Diversity, composition, and networking of saliva microbiota distinguish the severity of COVID-19 episodes as revealed by an analysis of 16S rRNA variable V1-V3 region sequences
Studies on the role of the oral microbiome in SARS-CoV-2 infection and severity of the disease are limited. We aimed to characterize the bacterial communities present in the saliva of patients with varied COVID-19 severity to learn if there are differences in the characteristics of the microbiome am...
Saved in:
Published in | mSystems Vol. 8; no. 4; p. e0106222 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
13.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Studies on the role of the oral microbiome in SARS-CoV-2 infection and severity of the disease are limited. We aimed to characterize the bacterial communities present in the saliva of patients with varied COVID-19 severity to learn if there are differences in the characteristics of the microbiome among the clinical groups. We included 31 asymptomatic subjects with no previous COVID-19 infection or vaccination; 176 patients with mild respiratory symptoms, positive or negative for SARS-CoV-2 infection; 57 patients that required hospitalization because of severe COVID-19 with oxygen saturation below 92%, and 18 fatal cases of COVID-19. Saliva samples collected before any treatment were tested for SARS-CoV-2 by PCR. Oral microbiota in saliva was studied by amplification and sequencing of the V1-V3 variable regions of 16S gene using an Illumina MiSeq platform. We found significant changes in diversity, composition, and networking in saliva microbiota of patients with COVID-19, as well as patterns associated with severity of disease. The presence or abundance of several commensal species and opportunistic pathogens were associated with each clinical stage. Patterns of networking were also found associated with severity of disease: a highly regulated bacterial community (normonetting) was found in healthy people whereas poorly regulated populations (disnetting) were characteristic of severe cases. Characterization of microbiota in saliva may offer important clues in the pathogenesis of COVID-19 and may also identify potential markers for prognosis in the severity of the disease. IMPORTANCE SARS-CoV-2 infection is the most severe pandemic of humankind in the last hundred years. The outcome of the infection ranges from asymptomatic or mild to severe and even fatal cases, but reasons for this remain unknown. Microbes normally colonizing the respiratory tract form communities that may mitigate the transmission, symptoms, and severity of viral infections, but very little is known on the role of these microbial communities in the severity of COVID-19. We aimed to characterize the bacterial communities in saliva of patients with different severity of COVID-19 disease, from mild to fatal cases. Our results revealed clear differences in the composition and in the nature of interactions (networking) of the bacterial species present in the different clinical groups and show community-patterns associated with disease severity. Characterization of the microbial communities in saliva may offer important clues to learn ways COVID-19 patients may suffer from different disease severities. |
---|---|
AbstractList | Studies on the role of the oral microbiome in SARS-CoV-2 infection and severity of the disease are limited. We aimed to characterize the bacterial communities present in the saliva of patients with varied COVID-19 severity to learn if there are differences in the characteristics of the microbiome among the clinical groups. We included 31 asymptomatic subjects with no previous COVID-19 infection or vaccination; 176 patients with mild respiratory symptoms, positive or negative for SARS-CoV-2 infection; 57 patients that required hospitalization because of severe COVID-19 with oxygen saturation below 92%, and 18 fatal cases of COVID-19. Saliva samples collected before any treatment were tested for SARS-CoV-2 by PCR. Oral microbiota in saliva was studied by amplification and sequencing of the V1-V3 variable regions of 16S gene using an Illumina MiSeq platform. We found significant changes in diversity, composition, and networking in saliva microbiota of patients with COVID-19, as well as patterns associated with severity of disease. The presence or abundance of several commensal species and opportunistic pathogens were associated with each clinical stage. Patterns of networking were also found associated with severity of disease: a highly regulated bacterial community (normonetting) was found in healthy people whereas poorly regulated populations (disnetting) were characteristic of severe cases. Characterization of microbiota in saliva may offer important clues in the pathogenesis of COVID-19 and may also identify potential markers for prognosis in the severity of the disease. Studies on the role of the oral microbiome in SARS-CoV-2 infection and severity of the disease are limited. We aimed to characterize the bacterial communities present in the saliva of patients with varied COVID-19 severity to learn if there are differences in the characteristics of the microbiome among the clinical groups. We included 31 asymptomatic subjects with no previous COVID-19 infection or vaccination; 176 patients with mild respiratory symptoms, positive or negative for SARS-CoV-2 infection; 57 patients that required hospitalization because of severe COVID-19 with oxygen saturation below 92%, and 18 fatal cases of COVID-19. Saliva samples collected before any treatment were tested for SARS-CoV-2 by PCR. Oral microbiota in saliva was studied by amplification and sequencing of the V1-V3 variable regions of 16S gene using an Illumina MiSeq platform. We found significant changes in diversity, composition, and networking in saliva microbiota of patients with COVID-19, as well as patterns associated with severity of disease. The presence or abundance of several commensal species and opportunistic pathogens were associated with each clinical stage. Patterns of networking were also found associated with severity of disease: a highly regulated bacterial community (normonetting) was found in healthy people whereas poorly regulated populations (disnetting) were characteristic of severe cases. Characterization of microbiota in saliva may offer important clues in the pathogenesis of COVID-19 and may also identify potential markers for prognosis in the severity of the disease. IMPORTANCE SARS-CoV-2 infection is the most severe pandemic of humankind in the last hundred years. The outcome of the infection ranges from asymptomatic or mild to severe and even fatal cases, but reasons for this remain unknown. Microbes normally colonizing the respiratory tract form communities that may mitigate the transmission, symptoms, and severity of viral infections, but very little is known on the role of these microbial communities in the severity of COVID-19. We aimed to