Phosphorus binding to nanoparticles and colloids in forest stream waters
Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about natural colloids (1-1000 nm) and especially natural nanoparticles (NNP, 1-100 nm) as nutrient carriers in forested headwater streams. We hypot...
Saved in:
Published in | Vadose zone journal Vol. 16; no. 3; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Madison
Soil Science Society of America
01.03.2017
The Soil Science Society of America, Inc John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1539-1663 1539-1663 |
DOI | 10.2136/vzj2016.07.0064 |
Cover
Loading…
Abstract | Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about natural colloids (1-1000 nm) and especially natural nanoparticles (NNP, 1-100 nm) as nutrient carriers in forested headwater streams. We hypothesize that the majority of P is bound to NNP in forest streams but that their size and composition varies for different forested headwater systems. Four forested sites in Germany and one in Norway, which differ in total P content, were sampled for stream water and analyzed for colloids. The samples were fractionated using field flow fractionation coupled to inductively coupled plasma-mass spectrometry and an organic C detector. The results showed that NNP and colloids from all sites could be separated into three distinct fractions (approximately 1-20 nm, >20-60 nm, and >60 nm). The elemental concentrations of P, organic C, Al, Si, Fe, and Mn in the fractions differed among the five sites. However, cluster analysis showed that each fraction had unique elemental signatures with different preferential P binding partners. Phosphorus was preferentially associated with Fe in the smallest size fraction, with an increasing contribution of organic-C-associated P as the fraction size increased. The largest fraction was dominated by clay minerals. Also, the data indicated that the relative contribution of the NNP and colloidal fractions for ecosystem nutrient supply rises as total P concentrations decline. The study highlighted the still underestimated importance of NNP for matter transport in forest streams and thus P cycling. |
---|---|
AbstractList | Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about natural colloids (1–1000 nm) and especially natural nanoparticles (NNP, 1–100 nm) as nutrient carriers in forested headwater streams. We hypothesize that the majority of P is bound to NNP in forest streams but that their size and composition varies for different forested headwater systems. Four forested sites in Germany and one in Norway, which differ in total P content, were sampled for stream water and analyzed for colloids. The samples were fractionated using field flow fractionation coupled to inductively coupled plasma–mass spectrometry and an organic C detector. The results showed that NNP and colloids from all sites could be separated into three distinct fractions (approximately 1–20 nm, >20–60 nm, and >60 nm). The elemental concentrations of P, organic C, Al, Si, Fe, and Mn in the fractions differed among the five sites. However, cluster analysis showed that each fraction had unique elemental signatures with different preferential P binding partners. Phosphorus was preferentially associated with Fe in the smallest size fraction, with an increasing contribution of organic-C-associated P as the fraction size increased. The largest fraction was dominated by clay minerals. Also, the data indicated that the relative contribution of the NNP and colloidal fractions for ecosystem nutrient supply rises as total P concentrations decline. The study highlighted the still underestimated importance of NNP for matter transport in forest streams and thus P cycling. Core Ideas There are three distinct fractions of natural nanoparticles and colloids. These unique fractions have different preferential P binding. The fractions include Fe–P, organic C–P, and clay–P. Field flow fractionation coupled online to OC detector for size resolved OC detection. Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about natural colloids (1–1000 nm) and especially natural nanoparticles (NNP, 1–100 nm) as nutrient carriers in forested headwater streams. We hypothesize that the majority of P is bound to NNP in forest streams but that their size and composition varies for different forested headwater systems. Four forested sites in Germany and one in Norway, which differ in total P content, were sampled for stream water and analyzed for colloids. The samples were fractionated using field flow fractionation coupled to inductively coupled plasma–mass spectrometry and an organic C detector. The results showed that NNP and colloids from all sites could be separated into three distinct fractions (approximately 1–20 nm, >20–60 nm, and >60 nm). The elemental concentrations of P, organic C, Al, Si, Fe, and Mn in the fractions differed among the five sites. However, cluster analysis showed that each fraction had unique elemental signatures with different preferential P binding partners. Phosphorus was preferentially associated with Fe in the smallest size fraction, with an increasing contribution of organic‐C‐associated P as the fraction size increased. The largest fraction was dominated by clay minerals. Also, the data indicated that the relative contribution of the NNP and colloidal fractions for ecosystem nutrient supply rises as total P concentrations decline. The study highlighted the still underestimated importance of NNP for matter transport in forest streams and thus P cycling. CORE IDEAS: There are three distinct fractions of natural nanoparticles and colloids. These unique fractions have different preferential P binding. The fractions include Fe–P, organic C–P, and clay–P. Field flow fractionation coupled online to OC detector for size resolved OC detection. Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about natural colloids (1–1000 nm) and especially natural nanoparticles (NNP, 1–100 nm) as nutrient carriers in forested headwater streams. We hypothesize that the majority of P is bound to NNP in forest streams but that their size and composition varies for different forested headwater systems. Four forested sites in Germany and one in Norway, which differ in total P content, were sampled for stream water and analyzed for colloids. The samples were fractionated using field flow fractionation coupled to inductively coupled plasma–mass spectrometry and an organic C detector. The results showed that NNP and colloids from all sites could be separated into three distinct fractions (approximately 1–20 nm, >20–60 nm, and >60 nm). The elemental concentrations of P, organic C, Al, Si, Fe, and Mn in the fractions differed among the five sites. However, cluster analysis showed that each fraction had unique elemental signatures with different preferential P binding partners. Phosphorus was preferentially associated with Fe in the smallest size fraction, with an increasing contribution of organic‐C‐associated P as the fraction size increased. The largest fraction was dominated by clay minerals. Also, the data indicated that the relative contribution of the NNP and colloidal fractions for ecosystem nutrient supply rises as total P concentrations decline. The study highlighted the still underestimated importance of NNP for matter transport in forest streams and thus P cycling. |
Author | Klumpp, Erwin Halle, Cynthia Meyn, Thomas Gottselig, Nina Siemens, Jan Nischwitz, Volker Vereecken, Harry Amelung, Wulf Bol, Roland |
Author_xml | – sequence: 1 fullname: Gottselig, Nina – sequence: 2 fullname: Nischwitz, Volker – sequence: 3 fullname: Meyn, Thomas – sequence: 4 fullname: Amelung, Wulf – sequence: 5 fullname: Bol, Roland – sequence: 6 fullname: Halle, Cynthia – sequence: 7 fullname: Vereecken, Harry – sequence: 8 fullname: Siemens, Jan – sequence: 9 fullname: Klumpp, Erwin |
BookMark | eNqFks1rVDEUxYNUsK2u3QbcCDLT3OTlayNIUasU2kXpwk3IJHlthkwyJm861L_eDDOgdNEuwg3hdw735twTdJRLDgi9BzKnwMTZw58lJSDmRM4JEcMrdAyc6RkIwY7-u79BJ60tCQE9DPQYXVzfl7a-L3XT8CJmH_MdngrONpe1rVN0KTRss8eupFSibzhmPJYa2oTbVINd4a2dQm1v0evRphbeHeopuvn29eb8YnZ59f3H-ZfLmeVcDLMAylkvxThwpxw46a1jVinNRquHBSxGGK30ZOGAa0I4WK-8dJozLqgm7BR93Nuua_m96V2YVWwupGRzKJtmqATFOOj-JS-hoBTIQVE6dPTDE3RZNjX3OQxoxTQTUshO8T3lammthtG4ONkpljxVG5MBYnZJmEMShkizS6Lrzp7o1jWubH18RvF5r9jGFB5fws3tr590d_obkQeDT3uDu1CaiyG7sC01-X9zdbirGZV9J_4CqqSuag |
