Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics
Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neu...
Saved in:
Published in | Annual review of biomedical engineering Vol. 20; p. 171 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
04.06.2018
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications. |
---|---|
AbstractList | Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications. |
Author | Liu, Zhongming He, Bin Brown, Emery Sohrabpour, Abbas |
Author_xml | – sequence: 1 givenname: Bin surname: He fullname: He, Bin email: bhe1@andrew.cmu.edu organization: Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA – sequence: 2 givenname: Abbas surname: Sohrabpour fullname: Sohrabpour, Abbas organization: Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA – sequence: 3 givenname: Emery surname: Brown fullname: Brown, Emery organization: Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA – sequence: 4 givenname: Zhongming surname: Liu fullname: Liu, Zhongming organization: Weldon School of Biomedical Engineering, School of Electrical and Computer Engineering, and Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47906, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29494213$$D View this record in MEDLINE/PubMed |
BookMark | eNo1z7tOwzAUgGELgegFXgF5YDX42MdpzFZKgYoKBkCMlW8JRoldJU1R354BmP7tk_4JOU45BUIugV8BYHFtUhq6sGc25pBqxgsBMGMgeKnkERmDQsVQzHBEJn3_xTnXUuIpGQmNGgXIMXlaNsHturz9PPQxN7mOzjT0NQ-dC3TVmjqm-obO6XNOMe1NH_eBfsTk8zfdZXrbmZjo3SGZNrr-jJxUpunD-V-n5P1--bZ4ZOuXh9VivmZGqWLHNBRoKq15AG2tR1eiRXBglAVeuFllAjcVSqt8WaEqvLCh5BX33ksJPIgpufh1t4Ntg99su9ia7rD5vxI_wh5UmA |
CitedBy_id | crossref_primary_10_3389_fnins_2022_931265 crossref_primary_10_1021_acs_chemrev_3c00425 crossref_primary_10_1088_1741_2552_ab260c crossref_primary_10_1109_TBME_2023_3235377 crossref_primary_10_1088_1741_2552_ac697d crossref_primary_10_3390_brainsci11010035 crossref_primary_10_3390_math11112450 crossref_primary_10_1109_TNSRE_2024_3424669 crossref_primary_10_1007_s10548_022_00891_3 crossref_primary_10_3390_app9153183 crossref_primary_10_1016_j_bios_2025_117181 crossref_primary_10_1016_j_jneumeth_2019_02_016 crossref_primary_10_69564_able_en_23012_reve crossref_primary_10_1016_j_neuroimage_2021_118034 crossref_primary_10_1002_hbm_26638 crossref_primary_10_1038_s41467_024_48576_8 crossref_primary_10_3390_s22155865 crossref_primary_10_1360_TB_2024_0443 crossref_primary_10_1002_hbm_25262 crossref_primary_10_1016_j_brs_2022_05_002 crossref_primary_10_1016_j_neuroimage_2023_120366 crossref_primary_10_1016_j_ultrasmedbio_2021_01_025 crossref_primary_10_1109_TAFFC_2020_3006847 crossref_primary_10_3389_fnhum_2022_830221 crossref_primary_10_3389_fnins_2023_1170862 crossref_primary_10_1016_j_neubiorev_2024_105718 crossref_primary_10_1016_j_neucom_2021_06_066 crossref_primary_10_1212_WNL_0000000000011109 crossref_primary_10_1016_j_bspc_2021_103332 crossref_primary_10_3389_fnins_2022_867466 crossref_primary_10_1016_j_neuroimage_2022_118939 