Phosphorus binding to nanoparticles and colloids in forest stream waters

Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about natural colloids (1-1000 nm) and especially natural nanoparticles (NNP, 1-100 nm) as nutrient carriers in forested headwater streams. We hypot...

Full description

Saved in:
Bibliographic Details
Published inVadose zone journal Vol. 16; no. 3; pp. 1 - 12
Main Authors Gottselig, Nina, Nischwitz, Volker, Meyn, Thomas, Amelung, Wulf, Bol, Roland, Halle, Cynthia, Vereecken, Harry, Siemens, Jan, Klumpp, Erwin
Format Journal Article
LanguageEnglish
Published Madison Soil Science Society of America 01.03.2017
The Soil Science Society of America, Inc
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1539-1663
1539-1663
DOI10.2136/vzj2016.07.0064

Cover

Loading…
Abstract Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about natural colloids (1-1000 nm) and especially natural nanoparticles (NNP, 1-100 nm) as nutrient carriers in forested headwater streams. We hypothesize that the majority of P is bound to NNP in forest streams but that their size and composition varies for different forested headwater systems. Four forested sites in Germany and one in Norway, which differ in total P content, were sampled for stream water and analyzed for colloids. The samples were fractionated using field flow fractionation coupled to inductively coupled plasma-mass spectrometry and an organic C detector. The results showed that NNP and colloids from all sites could be separated into three distinct fractions (approximately 1-20 nm, >20-60 nm, and >60 nm). The elemental concentrations of P, organic C, Al, Si, Fe, and Mn in the fractions differed among the five sites. However, cluster analysis showed that each fraction had unique elemental signatures with different preferential P binding partners. Phosphorus was preferentially associated with Fe in the smallest size fraction, with an increasing contribution of organic-C-associated P as the fraction size increased. The largest fraction was dominated by clay minerals. Also, the data indicated that the relative contribution of the NNP and colloidal fractions for ecosystem nutrient supply rises as total P concentrations decline. The study highlighted the still underestimated importance of NNP for matter transport in forest streams and thus P cycling.
AbstractList Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about natural colloids (1–1000 nm) and especially natural nanoparticles (NNP, 1–100 nm) as nutrient carriers in forested headwater streams. We hypothesize that the majority of P is bound to NNP in forest streams but that their size and composition varies for different forested headwater systems. Four forested sites in Germany and one in Norway, which differ in total P content, were sampled for stream water and analyzed for colloids. The samples were fractionated using field flow fractionation coupled to inductively coupled plasma–mass spectrometry and an organic C detector. The results showed that NNP and colloids from all sites could be separated into three distinct fractions (approximately 1–20 nm, >20–60 nm, and >60 nm). The elemental concentrations of P, organic C, Al, Si, Fe, and Mn in the fractions differed among the five sites. However, cluster analysis showed that each fraction had unique elemental signatures with different preferential P binding partners. Phosphorus was preferentially associated with Fe in the smallest size fraction, with an increasing contribution of organic-C-associated P as the fraction size increased. The largest fraction was dominated by clay minerals. Also, the data indicated that the relative contribution of the NNP and colloidal fractions for ecosystem nutrient supply rises as total P concentrations decline. The study highlighted the still underestimated importance of NNP for matter transport in forest streams and thus P cycling.
Core Ideas There are three distinct fractions of natural nanoparticles and colloids. These unique fractions have different preferential P binding. The fractions include Fe–P, organic C–P, and clay–P. Field flow fractionation coupled online to OC detector for size resolved OC detection. Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about natural colloids (1–1000 nm) and especially natural nanoparticles (NNP, 1–100 nm) as nutrient carriers in forested headwater streams. We hypothesize that the majority of P is bound to NNP in forest streams but that their size and composition varies for different forested headwater systems. Four forested sites in Germany and one in Norway, which differ in total P content, were sampled for stream water and analyzed for colloids. The samples were fractionated using field flow fractionation coupled to inductively coupled plasma–mass spectrometry and an organic C detector. The results showed that NNP and colloids from all sites could be separated into three distinct fractions (approximately 1–20 nm, >20–60 nm, and >60 nm). The elemental concentrations of P, organic C, Al, Si, Fe, and Mn in the fractions differed among the five sites. However, cluster analysis showed that each fraction had unique elemental signatures with different preferential P binding partners. Phosphorus was preferentially associated with Fe in the smallest size fraction, with an increasing contribution of organic‐C‐associated P as the fraction size increased. The largest fraction was dominated by clay minerals. Also, the data indicated that the relative contribution of the NNP and colloidal fractions for ecosystem nutrient supply rises as total P concentrations decline. The study highlighted the still underestimated importance of NNP for matter transport in forest streams and thus P cycling.