CitedBy_id | crossref_primary_10_3390_min12070812 crossref_primary_10_3389_ffgc_2020_577364 crossref_primary_10_2134_jeq2018_05_0178 crossref_primary_10_1016_j_watres_2020_116585 crossref_primary_10_1016_j_scitotenv_2021_145358 crossref_primary_10_1016_j_watres_2023_120568 crossref_primary_10_1007_s42729_021_00534_9 crossref_primary_10_1016_j_scitotenv_2023_161439 crossref_primary_10_1016_j_colsurfa_2020_125505 crossref_primary_10_1016_j_chemosphere_2023_139906 crossref_primary_10_1021_acsearthspacechem_9b00320 crossref_primary_10_1007_s42729_024_02152_7 crossref_primary_10_1016_j_geoderma_2022_116282 crossref_primary_10_1007_s11356_022_24948_9 crossref_primary_10_1007_s42729_023_01458_2 crossref_primary_10_1002_2017GB005657 crossref_primary_10_1016_j_chemosphere_2020_127624 crossref_primary_10_1016_j_gloplacha_2019_103090 crossref_primary_10_1080_10643389_2024_2317685 crossref_primary_10_1007_s11356_021_16534_2 crossref_primary_10_3389_fmars_2018_00276 crossref_primary_10_1016_j_geoderma_2022_115716 crossref_primary_10_1038_s41598_018_36103_x crossref_primary_10_1016_j_geoderma_2020_114421 crossref_primary_10_1021_acs_est_3c10022 crossref_primary_10_1016_j_scitotenv_2020_142112 crossref_primary_10_1007_s11270_020_4443_z crossref_primary_10_1186_s12302_020_0299_5 crossref_primary_10_1080_10643389_2022_2156225 crossref_primary_10_1016_j_envres_2023_115222 crossref_primary_10_1016_j_jes_2018_07_016 crossref_primary_10_1016_j_scitotenv_2018_03_265 crossref_primary_10_1007_s12517_021_08649_0 crossref_primary_10_1016_j_scitotenv_2023_168016 crossref_primary_10_1016_j_scitotenv_2022_160804 crossref_primary_10_1002_jeq2_20090 crossref_primary_10_1002_vzj2_20126 crossref_primary_10_1016_j_agee_2021_107306 crossref_primary_10_1007_s11104_017_3430_7 crossref_primary_10_1016_j_scitotenv_2018_09_127 crossref_primary_10_1002_saj2_20258 crossref_primary_10_1007_s11356_019_06762_y crossref_primary_10_1007_s42773_025_00442_6 crossref_primary_10_1007_s11356_019_05735_5 crossref_primary_10_1016_j_watres_2021_117025 crossref_primary_10_1021_acs_est_3c05108 crossref_primary_10_1016_j_scitotenv_2019_134111 crossref_primary_10_1016_j_agee_2019_106653 crossref_primary_10_1007_s44246_023_00048_2 crossref_primary_10_1016_j_scitotenv_2019_134638 crossref_primary_10_3389_ffgc_2019_00085 crossref_primary_10_1016_j_geoderma_2018_01_015 crossref_primary_10_3390_f15020229 |
Cites_doi | 10.1016/S0009-2541(96)00139-8 10.1016/j.watres.2010.09.023 10.1351/pac199971112161 10.1016/j.marchem.2009.11.007 10.1016/j.gca.2007.04.025 10.1021/ac048295c 10.1002/jpln.201600079 10.2134/jeq2006.0427 10.2134/jeq2015.02.0085 10.1021/ac981455y 10.1039/c1em10482a 10.1016/S0048-9697(00)00393-4 10.1021/es405330x 10.1016/S0016-7037(03)00087-5 10.1021/es010271p 10.1002/jpln.19921550313 10.1126/science.959835 10.1021/es504643f 10.2134/jeq2012.0322 10.1016/j.chroma.2011.04.063 10.1016/S0165-9936(03)01103-8 10.2134/jeq1995.00472425002400060010x 10.1039/c2ja10387g 10.1016/j.apgeochem.2011.03.114 10.1127/archiv-hydrobiol/113/1988/405 10.1016/S0378-1127(02)00306-7 10.1016/j.watres.2006.07.010 10.1016/j.colsurfa.2012.02.021 10.1007/s12575-009-9008-x 10.1016/j.scitotenv.2011.11.061 10.1016/j.aca.2004.11.067 10.2136/vzj2014.01.0005 10.1016/j.chemosphere.2013.06.059 10.4319/lo.1982.27.3.0564 10.1897/08-178.1 10.1021/ac00019a011 10.1016/j.watres.2013.02.030 10.1002/jpln.201400590 10.1073/pnas.1508945112 10.1080/00103629209368612 10.1016/0925-8574(95)00024-0 10.1021/es60116a001 10.4319/lo.1997.42.8.1714 10.4319/lo.1995.40.1.0119 10.4319/lo.2001.46.2.0331 10.1111/j.1752-1688.2004.tb01586.x 10.2134/jeq2005.0402 10.2113/gselements.4.6.401 10.1126/science.1142525 10.1080/10643389.2013.790752 10.1126/science.228.4706.1424 10.1016/j.gca.2004.04.007 10.1016/j.gca.2006.04.021 10.1016/S0065-2113(10)07002-1 |
ContentType | Journal Article |
Copyright | GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Soil Science Society of America 2017 The Authors. Copyright Soil Science Society of America Mar 2017 |
Copyright_xml | – notice: GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Soil Science Society of America – notice: 2017 The Authors. – notice: Copyright Soil Science Society of America Mar 2017 |
DBID | 24P AAYXX CITATION 7UA C1K F1W H96 L.G 7S9 L.6 |
DOI | 10.2136/vzj2016.07.0064 |
DatabaseName | Wiley Online Library Open Access CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1539-1663 |
EndPage | 12 |
ExternalDocumentID | 10_2136_vzj2016_07_0064 VZJ2VZJ2016070064 2017_032766 |
Genre | article |
GeographicLocations | ANE, Norway Germany Norway |
GeographicLocations_xml | – name: ANE, Norway – name: Germany – name: Norway |
GrantInformation_xml | – fundername: Projektbezogener Personenaustausch mit Norwegen – fundername: TERENO – fundername: DFG – fundername: Ecosystem Nutrition: Forest Strategies for Limited Phosphorus Resources funderid: KL 2495/1‐1; SI 1106/8‐1 |
