The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines

The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effect...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 13; no. 2; p. e0297921
Main Authors McLean, Gary, Kamil, Jeremy, Lee, Benhur, Moore, Penny, Schulz, Thomas F., Muik, Alexander, Sahin, Ugur, Türeci, Özlem, Pather, Shanti
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 26.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms.
AbstractList ABSTRACT The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms.
The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms.
The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms.The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms.
The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms.
Author Sahin, Ugur
Schulz, Thomas F.
Muik, Alexander
Moore, Penny
Türeci, Özlem
Lee, Benhur
McLean, Gary
Pather, Shanti
Kamil, Jeremy
Author_xml – sequence: 1
  givenname: Gary
  orcidid: 0000-0002-1278-1743
  surname: McLean
  fullname: McLean, Gary
  organization: School of Human Sciences, London Metropolitan University and National Heart and Lung Institute, Imperial College London, London, United Kingdom
– sequence: 2
  givenname: Jeremy
  orcidid: 0000-0001-8422-7656
  surname: Kamil
  fullname: Kamil, Jeremy
  organization: Louisiana State University Health, Shreveport, Louisiana, USA
– sequence: 3
  givenname: Benhur
  orcidid: 0000-0003-0760-1709
  surname: Lee
  fullname: Lee, Benhur
  organization: Icahn School of Medicine at Mount Sinai, New York, New York, USA
– sequence: 4
  givenname: Penny
  orcidid: 0000-0001-8719-4028
  surname: Moore
  fullname: Moore, Penny
  organization: Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa, MRC Antibody Immunity Research Unit, School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa
– sequence: 5
  givenname: Thomas F.
  orcidid: 0000-0001-8792-5345
  surname: Schulz
  fullname: Schulz, Thomas F.
  organization: Institute of Virology, Hannover Medical School, Hannover, Germany, Cluster of Excellence 2155 RESIST, Hannover, Germany, German Centre for Infection Research, Hannover-Braunschweig Site, Germany
– sequence: 6
  givenname: Alexander
  orcidid: 0000-0003-4561-2273
  surname: Muik
  fullname: Muik, Alexander
  organization: BioNTech, Mainz, Germany
– sequence: 7
  givenname: Ugur
  orcidid: 0000-0003-0363-1564
  surname: Sahin
  fullname: Sahin, Ugur
  organization: BioNTech, Mainz, Germany
– sequence: 8
  givenname: Özlem
  surname: Türeci
  fullname: Türeci, Özlem
  organization: BioNTech, Mainz, Germany
– sequence: 9
  givenname: Shanti
  orcidid: 0000-0003-1244-6264
  surname: Pather
  fullname: Pather, Shanti
  organization: BioNTech, Mainz, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35352979$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1rFDEUxYNUbK199FXyKMLUfM_Mi1DWqgstBVv3NdxJMtssM8mazCz43zu700ormpeEm3N-HO55jY5CDA6ht5ScU8qqj33j4zlhdVkXjL5AJ4xKUpSS0qMn72N0lvOGTIdzWnHyCh1zyeXedYKu7-4dXvZbMAOOLb7cxW7nwxrfXny_LRZxVTB8PQ4w-BgyhmDxCpKHMGQcA17crJafC1pPQ2N8cPkNetlCl93Zw32Kfny5vFt8K65uvi4XF1cFSCmGopKmdMZYImuniGmVK6mhlkki25ZzIlrgVlgGRBELDQVixWRQRBhDXVPxU7ScuTbCRm-T7yH90hG8PgxiWmtIgzed00IoKZlUe4RQTIItK9bUgnHeEs7oxPo0s7Zj0ztrXBgSdM-gz3-Cv9fruNM1EaQ6AN4_AFL8Obo86N5n47oOgotj1kwJKVStiJykH2Yp5J7pTRxTmNakKdH7OvW-Tn2oUx-4754G-5PosbxJwGeBSTHn5Fpt_FzVlNN3_8UWf7kewf_W_wbgnrpK