characterize the bacterial communities in saliva of patients with different severity of COVID-19 disease, from mild to fatal cases. Our results revealed clear differences in the composition and in the nature of interactions (networking) of the bacterial species present in the different clinical groups and show community-patterns associated with disease severity. Characterization of the microbial communities in saliva may offer important clues to learn ways COVID-19 patients may suffer from different disease severities. ABSTRACT Studies on the role of the oral microbiome in SARS-CoV-2 infection and severity of the disease are limited. We aimed to characterize the bacterial communities present in the saliva of patients with varied COVID-19 severity to learn if there are differences in the characteristics of the microbiome among the clinical groups. We included 31 asymptomatic subjects with no previous COVID-19 infection or vaccination; 176 patients with mild respiratory symptoms, positive or negative for SARS-CoV-2 infection; 57 patients that required hospitalization because of severe COVID-19 with oxygen saturation below 92%, and 18 fatal cases of COVID-19. Saliva samples collected before any treatment were tested for SARS-CoV-2 by PCR. Oral microbiota in saliva was studied by amplification and sequencing of the V1-V3 variable regions of 16S gene using an Illumina MiSeq platform. We found significant changes in diversity, composition, and networking in saliva microbiota of patients with COVID-19, as well as patterns associated with severity of disease. The presence or abundance of several commensal species and opportunistic pathogens were associated with each clinical stage. Patterns of networking were also found associated with severity of disease: a highly regulated bacterial community (normonetting) was found in healthy people whereas poorly regulated populations (disnetting) were characteristic of severe cases. Characterization of microbiota in saliva may offer important clues in the pathogenesis of COVID-19 and may also identify potential markers for prognosis in the severity of the disease. IMPORTANCE SARS-CoV-2 infection is the most severe pandemic of humankind in the last hundred years. The outcome of the infection ranges from asymptomatic or mild to severe and even fatal cases, but reasons for this remain unknown. Microbes normally colonizing the respiratory tract form communities that may mitigate the transmission, symptoms, and severity of viral infections, but very little is known on the role of these microbial communities in the severity of COVID-19. We aimed to characterize the bacterial communities in saliva of patients with different severity of COVID-19 disease, from mild to fatal cases. Our results revealed clear differences in the composition and in the nature of interactions (networking) of the bacterial species present in the different clinical groups and show community-patterns associated with disease severity. Characterization of the microbial communities in saliva may offer important clues to learn ways COVID-19 patients may suffer from different disease severities. Studies on the role of the oral microbiome in SARS-CoV-2 infection and severity of the disease are limited. We aimed to characterize the bacterial communities present in the saliva of patients with varied COVID-19 severity to learn if there are differences in the characteristics of the microbiome among the clinical groups. We included 31 asymptomatic subjects with no previous COVID-19 infection or vaccination; 176 patients with mild respiratory symptoms, positive or negative for SARS-CoV-2 infection; 57 patients that required hospitalization because of severe COVID-19 with oxygen saturation below 92%, and 18 fatal cases of COVID-19. Saliva samples collected before any treatment were tested for SARS-CoV-2 by PCR. Oral microbiota in saliva was studied by amplification and sequencing of the V1-V3 variable regions of 16S gene using an Illumina MiSeq platform. We found significant changes in diversity, composition, and networking in saliva microbiota of patients with COVID-19, as well as patterns associated with severity of disease. The presence or abundance of several commensal species and opportunistic pathogens were associated with each clinical stage. Patterns of networking were also found associated with severity of disease: a highly regulated bacterial community (normonetting) was found in healthy people whereas poorly regulated populations (disnetting) were characteristic of severe cases. Characterization of microbiota in saliva may offer important clues in the pathogenesis of COVID-19 and may also identify potential markers for prognosis in the severity of the disease. SARS-CoV-2 infection is the most severe pandemic of humankind in the last hundred years. The outcome of the infection ranges from asymptomatic or mild to severe and even fatal cases, but reasons for this remain unknown. Microbes normally colonizing the respiratory tract form communities that may mitigate the transmission, symptoms, and severity of viral infections, but very little is known on the role of these microbial communities in the severity of COVID-19. We aimed to characterize the bacterial communities in saliva of patients with different severity of COVID-19 disease, from mild to fatal cases. Our results revealed clear differences in the composition and in the nature of interactions (networking) of the bacterial species present in the different clinical groups and show community-patterns associated with disease severity. Characterization of the microbial communities in saliva may offer important clues to learn ways COVID-19 patients may suffer from different disease severities. ABSTRACTStudies on the role of the oral microbiome in SARS-CoV-2 infection and severity of the disease are limited. We aimed to characterize the bacterial communities present in the saliva of patients with varied COVID-19 severity to learn if there are differences in the characteristics of the microbiome among the clinical groups. We included 31 asymptomatic subjects with no previous COVID-19 infection or vaccination; 176 patients with mild respiratory symptoms, positive or negative for SARS-CoV-2 infection; 57 patients that required hospitalization because of severe COVID-19 with oxygen saturation below 92%, and 18 fatal cases of COVID-19. Saliva samples collected before any treatment were tested for SARS-CoV-2 by PCR. Oral microbiota in saliva was studied by amplification and sequencing of the V1-V3 variable regions of 16S gene using an Illumina MiSeq platform. We found significant changes in diversity, composition, and networking in saliva microbiota of patients with COVID-19, as well as patterns associated with severity of disease. The presence or abundance of several commensal species and opportunistic pathogens were associated with each clinical stage. Patterns of networking were also found associated with severity