GroupedDBID | .~0 0R~ 123 18M 1OB 1OC 24P 2WC 6KN AAHBH AAHHS AAWFE ABJNI ACAWQ ACCFJ ACGFO ACXQS ADBBV ADKYN ADZMN AEEZP AENEX AEQDE AFRAH AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV C1A CS3 DDYGU DU5 E3Z EBS ECGQY EJD GOHGZ GROUPED_DOAJ GX1 H13 IAO IGS ITC MV1 M~E NHAZY O9- OK1 P2P RAK RGW SAMSI TR2 WIN WOQ WXSBR ~02 ~KM ACCMX AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 7UA C1K F1W H96 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-a5564-e18cad76f45c8c1c7dac3a8893fa94b1bf1fa7d0bc1590051ad8d7c953562903 |
IEDL.DBID | 24P |
ISSN | 1539-1663 |
IngestDate | Fri Sep 05 17:27:54 EDT 2025 Fri Sep 05 10:37:10 EDT 2025 Fri Aug 22 20:19:56 EDT 2025 Fri Jul 04 03:42:01 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Wed Jan 22 16:36:42 EST 2025 Tue Oct 29 04:53:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a5564-e18cad76f45c8c1c7dac3a8893fa94b1bf1fa7d0bc1590051ad8d7c953562903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fvzj2016.07.0064 |
PQID | 1983936767 |
PQPubID | 2046224 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2718351921 proquest_miscellaneous_1881748224 proquest_journals_1983936767 crossref_citationtrail_10_2136_vzj2016_07_0064 crossref_primary_10_2136_vzj2016_07_0064 wiley_primary_10_2136_vzj2016_07_0064_VZJ2VZJ2016070064 geoscienceworld_journals_2017_032766 |
PublicationCentury | 2000 |
PublicationDate | 20170300 March 2017 2017-03-00 20170301 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 3 year: 2017 text: 20170300 |
PublicationDecade | 2010 |
PublicationPlace | Madison |
PublicationPlace_xml | – name: Madison |
PublicationTitle | Vadose zone journal |
PublicationYear | 2017 |
Publisher | Soil Science Society of America The Soil Science Society of America, Inc John Wiley & Sons, Inc |
Publisher_xml | – name: Soil Science Society of America – name: The Soil Science Society of America, Inc – name: John Wiley & Sons, Inc |
References | 2006; 70 2013; 4 2010; 107 2006; 35 1997; 42 2004; 68 2005; 535 2011; 13 2007; 71 2008; 4 2001; 46 2007; 36 2009; 11 1982; 27 2015; 49 2010; 118 1992; 155 1995; 24 2015; 178 2015; 44 1985 2014; 13 2012; 27 2011; 26 2005; 77 1997; 136 2002; 36 2004; 40 2013; 47 2010 2013; 42 1997 2014; 48 2013; 93 1985; 228 1976; 193 2014; 44 1995; 5 2009; 28 1976; 10 1995; 40 2007; 316 2006; 40 2012; 399 2009; 71 1991; 63 2015; 112 2002; 169 2000; 251–252 2016; 179 1988; 113 2011; 1218 2011; 45 2014 1999; 71 2012; 434 1992; 23 2003; 22 2003; 67 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 Zirkler D. (e_1_2_7_61_1) 2012; 399 e_1_2_7_11_1 Grim R. (e_1_2_7_22_1) 2014 e_1_2_7_45_1 Spivakov B.Y. (e_1_2_7_55_1) 2009; 71 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Filella M. (e_1_2_7_12_1) 2006; 40 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Hartland A. (e_1_2_7_23_1) 2013; 4 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Gottselig N. (e_1_2_7_20_1) 2014; 13 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Crini G. (e_1_2_7_7_1) 2010 Ranville J.F. (e_1_2_7_46_1) 1997 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Greenberg A. (e_1_2_7_21_1) 1985 |
References_xml | – year: 1985 – volume: 24 start-page: 1117 year: 1995 end-page: 1124 article-title: Assessing colloidal forms of phosphorus and iron in the Tualatin‐River basin publication-title: J. Environ. Qual. – volume: 11 start-page: 32 year: 2009 end-page: 51 article-title: Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy publication-title: Biol. Proced. Online – volume: 44 start-page: 1772 year: 2015 end-page: 1781 article-title: Phosphorus containing water dispersible nanoparticles in arable soil publication-title: J. Environ. Qual. – volume: 45 start-page: 879 year: 2011 end-page: 885 article-title: Characterisation of aquatic humic and non‐humic matter with size‐exclusion chromatography: Organic carbon detection–organic nitrogen detection (LC‐OCD‐OND) publication-title: Water Res. – volume: 169 start-page: 159 year: 2002 end-page: 175 article-title: Increasing carbon stocks in the forest soils of Western Europe publication-title: For. Ecol. Manage. – volume: 36 start-page: 2932 year: 2002 end-page: 2938 article-title: Influence of natural organic matter on the adsorption of metal ions onto clay minerals publication-title: Environ. Sci. Technol. – volume: 70 start-page: 3261 year: 2006 end-page: 3274 article-title: Colloidal rare earth elements in a boreal river: Changing sources and distributions during the spring flood publication-title: Geochim. Cosmochim. Acta – volume: 44 start-page: 2172 year: 2014 end-page: 2202 article-title: A meta‐analysis of organic and inorganic phosphorus in organic fertilizers, soils, and water: Implications for water quality publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 