CitedBy_id crossref_primary_10_1007_s40618_023_02055_x
crossref_primary_10_3390_vaccines11101554
crossref_primary_10_1002_cbic_202200158
crossref_primary_10_3390_ijms232415658
crossref_primary_10_35627_2219_5238_2024_32_3_63_69
crossref_primary_10_1093_biomethods_bpae002
crossref_primary_10_1111_febs_16777
crossref_primary_10_3390_vaccines12111214
crossref_primary_10_1089_vim_2023_0058
crossref_primary_10_12688_f1000research_131522_1
crossref_primary_10_1371_journal_pone_0283400
crossref_primary_10_1111_risa_14291
crossref_primary_10_3390_v15040855
crossref_primary_10_1177_15353702231181343
crossref_primary_10_3389_fnano_2024_1335346
crossref_primary_10_3390_v17020182
crossref_primary_10_1186_s12890_023_02473_w
crossref_primary_10_1177_11769343231169377
crossref_primary_10_1016_j_virusres_2022_199016
crossref_primary_10_3390_vaccines11101564
crossref_primary_10_1016_j_cytogfr_2023_11_005
crossref_primary_10_3389_fimmu_2023_1130539
crossref_primary_10_1016_j_ebiom_2024_105437
crossref_primary_10_3390_vaccines10101572
crossref_primary_10_1016_j_jaut_2024_103218
crossref_primary_10_3390_medicina59081393
crossref_primary_10_3390_healthcare10050790
crossref_primary_10_1002_jmv_27936
crossref_primary_10_3390_vaccines11030682
crossref_primary_10_1038_s41541_023_00638_6
crossref_primary_10_1039_D4CP01199F
crossref_primary_10_3389_fpubh_2022_1038017
crossref_primary_10_1016_j_ebiom_2023_104683
crossref_primary_10_1016_j_vaccine_2023_08_076
crossref_primary_10_3390_pathogens13121051
crossref_primary_10_3390_pathogens11091058
crossref_primary_10_1016_j_virusres_2023_199289
crossref_primary_10_1080_14760584_2022_2092472
crossref_primary_10_1016_j_celrep_2023_112888
crossref_primary_10_1002_hsr2_1914
crossref_primary_10_1172_JCI162192
crossref_primary_10_3389_fchem_2022_948553
crossref_primary_10_3390_vaccines10122144
crossref_primary_10_3390_biomedicines11113050
crossref_primary_10_1038_s42003_022_04170_6
crossref_primary_10_1126_science_abm0271
crossref_primary_10_3390_bios14020099
crossref_primary_10_1016_j_jiph_2024_102556
crossref_primary_10_3390_cells12091213
crossref_primary_10_3390_vaccines10122149
crossref_primary_10_1097_ACO_0000000000001364
crossref_primary_10_17816_clinpract106239
crossref_primary_10_3390_v14071408
crossref_primary_10_1007_s12144_022_03622_w
crossref_primary_10_1016_j_isci_2023_105972
crossref_primary_10_3390_vaccines10122035
crossref_primary_10_1007_s11071_024_10635_6
crossref_primary_10_1002_mef2_90
crossref_primary_10_3390_vaccines12070792
crossref_primary_10_3390_v16010156
crossref_primary_10_3389_fpubh_2022_1008521
crossref_primary_10_3389_fmed_2022_995960
crossref_primary_10_1016_j_xcrm_2024_101668
crossref_primary_10_1002_jmv_28131
crossref_primary_10_1038_s41598_023_45517_1
crossref_primary_10_3389_fmolb_2024_1451280
crossref_primary_10_3390_tropicalmed9020050
crossref_primary_10_1093_jtm_taae074
crossref_primary_10_3390_vaccines12030281
crossref_primary_10_1038_s41598_024_53111_2
crossref_primary_10_3390_v15081756
crossref_primary_10_3390_microorganisms11030580
crossref_primary_10_1186_s12889_023_15174_0