of disease: a highly regulated bacterial community (normonetting) was found in healthy people whereas poorly regulated populations (disnetting) were characteristic of severe cases. Characterization of microbiota in saliva may offer important clues in the pathogenesis of COVID-19 and may also identify potential markers for prognosis in the severity of the disease.IMPORTANCESARS-CoV-2 infection is the most severe pandemic of humankind in the last hundred years. The outcome of the infection ranges from asymptomatic or mild to severe and even fatal cases, but reasons for this remain unknown. Microbes normally colonizing the respiratory tract form communities that may mitigate the transmission, symptoms, and severity of viral infections, but very little is known on the role of these microbial communities in the severity of COVID-19. We aimed to characterize the bacterial communities in saliva of patients with different severity of COVID-19 disease, from mild to fatal cases. Our results revealed clear differences in the composition and in the nature of interactions (networking) of the bacterial species present in the different clinical groups and show community-patterns associated with disease severity. Characterization of the microbial communities in saliva may offer important clues to learn ways COVID-19 patients may suffer from different disease severities. |
Author | Meza, Beatriz Torres, Javier Chávez Rojas, Adriana Inés Samano Marquez, Gabriel Alvarado Yaah, Julio Elias García Soto, Leticia Margarita Mendoza Pérez, Antonina Reyna Gonzalez-Torres, Carolina Gaytan-Cervantes, Javier González Ibarra, Joaquín Larios Serrato, Violeta Bravo Mateos, Guillermo Anguiano Hernández, Yu-Mei Cázarez Cortazar, Allison Martínez Miguel, Bernardo Santacruz Tinoco, Clara Esperanza Sarquiz Martínez, Brenda Palma Herrera, Juan José Grajales Muñiz, Concepción |
Author_xml | – sequence: 1 givenname: Violeta surname: Larios Serrato fullname: Larios Serrato, Violeta organization: Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional , México, Mexico – sequence: 2 givenname: Beatriz surname: Meza fullname: Meza, Beatriz organization: Unidad de Investigación Médica en Enfermedades Infecciosas, UMAE Pediatría, Centro Médico Nacional SXXI, IMSS , Torreón, Mexico – sequence: 3 givenname: Carolina surname: Gonzalez-Torres fullname: Gonzalez-Torres, Carolina organization: Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS , Torreón, Mexico – sequence: 4 givenname: Javier surname: Gaytan-Cervantes fullname: Gaytan-Cervantes, Javier organization: Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS , Torreón, Mexico – sequence: 5 givenname: Joaquín surname: González Ibarra fullname: González Ibarra, Joaquín organization: División de Desarrollo de la Investigación en Salud, Coordinación de Investigación en Salud, IMSS , Torreón, Mexico – sequence: 6 givenname: Clara Esperanza surname: Santacruz Tinoco fullname: Santacruz Tinoco, Clara Esperanza organization: División de Laboratorios Especializados, Coordinación de Calidad de Insumos y Laboratorios Especializados, IMSS , Torreón, Mexico – sequence: 7 givenname: Yu-Mei surname: Anguiano Hernández fullname: Anguiano Hernández, Yu-Mei organization: División de Laboratorios Especializados, Coordinación de Calidad de Insumos y Laboratorios Especializados, IMSS , Torreón, Mexico – sequence: 8 givenname: Bernardo surname: Martínez Miguel fullname: Martínez Miguel, Bernardo organization: División de Laboratorios Especializados, Coordinación de Calidad de Insumos y Laboratorios Especializados, IMSS , Torreón, Mexico – sequence: 9 givenname: Allison surname: Cázarez Cortazar fullname: Cázarez Cortazar, Allison organization: División de Laboratorios Especializados, Coordinación de Calidad de Insumos y Laboratorios Especializados, IMSS , Torreón, Mexico – sequence: 10 givenname: Brenda surname: Sarquiz Martínez fullname: Sarquiz Martínez, Brenda organization: División de Laboratorios Especializados, Coordinación de Calidad de Insumos y Laboratorios Especializados, IMSS , Torreón, Mexico – sequence: 11 givenname: Julio Elias surname: Alvarado Yaah fullname: Alvarado Yaah, Julio Elias organization: División de Laboratorios Especializados, Coordinación de Calidad de Insumos y Laboratorios Especializados, IMSS , Torreón, Mexico – sequence: 12 givenname: Antonina Reyna surname: Mendoza Pérez fullname: Mendoza Pérez, Antonina Reyna organization: Coordinación de Vigilancia Epidemiológica, Dirección de Prestaciones Médicas, IMSS , Torreón, Mexico – sequence: 13 givenname: Juan José surname: Palma Herrera fullname: Palma Herrera, Juan José organization: Hospital General de Zona No. 27, Ciudad de México Norte, IMSS , México, Mexico – sequence: 14 givenname: Leticia Margarita surname: García Soto fullname: García Soto, Leticia Margarita organization: Hospital General de Zona No. 27, Ciudad de México Norte, IMSS , México, Mexico – sequence: 15 givenname: Adriana Inés surname: Chávez Rojas fullname: Chávez Rojas, Adriana Inés organization: Coordinadora de Información y Análisis Estratégicos, OOAD Cd de México , México, Mexico – sequence: 16 givenname: Guillermo surname: Bravo Mateos fullname: Bravo Mateos, Guillermo organization: Hospital General de Zona con Medicina Familiar No. 8 Cd de México, IMSS , México, Mexico – sequence: 17 givenname: Gabriel surname: Samano Marquez fullname: Samano Marquez, Gabriel organization: Hospital General de Zona con Medicina Familiar No. 8 Cd de México, IMSS , México, Mexico – sequence: 18 givenname: Concepción surname: Grajales Muñiz fullname: Grajales Muñiz, Concepción organization: Departamento de Vigilancia Epidemiológica, IMSS Bienestar , México, Mexico – sequence: 19 givenname: Javier orcidid: 0000-0003-3945-4221 surname: Torres fullname: Torres, Javier organization: Unidad de Investigación Médica en Enfermedades Infecciosas, UMAE Pediatría, Centro Médico Nacional SXXI, IMSS , Torreón, Mexico |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37310423$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv2zAMx42hw9p1_QC7DAJ22aHO9LAs6zQU6R4BihXYI1eBtuhEmW1lkpMh32ofcUrTdu0OAwSIEP_8kSL5PDsa_IBZ9pLRCWO8etvHXRyxjxPKaMlzzp9kJ1wonUuq1NED-zg7i3FFKWWlUIzrZ9mxUILRgouT7Pel22KIbtydk8b3a59M54dzAoMlA46_fPjhhgXxLYnQuS2Q3jXB186PQKyLY3JuXFyScYkkYmIl1F49vZ7PLnOmCa5d9BYjgUhCEkCHltS7lCAd6HbRxb2elV9J-PL5gmwhOKg7JHOWz0UKWaR6EvrnBocG44vsaQtdxLPb-zT7_uH9t-mn_Or642x6cZWDlHLMddtQ21rRopAaa5S0krVSpbasplIBIPBaF7RKvqrSsoFWcSy0rhumSgBxms0OXOthZdbB9RB2xoMzNw8-LAyE0TUdGsVsYikmqcRCMVXRti2s0mVtQTRMJNa7A2u9qXu0DQ5jgO4R9LFncEuz8FuThqQoFXvCm1tC8KkRcTS9iw12HQzoN9HwiktJecGLJH39j3TlNyF1eq9SVIlKaJZU7KBKw4wxYHtfDaNmv1_mbr_MzX4ZzlPM5BADsed_qf8LePXw3_cp7tZP_AGnQuEY |