71 start-page: 3292 year: 2007 end-page: 3301 article-title: Changes in size distribution of fresh water nanoscale colloidal matter and associated elements on mixing with seawater publication-title: Geochim. Cosmochim. Acta – volume: 107 start-page: 33 year: 2010 end-page: 91 article-title: Terrestrial nanoparticles and their controls on soil‐/geo‐processes and reactions publication-title: Adv. Agron. – year: 2014 – volume: 193 start-page: 1244 year: 1976 end-page: 1245 article-title: Flow‐field‐flow fractionation: A versatile new separation method publication-title: Science – volume: 48 start-page: 4307 year: 2014 end-page: 4316 article-title: Characterization of colloidal Fe from soils using field‐flow fractionation and Fe K‐edge X‐ray absorption spectroscopy publication-title: Environ. Sci. Technol. – volume: 71 start-page: 3497 year: 1999 end-page: 3502 article-title: Determination of continuous size and trace element distribution of colloidal material in natural water by on‐line coupling of flow field‐flow fractionation with ICPMS publication-title: Anal. Chem. – volume: 118 start-page: 119 year: 2010 end-page: 128 article-title: Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field‐flow fractionation publication-title: Mar. Chem. – volume: 40 start-page: 1277 year: 2004 end-page: 1291 article-title: Nitrogen and phosphorus concentrations in forest streams of the United States publication-title: J. Am. Water Resour. Assoc. – volume: 63 start-page: 2122 year: 1991 end-page: 2130 article-title: Flow injection analysis of organic and inorganic carbon in the low‐ppb range publication-title: Anal. Chem. – volume: 113 start-page: 405 year: 1988 end-page: 424 article-title: The ultrastructure and physical characteristics of a distinctive colloidal iron particulate isolated from a small eutrophic lake publication-title: Arch. Hydrobiol. – volume: 36 start-page: 1187 year: 2007 end-page: 1193 article-title: Hydrophobicity of soil colloids and heavy metal mobilization: Effects of drying publication-title: J. Environ. Qual. – year: 1997 – volume: 71 start-page: 2161 year: 2009 end-page: 2176 article-title: Phosphorus speciation in water and sediments publication-title: Pure Appl. Chem. – volume: 27 start-page: 1084 year: 2012 end-page: 1092 article-title: Improved sample preparation and quality control for the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow fractionation on‐line with inductively coupled plasma mass spectrometry publication-title: J. Anal. At. Spectrom. – volume: 13 issue: 7 year: 2014 article-title: Distribution of phosphorus‐containing fine colloids and nanoparticles in stream water of a forest catchment publication-title: Vadose Zone J. – volume: 67 start-page: 3791 year: 2003 end-page: 3802 article-title: Competition between iron‐ and carbon‐based colloidal carriers for trace metals in a freshwater assessed using flow field‐flow fractionation coupled to ICPMS publication-title: Geochim. Cosmochim. Acta – volume: 112 start-page: E5253 year: 2015 end-page: E5260 article-title: Long‐term litter decomposition controlled by manganese redox cycling publication-title: Proc. Natl. Acad. Sci – volume: 40 start-page: 3185 year: 2006 end-page: 3192 article-title: Variability of the colloidal molybdate reactive phosphorous concentrations in freshwaters publication-title: Water Res. – volume: 10 start-page: 485 year: 1976 end-page: 490 article-title: Phosphate adsorption reactions with clay minerals publication-title: Environ. Sci. Technol. – volume: 42 start-page: 1714 year: 1997 end-page: 1724 article-title: Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters publication-title: Limnol. Oceanogr. – volume: 316 start-page: 1726 year: 2007 end-page: 1729 article-title: The structure of ferrihydrite, a nanocrystalline material publication-title: Science – volume: 4 start-page: 401 year: 2008 end-page: 406 article-title: Iron oxides as geochemical nanovectors for metal transport in soil–river systems publication-title: Elements – volume: 40 start-page: 119 year: 1995 end-page: 131 article-title: Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy) publication-title: Limnol. Oceanogr. – volume: 155 start-page: 233 year: 1992 end-page: 236 article-title: Adsorption of orthophosphate to humic‐Fe‐complexes and to amorphous Fe‐oxide publication-title: Z. Pflanzenernaehr. Bodenkd. – volume: 228 start-page: 1424 year: 1985 end-page: 1427 article-title: Mechanisms controlling phosphorus retention capacity in fresh‐water wetlands