CORE IDEAS: There are three distinct fractions of natural nanoparticles and colloids. These unique fractions have different preferential P binding. The fractions include Fe–P, organic C–P, and clay–P. Field flow fractionation coupled online to OC detector for size resolved OC detection. Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about natural colloids (1–1000 nm) and especially natural nanoparticles (NNP, 1–100 nm) as nutrient carriers in forested headwater streams. We hypothesize that the majority of P is bound to NNP in forest streams but that their size and composition varies for different forested headwater systems. Four forested sites in Germany and one in Norway, which differ in total P content, were sampled for stream water and analyzed for colloids. The samples were fractionated using field flow fractionation coupled to inductively coupled plasma–mass spectrometry and an organic C detector. The results showed that NNP and colloids from all sites could be separated into three distinct fractions (approximately 1–20 nm, >20–60 nm, and >60 nm). The elemental concentrations of P, organic C, Al, Si, Fe, and Mn in the fractions differed among the five sites. However, cluster analysis showed that each fraction had unique elemental signatures with different preferential P binding partners. Phosphorus was preferentially associated with Fe in the smallest size fraction, with an increasing contribution of organic‐C‐associated P as the fraction size increased. The largest fraction was dominated by clay minerals. Also, the data indicated that the relative contribution of the NNP and colloidal fractions for ecosystem nutrient supply rises as total P concentrations decline. The study highlighted the still underestimated importance of NNP for matter transport in forest streams and thus P cycling.
Author Klumpp, Erwin
Halle, Cynthia
Meyn, Thomas
Gottselig, Nina
Siemens, Jan
Nischwitz, Volker
Vereecken, Harry
Amelung, Wulf
Bol, Roland
Author_xml – sequence: 1
  fullname: Gottselig, Nina
– sequence: 2
  fullname: Nischwitz, Volker
– sequence: 3
  fullname: Meyn, Thomas
– sequence: 4
  fullname: Amelung, Wulf
– sequence: 5
  fullname: Bol, Roland
– sequence: 6
  fullname: Halle, Cynthia
– sequence: 7
  fullname: Vereecken, Harry
– sequence: 8
  fullname: Siemens, Jan
– sequence: 9
  fullname: Klumpp, Erwin
BookMark eNqFks1rVDEUxYNUsK2u3QbcCDLT3OTlayNIUasU2kXpwk3IJHlthkwyJm861L_eDDOgdNEuwg3hdw735twTdJRLDgi9BzKnwMTZw58lJSDmRM4JEcMrdAyc6RkIwY7-u79BJ60tCQE9DPQYXVzfl7a-L3XT8CJmH_MdngrONpe1rVN0KTRss8eupFSibzhmPJYa2oTbVINd4a2dQm1v0evRphbeHeopuvn29eb8YnZ59f3H-ZfLmeVcDLMAylkvxThwpxw46a1jVinNRquHBSxGGK30ZOGAa0I4WK-8dJozLqgm7BR93Nuua_m96V2YVWwupGRzKJtmqATFOOj-JS-hoBTIQVE6dPTDE3RZNjX3OQxoxTQTUshO8T3lammthtG4ONkpljxVG5MBYnZJmEMShkizS6Lrzp7o1jWubH18RvF5r9jGFB5fws3tr590d_obkQeDT3uDu1CaiyG7sC01-X9zdbirGZV9J_4CqqSuag
CitedBy_id crossref_primary_10_3390_min12070812
crossref_primary_10_3389_ffgc_2020_577364
crossref_primary_10_2134_jeq2018_05_0178
crossref_primary_10_1016_j_watres_2020_116585
crossref_primary_10_1016_j_scitotenv_2021_145358
crossref_primary_10_1016_j_watres_2023_120568
crossref_primary_10_1007_s42729_021_00534_9
crossref_primary_10_1016_j_scitotenv_2023_161439
crossref_primary_10_1016_j_colsurfa_2020_125505
crossref_primary_10_1016_j_chemosphere_2023_139906
crossref_primary_10_1021_acsearthspacechem_9b00320
crossref_primary_10_1007_s42729_024_02152_7
crossref_primary_10_1016_j_geoderma_2022_116282
crossref_primary_10_1007_s11356_022_24948_9
crossref_primary_10_1007_s42729_023_01458_2
crossref_primary_10_1002_2017GB005657
crossref_primary_10_1016_j_chemosphere_2020_127624
crossref_primary_10_1016_j_gloplacha_2019_103090
crossref_primary_10_1080_10643389_2024_2317685
crossref_primary_10_1007_s11356_021_16534_2
crossref_primary_10_3389_fmars_2018_00276
crossref_primary_10_1016_j_geoderma_2022_115716
crossref_primary_10_1038_s41598_018_36103_x
crossref_primary_10_1016_j_geoderma_2020_114421
crossref_primary_10_1021_acs_est_3c10022
crossref_primary_10_1016_j_scitotenv_2020_142112
crossref_primary_10_1007_s11270_020_4443_z
crossref_primary_10_1186_s12302_020_0299_5
crossref_primary_10_1080_10643389_2022_2156225
crossref_primary_10_1016_j_envres_2023_115222
crossref_primary_10_1016_j_jes_2018_07_016
crossref_primary_10_1016_j_scitotenv_2018_03_265
crossref_primary_10_1007_s12517_021_08649_0
crossref_primary_10_1016_j_scitotenv_2023_168016
crossref_primary_10_1016_j_scitotenv_2022_160804
crossref_primary_10_1002_jeq2_20090
crossref_primary_10_1002_vzj2_20126
crossref_primary_10_1016_j_agee_2021_107306
crossref_primary_10_1007_s11104_017_3430_7
crossref_primary_10_1016_j_scitotenv_2018_09_127