crossref_primary_10_3390_vaccines12040362
crossref_primary_10_1097_TXD_0000000000001676
crossref_primary_10_1007_s12020_024_03891_4
crossref_primary_10_1016_j_celrep_2022_110969
crossref_primary_10_1016_j_clim_2022_109103
crossref_primary_10_1038_s42005_024_01865_6
crossref_primary_10_3390_vaccines11050920
crossref_primary_10_1080_14760584_2023_2232851
crossref_primary_10_1093_immadv_ltad005
crossref_primary_10_1007_s12088_023_01121_5
crossref_primary_10_1136_ard_2023_224301
crossref_primary_10_3389_fimmu_2022_901217
crossref_primary_10_3390_v15112175
crossref_primary_10_3390_pharmaceutics15010194
crossref_primary_10_3389_fsci_2024_1298248
crossref_primary_10_1016_j_biopha_2025_117844
crossref_primary_10_1016_j_hlife_2023_12_001
crossref_primary_10_3389_fimmu_2024_1450380
crossref_primary_10_1039_D3TB02895J
crossref_primary_10_3390_biomedicines12112530
crossref_primary_10_1016_j_imj_2023_08_005
crossref_primary_10_3390_vaccines10081208
crossref_primary_10_1016_j_vaccine_2022_08_017
crossref_primary_10_3389_fpubh_2022_1072137
crossref_primary_10_1111_1751_7915_70073
crossref_primary_10_1038_s41598_023_43357_7
crossref_primary_10_1021_acsnano_4c13146
crossref_primary_10_1002_slct_202201380
crossref_primary_10_3390_ijms26031263
crossref_primary_10_1016_j_heliyon_2023_e18093
crossref_primary_10_1128_mbio_00899_23
crossref_primary_10_3389_fimmu_2022_1042784
crossref_primary_10_3389_fmolb_2023_1288686
crossref_primary_10_1038_s41598_024_65468_5
crossref_primary_10_1021_acs_jmedchem_4c00534
crossref_primary_10_1016_j_vaccine_2023_12_024
crossref_primary_10_1038_s41598_023_48186_2
crossref_primary_10_3390_life14020264
crossref_primary_10_1016_j_isci_2024_110117
crossref_primary_10_3390_v14122609
crossref_primary_10_2147_JMDH_S419859
crossref_primary_10_1038_s41598_023_30052_w
crossref_primary_10_1155_2022_4677720
crossref_primary_10_3390_ijms232214367
crossref_primary_10_1002_hsr2_1209
crossref_primary_10_1002_jmv_28609
crossref_primary_10_1016_j_compbiomed_2022_106449
crossref_primary_10_3389_fmats_2022_1039247
crossref_primary_10_3389_fimmu_2023_1221587
crossref_primary_10_3389_fmicb_2022_999783
crossref_primary_10_3390_v16121844
crossref_primary_10_3389_fmicb_2024_1386271
crossref_primary_10_1016_j_mran_2023_100273
crossref_primary_10_3390_v15040944
crossref_primary_10_1016_j_ijid_2022_12_037
crossref_primary_10_3389_fnut_2023_1152254
crossref_primary_10_5812_jjm_142644
Cites_doi 10.1038/s41577-020-00480-0
10.1016/j.meegid.2021.105038
10.1126/sciadv.abb9153
10.1056/NEJMoa2107659
10.1101/2021.05.05.21256716
10.15585/mmwr.mm7037e2
10.1038/s41586-021-03402-9
10.1016/j.immuni.2021.03.023
10.1038/d41586-021-03825-4
10.1093/cid/ciab072
10.1126/science.abf6950
10.1038/s41586-020-2895-3
10.3390/microorganisms9071542
10.1101/2021.06.28.21259420
10.1056/NEJMc2102179
10.1016/j.cell.2021.12.033
10.1101/2021.12.28.474333
10.1101/2021.04.04.21254881
10.1016/S0140-6736(21)01358-1
10.1038/s41586-021-03412-7
10.1056/NEJMc2104974
10.1038/s41586-021-04352-y
10.1101/2021.06.09.447722
10.1128/mBio.00696-21
10.1016/j.chom.2021.04.007
10.1056/NEJMoa2108891
10.1001/jama.2021.4388
10.1101/2021.09.06.459005
10.1056/NEJMc2113468
10.1371/journal.ppat.1009226
10.1101/2021.01.07.425740