publication-title: Science – volume: 23 start-page: 601 year: 1992 end-page: 612 article-title: Orthophosphate and organic phosphate in the soil solution of four sandy soils in relation to pH‐evidence for humic–Fe–(Al–) phosphate complexes publication-title: Commun. Soil Sci. Plant Anal. – volume: 1218 start-page: 4078 year: 2011 end-page: 4103 article-title: Flow field‐flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: A critical review publication-title: J. Chromatogr. A – volume: 27 start-page: 564 year: 1982 end-page: 569 article-title: UV‐sensitive complex phosphorus: Association with dissolved humic material and iron in a bog lake publication-title: Limnol. Oceanogr. – volume: 35 start-page: 1101 year: 2006 end-page: 1109 article-title: Surface and subsurface phosphorus losses from fertilized pasture systems in Ohio publication-title: J. Environ. Qual. – volume: 13 start-page: 2844 year: 2011 end-page: 2850 article-title: Size distribution and composition of phosphorus in the East Tiao River, China: The significant role of colloids publication-title: J. Environ. Monit. – volume: 136 start-page: 71 year: 1997 end-page: 97 article-title: The influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (USA) publication-title: Chem. Geol. – volume: 68 start-page: 4059 year: 2004 end-page: 4075 article-title: Association of calcium with colloidal particles and speciation of calcium in the Kalix and Amazon rivers publication-title: Geochim. Cosmochim. Acta – volume: 28 start-page: 458 year: 2009 end-page: 464 article-title: Influence of soil pH on the sorption of ionizable chemicals: Modelling advances publication-title: Environ. Toxicol. Chem. – volume: 93 start-page: 1879 year: 2013 end-page: 1886 article-title: Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings publication-title: Chemosphere – volume: 399 start-page: 35 year: 2012 end-page: 40 article-title: “Lost in filtration”: The separation of soil colloids from larger particles publication-title: Colloids Surf. A – year: 2010 – volume: 5 start-page: 183 year: 1995 end-page: 207 article-title: Phosphorus dynamics in selected wetlands and streams of the Lake Okeechobee basin publication-title: Ecol. Eng. – volume: 4 start-page: 7 issue: 8 year: 2013 article-title: The environmental significance of natural nanoparticles publication-title: Nat. Educ. Knowl. – volume: 251–252 start-page: 523 year: 2000 end-page: 538 article-title: Characterising phosphorus loss in surface and subsurface hydrological pathways publication-title: Sci. Total Environ. – volume: 26 start-page: S241 year: 2011 end-page: S244 article-title: The contribution of organic and mineral colloidal nanoparticles to element transport in a podzol soil publication-title: Appl. Geochem. – volume: 178 start-page: 351 year: 2015 end-page: 364 article-title: The acquisition of phosphate by higher plants: Effect of carboxylate release by the roots: A critical review publication-title: J. Plant Nutr. Soil Sci. – volume: 77 start-page: 4194 year: 2005 end-page: 4200 article-title: Characterizing dissolved organic carbon using asymmetrical flow field‐flow fractionation with on‐line UV and DOC detection publication-title: Anal. Chem. – volume: 46 start-page: 331 year: 2001 end-page: 344 article-title: Role of colloids and fine particles in the transport of metals in rivers draining carbonate and silicate terrains publication-title: Limnol. Oceanogr. – volume: 179 start-page: 425 year: 2016 end-page: 438 article-title: Dissolved and colloidal phosphorus fluxes in forest ecosystems: An almost blind spot in ecosystem research publication-title: J. Plant Nutr. Soil Sci. – volume: 42 start-page: 464 year: 2013 end-page: 473 article-title: Characterization of colloidal phosphorus species in drainage waters from a clay soil using asymmetric flow field‐flow fractionation publication-title: J. Environ. Qual. – volume: 434 start-page: 171 year: 2012 end-page: 185 article-title: Role of riverine colloids in macronutrient and metal partitioning and transport, along an upland–lowland land‐use continuum, under low‐flow conditions publication-title: Sci. Total Environ. – volume: 535 start-page: 109 year: 2005 end-page: 121 article-title: High resolution ICPMS as an on‐line detector for flow field‐flow fractionation: Multi‐element determination of colloidal size distributions in a natural water sample publication-title: Anal. Chim. Acta – volume: 47 start-page: 2757 year: 2013 end-page: 2769 article-title: Using FlowFFF and HPSEC to determine trace metal colloid associations in wetland runoff publication-title: Water Res. – volume: 22 start-page: 615 year: 2003 end-page: 633 article-title: Environmental applications of flow field‐flow fractionation (FIFFF). TrAC publication-title: Trends Anal. Chem. – volume: 49 start-page: 3427 year: 2015 end-page: 3434 article-title: Natural colloidal P and its contribution to plant P uptake publication-title: Environ. Sci. Technol. – ident: e_1_2_7_54_1 doi: 10.1016/S0009-2541(96)00139-8 – ident: e_1_2_7_28_1 doi: 10.1016/j.watres.2010.09.023 – volume: 71 start-page: 2161 year: 2009 ident: e_1_2_7_55_1 article-title: Phosphorus speciation in water and sediments publication-title: Pure Appl. Chem. doi: 10.1351/pac199971112161 – ident: e_1_2_7_56_1 doi: 10.1016/j.marchem.2009.11.007 – ident: e_1_2_7_57_1 doi: 10.1016/j.gca.2007.04.025 – ident: e_1_2_7_51_1 doi: 10.1021/ac048295c – ident: e_1_2_7_5_1 doi: 10.1002/jpln.201600079 – ident: e_1_2_7_33_1 doi: 10.2134/jeq2006.0427 – ident: e_1_2_7_31_1 doi: 10.2134/jeq2015.02.0085 – ident: e_1_2_7_24_1 doi: 10.1021/ac981455y – ident: e_1_2_7_36_1 doi: 10.1039/c1em10482a – ident: e_1_2_7_26_1 doi: 10.1016/S0048-9697(00)00393-4 – ident: e_1_2_7_49_1 doi: 10.1021/es405330x – volume: 4 start-page: 7 issue: 8 year: 2013 ident: e_1_2_7_23_1 article-title: The environmental significance of natural nanoparticles publication-title: Nat. Educ. Knowl. – volume-title: Standard methods for the examination of water and wastewater year: 1985 ident: e_1_2_7_21_1 – ident: e_1_2_7_37_1 doi: 10.1016/S0016-7037(03)00087-5 – ident: e_1_2_7_53_1 doi: 10.1021/es010271p – ident: e_1_2_7_17_1 doi: 10.1002/jpln.19921550313 – ident: e_1_2_7_18_1 doi: 10.1126/science.959835 – ident: e_1_2_7_41_1 doi: 10.1021/es504643f – ident: e_1_2_7_48_1 doi: 10.2134/jeq2012.0322 – ident: e_1_2_7_3_1 doi: 10.1016/j.chroma.2011.04.063 – ident: e_1_2_7_19_1 doi: 10.1016/S0165-9936(03)01103-8 – ident: e_1_2_7_39_1 doi: 10.2134/jeq1995.00472425002400060010x – ident: e_1_2_7_43_1 doi: 10.1039/c2ja10387g – ident: e_1_2_7_50_1 doi: 10.1016/j.apgeochem.2011.03.114 – ident: e_1_2_7_34_1 doi: 10.1127/archiv-hydrobiol/113/1988/405 – ident: e_1_2_7_35_1 doi: 10.1016/S0378-1127(02)00306-7 – volume: 40 start-page: 3185 year: 2006 ident: e_1_2_7_12_1 article-title: Variability of the colloidal molybdate reactive phosphorous concentrations in freshwaters publication-title: Water Res. doi: 10.1016/j.watres.2006.07.010 – volume: 399 start-page: 35 year: 2012 ident: e_1_2_7_61_1 article-title: “Lost in filtration”: The separation of soil colloids from larger particles publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2012.02.021 – ident: e_1_2_7_11_1 doi: 10.1007/s12575-009-9008-x – ident: e_1_2_7_30_1 doi: 10.1016/j.scitotenv.2011.11.061 – ident: e_1_2_7_58_1 doi: 10.1016/j.aca.2004.11.067 – volume-title: Geochemical processes, weathering and groundwater recharge in catchments year: 1997 ident: e_1_2_7_46_1 – volume: 13 issue: 7 year: 2014 ident: e_1_2_7_20_1 article-title: Distribution of phosphorus‐containing fine colloids and nanoparticles in stream water of a forest catchment publication-title: Vadose Zone J. doi: 10.2136/vzj2014.01.0005 – ident: e_1_2_7_60_1 doi: 10.1016/j.chemosphere.2013.06.059 – ident: e_1_2_7_13_1 doi: 10.4319/lo.1982.27.3.0564 – ident: e_1_2_7_14_1 doi: 10.1897/08-178.1 – volume-title: Sorption processes and pollution: Conventional and non‐conventional sorbents for pollutant removal from wastewaters year: 2010 ident: e_1_2_7_7_1 – ident: e_1_2_7_29_1 doi: 10.1021/ac00019a011 – ident: e_1_2_7_42_1 doi: 10.1016/j.watres.2013.02.030 – ident: e_1_2_7_16_1 doi: 10.1002/jpln.201400590 – ident: e_1_2_7_32_1 doi: 10.1073/pnas.1508945112 – ident: e_1_2_7_15_1 doi: 10.1080/00103629209368612 – ident: e_1_2_7_47_1 doi: 10.1016/0925-8574(95)00024-0 – volume-title: Encyclopedia Britannica year: 2014 ident: e_1_2_7_22_1 – ident: e_1_2_7_10_1 doi: 10.1021/es60116a001 – ident: e_1_2_7_59_1 doi: 10.4319/lo.1997.42.8.1714 – ident: e_1_2_7_38_1 doi: 10.4319/lo.1995.40.1.0119 – ident: e_1_2_7_27_1 doi: 10.4319/lo.2001.46.2.0331 – ident: e_1_2_7_4_1 doi: 10.1111/j.1752-1688.2004.tb01586.x – ident: e_1_2_7_44_1 doi: 10.2134/jeq2005.0402 – ident: e_1_2_7_6_1 – ident: e_1_2_7_25_1 doi: 10.2113/gselements.4.6.401 – ident: e_1_2_7_40_1 doi: 10.1126/science.1142525 – ident: e_1_2_7_9_1 doi: 10.1080/10643389.2013.790752 – ident: e_1_2_7_52_1 doi: 10.1126/science.228.4706.1424 – ident: e_1_2_7_8_1 doi: 10.1016/j.gca.2004.04.007 – ident: e_1_2_7_2_1 doi: 10.1016/j.gca.2006.04.021 – ident: e_1_2_7_45_1 doi: 10.1016/S0065-2113(10)07002-1 |