Cites_doi | 10.1093/nar/28.1.27 10.1016/j.jinf.2020.06.047 10.1890/12-2010.1 10.1186/s13059-014-0550-8 10.1128/mBio.01969-20 10.1016/j.cmet.2018.06.007 10.1128/mSystems.00187-18 10.1099/jmm.0.001520 10.1038/s41590-021-01028-7 10.1016/j.cell.2020.04.035 10.1128/mBio.02496-21 10.1038/s41596-019-0264-1 10.1128/JB.00542-10 10.1016/j.virusres.2020.198005 10.1093/cid/ciaa663 10.1093/bib/bbaa290 10.1073/pnas.1522149113 10.1007/s10532-020-09919-6 10.1038/s41586-019-1237-9 10.1038/s41467-020-17840-y 10.1136/gutjnl-2020-323826 10.1073/pnas.1409644111 10.1038/s41587-020-0548-6 10.3389/fbioe.2021.602445 10.3389/fmicb.2021.671813 10.1128/aem.59.3.695-700.1993 10.1126/science.abn1890 10.1038/nmeth.3869 10.3389/fmicb.2021.637430 10.3389/fmicb.2019.02752 10.1056/NEJMoa2002032 10.1016/j.cell.2020.04.022 10.1056/NEJMc1903636 10.1093/database/baq013 10.1093/bioinformatics/btac438 10.1371/journal.pone.0061217 10.1093/bioinformatics/bty633 10.12688/f1000research.24963.1 10.1093/infdis/jir749 10.1172/jci.insight.152346 10.1186/s40168-017-0237-y 10.1080/20002297.2017.1368848 10.1038/s41591-021-01296-8 10.1007/978-3-319-24277-4 10.1186/gb-2012-13-6-r42 10.1111/j.1365-2958.2011.07817.x 10.1126/sciadv.aau3333 10.1128/AEM.01043-13 |
ContentType | Journal Article |
Contributor | Iebba, Valerio Hampton-Marcell, Jarrad |
Contributor_xml | – sequence: 1 givenname: Jarrad surname: Hampton-Marcell fullname: Hampton-Marcell, Jarrad – sequence: 2 givenname: Valerio surname: Iebba fullname: Iebba, Valerio |
Copyright | Copyright © 2023 Larios Serrato et al. Copyright © 2023 Larios Serrato et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2023 Larios Serrato et al. 2023 Larios Serrato et al. |
Copyright_xml | – notice: Copyright © 2023 Larios Serrato et al. – notice: Copyright © 2023 Larios Serrato et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2023 Larios Serrato et al. 2023 Larios Serrato et al. |
DBID | NPM AAYXX CITATION 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1128/msystems.01062-22 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2379-5077 |
Editor | Cook, Marc D. |
Editor_xml | – sequence: 1 givenname: Marc D. surname: Cook fullname: Cook, Marc D. |
EndPage | e0106222 |
ExternalDocumentID | oai_doaj_org_article_71d2b971505e471780ff4d796bda3c13 10_1128_msystems_01062_22 01062-22 37310423 |
Genre | Journal Article |
GeographicLocations | Mexico |
GeographicLocations_xml | – name: Mexico |
GrantInformation_xml | – fundername: Consejo Nacional de Ciencia y Tecnología (CONACYT) grantid: 312992 – fundername: ; grantid: 312992 |
GroupedDBID | 0R~ 3V. 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAUOK ABUWG ACPRK ADBBV AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU EBS FRP FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE KQ8 LK8 M48 M7P M~E NPM O9- OK1 PIMPY PQQKQ PROAC RHI RPM RSF UKHRP AAYXX CITATION 7XB 8FK AZQEC COVID DWQXO GNUQQ K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-a555t-9fc0dfd3fe359ebe5085b7769d1b057aaea2b9408ebe8895caf72e499bc176aa3 |
IEDL.DBID | RPM |
ISSN | 2379-5077 |
IngestDate | Tue Oct 22 15:10:00 EDT 2024 Tue Sep 17 21:29:48 EDT 2024 Fri Oct 25 07:15:31 EDT 2024 Thu Oct 10 19:26:36 EDT 2024 Fri Dec 06 03:15:39 EST 2024 Sun Aug 11 18:20:25 EDT 2024 Tue Aug 27 13:47:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | COVID-19 microbiota viral infections disease severity microbial networks |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a555t-9fc0dfd3fe359ebe5085b7769d1b057aaea2b9408ebe8895caf72e499bc176aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0003-3945-4221 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470033/ |
PMID | 37310423 |
PQID | 2870738391 |
PQPubID | 2045591 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_71d2b971505e471780ff4d796bda3c13 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10470033 proquest_miscellaneous_2825502424 proquest_journals_2870738391 crossref_primary_10_1128_msystems_01062_22 asm2_journals_10_1128_msystems_01062_22 pubmed_primary_37310423 |
PublicationCentury | 2000 |
PublicationDate | 20230613 |
PublicationDateYYYYMMDD | 2023-06-13 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230613 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC – name: Washington |
PublicationTitle | mSystems |
PublicationTitleAbbrev | mSystems |
PublicationTitleAlternate | mSystems |
PublicationYear | 2023 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | B24 Chen, L, Collij, V, Jaeger, M, van den Munckhof, ICL, Vich Vila, A, Kurilshikov, A, Gacesa, R, Sinha, T, Oosting, M, Joosten, LAB, Rutten, JHW, Riksen, NP, Xavier, RJ, Kuipers, F, Wijmenga, C, Zhernakova, A, Netea, MG, Weersma, RK, Fu, J (B51) 2020; 11 Tuganbaev, T, Yoshida, K, Honda, K (B12) 2022; 376 Schaupp, L, Muth, S, Rogell, L, Kofoed-Branzk, M, Melchior, F, Lienenklaus, S, Ganal-Vonarburg, SC, Klein, M, Guendel, F, Hain, T, Schütze, K, Grundmann, U, Schmitt, V, Dorsch, M, Spanier, J, Larsen, P-K, Schwanz, T, Jäckel, S, Reinhardt, C, Bopp, T, Danckwardt, S, Mahnke, K, Heinz, GA, Mashreghi, M-F, Durek, P, Kalinke, U, Kretz, O, Huber, TB, Weiss, S, Wilhelm, C, Macpherson, AJ, Schild, H, Diefenbach, A, Probst, HC (B1) 2020; 181 B29 Muyzer, G, de Waal, EC, Uitterlinden, AG (B16) 1993; 59 Peschel, S, Müller, CL, von Mutius, E, Boulesteix, A-L, Depner, M (B35) 2021; 22 Zhang, H, Ai, J-W, Yang, W, Zhou, X, He, F, Xie, S, Zeng, W, Li, Y, Yu, Y, Gou, X, Li, Y, Wang, X, Su, H, Zhu, Z, Xu, T, Zhang, W (B7) 2021; 73 Mandell, LA, Niederman, MS (B15) 2019; 380 Cao, Y, Dong, Q, Wang, D, Zhang, P, Liu, Y, Niu, C, Marschall, T (B22) 2022; 38 McMurdie, PJ, Holmes, S (B23) 2013; 8 Escapa, IF, Chen, T, Huang, Y, Gajare, P, Dewhirst, FE, Lemon, KP (B39) 2018; 3 Haran, JP, Bradley, E, Zeamer, AL, Cincotta, L, Salive, M-C, Dutta, P, Mutaawe, S, Anya, O, Meza-Segura, M, Moormann, AM, Ward, DV, McCormick, BA, Bucci, V (B9) 2021; 6 Guan, W-J, Ni, Z-Y, Hu, Y, Liang, W-H, Ou, C-Q, He, J-X, Liu, L, Shan, H, Lei, C-L, Hui, DSC, Du, B, Li, L-J, Zeng, G, Yuen, K-Y, Chen, R-C, Tang, C-L, Wang, T, Chen, P-Y, Xiang, J, Li, S-Y, Wang, J-L, Liang, Z-J, Peng, Y-X, Wei, L, Liu, Y, Hu, Y-H, Peng, P, Wang, J-M, Liu, J-Y, Chen, Z, Li, G, Zheng, Z-J, Qiu, S-Q, Luo, J, Ye, C-J, Zhu, S-Y, Zhong, N-S (B3) 2020; 382 Fan, J, Li, X, Gao, Y, Zhou, J, Wang, S, Huang, B, Wu, J, Cao, Q, Chen, Y, Wang, Z, Luo, D, Zhou, T, Li, R, Shang, Y, Nie, X (B50) 2020; 81 Mostafa, HH, Fissel, JA, Fanelli, B, Bergman, Y, Gniazdowski, V, Dadlani, M, Carroll, KC, Colwell, RR, Simner, PJ (B5) 2020; 11 González, R, Elena, SF (B4) 2021; 12 B30 Iebba, V, Zanotta, N, Campisciano, G, Zerbato, V, Di Bella, S, Cason, C, Luzzati, R, Confalonieri, M, Palamara, AT, Comar, M (B53) 2021; 12 Chen, T, Yu, W-H, Izard, J, Baranova, OV, Lakshmanan, A, Dewhirst, FE (B20) 2010; 2010 Love, MI, Huber, W, Anders, S (B32) 2014; 15 B33 B34 Noszczyńska, M, Chodór, M, Jałowiecki, Ł, Piotrowska-Seget, Z (B44) 2021; 32 Chakraborty, S, Basu, A (B41) 2020; 9 Weiss, S, Xu, ZZ, Peddada, S, Amir, A, Bittinger, K, Gonzalez, A, Lozupone, C, Zaneveld, JR, Vázquez-Baeza, Y, Birmingham, A, Hyde, ER, Knight, R (B21) 2017; 5 Ren, Z, Wang, H, Cui, G, Lu, H, Wang, L, Luo, H, Chen, X, Ren, H, Sun, R, Liu, W, Liu, X, Liu, C, Li, A, Wang, X, Rao, B, Yuan, C, Zhang, H, Sun, J, Chen, X, Li, B, Hu, C, Wu, Z, Yu, Z, Kan, Q, Li, L (B10) 2021; 70 Mark Welch, JL, Rossetti, BJ, Rieken, CW, Dewhirst, FE, Borisy, GG (B13) 2016; 113 Anderson, MJ, Walsh, DCI (B27) 2013; 83 Mohapatra, B, Phale, PS (B45) 2021; 9 Weinberger, DM, Simonsen, L, Jordan, R, Steiner, C, Miller, M, Viboud, C (B48) 2012; 205 Smith, N, Goncalves, P, Charbit, B, Grzelak, L, Beretta, M, Planchais, C, Bruel, T, Rouilly, V, Bondet, V, Hadjadj, J, Yatim, N, Pere, H, Merkling, SH, Ghozlane, A, Kernéis, S, Rieux-Laucat, F, Terrier, B, Schwartz, O, Mouquet, H, Duffy, D, Di Santo, JP (B43) 2021; 22 Zhu, X, Ge, Y, Wu, T, Zhao, K, Chen, Y, Wu, B, Zhu, F, Zhu, B, Cui, L (B49) 2020; 285 Kanehisa, M, Goto, S (B36) 2000; 28 Eren, AM, Borisy, GG, Huse, SM, Mark Welch, JL (B38) 2014; 111 Kozich, JJ, Westcott, SL, Baxter, NT, Highlander, SK, Schloss, PD (B17) 2013; 79 Dewhirst, FE, Chen, T, Izard, J, Paster, BJ, Tanner, ACR, Yu, W-H, Lakshmanan, A, Wade, WG (B11) 2010; 192 Dominy, SS, Lynch, C, Ermini, F, Benedyk, M, Marczyk, A, Konradi, A, Nguyen, M, Haditsch, U, Raha, D, Griffin, C, Holsinger, LJ, Arastu-Kapur, S, Kaba, S, Lee, A, Ryder, MI, Potempa, B, Mydel, P, Hellvard, A, Adamowicz, K, Hasturk, H, Walker, GD, Reynolds, EC, Faull, RLM, Curtis, MA, Dragunow, M, Potempa, J (B52) 2019; 5 Callahan, BJ, McMurdie, PJ, Rosen, MJ, Han, AW, Johnson, AJA, Holmes, SP (B19) 2016; 13 Lloyd-Price, J, Arze, C, Ananthakrishnan, AN, Schirmer, M, Avila-Pacheco, J, Poon, TW, Andrews, E, Ajami, NJ, Bonham, KS, Brislawn, CJ, Casero, D, Courtney, H, Gonzalez, A, Graeber, TG, Hall, AB, Lake, K, Landers, CJ, Mallick, H, Plichta, DR, Prasad, M, Rahnavard, G, Sauk, J, Shungin, D, Vázquez-Baeza, Y, White, RA, Braun, J, Denson, LA, Jansson, JK, Knight, R, Kugathasan, S, McGovern, DPB, Petrosino, JF, Stappenbeck, TS, Winter, HS, Clish, CB, Franzosa, EA, Vlamakis, H, Xavier, RJ, Huttenhower, C (B28) 2019; 569 Wickham, H (B25) 2016 Ju, K-S, Parales, RE (B46) 2011; 82 Lundberg, JO, Carlström, M, Weitzberg, E (B54) 2018; 28 Ventero, MP, Cuadrat, RRC, Vidal, I, Andrade, BGN, Molina-Pardines, C, Haro-Moreno, JM, Coutinho, FH, Merino, E, Regitano, LCA, Silveira, CB, Afli, H, López-Pérez, M, Rodríguez, JC (B6) 2021; 12 Douglas, GM, Maffei, VJ, Zaneveld, JR, Yurgel, SN, Brown, JR, Taylor, CM, Huttenhower, C, Langille, MGI (B37) 2020; 38 Guo, L, Wei, D, Zhang, X, Wu, Y, Li, Q, Zhou, M, Qu, J (B47) 2019; 10 Chong, J, Liu, P, Zhou, G, Xia, J (B31) 2020; 15 Paradis, E, Schliep, K (B26) 2019; 35 Eribe, ERK, Olsen, I (B40) 2017; 9 B18 Segata, N, Haake, SK, Mannon, P, Lemon, KP, Waldron, L, Gevers, D, Huttenhower, C, Izard, J (B14) 2012; 13 Huang, N, Pérez, P, Kato, T, Mikami, Y, Okuda, K, Gilmore, RC, Conde, CD, Gasmi, B, Stein, S, Beach, M, Pelayo, E, Maldonado, JO, Lafont, BA, Jang, S-I, Nasir, N, Padilla, RJ, Murrah, VA, Maile, R, Lovell, W, Wallet, SM, Bowman, NM, Meinig, SL, Wolfgang, MC, Choudhury, SN, Novotny, M, Aevermann, BD, Scheuermann, RH, Cannon, G, Anderson, CW, Lee, RE, Marchesan, JT, Bush, M, Freire, M, Kimple, AJ, Herr, DL, Rabin, J, Grazioli, A, Das, S, French, BN, Pranzatelli, T, Chiorini, JA, Kleiner, DE, Pittaluga, S, Hewitt, SM, Burbelo, PD, Chertow, D, Frank, K, Lee, J, Boucher, RC, Teichmann, SA, Warner, BM, Byrd, KM (B8) 2021; 27 Ziegler, CGK, Allon, SJ, Nyquist, SK, Mbano, IM, Miao, VN, Tzouanas, CN, Cao, Y, Yousif, AS, Bals, J, Hauser, BM, Feldman, J, Muus, C, Wadsworth, MH, Kazer, SW, Hughes, TK, Doran, B, Gatter, GJ, Vukovic, M, Taliaferro, F, Mead, BE, Guo, Z, Wang, JP, Gras, D, Plaisant, M, Ansari, M, Angelidis, I, Adler, H, Sucre, JMS, Taylor, CJ, Lin, B, Waghray, A, Mitsialis, V, Dwyer, DF, Buchheit, KM, Boyce, JA, Barrett, NA, Laidlaw, TM, Carroll, SL, Colonna, L, Tkachev, V, Peterson, CW, Yu, A, Zheng, HB, Gideon, HP, Winchell, CG, Lin, PL, Bingle, CD, Snapper, SB, Kropski, JA, Theis, FJ, Schiller, HB, Zaragosi, L-E, Barbry, P, Leslie, A, Kiem, H-P, Flynn, JL, Fortune, SM, Berger, B, Finberg, RW, Kean, LS, Garber, M, Schmidt, AG, Lingwood, D, Shalek, AK, Ordovas-Montanes, J (B2) 2020; 181 Tamanai-Shacoori, Z, Le Gall-David, S, Moussouni, F, Sweidan, A, Polard, E, Bousarghin, L, Jolivet-Gougeon, A (B42) 2022; 71 e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: B33 article-title: Lewis KBSR . 2022 . EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling . GitHub . Available from : https://github.com/kevinblighe/EnhancedVolcano.Retrieved – volume: 28 start-page: 27 year: 2000 end-page: 30 ident: B36 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 contributor: fullname: Goto, S – volume: 81 start-page: e64 year: 2020 end-page: e67 ident: B50 article-title: The lung tissue microbiota features of 20 deceased patients with COVID-19 publication-title: J Infect doi: 10.1016/j.jinf.2020.06.047 contributor: fullname: Nie, X – volume: 83 start-page: 557 year: 2013 end-page: 574 ident: B27 article-title: PERMANOVA, ANOSIM, and the mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? publication-title: Ecol Monogr doi: 10.1890/12-2010.1 contributor: fullname: Walsh, DCI – volume: 15 start-page: 550 year: 2014 ident: B32 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 contributor: fullname: Anders, S – ident: B24 article-title: Oksanen J , Simpson G , Blanchet F , Kindt R , Legendre P , Minchin P , O’Hara R , Solymos P , Stevens M , Szoecs E , Wagner H , Barbour M , Bedward M , Bolker B , Borcard D , Carvalho G , Chirico M , De Caceres M , Durand S , Evangelista H , FitzJohn R , Friendly M , Furneaux B , Hannigan G , Hill M , Lahti L , McGlinn D , Ouellette M , Ribeiro Cunha E , Smith T , Stier A , Ter Braak C , Weedon J . 2022 . Vegan: Community Ecology package . R package vegan version 2.6-2 . Available from : https://CRAN.R-project.org/package=vegan – volume: 11 year: 2020 ident: B5 article-title: Metagenomic next-generation sequencing of Nasopharyngeal specimens collected from confirmed and suspect COVID-19 patients publication-title: mBio doi: 10.1128/mBio.01969-20 contributor: fullname: Simner, PJ – volume: 28 start-page: 9 year: 2018 end-page: 22 ident: B54 article-title: Metabolic effects of dietary nitrate in health and disease publication-title: Cell Metab doi: 10.1016/j.cmet.2018.06.007 contributor: fullname: Weitzberg, E – volume: 3 year: 2018 ident: B39 article-title: New insights into human nostril microbiome from the expanded human oral microbiome database (eHOMD): a resource for the microbiome of the human aerodigestive tract publication-title: mSystems doi: 10.1128/mSystems.00187-18 contributor: fullname: Lemon, KP – volume: 71 start-page: 001520 year: 2022 ident: B42 article-title: SARS-Cov-2 and Spp.: Friend or foe? A systematic literature review publication-title: J Med Microbiol doi: 10.1099/jmm.0.001520 contributor: fullname: Jolivet-Gougeon, A – volume: 22 start-page: 1428 year: 2021 end-page: 1439 ident: B43 article-title: Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection publication-title: Nat Immunol doi: 10.1038/s41590-021-01028-7 contributor: fullname: Di Santo, JP – volume: 181 start-page: 1016 year: 2020 end-page: 1035 ident: B2 article-title: SARS-CoV-2 receptor ACE2 is an interferon-stimulated Gene in human airway epithelial cells and is enriched in specific cell Subsets across tissues publication-title: Cell doi: 10.1016/j.cell.2020.04.035 contributor: fullname: Ordovas-Montanes, J – volume: 12 year: 2021 ident: B4 article-title: The interplay between the host microbiome and pathogenic viral infections publication-title: mBio doi: 10.1128/mBio.02496-21 contributor: fullname: Elena, SF – volume: 15 start-page: 799 year: 2020 end-page: 821 ident: B31 article-title: Using microbiomeanalyst for comprehensive statistical, functional, and meta-analysis of microbiome data publication-title: Nat Protoc doi: 10.1038/s41596-019-0264-1 contributor: fullname: Xia, J – volume: 192 start-page: 5002 year: 2010 end-page: 5017 ident: B11 article-title: The human oral microbiome publication-title: J Bacteriol doi: 10.1128/JB.00542-10 contributor: fullname: Wade, WG – volume: 285 start-page: 198005 year: 2020 ident: B49 article-title: Co-Infection with respiratory pathogens among COVID-2019 cases publication-title: Virus Res doi: 10.1016/j.virusres.2020.198005 contributor: fullname: Cui, L – volume: 73 start-page: 376 year: 2021 end-page: 385 ident: B7 article-title: Metatranscriptomic characterization of Coronavirus disease 2019 identified a host transcriptional classifier associated with immune signaling publication-title: Clin infect Dis doi: 10.1093/cid/ciaa663 contributor: fullname: Zhang, W – volume: 22 year: 2021 ident: B35 article-title: NetCoMi: network construction and comparison for microbiome data in R publication-title: Brief Bioinform doi: 10.1093/bib/bbaa290 contributor: fullname: Depner, M – volume: 113 start-page: E791 year: 2016 end-page: E800 ident: B13 article-title: Biogeography of a human oral microbiome at the micron scale publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1522149113 contributor: fullname: Borisy, GG – volume: 32 start-page: 1 year: 2021 end-page: 15 ident: B44 article-title: A comprehensive study on bisphenol a degradation by newly isolated strains Acinetobacter sp K1MN and Pseudomonas sp publication-title: Biodegradation doi: 10.1007/s10532-020-09919-6 contributor: fullname: Piotrowska-Seget, Z – volume: 569 start-page: 655 year: 2019 end-page: 662 ident: B28 article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases publication-title: Nature doi: 10.1038/s41586-019-1237-9 contributor: fullname: Huttenhower, C – volume: 11 start-page: 4018 year: 2020 ident: B51 article-title: Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity publication-title: Nat Commun doi: 10.1038/s41467-020-17840-y contributor: fullname: Fu, J – volume: 70 start-page: 1253 year: 2021 end-page: 1265 ident: B10 article-title: Alterations in the human oral and gut microbiomes and lipidomics in COVID-19 publication-title: Gut doi: 10.1136/gutjnl-2020-323826 contributor: fullname: Li, L – volume: 111 start-page: E2875 year: 2014 end-page: E2884 ident: B38 article-title: Oligotyping analysis of the human oral microbiome publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1409644111 contributor: fullname: Mark Welch, JL – ident: B29 article-title: A short introduction to the Caret package . Available from : https://cran.r-project.org/web/packages/caret/vignettes/caret.html . Retrieved 3 Apr 2023 – volume: 38 start-page: 685 year: 2020 end-page: 688 ident: B37 article-title: PICRUSt2 for prediction of metagenome functions publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0548-6 contributor: fullname: Langille, MGI – volume: 9 start-page: 602445 year: 2021 ident: B45 article-title: Microbial degradation of naphthalene and substituted naphthalenes: metabolic diversity and genomic insight for bioremediation publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2021.602445 contributor: fullname: Phale, PS – volume: 12 year: 2021 ident: B53 article-title: Profiling of oral Microbiota and Cytokines in COVID-19 patients publication-title: Front Microbiol doi: 10.3389/fmicb.2021.671813 contributor: fullname: Comar, M – volume: 59 start-page: 695 year: 1993 end-page: 700 ident: B16 article-title: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA publication-title: Appl Environ Microbiol doi: 10.1128/aem.59.3.695-700.1993 contributor: fullname: Uitterlinden, AG – volume: 376 start-page: 934 year: 2022 end-page: 936 ident: B12 article-title: The effects of oral microbiota on health publication-title: Science doi: 10.1126/science.abn1890 contributor: fullname: Honda, K – volume: 13 start-page: 581 year: 2016 end-page: 583 ident: B19 article-title: DADA2: high-resolution sample inference from Illumina amplicon data publication-title: Nat Methods doi: 10.1038/nmeth.3869 contributor: fullname: Holmes, SP – volume: 12 start-page: 637430 year: 2021 ident: B6 article-title: Nasopharyngeal microbial communities of patients infected with SARC-CoV-2 that developed covid-19 publication-title: Front Microbiol doi: 10.3389/fmicb.2021.637430 contributor: fullname: Rodríguez, JC – volume: 10 start-page: 2752 year: 2019 ident: B47 article-title: Clinical features predicting mortality risk in patients with viral pneumonia: the MuLBSTA score publication-title: Front Microbiol doi: 10.3389/fmicb.2019.02752 contributor: fullname: Qu, J – volume: 382 start-page: 1708 year: 2020 end-page: 1720 ident: B3 article-title: Clinical characteristics of coronavirus disease 2019 in China publication-title: N Engl J Med doi: 10.1056/NEJMoa2002032 contributor: fullname: Zhong, N-S – volume: 181 start-page: 1080 year: 2020 end-page: 1096 ident: B1 article-title: Microbiota-induced type I Interferons instruct a poised basal state of dendritic cells publication-title: Cell doi: 10.1016/j.cell.2020.04.022 contributor: fullname: Probst, HC – volume: 380 start-page: 651 year: 2019 end-page: 663 ident: B15 article-title: Aspiration pneumonia publication-title: N Engl J Med doi: 10.1056/NEJMc1903636 contributor: fullname: Niederman, MS – ident: B18 article-title: A quality control tool for high throughput sequence data . 