10.1371/journal.pgen.1009272
10.2471/BLT.20.253591
10.3201/eid2701.203611
10.1016/S1473-3099(22)00141-4
10.1101/2021.07.28.21261159
10.1186/s12985-021-01554-8
10.1056/NEJMoa2102214
10.1101/2021.12.15.21267805
10.1101/2021.12.08.21267417
10.1038/s41467-021-25167-5
10.3390/v13040633
10.1016/j.antiviral.2020.104792
10.1042/BSR20201312
10.1056/NEJMc2104192
10.1038/s41590-020-0782-6
10.3390/pathogens9030240
10.1128/mBio.01062-13
10.1126/sciimmunol.abg6461
10.1016/j.cell.2021.02.033
10.1038/s41467-021-24909-9
10.1056/NEJMc2031670
10.1038/s41591-021-01294-w
10.1128/JVI.02683-07
10.1038/s41586-021-03398-2
10.1038/s41586-021-03324-6
10.1016/j.cell.2021.02.042
10.1038/s41467-020-19883-7
10.1101/2021.12.12.21267646
10.1073/pnas.0808116105
10.2139/ssrn.3909743
10.1016/j.cell.2020.07.012
10.1016/j.xcrm.2021.100204
10.1126/science.abg6105
10.2139/ssrn.3816840
10.1016/j.cell.2021.03.036
10.1101/2021.06.21.21258528
10.1126/sciimmunol.abj1750
10.1038/s41586-020-2012-7
10.1101/2021.12.07.21267432
10.1038/s41586-021-03207-w
10.1016/j.cell.2020.09.038
10.1038/s41598-020-78703-6
10.1016/S0140-6736(21)01290-3
10.3389/fmicb.2020.01800
10.1038/s41586-021-03653-6
10.1101/2021.12.08.21267491
10.1101/2021.04.29.441258
10.1016/j.tim.2016.03.003
10.1016/j.molcel.2020.04.022
10.1056/NEJMc2102017
10.1038/s41586-021-03777-9
10.1016/S0065-3527(08)60286-9
10.1016/j.cell.2020.09.032
10.3390/biology10020091
10.1126/science.abg3055
10.1038/s41591-021-01285-x
10.1101/2021.01.27.427998
10.2139/ssrn.3891065
10.1016/j.cell.2020.06.043
10.1101/2021.12.20.21267966
10.1038/s41564-020-0771-4
10.1101/2021.12.02.21267198
10.1101/2021.08.30.21262446
10.1101/2020.08.26.267724
10.1101/2021.01.22.427830
10.1101/2021.01.25.427948
10.1093/cid/ciab308
10.1101/2021.12.26.21268380
10.1101/2022.01.07.22268919
10.1101/2021.05.22.21257658
10.1016/j.cell.2020.10.049
10.1101/2021.12.31.21268583
10.1101/2021.01.10.20248871
10.1101/2021.08.30.21262465
10.2139/ssrn.3873839
10.1128/mBio.01386-21
10.1186/1471-2148-4-21
10.1016/j.cell.2020.10.001
10.1101/2021.07.23.21261026
10.4161/rna.8.2.15013
10.1038/s41577-021-00544-9
10.1038/s41591-021-01527-y
10.1101/2021.12.14.21267615
10.1371/journal.pbio.3001115
10.21203/rs.3.rs-1207071/v1
10.1101/2021.12.22.21268103
10.1056/NEJMoa2101765
10.1056/NEJMc2031364
10.1038/s41591-021-01318-5
10.1101/2021.10.10.21264827
10.1016/j.ygeno.2020.09.059
10.1101/2021.08.18.21262237
10.1073/pnas.0508200103
10.1038/s41591-021-01377-8
10.1016/S2666-5247(21)00068-9
10.1002/jmv.27247
10.1101/2020.03.04.975995
10.1101/2021.09.08.21263095
10.1101/2021.12.24.474095
10.1101/2021.12.21.21268116
10.1038/s41586-021-03681-2
10.1007/s40142-020-00197-5
10.1016/j.chom.2021.03.002
10.1038/s41586-021-03471-w
10.1016/S0140-6736(21)00628-0
10.1016/S2468-2667(21)00036-0
10.1101/2021.06.08.447308
10.1038/s41564-021-00908-w
10.1016/j.celrep.2021.109292
10.1016/j.chom.2021.03.009
10.1016/j.cell.2021.01.037
10.1016/j.cell.2020.08.012
10.2807/1560-7917.ES.2021.26.35.2100793
10.1128/mBio.01590-21
10.1056/NEJMoa2103055
10.1101/2021.06.03.21258307
10.1038/s41586-021-03291-y
10.1056/NEJMc2106083
10.1126/science.abd4251
10.1016/j.cell.2021.03.055
10.21203/rs.3.rs-871965/v1
ContentType Journal Article
Copyright Copyright © 2022 McLean et al.