SSID | ssj0019442 |
Score | 2.3948727 |
Snippet | Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about... Core Ideas There are three distinct fractions of natural nanoparticles and colloids. These unique fractions have different preferential P binding. The... CORE IDEAS: There are three distinct fractions of natural nanoparticles and colloids. These unique fractions have different preferential P binding. The... |
SourceID | proquest crossref wiley geoscienceworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | adsorption Aluminum Baden-Wurttemberg Germany Bavaria Germany Binding carbon Central Europe Clay Clay minerals Cluster analysis colloidal materials Colloids Composition Conventwald decline Ecosystems Europe Forests Fractionation geochemical cycle Geochemistry Germany Headwaters ICP mass spectra Inductively coupled plasma mass spectrometry Iron Leirelva Norway Manganese mass spectra Mass spectrometry Mass spectroscopy metals Mineral nutrients Minerals Mitterfels monitoring Nanoparticles North Rhine-Westphalia Germany Norway Nutrient concentrations Nutrient cycles Nutrients organic carbon parent materials Phosphorus Rivers Scandinavia sheet silicates silicates silicon Sor-Trondelag Norway spectra statistical analysis stream transport Streams surface water TERENO Thuringia Germany transport ultraviolet spectra vadose zone vegetation Vessertal water Watersheds Western Europe Wustebach |
Title | Phosphorus binding to nanoparticles and colloids in forest stream waters |
URI | https://pubs.geoscienceworld.org/vzj/article/16/3/1/525709 https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fvzj2016.07.0064 https://www.proquest.com/docview/1983936767 https://www.proquest.com/docview/1881748224 https://www.proquest.com/docview/2718351921 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4XOCAgIJYCshIHHpJWSd-5QgItEICcYCCeon8CmxVErTZ7aGH_nZmnOwWkBASh-QQj63Eznhm7PH3EXLQ1zbXMsjEgTVOuAo8sVL4BHFQhFA-lD5mW1zKwQ0_vxPTbEI8C9PiQ8wW3FAz4nyNCm5sZCFJWxaSP39_gfFqoTfBrs6TRTxgiyQGKb-abSTkPPLngF7nCQPr2qL7YBOHbxp4ZZhW7kOHJRkicukr__OlFxvN0NkqWen8R3rUDvgamQvVOlk-uh91GBrhCxlcPdTN00M9mjT0eBhPrdBxTWEehQC5y4OjpvIUFw3qoW_osKJI0dmMKW5Sm0d6axB0c4Ncn51enwySjjAhMUJIngSmnfFKllw47ZhT3rjMaHBJSpNzy2zJSqN83zqGZKGCGa-9crnIwAvK-9kmWajqKmwRmnrmrMx8yITlvnQG_EgIloUptXK-5D3yfdpZhevAxJHT4ncBQQX2btH1btHH_W0JFb7NKjy1OBrvix686f2i06umADkQylIlZY_sTIfkfznLweGLIHQ9sj8rBo3BbRBThXoCMlpDGIbZs-_LpGCykbowZT2i4nB_9NbFj5_nKV4Rsg-fbH-65leyhB_aprrtkIXxaBJ2wfcZ2734d8P94t_pM_1O--4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61cGh7QKUPsS1QV-LAJe068StHQEVbShGHpUW9RI7twCKaoM1uD_31zDhheUioUg-5xGMrsT2eb-zxNwBbQ1PmRgWVOLTGidBBJKWSPiEeFCm1D5WP0RZHanQiDk7l6Z27MB0_xGLDjTQjrtek4LQhHWOXuzQkf_5eoPXquDfRsD6FZYHonGZ2Ko4XJwm5iAl0ULHzhKN57eh9qInPDxq4Z5lWzkJPJhkidek9AHoXxkY7tP8SVnoAyXa6EV-FJ6F-BS92zqY9iUZ4DaPj86a9Om-m85btTuK1FTZrGC6k6CH3gXDM1p7RrkEz8S2b1IxydLYzRqfU9jf7aYl18w2M97-M90ZJnzEhsVIqkQRunPVaVUI647jT3rrMGsQklc1FycuKV1b7Yek4ZQuV3HrjtctlhjAoH2ZvYalu6rAGLPXclSrzIZOl8JWzCCTRW5a2Mtr5Sgzg001nFa5nE6ekFpcFehXUu0Xfu8WQDrgVVtheVLjqiDQeF9160PtFr1htgXIolKVaqQGs3wzJbTnPEfFFFroBfFwUo8rQOYitQzNHGWPQD6Pw2cdlUrTZlLsw5QPQcbj_9dXFj18HKT2Rs4_evPvvmh_g2Wj8_bA4_Hr07T08p5_u4t7WYWk2nYcNBEKzcjPO9GvDVf4y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglRAcqvISCy0YqQcugXXiV47bwmopqOqhW1AvkeNHuwiS1WaXA7-eGce70EoVEodckrGV2BnPN57xN4QcDHVdaullZsEaZ1x5ntVSuAx5UIRQzgcXsy1O5GTKj7-KdTYhnoXp-SE2G26oGXG9RgWfuxBTl_sqJD9_fQPj1VNvgl29S7aRKw_8r-3R-fRiugkllDxW0AHNLjMG9rXn98FO3t3o4ppp2rn0iU3SR-7Sawj0bxwbDdF4l-wkBElH_ZQ_JHd884g8GF0uEouGf0wmp1dtN79qF6uOHs7iuRW6bCmspOAip0w4ahpHcdugnbmOzhqKRTq7JcUwtflBvxik3XxCzsYfzo4mWSqZkBkhJM8809Y4JQMXVltmlTO2MBpASTAlr1kdWDDKDWvLsFyoYMZpp2wpCsBB5bB4SraatvHPCM0ds7UsnC9EzV2wBpAkuMvCBK2sC3xA3q4Hq7KJThyrWnyvwK3A0a3S6FZDjHBLaPBm02DeM2ncLnpwY_SrpFldBXIgVORKygHZW0_Jn-esBMgXaegG5PXmMegMBkJM49sVyGgNjhjmz94uk4PRxuKFORsQFaf7X29dnV8c53hF0j688_y_W74i907fj6vPH08-vSD38Zv7vLc9srVcrPw-AKFl_TL96r8B-ZD_IQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorus+Binding+to+Nanoparticles+and+Colloids+in+Forest+Stream+Waters&rft.jtitle=Vadose+zone+journal&rft.au=Gottselig+Nina&rft.au=Nischwitz+Volker&rft.au=Meyn%2C+Thomas&rft.au=Amelung+Wulf&rft.date=2017-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1539-1663&rft.volume=16&rft.issue=3&rft.spage=vzj2016.07.0064&rft.epage=vzj2016.07.0064&rft_id=info:doi/10.2136%2Fvzj2016.07.0064&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1663&client=summon |