crossref_primary_10_1109_TBME_2019_2913928 crossref_primary_10_1038_s41467_019_08725_w crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_1007_s10548_023_01025_z crossref_primary_10_1080_17434440_2020_1748008 crossref_primary_10_3390_brainsci13030485 crossref_primary_10_1016_j_neuroimage_2023_120372 crossref_primary_10_55578_joaims_231215_001 crossref_primary_10_1016_j_nicl_2018_101622 crossref_primary_10_1088_1741_2552_ad12db crossref_primary_10_1016_j_neuroimage_2023_120490 crossref_primary_10_1016_j_compbiomed_2023_107901 crossref_primary_10_35339_ekm_2023_92_4_vli crossref_primary_10_3344_kjp_2021_34_4_437 crossref_primary_10_1007_s00115_021_01180_3 crossref_primary_10_3389_fneur_2022_831546 crossref_primary_10_1016_j_cobme_2021_100277 crossref_primary_10_1016_j_tibtech_2020_03_003 crossref_primary_10_1007_s11571_021_09775_x crossref_primary_10_1109_TNSRE_2022_3150834 crossref_primary_10_1002_hbm_25607 crossref_primary_10_1098_rstb_2019_0631 crossref_primary_10_1016_j_mex_2024_102766 crossref_primary_10_1088_1741_2552_ac4ed0 crossref_primary_10_1007_s10548_020_00755_8 crossref_primary_10_1088_1741_2552_acdffe crossref_primary_10_3345_cep_2022_00962 crossref_primary_10_1523_ENEURO_0005_21_2021 crossref_primary_10_1002_advs_202405246 crossref_primary_10_1016_j_neuroimage_2020_116615 crossref_primary_10_1016_j_neubiorev_2019_11_002 crossref_primary_10_1007_s10527_024_10431_x crossref_primary_10_1073_pnas_2201128119 crossref_primary_10_2139_ssrn_4156181 crossref_primary_10_1016_j_nicl_2020_102484 crossref_primary_10_1016_j_nicl_2024_103608 crossref_primary_10_3389_fneur_2019_00325 crossref_primary_10_1016_j_mtchem_2022_101104 crossref_primary_10_1109_RBME_2024_3376835 crossref_primary_10_1166_jmihi_2021_3339 crossref_primary_10_1016_j_clinph_2021_10_008 crossref_primary_10_1016_j_nicl_2021_102903 crossref_primary_10_3345_cep_2022_01480 crossref_primary_10_1109_TNNLS_2022_3172108 crossref_primary_10_1016_j_clinph_2024_09_021 crossref_primary_10_1016_j_cobme_2018_10_004 crossref_primary_10_3902_jnns_30_21 crossref_primary_10_1088_1741_2552_abc0b4 crossref_primary_10_1016_j_jneumeth_2024_110358 crossref_primary_10_3389_fnhum_2022_951591 crossref_primary_10_1007_s11571_024_10149_2 crossref_primary_10_1109_TETCI_2024_3359097 crossref_primary_10_1186_s40779_023_00502_7 crossref_primary_10_1016_j_clinph_2019_11_058 crossref_primary_10_1038_s41467_020_15781_0 crossref_primary_10_1002_adfm_201908999 crossref_primary_10_1016_j_cobme_2021_100298 crossref_primary_10_1016_j_neuroimage_2021_118478 crossref_primary_10_1016_j_neuroimage_2023_120424 crossref_primary_10_1126_scirobotics_aaw6844 crossref_primary_10_1088_1741_2552_ad169c crossref_primary_10_1016_j_aei_2020_101180 crossref_primary_10_1016_j_neubiorev_2021_104520 crossref_primary_10_1088_1741_2552_aca82d crossref_primary_10_1002_hbm_25462 crossref_primary_10_3389_fnagi_2020_596551 crossref_primary_10_1007_s00429_022_02512_y crossref_primary_10_1109_TBME_2020_2971679 crossref_primary_10_1016_j_clinph_2023_03_002 