crossref_primary_10_1002_saj2_20258
crossref_primary_10_1007_s11356_019_06762_y
crossref_primary_10_1007_s42773_025_00442_6
crossref_primary_10_1007_s11356_019_05735_5
crossref_primary_10_1016_j_watres_2021_117025
crossref_primary_10_1021_acs_est_3c05108
crossref_primary_10_1016_j_scitotenv_2019_134111
crossref_primary_10_1016_j_agee_2019_106653
crossref_primary_10_1007_s44246_023_00048_2
crossref_primary_10_1016_j_scitotenv_2019_134638
crossref_primary_10_3389_ffgc_2019_00085
crossref_primary_10_1016_j_geoderma_2018_01_015
crossref_primary_10_3390_f15020229
Cites_doi 10.1016/S0009-2541(96)00139-8
10.1016/j.watres.2010.09.023
10.1351/pac199971112161
10.1016/j.marchem.2009.11.007
10.1016/j.gca.2007.04.025
10.1021/ac048295c
10.1002/jpln.201600079
10.2134/jeq2006.0427
10.2134/jeq2015.02.0085
10.1021/ac981455y
10.1039/c1em10482a
10.1016/S0048-9697(00)00393-4
10.1021/es405330x
10.1016/S0016-7037(03)00087-5
10.1021/es010271p
10.1002/jpln.19921550313
10.1126/science.959835
10.1021/es504643f
10.2134/jeq2012.0322
10.1016/j.chroma.2011.04.063
10.1016/S0165-9936(03)01103-8
10.2134/jeq1995.00472425002400060010x
10.1039/c2ja10387g
10.1016/j.apgeochem.2011.03.114
10.1127/archiv-hydrobiol/113/1988/405
10.1016/S0378-1127(02)00306-7
10.1016/j.watres.2006.07.010
10.1016/j.colsurfa.2012.02.021
10.1007/s12575-009-9008-x
10.1016/j.scitotenv.2011.11.061
10.1016/j.aca.2004.11.067
10.2136/vzj2014.01.0005
10.1016/j.chemosphere.2013.06.059
10.4319/lo.1982.27.3.0564
10.1897/08-178.1
10.1021/ac00019a011
10.1016/j.watres.2013.02.030
10.1002/jpln.201400590
10.1073/pnas.1508945112
10.1080/00103629209368612
10.1016/0925-8574(95)00024-0
10.1021/es60116a001
10.4319/lo.1997.42.8.1714
10.4319/lo.1995.40.1.0119
10.4319/lo.2001.46.2.0331
10.1111/j.1752-1688.2004.tb01586.x
10.2134/jeq2005.0402
10.2113/gselements.4.6.401
10.1126/science.1142525
10.1080/10643389.2013.790752
10.1126/science.228.4706.1424
10.1016/j.gca.2004.04.007
10.1016/j.gca.2006.04.021
10.1016/S0065-2113(10)07002-1
ContentType Journal Article
Copyright GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Soil Science Society of America
2017 The Authors.
Copyright Soil Science Society of America Mar 2017
Copyright_xml – notice: GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Soil Science Society of America
– notice: 2017 The Authors.
– notice: Copyright Soil Science Society of America Mar 2017
DBID 24P
AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
7S9
L.6
DOI 10.2136/vzj2016.07.0064
DatabaseName Wiley Online Library Open Access
CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1539-1663
EndPage 12
ExternalDocumentID 10_2136_vzj2016_07_0064
VZJ2VZJ2016070064
2017_032766
Genre article
GeographicLocations ANE, Norway
Germany
Norway
GeographicLocations_xml – name: ANE, Norway
– name: Germany
– name: Norway
GrantInformation_xml – fundername: Projektbezogener Personenaustausch mit Norwegen
– fundername: TERENO
– fundername: DFG
– fundername: Ecosystem Nutrition: Forest Strategies for Limited Phosphorus Resources
  funderid: KL 2495/1‐1; SI 1106/8‐1
GroupedDBID .~0
0R~
123
18M
1OB
1OC
24P
2WC
6KN
AAHBH
AAHHS
AAWFE
ABJNI
ACAWQ
ACCFJ
ACGFO
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AENEX
AEQDE
AFRAH
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
C1A
CS3
DDYGU
DU5
E3Z
EBS
ECGQY
EJD
GOHGZ
GROUPED_DOAJ
GX1
H13
IAO
IGS
ITC
MV1
M~E
NHAZY
O9-
OK1
P2P
RAK
RGW
SAMSI
TR2
WIN
WOQ
WXSBR
~02
~KM
ACCMX
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
7UA
C1K
F1W
H96
L.G
7S9
L.6
ID FETCH-LOGICAL-a5564-e18cad76f45c8c1c7dac3a8893fa94b1bf1fa7d0bc1590051ad8d7c953562903
IEDL.DBID 24P
ISSN 1539-1663
IngestDate Fri Sep 05 17:27:54 EDT 2025
Fri Sep 05 10:37:10 EDT 2025
Fri Aug 22 20:19:56 EDT 2025
Fri Jul 04 03:42:01 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Wed Jan 22 16:36:42 EST 2025
Tue Oct 29 04:53:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5564-e18cad76f45c8c1c7dac3a8893fa94b1bf1fa7d0bc1590051ad8d7c953562903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fvzj2016.07.0064
PQID 1983936767
PQPubID 2046224
PageCount 12
ParticipantIDs proquest_miscellaneous_2718351921
proquest_miscellaneous_1881748224
proquest_journals_1983936767
crossref_citationtrail_10_2136_vzj2016_07_0064
crossref_primary_10_2136_vzj2016_07_0064
wiley_primary_10_2136_vzj2016_07_0064_VZJ2VZJ2016070064
geoscienceworld_journals_2017_032766
PublicationCentury 2000
PublicationDate 20170300
March 2017
2017-03-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 3
  year: 2017
  text: 20170300
PublicationDecade 2010
PublicationPlace Madison
PublicationPlace_xml – name: Madison
PublicationTitle Vadose zone journal
PublicationYear 2017