Copyright © 2022 McLean et al. 2022 McLean et al.
Copyright_xml – notice: Copyright © 2022 McLean et al.
– notice: Copyright © 2022 McLean et al. 2022 McLean et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/mbio.02979-21
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Prasad, Vinayaka R
Editor_xml – sequence: 1
  givenname: Vinayaka R
  surname: Prasad
  fullname: Prasad, Vinayaka R
ExternalDocumentID oai_doaj_org_article_446552560d474625ad782b94233f0321
PMC9040821
02979-21
35352979
10_1128_mbio_02979_21
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P20 GM121307
– fundername: BioNtech
  grantid: N/A
– fundername: ;
  grantid: N/A
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
-
0R
ADACO
BXI
HZ
7X8
5PM
ID FETCH-LOGICAL-a554t-85c7eccd059e60cf6e71c1d2505ff3304fa3d4d2a060dab1a0d47ec604cc1eb83
IEDL.DBID DOA
ISSN 2150-7511
IngestDate Wed Aug 27 01:26:11 EDT 2025
Thu Aug 21 14:05:06 EDT 2025
Fri Jul 11 10:05:53 EDT 2025
Tue Apr 26 23:06:26 EDT 2022
Wed Feb 19 02:25:22 EST 2025
Thu Apr 24 23:05:48 EDT 2025
Tue Jul 01 00:57:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords COVID-19
variant
mutation
SARS-CoV-2
vaccines
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a554t-85c7eccd059e60cf6e71c1d2505ff3304fa3d4d2a060dab1a0d47ec604cc1eb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
The authors declare a conflict of interest. GRM, TFS, BL, and PLM have no conflicts of interest to report. ÖT and US are management board members and employees at BioNTech SE (Mainz, Germany). JK has a grant from the Rockefeller Foundation to increase equity and representativeness in SARS-CoV-2 sequencing, has a role on an NIH grant to carry out SARS-CoV-2 sequencing and detection of viral variants, served on a BioNTech advisory panel, and holds stock in BioNTech and Pfizer, who manufacture COVID-19 vaccines. AM and SP are employees at BioNTech SE. AM, ÖT, and US are inventors on patents and patent applications related to RNA technology and COVID-19 vaccines. AM, ÖT, and US have securities from BioNTech SE.