2020 . Andrews Simon. FASTQC . Available from : https://www.bioinformatics.babraham.ac.uk/projects/fastqc – volume: 2010 year: 2010 ident: B20 article-title: The human oral microbiome database: a web accessible resource for investigating oral microbe taxonomic and genomic information publication-title: Database (Oxford) doi: 10.1093/database/baq013 contributor: fullname: Dewhirst, FE – volume: 38 start-page: 4027 year: 2022 end-page: 4029 ident: B22 article-title: MicrobiomeMarker: an R/Bioconductor package for microbiome marker identification and visualization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac438 contributor: fullname: Marschall, T – volume: 8 year: 2013 ident: B23 article-title: Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data publication-title: PLoS One doi: 10.1371/journal.pone.0061217 contributor: fullname: Holmes, S – volume: 35 start-page: 526 year: 2019 end-page: 528 ident: B26 article-title: Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty633 contributor: fullname: Schliep, K – volume: 9 start-page: 638 year: 2020 ident: B41 article-title: The COVID-19 pandemic: catching up with the cataclysm publication-title: F1000Res doi: 10.12688/f1000research.24963.1 contributor: fullname: Basu, A – volume: 205 start-page: 458 year: 2012 end-page: 465 ident: B48 article-title: Impact of the 2009 influenza pandemic on pneumococcal pneumonia hospitalizations in the United States publication-title: J Infect Dis doi: 10.1093/infdis/jir749 contributor: fullname: Viboud, C – volume: 6 year: 2021 ident: B9 article-title: Inflammation-type dysbiosis of the oral microbiome associates with the duration of COVID-19 symptoms and long COVID publication-title: JCI Insight doi: 10.1172/jci.insight.152346 contributor: fullname: Bucci, V – volume: 5 start-page: 1 year: 2017 end-page: 18 ident: B21 article-title: Normalization and microbial differential abundance strategies depend upon data characteristics publication-title: Microbiome doi: 10.1186/s40168-017-0237-y contributor: fullname: Knight, R – ident: B34 article-title: Lahti L , Shetty S . 2012-2019 . Microbiome R package . Available from : http://microbiome.github.com/microbiome . – volume: 9 start-page: 1368848 year: 2017 ident: B40 article-title: Species in human infections II publication-title: J Oral Microbiol doi: 10.1080/20002297.2017.1368848 contributor: fullname: Olsen, I – volume: 27 start-page: 892 year: 2021 end-page: 903 ident: B8 article-title: SARS-CoV-2 infection of the oral cavity and saliva publication-title: Nat Med doi: 10.1038/s41591-021-01296-8 contributor: fullname: Byrd, KM – year: 2016 ident: B25 publication-title: Ggplot2: elegant graphics for data analysis ;Springer-Verlag ;New York doi: 10.1007/978-3-319-24277-4 contributor: fullname: Wickham, H – volume: 13 year: 2012 ident: B14 article-title: Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples publication-title: Genome Biol doi: 10.1186/gb-2012-13-6-r42 contributor: fullname: Izard, J – volume: 82 start-page: 355 year: 2011 end-page: 364 ident: B46 article-title: Evolution of a new bacterial pathway for 4-nitrotoluene degradation publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2011.07817.x contributor: fullname: Parales, RE – volume: 5 year: 2019 ident: B52 article-title: In Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors publication-title: Sci. Adv doi: 10.1126/sciadv.aau3333 contributor: fullname: Potempa, J – ident: B30 article-title: Mleval: machine learning model evaluation . Available from : https://cran.r-project.org/web/packages/MLeval/MLeval.pdf . Retrieved 3 Apr 2023 – volume: 79 start-page: 5112 year: 2013 end-page: 5120 ident: B17 article-title: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01043-13 contributor: fullname: Schloss, PD – ident: e_1_3_3_12_2 doi: 10.1128/JB.00542-10 – ident: e_1_3_3_38_2 doi: 10.1038/s41587-020-0548-6 – ident: e_1_3_3_51_2 doi: 10.1016/j.jinf.2020.06.047 – ident: e_1_3_3_54_2 doi: 10.3389/fmicb.2021.671813 – ident: e_1_3_3_27_2 doi: 10.1093/bioinformatics/bty633 – ident: e_1_3_3_28_2 doi: 10.1890/12-2010.1 – ident: e_1_3_3_31_2 – ident: e_1_3_3_33_2 doi: 10.1186/s13059-014-0550-8 – ident: e_1_3_3_45_2 doi: 10.1007/s10532-020-09919-6 – ident: e_1_3_3_40_2 doi: 10.1128/mSystems.00187-18 – ident: e_1_3_3_48_2 doi: 10.3389/fmicb.2019.02752 – ident: e_1_3_3_50_2 doi: 10.1016/j.virusres.2020.198005 – ident: e_1_3_3_9_2 doi: 10.1038/s41591-021-01296-8 – ident: e_1_3_3_20_2 doi: 10.1038/nmeth.3869 – ident: e_1_3_3_52_2 doi: 10.1038/s41467-020-17840-y – ident: e_1_3_3_22_2 doi: 10.1186/s40168-017-0237-y – ident: e_1_3_3_29_2 doi: 10.1038/s41586-019-1237-9 – ident: e_1_3_3_10_2 doi: 10.1172/jci.insight.152346 – ident: e_1_3_3_46_2 doi: 10.3389/fbioe.2021.602445 – ident: e_1_3_3_42_2 doi: 10.12688/f1000research.24963.1 – ident: e_1_3_3_8_2 doi: 10.1093/cid/ciaa663 – ident: e_1_3_3_35_2 – ident: e_1_3_3_15_2 doi: 10.1186/gb-2012-13-6-r42 – ident: e_1_3_3_19_2 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.1522149113 – ident: e_1_3_3_34_2 – ident: e_1_3_3_16_2 doi: 10.1056/NEJMc1903636 – ident: e_1_3_3_37_2 doi: 10.1093/nar/28.1.27 – ident: e_1_3_3_17_2 doi: 10.1128/aem.59.3.695-700.1993 – ident: e_1_3_3_53_2 doi: 10.1126/sciadv.aau3333 – ident: e_1_3_3_41_2 doi: 10.1080/20002297.2017.1368848 – ident: e_1_3_3_3_2 doi: 10.1016/j.cell.2020.04.035 – ident: e_1_3_3_6_2 doi: 10.1128/mBio.01969-20 – ident: e_1_3_3_11_2 doi: 10.1136/gutjnl-2020-323826 – ident: e_1_3_3_24_2 doi: 10.1371/journal.pone.0061217 – ident: e_1_3_3_44_2 doi: 10.1038/s41590-021-01028-7 – ident: e_1_3_3_18_2 doi: 10.1128/AEM.01043-13 – ident: e_1_3_3_55_2 doi: 10.1016/j.cmet.2018.06.007 – ident: e_1_3_3_7_2 doi: 10.3389/fmicb.2021.637430 – ident: e_1_3_3_4_2 doi: 10.1056/NEJMoa2002032 – ident: e_1_3_3_49_2 doi: 10.1093/infdis/jir749 – ident: e_1_3_3_30_2 – ident: e_1_3_3_47_2 doi: 10.1111/j.1365-2958.2011.07817.x – ident: e_1_3_3_2_2 doi: 10.1016/j.cell.2020.04.022 – ident: e_1_3_3_25_2 – ident: e_1_3_3_5_2 doi: 10.1128/mBio.02496-21 – ident: e_1_3_3_39_2 doi: 10.1073/pnas.1409644111 – ident: e_1_3_3_43_2 doi: 10.1099/jmm.0.001520 – ident: e_1_3_3_26_2 doi: 10.1007/978-3-319-24277-4 – ident: e_1_3_3_32_2 doi: 10.1038/s41596-019-0264-1 – ident: e_1_3_3_36_2 doi: 10.1093/bib/bbaa290 – ident: e_1_3_3_21_2 doi: 10.1093/database/baq013 – ident: e_1_3_3_23_2 doi: 10.1093/bioinformatics/btac438 – ident: e_1_3_3_13_2 doi: 10.1126/science.abn1890 |
SSID | ssj0001637129 |
Score | 2.281703 |
Snippet | Studies on the role of the oral microbiome in SARS-CoV-2 infection and severity of the disease are limited. We aimed to characterize the bacterial communities... ABSTRACTStudies on the role of the oral microbiome in SARS-CoV-2 infection and severity of the disease are limited. We aimed to characterize the bacterial... ABSTRACT Studies on the role of the oral microbiome in SARS-CoV-2 infection and severity of the disease are limited. We aimed to characterize the bacterial... |
SourceID | doaj pubmedcentral proquest crossref asm2 pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0106222 |