Publisher Soil Science Society of America
The Soil Science Society of America, Inc
John Wiley & Sons, Inc
Publisher_xml – name: Soil Science Society of America
– name: The Soil Science Society of America, Inc
– name: John Wiley & Sons, Inc
References 2006; 70
2013; 4
2010; 107
2006; 35
1997; 42
2004; 68
2005; 535
2011; 13
2007; 71
2008; 4
2001; 46
2007; 36
2009; 11
1982; 27
2015; 49
2010; 118
1992; 155
1995; 24
2015; 178
2015; 44
1985
2014; 13
2012; 27
2011; 26
2005; 77
1997; 136
2002; 36
2004; 40
2013; 47
2010
2013; 42
1997
2014; 48
2013; 93
1985; 228
1976; 193
2014; 44
1995; 5
2009; 28
1976; 10
1995; 40
2007; 316
2006; 40
2012; 399
2009; 71
1991; 63
2015; 112
2002; 169
2000; 251–252
2016; 179
1988; 113
2011; 1218
2011; 45
2014
1999; 71
2012; 434
1992; 23
2003; 22
2003; 67
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
Zirkler D. (e_1_2_7_61_1) 2012; 399
e_1_2_7_11_1
Grim R. (e_1_2_7_22_1) 2014
e_1_2_7_45_1
Spivakov B.Y. (e_1_2_7_55_1) 2009; 71
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Filella M. (e_1_2_7_12_1) 2006; 40
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Hartland A. (e_1_2_7_23_1) 2013; 4
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
Gottselig N. (e_1_2_7_20_1) 2014; 13
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Crini G. (e_1_2_7_7_1) 2010
Ranville J.F. (e_1_2_7_46_1) 1997
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Greenberg A. (e_1_2_7_21_1) 1985
References_xml – year: 1985
– volume: 24
  start-page: 1117
  year: 1995
  end-page: 1124
  article-title: Assessing colloidal forms of phosphorus and iron in the Tualatin‐River basin
  publication-title: J. Environ. Qual.
– volume: 11
  start-page: 32
  year: 2009
  end-page: 51
  article-title: Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy
  publication-title: Biol. Proced. Online
– volume: 44
  start-page: 1772
  year: 2015
  end-page: 1781
  article-title: Phosphorus containing water dispersible nanoparticles in arable soil
  publication-title: J. Environ. Qual.
– volume: 45
  start-page: 879
  year: 2011
  end-page: 885
  article-title: Characterisation of aquatic humic and non‐humic matter with size‐exclusion chromatography: Organic carbon detection–organic nitrogen detection (LC‐OCD‐OND)
  publication-title: Water Res.
– volume: 169
  start-page: 159
  year: 2002
  end-page: 175
  article-title: Increasing carbon stocks in the forest soils of Western Europe
  publication-title: For. Ecol. Manage.
– volume: 36
  start-page: 2932
  year: 2002
  end-page: 2938
  article-title: Influence of natural organic matter on the adsorption of metal ions onto clay minerals
  publication-title: Environ. Sci. Technol.
– volume: 70
  start-page: 3261
  year: 2006
  end-page: 3274
  article-title: Colloidal rare earth elements in a boreal river: Changing sources and distributions during the spring flood
  publication-title: Geochim. Cosmochim. Acta
– volume: 44
  start-page: 2172
  year: 2014
  end-page: 2202
  article-title: A meta‐analysis of organic and inorganic phosphorus in organic fertilizers, soils, and water: Implications for water quality
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 71
  start-page: 3292
  year: 2007
  end-page: 3301
  article-title: Changes in size distribution of fresh water nanoscale colloidal matter and associated elements on mixing with seawater
  publication-title: Geochim. Cosmochim. Acta
– volume: 107
  start-page: 33
  year: 2010
  end-page: 91
  article-title: Terrestrial nanoparticles and their controls on soil‐/geo‐processes and reactions
  publication-title: Adv. Agron.
– year: 2014
– volume: 193
  start-page: 1244
  year: 1976
  end-page: 1245
  article-title: Flow‐field‐flow fractionation: A versatile new separation method
  publication-title: Science
– volume: 48
  start-page: 4307
  year: 2014
  end-page: 4316
  article-title: Characterization of colloidal Fe from soils using field‐flow fractionation and Fe K‐edge X‐ray absorption spectroscopy
  publication-title: Environ. Sci. Technol.
– volume: 71
  start-page: 3497
  year: 1999
  end-page: 3502
  article-title: Determination of continuous size and trace element distribution of colloidal material in natural water by on‐line coupling of flow field‐flow fractionation with ICPMS
  publication-title: Anal. Chem.
– volume: 118
  start-page: 119
  year: 2010
  end-page: 128
  article-title: Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field‐flow fractionation
  publication-title: Mar. Chem.
– volume: 40
  start-page: 1277
  year: 2004
  end-page: 1291
  article-title: Nitrogen and phosphorus concentrations in forest streams of the United States
  publication-title: J. Am. Water Resour. Assoc.