ORCID 0000-0001-8422-7656
0000-0001-8792-5345
0000-0001-8719-4028
0000-0003-0760-1709
0000-0002-1278-1743
0000-0003-0363-1564
0000-0003-4561-2273
0000-0003-1244-6264
OpenAccessLink https://doaj.org/article/446552560d474625ad782b94233f0321
PMID 35352979
PQID 2645469605
PQPubID 23479
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_446552560d474625ad782b94233f0321
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9040821
proquest_miscellaneous_2645469605
asm2_journals_10_1128_mbio_02979_21
pubmed_primary_35352979
crossref_citationtrail_10_1128_mbio_02979_21
crossref_primary_10_1128_mbio_02979_21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-26
PublicationDateYYYYMMDD 2022-04-26
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2022
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_28_2
e_1_3_2_172_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_123_2
e_1_3_2_146_2
e_1_3_2_169_2
e_1_3_2_104_2
e_1_3_2_142_2
e_1_3_2_165_2
e_1_3_2_188_2
e_1_3_2_81_2
e_1_3_2_127_2
e_1_3_2_108_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_161_2
e_1_3_2_184_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_180_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_112_2
e_1_3_2_135_2
e_1_3_2_158_2
e_1_3_2_92_2
e_1_3_2_131_2
e_1_3_2_154_2
e_1_3_2_177_2
e_1_3_2_50_2
e_1_3_2_116_2
e_1_3_2_139_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_171_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_145_2
e_1_3_2_126_2
e_1_3_2_168_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_141_2
e_1_3_2_187_2
e_1_3_2_122_2
e_1_3_2_164_2
e_1_3_2_149_2
e_1_3_2_107_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_183_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_160_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_134_2
e_1_3_2_93_2
e_1_3_2_115_2
e_1_3_2_157_2
e_1_3_2_130_2
e_1_3_2_176_2
e_1_3_2_70_2
e_1_3_2_111_2
e_1_3_2_153_2
e_1_3_2_138_2
e_1_3_2_119_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_151_2
e_1_3_2_170_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_125_2
e_1_3_2_148_2
e_1_3_2_167_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_121_2
e_1_3_2_144_2
e_1_3_2_163_2
e_1_3_2_186_2
e_1_3_2_106_2
e_1_3_2_129_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_140_2
e_1_3_2_182_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_114_2
e_1_3_2_137_2
e_1_3_2_156_2
e_1_3_2_179_2
e_1_3_2_94_2
Maison DP (e_1_3_2_59_2) 2021; 80
e_1_3_2_71_2
e_1_3_2_110_2
e_1_3_2_133_2
e_1_3_2_152_2
e_1_3_2_175_2
e_1_3_2_90_2
e_1_3_2_118_2
e_1_3_2_27_2
e_1_3_2_150_2
e_1_3_2_173_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_124_2
e_1_3_2_147_2
e_1_3_2_61_2
e_1_3_2_120_2
e_1_3_2_166_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_143_2
e_1_3_2_185_2
e_1_3_2_109_2
e_1_3_2_105_2
e_1_3_2_128_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_162_2
e_1_3_2_181_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_113_2
e_1_3_2_159_2
e_1_3_2_136_2
e_1_3_2_178_2
e_1_3_2_72_2
e_1_3_2_155_2
e_1_3_2_132_2
e_1_3_2_174_2
e_1_3_2_117_2
Skelly, DT, Harding, AC, Gilbert-Jaramillo, J, Knight, ML, Longet, S, Brown, A, Adele, S, Adland, E, Brown, H, Tipton, T, Stafford, L, Mentzer, AJ, Johnson, SA, Amini, A, Tan, TK, Schimanski, L, Huang, KA, Rijal, P, Frater, J, Goulder, P, Conlon, CP, Jeffery, K, Dold, C, Pollard, AJ, Sigal, A, de Oliveira, T, Townsend, AR, Klenerman, P, Dunachie, SJ, Barnes, E, Carroll, MW, James, WS (B77) 2021; 12