SubjectTerms | Antibiotics Asymptomatic Bacteria Chronic illnesses COVID-19 disease severity Disease transmission Enzymes Hospitalization Human Microbiome Infections microbial networks Microbiomes Microbiota Microorganisms Opportunist infection Patients Pneumonia Research Article Respiratory tract rRNA 16S Saliva Sample size Severe acute respiratory syndrome coronavirus 2 Taxonomy Tongue Vaccination Viral infections |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF9Ki-CL-G20ygiCIE3NfiSbfTxbS1VsQb2jb2GT3W3v4XKluRP6X_knOpOvelJEuKfs5rKXmdn5zc3sbxh7I11uUZo-1pZXsdIt5a1L4tx4EYxVOlF0dvjrSXY8VZ_P0rMtlg1nYfo32OzbZtEm8kfLFvn7Rcdu3OxTICNigVvvDuqQwqBrZzKZnn65-Xclkxo9WZ_GvPVe3IPxGWLDH7W0_bdhzb9LJv_wQUf32b0ePMKkk_YDtuXrh-xO107y-hH7dTgUWewBlYr39Vh7YGsHdVfvjZ4KlgEaSykgWMw7HqaVBUfGXp-v580FICgE9JieGtvR7IPT2afDmBvwl_Nm6XwDtgHifkLv4qC8xgfgp2M3ofk8-w5X304m8BMjcTqbBTMezyRQF4hlDWP59mM2Pfr44-A47jsyxDZN01VsQpW44GTwMjUofkR3aal1ZhwvEfhZ660ojUpyHMtzk1Y2aOExqCorrjNr5RO2XS9r_4xBSFMRlHdeWqfoLEJSeVEJTV_EcSOJ2FsSTzEoRNFGKyIvBkEWrSALISL2bpBgcdlRdPxr8geS8TiR2LXbC6hrRW-sheYOf4ZGrJx6dN46T0JQTpusdFZWXEZsd9CQm_VRxlhjvG94xF6Pw2islIGxtV-uaQ5GcISKVMSedgo1rkRqRNoIbiOWb6jaxlI3R-r5RUsITnQb1JTv-X-_sxfsrkC0RjVvXO6y7dXV2r9EdLUqX_Wm9Bs1zSWy priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA6yIPgi_rZ6ygiCIFevSZqmeTzvPE7BE9Rb7q2kTeLtw7bHdffg_qv7E51puuuuiL4IfWqGNrszyXzTmXzD2GvpSova9Km2vElzPVDeuiwtjRfB2FxnOZ0d_nxSHJ_mn87U2UarL6oJi_TA8Y_b09yJ2mjELcrjRqrLLITcaVPUzsqGR57PTGwEU8PXlUJq9GRjGhP34L15ZEbu31EQJFJqljux_Vxs-aOBtv9PWPP3kskNH3R0j90dwSPsx0nfZ7d8-4Ddju0krx-ym8NVkcUuUKn4WI-1C7Z10MZ6b_RU0AXoLaWAYD6LPEwLC44We_tjOevPAUEhoMf01NiOpA--TD8eptyAv5j1nfM92B6I-wm9i4P6Gl-AV2Q3IXlefIPLryf7cIWROJ3NgilPpxKoC0TXwrp8-xE7Pfrw_eA4HTsypFYptUhNaDIXnAxeKoPqR3Snaq0L43iNwM9ab1FZeVbiWFka1dighcegqm64LqyVj9mk7Vr_lEFQSoTcOy-ty-ksQtZ40QhND-K4kSTsDamnGpdUXw3RiiirlSKrQZGVEAl7u9JgdREpOv4m_J50vBYkdu3hBtpcNdpc9S-bS9jOykJ-zY8yxhrjfcMT9mo9jIuVMjC29d2SZDCCI1SUJ-xJNKj1TKRGpI3gNmHllqltTXV7pJ2dD4TgRLdBTfme_Y8f95zdEQjkqByOyx02WVwu_QsEXov65bDGfgIeXi11 priority: 102 providerName: Directory of Open Access Journals – databaseName: Coronavirus Research Database dbid: COVID link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagExIv_GYEBjISEhJautiO4_gJjY1pIDEkYNXeIie2two1KU2KNP4q_kTu8qOlE9oDUp_qU2u3X-6-s8_fEfJK2NTAv-lCZVgRxqqVvLVRmGrHvTaximK8O_zpJDk-jT-eybN-w63uyyoHn9g6alsVuEe-hwdyCtIpzd7Of4TYNQpPV_sWGjfJlgDqAAjfOvg8-XC43mVJhIKI1h9ngi_em3UKyfUYkyEeYtPckalnfCMutfL9_-KcV0sn_4pFR3dJNqyiK0H5Pl42-bj4dUXg8f-XeY_c6Wkq3e9wdZ_ccOUDcqtrXHn5kPw-HMo5dikWpfeVX7vUlJaWXWU5xERaeVobPGyis2mn-NQYatGtlOfLaX1BgX5SiM0OW-ihdfu7hkxTN5_WlXU1NTVFlSmIY5bml_AF8Op0VNCeJV_p4svJPv0JOT_eAqMTFk4ExX4TVUlXheKPyOnR-28Hx2Hf-yE0Usom1L6IrLfCOyE1AA14pMyVSrRlOVBMY5zhuY6jFMbSVMvCeMUdpG95wVRijHhMRmVVuieEeim5j511wtgYbz1EheMFV_hBDFxWQF4jALL-4a2zNi_iaTZAJWuhknEekDcDRrJ5JwZynfE7RNHKEHW82zeqxXnWu4VMMQvLUMDKpQOaoNLI-9gqneTWiIKJgOwMMFnPb42RgLxcDYNbwLMeU7pqiTaQKyL_igOy3UF2NROhgNMDjQ5IugHmjalujpTTi1Z6HIU9sP3f0-vn9Yzc5kAGsaSOiR0yahZL9xzIW5O_6J_QP1JlSfg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9RAEF5KRekX8d1olREEQZqa3c1mkw8itbVUoRXUO_otbLK77YGX1MudeP_Kn-hMXk5PTiGfspNkk5ndeSY7-wxjz6VNDWrThdrwMox1S3lrozDNnPCZiXUU097h07PkZBR_OFfnW2wob9V_wGZjaEf1pEazr_s_vi3f4IB_3W2ASV9NO9LjZp_iGxEKnJGvCXSMlOF12qP99pdLIjW6t35tc-OVO-yG1Ih4YipftG2aqVjzVy2t_yYs-ndK5R8-6vgWu9mDSzjorOE223LVHXa9Kze5vMt-Hg1JGHtAqeR9vtYemMpC1eWDoyeD2kNjaIkIppOOp2luwNJkUF0sJs0lIGgE9KiOCt-R9OHH8fujkGfgriZNbV0DpgHihkLvY6FY4gPw6NhPSJ4nn2H26ewAvmOkTnu3YMzDsQSqElFXsErvvsdGx---HJ6EfcWG0Cil5mHmy8h6K72TKkPzQPSnCq2TzPICgaExzogii6MU29I0U6XxWjgMuoqS68QYeZ9tV3XlHjLwSgkfO-uksTHtVYhKJ0qh6UYcJ5qAvSD15IPF5G00I9J80Gne6jQXImAvBw3mVx2Fx_-E35KOV4LEvt2eqGcXeT-Yc80tvoZGLK0cOnedRt7HVmdJYY0suQzY7mAhv_tHK8paIh7lAXu2asbBTCs0pnL1gmQwwiPUFAfsQWdQq54MdhmwdM3U1rq63lJNLlvCcKLjoKJ9j_5508dsRyB6oxw4LnfZ9ny2cE8Qbc2Lp-0Y-gW4fin7 priority: 102 providerName: Scholars Portal |
Title | Diversity, composition, and networking of saliva microbiota distinguish the severity of COVID-19 episodes as revealed by an analysis of 16S rRNA variable V1-V3 region sequences |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37310423 https://journals.asm.org/doi/10.1128/msystems.01062-22 https://www.proquest.com/docview/2870738391 https://search.proquest.com/docview/2825502424 https://pubmed.ncbi.nlm.nih.gov/PMC10470033 https://doaj.org/article/71d2b971505e471780ff4d796bda3c13 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZtxmAvY7_rtgsaDAajTizJtuzHNG3pNpKWbgl5M7Ilt4HFDnEy6H-1P3F3sp01Y-xhEGyILo7M3fm-sz7dEfJe6EiBNo0rFctcX9qSt9pzo9jwPFa-9HzcOzwah5cT__MsmO2RsN0LY0n7WTrvFd8XvWJ-Z7mVy0XWb3li_evREMsLYBOy_j7Zh_j7IEe3b1ZCISGKNUuY8PztL-qqyFUPEyDucmxhIyQAGx-7FHVUteA7YclW7_8b5PyTOfkgFF08I08bDEkH9Vyfkz1TvCCP666S9y_Jz7OWa3FCkTHe0LJOqCo0LWraNwQsWua0UrgSRBfzuhzTWlGNPl_cbubVHQVsSCFwGuxvh9LDq-mnM5fF1CznValNRVVFsQQUBBlN03v4A_jURU5QnoVf6epmPKA_ICHHLVp0ytypoNgMoizolsX9ikwuzr8NL92mMYOrgiBYu3GeeTrXIjciiMEKAOQFqZRhrFkK-E8po3ga-14EY1EUB5nKJTeQW6UZk6FS4jXpFGVhDgjNg4DnvtFGKO3jlgQvMzzjEi_E4HnikA-onqTxrCqxSQuPklanidVpwrlDPrYaTJZ1pY5_CZ-ijreCWGTbflGubpPG1BLJNNyGBMgcGIjhMvLy3NcyDlOtRMaEQ45bC_k9P1w4lpD2x8wh77bD4LO4EKMKU25QBhI5BEe-Q97UBrWdSWuXDol2TG1nqrsj4Ca2LnjrFof__9Mj8oQDikMuHBPHpLNebcxbQF3rtAuuNpNd8mgwmFx9gfPp-fj6Bs7W9rr2XQYcR37Ute74C5UQNkw |
link.rule.ids | 230,314,727,780,784,864,885,2102,12056,21388,24318,27924,27925,31719,31720,33744,33745,38516,43310,43805,43895,53147,53160,53173,53791,53793,73745,74302,74412 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5BJwQv_B4EBhgJCQktXWwncfKExsbUwVYk2Kq9RU7sbBVqUpoWafxV_Inc5UdLJ7QHpDzVVmMnX-6-s8_fAbyRJtL4Nq2rNM9cX9WSt8Zzo9iKPNa-8nw6O3w8DAen_qez4KxdcKvatMrOJtaG2pQZrZHv0IacwnAq5u-nP1yqGkW7q20JjZuwQVW8gx5s7H0ZHe6vVllCqdCjtduZaIt3Jo1CctWnYEi4VDS3p6uJWPNLtXz_vzjn1dTJv3zRwT1Iulk0KSjf-4t52s9-XRF4_P9p3oe7LU1luw2uHsANWzyEW03hystH8Hu_S-fYZpSU3mZ-bTNdGFY0meXoE1mZs0rTZhObjBvFp7lmhsxKcb4YVxcM6SdD32yphB71rp-ry2Nmp-OqNLZiumKkMoV-zLD0Em-AV6OjQv15-I3Nvg532U-M-ekUGBtxdyQZ1ZsoC7ZMFH8MpwcfT_YGblv7wdVBEMzdOM88kxuZWxnECDTkkUGqVBgbniLF1Npqkca-F2FbhG8-07kSFsO3NOMq1FpuQq8oC_sUWB4EIvetsVIbn049eJkVmVD0RxxNlgNvCQBJ-_FWSR0XiSjpoJLUUEmEcOBdh5Fk2oiBXNf5A6Fo2ZF0vOsfytl50pqFRHGD01DIygOLNEFFXp77RsVharTMuHRgq4PJanwrjDjwetmMZoH2enRhywX1wViR-JfvwJMGssuRSIWcHmm0A9EamNeGut5SjC9q6XES9qDyf8-uH9cruD04OT5Kjg6Hn5_DHYHEkNLruNyC3ny2sC-QyM3Tl-3X-gf_1Uzo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4iXiW8CA4yEhISWNbaTOHlC27pq46NMg1V7i5zY3vrQpGtapP1X_IncJU5LEZrUp_rUOro73-9yP98R8l7oRIE2jS8VK_xQNi1vdeAnqeE2VaEMQrw7_G0UH5-Hny-iC8d_qh2tsjsTm4NaVwW-I-9jQU5COpWyvnW0iNPB8NPs2scJUlhpdeM07pItiIoB75Gtg6PR6dn6jUssJEQ3V9qEc7k_bbsl13uYGHEfB-j2VD3lGzGqaeX_P_z5L43yr7g0fEi2HaCk-60FPCJ3TPmY3GtHTN48Ib8HHfFilyJ93HG0dqkqNS1bDjhEL1pZWissC9HppO3NtFBU4wFQXi4n9RUFoEghihocdofSh9_HJwOfpdTMJnWlTU1VTbEfFEQcTfMb-AP4tB1PUJ7FP-j8bLRPf0F2jve16Jj5Y0FxMkRV0hWl-yk5Hx79PDz23ZQGX0VRtPBTWwTaamGNiFIwCUB8US5lnGqWAxhUyiiep2GQwFqSpFGhrOQGEq28YDJWSjwjvbIqzQtCbRRxGxpthNIh3k8ICsMLLvGHGBwuHvmA6smcm9VZk8HwJOsUmTWKzDj3yMdOg9msbdtxm_AB6ngliB23my-q-WXmHDiTTMNjSMDPkYGALpPA2lDLNM61EgUTHtnpLGS9v7XReuTdahkcGKsyqjTVEmUgq0OkFHrkeWtQq50ICegbAK9Hkg1T29jq5ko5uWqahGMLDhzU9_L2fb0l98GNsq8noy-vyAMOCA55cEzskN5ivjSvAXEt8jfOlf4APj4uJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversity%2C+composition%2C+and+networking+of+saliva+microbiota+distinguish+the+severity+of+COVID-19+episodes+as+revealed+by+an+analysis+of+16S+rRNA+variable+V1-V3+region+sequences&rft.jtitle=mSystems&rft.au=Larios+Serrato%2C+Violeta&rft.au=Meza%2C+Beatriz&rft.au=Gonzalez-Torres%2C+Carolina&rft.au=Gaytan-Cervantes%2C+Javier&rft.date=2023-06-13&rft.eissn=2379-5077&rft.spage=e0106222&rft_id=info:doi/10.1128%2Fmsystems.01062-22&rft_id=info%3Apmid%2F37310423&rft.externalDocID=37310423 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5077&client=summon |