– volume: 63
  start-page: 2122
  year: 1991
  end-page: 2130
  article-title: Flow injection analysis of organic and inorganic carbon in the low‐ppb range
  publication-title: Anal. Chem.
– volume: 113
  start-page: 405
  year: 1988
  end-page: 424
  article-title: The ultrastructure and physical characteristics of a distinctive colloidal iron particulate isolated from a small eutrophic lake
  publication-title: Arch. Hydrobiol.
– volume: 36
  start-page: 1187
  year: 2007
  end-page: 1193
  article-title: Hydrophobicity of soil colloids and heavy metal mobilization: Effects of drying
  publication-title: J. Environ. Qual.
– year: 1997
– volume: 71
  start-page: 2161
  year: 2009
  end-page: 2176
  article-title: Phosphorus speciation in water and sediments
  publication-title: Pure Appl. Chem.
– volume: 27
  start-page: 1084
  year: 2012
  end-page: 1092
  article-title: Improved sample preparation and quality control for the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow fractionation on‐line with inductively coupled plasma mass spectrometry
  publication-title: J. Anal. At. Spectrom.
– volume: 13
  issue: 7
  year: 2014
  article-title: Distribution of phosphorus‐containing fine colloids and nanoparticles in stream water of a forest catchment
  publication-title: Vadose Zone J.
– volume: 67
  start-page: 3791
  year: 2003
  end-page: 3802
  article-title: Competition between iron‐ and carbon‐based colloidal carriers for trace metals in a freshwater assessed using flow field‐flow fractionation coupled to ICPMS
  publication-title: Geochim. Cosmochim. Acta
– volume: 112
  start-page: E5253
  year: 2015
  end-page: E5260
  article-title: Long‐term litter decomposition controlled by manganese redox cycling
  publication-title: Proc. Natl. Acad. Sci
– volume: 40
  start-page: 3185
  year: 2006
  end-page: 3192
  article-title: Variability of the colloidal molybdate reactive phosphorous concentrations in freshwaters
  publication-title: Water Res.
– volume: 10
  start-page: 485
  year: 1976
  end-page: 490
  article-title: Phosphate adsorption reactions with clay minerals
  publication-title: Environ. Sci. Technol.
– volume: 42
  start-page: 1714
  year: 1997
  end-page: 1724
  article-title: Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters
  publication-title: Limnol. Oceanogr.
– volume: 316
  start-page: 1726
  year: 2007
  end-page: 1729
  article-title: The structure of ferrihydrite, a nanocrystalline material
  publication-title: Science
– volume: 4
  start-page: 401
  year: 2008
  end-page: 406
  article-title: Iron oxides as geochemical nanovectors for metal transport in soil–river systems
  publication-title: Elements
– volume: 40
  start-page: 119
  year: 1995
  end-page: 131
  article-title: Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy)
  publication-title: Limnol. Oceanogr.
– volume: 155
  start-page: 233
  year: 1992
  end-page: 236
  article-title: Adsorption of orthophosphate to humic‐Fe‐complexes and to amorphous Fe‐oxide
  publication-title: Z. Pflanzenernaehr. Bodenkd.
– volume: 228
  start-page: 1424
  year: 1985
  end-page: 1427
  article-title: Mechanisms controlling phosphorus retention capacity in fresh‐water wetlands
  publication-title: Science
– volume: 23
  start-page: 601
  year: 1992
  end-page: 612
  article-title: Orthophosphate and organic phosphate in the soil solution of four sandy soils in relation to pH‐evidence for humic–Fe–(Al–) phosphate complexes
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 1218
  start-page: 4078
  year: 2011
  end-page: 4103
  article-title: Flow field‐flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: A critical review
  publication-title: J. Chromatogr. A
– volume: 27
  start-page: 564
  year: 1982
  end-page: 569
  article-title: UV‐sensitive complex phosphorus: Association with dissolved humic material and iron in a bog lake
  publication-title: Limnol. Oceanogr.
– volume: 35
  start-page: 1101
  year: 2006
  end-page: 1109
  article-title: Surface and subsurface phosphorus losses from fertilized pasture systems in Ohio
  publication-title: J. Environ. Qual.
– volume: 13
  start-page: 2844
  year: 2011
  end-page: 2850
  article-title: Size distribution and composition of phosphorus in the East Tiao River, China: The significant role of colloids
  publication-title: J. Environ. Monit.
– volume: 136
  start-page: 71
  year: 1997
  end-page: 97
  article-title: The influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (USA)
  publication-title: Chem. Geol.
– volume: 68
  start-page: 4059
  year: 2004
  end-page: 4075
  article-title: Association of calcium with colloidal particles and speciation of calcium in the Kalix and Amazon rivers
  publication-title: Geochim. Cosmochim. Acta
– volume: 28
  start-page: 458
  year: 2009
  end-page: 464
  article-title: Influence of soil pH on the sorption of ionizable chemicals: Modelling advances
  publication-title: Environ. Toxicol. Chem.
– volume: 93
  start-page: 1879
  year: 2013
  end-page: 1886
  article-title: Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings
  publication-title: Chemosphere
– volume: 399
  start-page: 35
  year: 2012
  end-page: 40
  article-title: “Lost in filtration”: The separation of soil colloids from larger particles
  publication-title: Colloids Surf. A
– year: 2010
– volume: 5
  start-page: 183
  year: 1995
  end-page: 207
  article-title: Phosphorus dynamics in selected wetlands and streams of the Lake Okeechobee basin
  publication-title: Ecol. Eng.