Aydillo, T, Gonzalez-Reiche, AS, Aslam, S, van de Guchte, A, Khan, Z, Obla, A, Dutta, J, van Bakel, H, Aberg, J, Garcia-Sastre, A, Shah, G, Hohl, T, Papanicolaou, G, Perales, MA, Sepkowitz, K, Babady, NE, Kamboj, M (B40) 2020; 383
Maison, DP, Ching, LL, Shikuma, CM, Nerurkar, VR (B58) 2021; 80
Betton, M, Livrozet, M, Planas, D, Fayol, A, Monel, B, Vedie, B, Bruel, T, Tartour, E, Robillard, N, Manuguerra, JC, Blanchard, A, Ghosn, J, Visseaux, B, Pere, H, Lebeaux, D, Schwartz, O, Veyer, D, Hulot, JS (B92) 2021; 73
Supasa, P, Zhou, D, Dejnirattisai, W, Liu, C, Mentzer, AJ, Ginn, HM, Zhao, Y, Duyvesteyn, HME, Nutalai, R, Tuekprakhon, A, Wang, B, Paesen, GC, Slon-Campos, J, Lopez-Camacho, C, Hallis, B, Coombes, N, Bewley, KR, Charlton, S, Walter, TS, Barnes, E, Dunachie, SJ, Skelly, D, Lumley, SF, Baker, N, Shaik, I, Humphries, HE, Godwin, K, Gent, N, Sienkiewicz, A, Dold, C, Levin, R, Dong, T, Pollard, AJ, Knight, JC, Klenerman, P, Crook, D, Lambe, T, Clutterbuck, E, Bibi, S, Flaxman, A, Bittaye, M, Belij-Rammerstorfer, S, Gilbert, S, Hall, DR, Williams, MA, Paterson, NG, James, W, Carroll, MW, Fry, EE, Mongkolsapaya, J (B86) 2021; 184
B158
Wu, K, Choi, A, Koch, M, Ma, L, Hill, A, Nunna, N, Huang, W, Oestreicher, J, Colpitts, T, Bennett, H, Legault, H, Paila, Y, Nestorova, B, Ding, B, Pajon, R, Miller, JM, Leav, B, Carfi, A, McPhee, R, Edwards, DK (B165) 2021
Cheng, L, Song, S, Zhou, B, Ge, X, Yu, J, Zhang, M, Ju, B, Zhang, Z (B93) 2021; 18
Gallais, F, Velay, A, Nazon, C, Wendling, MJ, Partisani, M, Sibilia, J, Candon, S, Fafi-Kremer, S (B127) 2021; 27
B156
Gaebler, C, Wang, Z, Lorenzi, JCC, Muecksch, F, Finkin, S, Tokuyama, M, Cho, A, Jankovic, M, Schaefer-Babajew, D, Oliveira, TY, Cipolla, M, Viant, C, Barnes, CO, Bram, Y, Breton, G, Hagglof, T, Mendoza, P, Hurley, A, Turroja, M, Gordon, K, Millard, KG, Ramos, V, Schmidt, F, Weisblum, Y, Jha, D, Tankelevich, M, Martinez-Delgado, G, Yee, J, Patel, R, Dizon, J, Unson-O'Brien, C, Shimeliovich, I, Robbiani, DF, Zhao, Z, Gazumyan, A, Schwartz, RE, Hatziioannou, T, Bjorkman, PJ, Mehandru, S, Bieniasz, PD, Caskey, M, Nussenzweig, MC (B120) 2021; 591
B155
Madhi, SA, Baillie, V, Cutland, CL, Voysey, M, Koen, AL, Fairlie, L, Padayachee, SD, Dheda, K, Barnabas, SL, Bhorat, QE, Briner, C, Kwatra, G, Ahmed, K, Aley, P, Bhikha, S, Bhiman, JN, Bhorat, AE, Du Plessis, J, Esmail, A, Groenewald, M, Horne, E, Hwa, SH, Jose, A, Lambe, T, Laubscher, M, Malahleha, M, Masenya, M, Masilela, M, McKenzie, S, Molapo, K, Moultrie, A, Oelofse, S, Patel, F, Pillay, S, Rhead, S, Rodel, H, Rossouw, L, Taoushanis, C, Tegally, H, Thombrayil, A, van Eck, S, Wibmer, CK, Durham, NM, Kelly, EJ, Villafana, TL, Gilbert, S, Pollard, AJ, de Oliveira, T, Moore, PL, Sigal, A (B73) 2021; 384
Pan, H, Wu, Q, Zeng, G, Yang, J, Jiang, D, Deng, X, Chu, K, Zheng, W, Zhu, F, Yu, H, Yin, W (B168) 2021
Choi, B, Choudhary, MC, Regan, J, Sparks, JA, Padera, RF, Qiu, X, Solomon, IH, Kuo, HH, Boucau, J, Bowman, K, Adhikari, UD, Winkler, ML, Mueller, AA, Hsu, TY, Desjardins, M, Baden, LR, Chan, BT, Walker, BD, Lichterfeld, M, