022_02512_y
crossref_primary_10_1109_TBME_2020_2971679
crossref_primary_10_1016_j_clinph_2023_03_002
crossref_primary_10_1007_s00521_020_05603_1
crossref_primary_10_1016_j_ijchp_2025_100551
crossref_primary_10_14483_23448350_19068
crossref_primary_10_1080_0954898X_2019_1634290
crossref_primary_10_1016_j_neuroscience_2024_01_016
crossref_primary_10_3390_s23020928
crossref_primary_10_1186_s40708_024_00221_2
crossref_primary_10_1038_s41597_024_04090_6
crossref_primary_10_1016_j_brain_2023_100064
crossref_primary_10_1136_gpsych_2024_101649
crossref_primary_10_1016_j_neucom_2020_01_038
crossref_primary_10_1002_hbm_26188
crossref_primary_10_1016_j_neuroimage_2022_118891
crossref_primary_10_1063_5_0226457
crossref_primary_10_1016_j_neuroimage_2022_119346
crossref_primary_10_3389_fnhum_2020_560586
crossref_primary_10_1007_s11426_022_1408_5
crossref_primary_10_1016_j_psychres_2023_115464
crossref_primary_10_1109_TBME_2024_3509741
crossref_primary_10_1007_s10309_023_00579_z
crossref_primary_10_2142_biophysico_16_0_132
crossref_primary_10_1007_s11760_023_02965_6
crossref_primary_10_1109_TMI_2022_3218074
crossref_primary_10_3389_fnins_2023_978527
crossref_primary_10_1016_j_neuroimage_2024_120802
crossref_primary_10_1016_j_bspc_2022_103838
crossref_primary_10_1002_ana_26157
crossref_primary_10_1109_TBME_2018_2859204
crossref_primary_10_3390_bioengineering11090897
crossref_primary_10_3389_fnagi_2021_632310
crossref_primary_10_1016_j_bspc_2023_105258
crossref_primary_10_1109_ACCESS_2023_3339857
crossref_primary_10_1109_TMI_2024_3483292
crossref_primary_10_1016_j_bspc_2024_107335
crossref_primary_10_1016_j_clinph_2022_09_013
crossref_primary_10_69564_able_fr_23012_reve
crossref_primary_10_1007_s11517_024_03125_9
crossref_primary_10_1016_j_neures_2022_12_013
crossref_primary_10_1088_1741_2552_ac542f
crossref_primary_10_1109_TBME_2023_3265376
crossref_primary_10_1109_TMI_2020_3025608
crossref_primary_10_69564_able_es_23012_reve
crossref_primary_10_1088_1741_2552_ab79f5
crossref_primary_10_1109_TBME_2022_3174847
crossref_primary_10_1016_j_seizure_2021_02_006
crossref_primary_10_1109_TBME_2020_3030892
crossref_primary_10_3389_fnins_2024_1237245
crossref_primary_10_3389_fnins_2021_569918
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1146/annurev-bioeng-062117-120853
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1545-4274
ExternalDocumentID 29494213
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCCIH NIH HHS
  grantid: R01 AT009263
– fundername: NIMH NIH HHS
  grantid: R01 MH104402
– fundername: NINDS NIH HHS
  grantid: R01 NS096761
– fundername: NIMH NIH HHS
  grantid: RF1 MH114233
– fundername: NHLBI NIH HHS
  grantid: U01 HL117664
– fundername: NIBIB NIH HHS
  grantid: T32 EB008389
– fundername: NEI NIH HHS
  grantid: R01 EY023101
– fundername: NIBIB NIH HHS
  grantid: R01 EB021027
GroupedDBID ---
-QD
-QH
0R~
1KX
23M
36B
39C
4.4
51A
53G
5FA
5FB
5FC
5FD
5FE
5FF
5GY
5RE
7A.
8NG
AABJL
AAGWO
AALHT
AALUV
AAOHI
AAQMF
AARJV
AAWJP
AAXSQ
AAYIS
ABDOG
ABGRM
ABIPL
ABJNI
ABJZP
ABKGM
ABZNY
ACAHA
ACDVT
ACGFS
ACGJV
ACJYF
ACKHT
ACMXS
ACPHO
ACQCJ
ACRLM
ACSOE
ADCZP
ADHAB
ADHEY
ADLON
ADNJN
ADSVE
AEAIQ
AEKBM
AENEX
AEPIK
AFCZG
AFERR
AFKDQ
AFKEJ
AFONB
AHIXL
AHKZM
AHVNO
AIDEK
AIJFW
AJAAW
AKYKI
ALAFQ
ALMA_UNASSIGNED_HOLDINGS
AMTJG
AQQLW
B9D
B9E
B9F
B9G
B9H
B9K
B9L
B9N
BCFVH
BHKIP
BJPMW
BMYRD
CGR
CS3
CUY
CVF
EBS
ECM
EIF
EJD
EMB
EST
F-Q
F-S
F-T
F-U
F-V
F-X
F-Y
F-Z
F5P
FIWKU
FIXEU
FMZAJ
FQMFW
FT0
FU.
FUEKT
FV.
FXG
GCSFC
GFGFW
GJQJI
GLOEX
GNDDA
GOAVI
GQXMV
H13
HZ~
J1V
M22
N9A
NPM
O9-
OK1
P0P
P2P
RAR
RAV
RNS
ZYWBE
ID FETCH-LOGICAL-a556t-9164af990e19bbd4c84b41c1a5b106c7fae0af43b5d8f456d2be80f0ddd3310e2
IngestDate Thu Apr 03 06:58:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords inverse problem
source localization
electrophysiological source imaging
functional connectivity
EEG
MEG
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a556t-9164af990e19bbd4c84b41c1a5b106c7fae0af43b5d8f456d2be80f0ddd3310e2
OpenAccessLink https://www.annualreviews.org/doi/pdf/10.1146/annurev-bioeng-062117-120853
PMID 29494213
ParticipantIDs pubmed_primary_29494213
PublicationCentury 2000
PublicationDate 2018-06-04
PublicationDateYYYYMMDD 2018-06-04
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annual review of biomedical engineering
PublicationTitleAlternate Annu Rev Biomed Eng
PublicationYear 2018
SSID ssj0009334
Score 2.6140952
SecondaryResourceType review_article
Snippet Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial...
SourceID pubmed
SourceType Index Database
StartPage 171
SubjectTerms Algorithms
Animals
Bayes Theorem
Brain - diagnostic imaging
Electroencephalography - methods
Electrophysiology - methods
Humans
Magnetic Resonance Imaging - methods
Magnetoencephalography - methods
Neurosciences - trends
Signal Processing, Computer-Assisted
Software
Title Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics
URI https://www.ncbi.nlm.nih.gov/pubmed/29494213
Volume 20
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWUBEcUAuF8mjlAzeUEjtO1uGGeAj64AKo3JDHD3YPm6zaLRLw55nYySaitKJcoihWLMfz7ezMl8x8hGynJkutdDICjimKyBWLwMY6sggmCcAAfIXc97Ps5FJ8uUqver2HbnXJBD7r-2frSl5jVbyGdq2qZP_DstNJ8QKeo33xiBbG44tsfBQ0bDw7MXVi556O3zkdef2hUHl-VpGut8p_qv4Ds_BKR65Eu6phsXMYNOl_dcPUuut-W9cSqvT9_LbtYNgSqR4mwynQzsvBTwVjXIn3PQCqZeObvL-iw6Z8_rfhb_-aZFAWN6Nm5pqMYNJ_NBUIAVs7UJFGggflncbD8rjjIlmQXPnTdXd7Fkf4WPg4OD0mqP2IVUqiSfc23L3xyJuV5yIXnL1g9Elj7WZohsxgilFpplZET9OvOUnEPNmuF7b7r2VV_aTrqZ7kJj5GuXhLlurkgu4HpLwjPVsskzdBbvRumSx2mk-ukK_PoYcG9NAaPXt0n3awQwN26KSkHju0wc57cnl8dHFwEtXSGpFK02yCf3GZUA4jEctyACO0FCCYZioFFme675SNlRMJpEY6jLENBytjFxtjEkwILF8ls0VZ2A-EaiMMRr0xOKGE1Dy3PJPgXOK00TLvr5O1sCfX49A_5brZrY2_jmyShRZdW2TO4Q_WfsTobwKfvJ0eAVlNXKw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrophysiological+Source+Imaging%3A+A+Noninvasive+Window+to+Brain+Dynamics&rft.jtitle=Annual+review+of+biomedical+engineering&rft.au=He%2C+Bin&rft.au=Sohrabpour%2C+Abbas&rft.au=Brown%2C+Emery&rft.au=Liu%2C+Zhongming&rft.date=2018-06-04&rft.eissn=1545-4274&rft.volume=20&rft.spage=171&rft_id=info:doi/10.1146%2Fannurev-bioeng-062117-120853&rft_id=info%3Apmid%2F29494213&rft_id=info%3Apmid%2F29494213&rft.externalDocID=29494213