– volume: 4
  start-page: 7
  issue: 8
  year: 2013
  article-title: The environmental significance of natural nanoparticles
  publication-title: Nat. Educ. Knowl.
– volume: 251–252
  start-page: 523
  year: 2000
  end-page: 538
  article-title: Characterising phosphorus loss in surface and subsurface hydrological pathways
  publication-title: Sci. Total Environ.
– volume: 26
  start-page: S241
  year: 2011
  end-page: S244
  article-title: The contribution of organic and mineral colloidal nanoparticles to element transport in a podzol soil
  publication-title: Appl. Geochem.
– volume: 178
  start-page: 351
  year: 2015
  end-page: 364
  article-title: The acquisition of phosphate by higher plants: Effect of carboxylate release by the roots: A critical review
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 77
  start-page: 4194
  year: 2005
  end-page: 4200
  article-title: Characterizing dissolved organic carbon using asymmetrical flow field‐flow fractionation with on‐line UV and DOC detection
  publication-title: Anal. Chem.
– volume: 46
  start-page: 331
  year: 2001
  end-page: 344
  article-title: Role of colloids and fine particles in the transport of metals in rivers draining carbonate and silicate terrains
  publication-title: Limnol. Oceanogr.
– volume: 179
  start-page: 425
  year: 2016
  end-page: 438
  article-title: Dissolved and colloidal phosphorus fluxes in forest ecosystems: An almost blind spot in ecosystem research
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 42
  start-page: 464
  year: 2013
  end-page: 473
  article-title: Characterization of colloidal phosphorus species in drainage waters from a clay soil using asymmetric flow field‐flow fractionation
  publication-title: J. Environ. Qual.
– volume: 434
  start-page: 171
  year: 2012
  end-page: 185
  article-title: Role of riverine colloids in macronutrient and metal partitioning and transport, along an upland–lowland land‐use continuum, under low‐flow conditions
  publication-title: Sci. Total Environ.
– volume: 535
  start-page: 109
  year: 2005
  end-page: 121
  article-title: High resolution ICPMS as an on‐line detector for flow field‐flow fractionation: Multi‐element determination of colloidal size distributions in a natural water sample
  publication-title: Anal. Chim. Acta
– volume: 47
  start-page: 2757
  year: 2013
  end-page: 2769
  article-title: Using FlowFFF and HPSEC to determine trace metal colloid associations in wetland runoff
  publication-title: Water Res.
– volume: 22
  start-page: 615
  year: 2003
  end-page: 633
  article-title: Environmental applications of flow field‐flow fractionation (FIFFF). TrAC
  publication-title: Trends Anal. Chem.
– volume: 49
  start-page: 3427
  year: 2015
  end-page: 3434
  article-title: Natural colloidal P and its contribution to plant P uptake
  publication-title: Environ. Sci. Technol.
– ident: e_1_2_7_54_1
  doi: 10.1016/S0009-2541(96)00139-8
– ident: e_1_2_7_28_1
  doi: 10.1016/j.watres.2010.09.023
– volume: 71
  start-page: 2161
  year: 2009
  ident: e_1_2_7_55_1
  article-title: Phosphorus speciation in water and sediments
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199971112161
– ident: e_1_2_7_56_1
  doi: 10.1016/j.marchem.2009.11.007
– ident: e_1_2_7_57_1
  doi: 10.1016/j.gca.2007.04.025
– ident: e_1_2_7_51_1
  doi: 10.1021/ac048295c
– ident: e_1_2_7_5_1
  doi: 10.1002/jpln.201600079
– ident: e_1_2_7_33_1
  doi: 10.2134/jeq2006.0427
– ident: e_1_2_7_31_1
  doi: 10.2134/jeq2015.02.0085
– ident: e_1_2_7_24_1
  doi: 10.1021/ac981455y
– ident: e_1_2_7_36_1
  doi: 10.1039/c1em10482a
– ident: e_1_2_7_26_1
  doi: 10.1016/S0048-9697(00)00393-4
– ident: e_1_2_7_49_1
  doi: 10.1021/es405330x
– volume: 4
  start-page: 7
  issue: 8
  year: 2013
  ident: e_1_2_7_23_1
  article-title: The environmental significance of natural nanoparticles
  publication-title: Nat. Educ. Knowl.
– volume-title: Standard methods for the examination of water and wastewater
  year: 1985
  ident: e_1_2_7_21_1
– ident: e_1_2_7_37_1
  doi: 10.1016/S0016-7037(03)00087-5
– ident: e_1_2_7_53_1
  doi: 10.1021/es010271p
– ident: e_1_2_7_17_1
  doi: 10.1002/jpln.19921550313
– ident: e_1_2_7_18_1
  doi: 10.1126/science.959835
– ident: e_1_2_7_41_1
  doi: 10.1021/es504643f
– ident: e_1_2_7_48_1
  doi: 10.2134/jeq2012.0322
– ident: e_1_2_7_3_1
  doi: 10.1016/j.chroma.2011.04.063
– ident: e_1_2_7_19_1
  doi: 10.1016/S0165-9936(03)01103-8
– ident: e_1_2_7_39_1
  doi: 10.2134/jeq1995.00472425002400060010x
– ident: e_1_2_7_43_1
  doi: 10.1039/c2ja10387g
– ident: e_1_2_7_50_1
  doi: 10.1016/j.apgeochem.2011.03.114
– ident: e_1_2_7_34_1
  doi: 10.1127/archiv-hydrobiol/113/1988/405
– ident: e_1_2_7_35_1
  doi: 10.1016/S0378-1127(02)00306-7
– volume: 40
  start-page: 3185
  year: 2006
  ident: e_1_2_7_12_1
  article-title: Variability of the colloidal molybdate reactive phosphorous concentrations in freshwaters
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.07.010
– volume: 399
  start-page: 35
  year: 2012
  ident: e_1_2_7_61_1
  article-title: “Lost in filtration”: The separation of soil colloids from larger particles
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2012.02.021
– ident: e_1_2_7_11_1
  doi: 10.1007/s12575-009-9008-x
– ident: e_1_2_7_30_1
  doi: 10.1016/j.scitotenv.2011.11.061
– ident: e_1_2_7_58_1
  doi: 10.1016/j.aca.2004.11.067
– volume-title: Geochemical processes, weathering and groundwater recharge in catchments
  year: 1997
  ident: e_1_2_7_46_1
– volume: 13
  issue: 7
  year: 2014
  ident: e_1_2_7_20_1
  article-title: Distribution of phosphorus‐containing fine colloids and nanoparticles in stream water of a forest catchment
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2014.01.0005
– ident: e_1_2_7_60_1
  doi: 10.1016/j.chemosphere.2013.06.059
– ident: e_1_2_7_13_1
  doi: 10.4319/lo.1982.27.3.0564
– ident: e_1_2_7_14_1
  doi: 10.1897/08-178.1
– volume-title: Sorption processes and pollution: Conventional and non‐conventional sorbents for pollutant removal from wastewaters
  year: 2010
  ident: e_1_2_7_7_1
– ident: e_1_2_7_29_1
  doi: 10.1021/ac00019a011
– ident: e_1_2_7_42_1
  doi: 10.1016/j.watres.2013.02.030
– ident: e_1_2_7_16_1
  doi: 10.1002/jpln.201400590
– ident: e_1_2_7_32_1
  doi: 10.1073/pnas.1508945112
– ident: e_1_2_7_15_1
  doi: 10.1080/00103629209368612
– ident: e_1_2_7_47_1
  doi: 10.1016/0925-8574(95)00024-0
– volume-title: Encyclopedia Britannica
  year: 2014
  ident: e_1_2_7_22_1
– ident: e_1_2_7_10_1
  doi: 10.1021/es60116a001
– ident: e_1_2_7_59_1
  doi: 10.4319/lo.1997.42.8.1714
– ident: e_1_2_7_38_1
  doi: 10.4319/lo.1995.40.1.0119
– ident: e_1_2_7_27_1
  doi: 10.4319/lo.2001.46.2.0331
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1752-1688.2004.tb01586.x
– ident: e_1_2_7_44_1
  doi: 10.2134/jeq2005.0402
– ident: e_1_2_7_6_1
– ident: e_1_2_7_25_1
  doi: 10.2113/gselements.4.6.401
– ident: e_1_2_7_40_1
  doi: 10.1126/science.1142525
– ident: e_1_2_7_9_1
  doi: 10.1080/10643389.2013.790752
– ident: e_1_2_7_52_1
  doi: 10.1126/science.228.4706.1424
– ident: e_1_2_7_8_1
  doi: 10.1016/j.gca.2004.04.007
– ident: e_1_2_7_2_1
  doi: 10.1016/j.gca.2006.04.021
– ident: e_1_2_7_45_1
  doi: 10.1016/S0065-2113(10)07002-1
SSID ssj0019442
Score 2.3948727
Snippet Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about...
Core Ideas There are three distinct fractions of natural nanoparticles and colloids. These unique fractions have different preferential P binding. The...
CORE IDEAS: There are three distinct fractions of natural nanoparticles and colloids. These unique fractions have different preferential P binding. The...
SourceID proquest
crossref
wiley
geoscienceworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms adsorption
Aluminum
Baden-Wurttemberg Germany
Bavaria Germany
Binding
carbon
Central Europe
Clay
Clay minerals
Cluster analysis
colloidal materials
Colloids
Composition
Conventwald
decline
Ecosystems
Europe
Forests
Fractionation
geochemical cycle
Geochemistry
Germany
Headwaters
ICP mass spectra
Inductively coupled plasma mass spectrometry
Iron
Leirelva Norway
Manganese
mass spectra
Mass spectrometry
Mass spectroscopy
metals
Mineral nutrients
Minerals
Mitterfels
monitoring
Nanoparticles
North Rhine-Westphalia Germany
Norway
Nutrient concentrations
Nutrient cycles
Nutrients
organic carbon
parent materials
Phosphorus
Rivers
Scandinavia
sheet silicates
silicates
silicon
Sor-Trondelag Norway
spectra
statistical analysis
stream transport
Streams
surface water
TERENO
Thuringia Germany
transport
ultraviolet spectra
vadose zone
vegetation
Vessertal
water
Watersheds
Western Europe
Wustebach
Title Phosphorus binding to nanoparticles and colloids in forest stream waters
URI https://pubs.geoscienceworld.org/vzj/article/16/3/1/525709
https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fvzj2016.07.0064
https://www.proquest.com/docview/1983936767
https://www.proquest.com/docview/1881748224
https://www.proquest.com/docview/2718351921
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4XOCAgIJYCshIHHpJWSd-5QgItEICcYCCeon8CmxVErTZ7aGH_nZmnOwWkBASh-QQj63Eznhm7PH3EXLQ1zbXMsjEgTVOuAo8sVL4BHFQhFA-lD5mW1zKwQ0_vxPTbEI8C9PiQ8wW3FAz4nyNCm5sZCFJWxaSP39_gfFqoTfBrs6TRTxgiyQGKb-abSTkPPLngF7nCQPr2qL7YBOHbxp4ZZhW7kOHJRkicukr__OlFxvN0NkqWen8R3rUDvgamQvVOlk-uh91GBrhCxlcPdTN00M9mjT0eBhPrdBxTWEehQC5y4OjpvIUFw3qoW_osKJI0dmMKW5Sm0d6axB0c4Ncn51enwySjjAhMUJIngSmnfFKllw47ZhT3rjMaHBJSpNzy2zJSqN83zqGZKGCGa-9crnIwAvK-9kmWajqKmwRmnrmrMx8yITlvnQG_EgIloUptXK-5D3yfdpZhevAxJHT4ncBQQX2btH1btHH_W0JFb7NKjy1OBrvix686f2i06umADkQylIlZY_sTIfkfznLweGLIHQ9sj8rBo3BbRBThXoCMlpDGIbZs-_LpGCykbowZT2i4nB_9NbFj5_nKV4Rsg-fbH-65leyhB_aprrtkIXxaBJ2wfcZ2734d8P94t_pM_1O--4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61cGh7QKUPsS1QV-LAJe068StHQEVbShGHpUW9RI7twCKaoM1uD_31zDhheUioUg-5xGMrsT2eb-zxNwBbQ1PmRgWVOLTGidBBJKWSPiEeFCm1D5WP0RZHanQiDk7l6Z27MB0_xGLDjTQjrtek4LQhHWOXuzQkf_5eoPXquDfRsD6FZYHonGZ2Ko4XJwm5iAl0ULHzhKN57eh9qInPDxq4Z5lWzkJPJhkidek9AHoXxkY7tP8SVnoAyXa6EV-FJ6F-BS92zqY9iUZ4DaPj86a9Om-m85btTuK1FTZrGC6k6CH3gXDM1p7RrkEz8S2b1IxydLYzRqfU9jf7aYl18w2M97-M90ZJnzEhsVIqkQRunPVaVUI647jT3rrMGsQklc1FycuKV1b7Yek4ZQuV3HrjtctlhjAoH2ZvYalu6rAGLPXclSrzIZOl8JWzCCTRW5a2Mtr5Sgzg001nFa5nE6ekFpcFehXUu0Xfu8WQDrgVVtheVLjqiDQeF9160PtFr1htgXIolKVaqQGs3wzJbTnPEfFFFroBfFwUo8rQOYitQzNHGWPQD6Pw2cdlUrTZlLsw5QPQcbj_9dXFj18HKT2Rs4_evPvvmh_g2Wj8_bA4_Hr07T08p5_u4t7WYWk2nYcNBEKzcjPO9GvDVf4y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglRAcqvISCy0YqQcugXXiV47bwmopqOqhW1AvkeNHuwiS1WaXA7-eGce70EoVEodckrGV2BnPN57xN4QcDHVdaullZsEaZ1x5ntVSuAx5UIRQzgcXsy1O5GTKj7-KdTYhnoXp-SE2G26oGXG9RgWfuxBTl_sqJD9_fQPj1VNvgl29S7aRKw_8r-3R-fRiugkllDxW0AHNLjMG9rXn98FO3t3o4ppp2rn0iU3SR-7Sawj0bxwbDdF4l-wkBElH_ZQ_JHd884g8GF0uEouGf0wmp1dtN79qF6uOHs7iuRW6bCmspOAip0w4ahpHcdugnbmOzhqKRTq7JcUwtflBvxik3XxCzsYfzo4mWSqZkBkhJM8809Y4JQMXVltmlTO2MBpASTAlr1kdWDDKDWvLsFyoYMZpp2wpCsBB5bB4SraatvHPCM0ds7UsnC9EzV2wBpAkuMvCBK2sC3xA3q4Hq7KJThyrWnyvwK3A0a3S6FZDjHBLaPBm02DeM2ncLnpwY_SrpFldBXIgVORKygHZW0_Jn-esBMgXaegG5PXmMegMBkJM49sVyGgNjhjmz94uk4PRxuKFORsQFaf7X29dnV8c53hF0j688_y_W74i907fj6vPH08-vSD38Zv7vLc9srVcrPw-AKFl_TL96r8B-ZD_IQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorus+Binding+to+Nanoparticles+and+Colloids+in+Forest+Stream+Waters&rft.jtitle=Vadose+zone+journal&rft.au=Gottselig+Nina&rft.au=Nischwitz+Volker&rft.au=Meyn%2C+Thomas&rft.au=Amelung+Wulf&rft.date=2017-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1539-1663&rft.volume=16&rft.issue=3&rft.spage=vzj2016.07.0064&rft.epage=vzj2016.07.0064&rft_id=info:doi/10.2136%2Fvzj2016.07.0064&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1663&client=summon