crossref_primary_10_1007_s00521_020_05603_1 crossref_primary_10_1016_j_ijchp_2025_100551 crossref_primary_10_14483_23448350_19068 crossref_primary_10_1080_0954898X_2019_1634290 crossref_primary_10_1016_j_neuroscience_2024_01_016 crossref_primary_10_3390_s23020928 crossref_primary_10_1186_s40708_024_00221_2 crossref_primary_10_1038_s41597_024_04090_6 crossref_primary_10_1016_j_brain_2023_100064 crossref_primary_10_1136_gpsych_2024_101649 crossref_primary_10_1016_j_neucom_2020_01_038 crossref_primary_10_1002_hbm_26188 crossref_primary_10_1016_j_neuroimage_2022_118891 crossref_primary_10_1063_5_0226457 crossref_primary_10_1016_j_neuroimage_2022_119346 crossref_primary_10_3389_fnhum_2020_560586 crossref_primary_10_1007_s11426_022_1408_5 crossref_primary_10_1016_j_psychres_2023_115464 crossref_primary_10_1109_TBME_2024_3509741 crossref_primary_10_1007_s10309_023_00579_z crossref_primary_10_2142_biophysico_16_0_132 crossref_primary_10_1007_s11760_023_02965_6 crossref_primary_10_1109_TMI_2022_3218074 crossref_primary_10_3389_fnins_2023_978527 crossref_primary_10_1016_j_neuroimage_2024_120802 crossref_primary_10_1016_j_bspc_2022_103838 crossref_primary_10_1002_ana_26157 crossref_primary_10_1109_TBME_2018_2859204 crossref_primary_10_3390_bioengineering11090897 crossref_primary_10_3389_fnagi_2021_632310 crossref_primary_10_1016_j_bspc_2023_105258 crossref_primary_10_1109_ACCESS_2023_3339857 crossref_primary_10_1109_TMI_2024_3483292 crossref_primary_10_1016_j_bspc_2024_107335 crossref_primary_10_1016_j_clinph_2022_09_013 crossref_primary_10_69564_able_fr_23012_reve crossref_primary_10_1007_s11517_024_03125_9 crossref_primary_10_1016_j_neures_2022_12_013 crossref_primary_10_1088_1741_2552_ac542f crossref_primary_10_1109_TBME_2023_3265376 crossref_primary_10_1109_TMI_2020_3025608 crossref_primary_10_69564_able_es_23012_reve crossref_primary_10_1088_1741_2552_ab79f5 crossref_primary_10_1109_TBME_2022_3174847 crossref_primary_10_1016_j_seizure_2021_02_006 crossref_primary_10_1109_TBME_2020_3030892 crossref_primary_10_3389_fnins_2024_1237245 crossref_primary_10_3389_fnins_2021_569918 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1146/annurev-bioeng-062117-120853 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1545-4274 |
ExternalDocumentID | 29494213 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCCIH NIH HHS grantid: R01 AT009263 – fundername: NIMH NIH HHS grantid: R01 MH104402 – fundername: NINDS NIH HHS grantid: R01 NS096761 – fundername: NIMH NIH HHS grantid: RF1 MH114233 – fundername: NHLBI NIH HHS grantid: U01 HL117664 – fundername: NIBIB NIH HHS grantid: T32 EB008389 – fundername: NEI NIH HHS grantid: R01 EY023101 – fundername: NIBIB NIH HHS grantid: R01 EB021027 |
GroupedDBID | --- -QD -QH 0R~ 1KX 23M 36B 39C 4.4 51A 53G 5FA 5FB 5FC 5FD 5FE 5FF 5GY 5RE 7A. 8NG AABJL AAGWO AALHT AALUV AAOHI AAQMF AARJV AAWJP AAXSQ AAYIS ABDOG ABGRM ABIPL ABJNI ABJZP ABKGM ABZNY ACAHA ACDVT ACGFS ACGJV ACJYF ACKHT ACMXS ACPHO ACQCJ ACRLM ACSOE ADCZP ADHAB ADHEY ADLON ADNJN ADSVE AEAIQ AEKBM AENEX AEPIK AFCZG AFERR AFKDQ AFKEJ AFONB AHIXL AHKZM AHVNO AIDEK AIJFW AJAAW AKYKI ALAFQ ALMA_UNASSIGNED_HOLDINGS AMTJG AQQLW B9D B9E B9F B9G B9H B9K B9L B9N BCFVH BHKIP BJPMW BMYRD CGR CS3 CUY CVF EBS ECM EIF EJD EMB EST F-Q F-S F-T F-U F-V F-X F-Y F-Z F5P FIWKU FIXEU FMZAJ FQMFW FT0 FU. FUEKT FV. FXG GCSFC GFGFW GJQJI GLOEX GNDDA GOAVI GQXMV H13 HZ~ J1V M22 N9A NPM O9- OK1 P0P P2P RAR RAV RNS ZYWBE |
ID | FETCH-LOGICAL-a556t-9164af990e19bbd4c84b41c1a5b106c7fae0af43b5d8f456d2be80f0ddd3310e2 |
IngestDate | Thu Apr 03 06:58:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | inverse problem source localization electrophysiological source imaging functional connectivity EEG MEG |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a556t-9164af990e19bbd4c84b41c1a5b106c7fae0af43b5d8f456d2be80f0ddd3310e2 |
OpenAccessLink | https://www.annualreviews.org/doi/pdf/10.1146/annurev-bioeng-062117-120853 |
PMID | 29494213 |
ParticipantIDs | pubmed_primary_29494213 |
PublicationCentury | 2000 |
PublicationDate | 2018-06-04 |
PublicationDateYYYYMMDD | 2018-06-04 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Annual review of biomedical engineering |
PublicationTitleAlternate | Annu Rev Biomed Eng |
PublicationYear | 2018 |
SSID | ssj0009334 |
Score | 2.6140952 |
SecondaryResourceType | review_article |
Snippet | Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 171 |
SubjectTerms | Algorithms Animals Bayes Theorem Brain - diagnostic imaging Electroencephalography - methods Electrophysiology - methods Humans Magnetic Resonance Imaging - methods Magnetoencephalography - methods Neurosciences - trends Signal Processing, Computer-Assisted Software |
Title | Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29494213 |
Volume | 20 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWUBEcUAuF8mjlAzeUEjtO1uGGeAj64AKo3JDHD3YPm6zaLRLw55nYySaitKJcoihWLMfz7ezMl8x8hGynJkutdDICjimKyBWLwMY6sggmCcAAfIXc97Ps5FJ8uUqver2HbnXJBD7r-2frSl5jVbyGdq2qZP_DstNJ8QKeo33xiBbG44tsfBQ0bDw7MXVi556O3zkdef2hUHl-VpGut8p_qv4Ds_BKR65Eu6phsXMYNOl_dcPUuut-W9cSqvT9_LbtYNgSqR4mwynQzsvBTwVjXIn3PQCqZeObvL-iw6Z8_rfhb_-aZFAWN6Nm5pqMYNJ_NBUIAVs7UJFGggflncbD8rjjIlmQXPnTdXd7Fkf4WPg4OD0mqP2IVUqiSfc23L3xyJuV5yIXnL1g9Elj7WZohsxgilFpplZET9OvOUnEPNmuF7b7r2VV_aTrqZ7kJj5GuXhLlurkgu4HpLwjPVsskzdBbvRumSx2mk-ukK_PoYcG9NAaPXt0n3awQwN26KSkHju0wc57cnl8dHFwEtXSGpFK02yCf3GZUA4jEctyACO0FCCYZioFFme675SNlRMJpEY6jLENBytjFxtjEkwILF8ls0VZ2A-EaiMMRr0xOKGE1Dy3PJPgXOK00TLvr5O1sCfX49A_5brZrY2_jmyShRZdW2TO4Q_WfsTobwKfvJ0eAVlNXKw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrophysiological+Source+Imaging%3A+A+Noninvasive+Window+to+Brain+Dynamics&rft.jtitle=Annual+review+of+biomedical+engineering&rft.au=He%2C+Bin&rft.au=Sohrabpour%2C+Abbas&rft.au=Brown%2C+Emery&rft.au=Liu%2C+Zhongming&rft.date=2018-06-04&rft.eissn=1545-4274&rft.volume=20&rft.spage=171&rft_id=info:doi/10.1146%2Fannurev-bioeng-062117-120853&rft_id=info%3Apmid%2F29494213&rft_id=info%3Apmid%2F29494213&rft.externalDocID=29494213 |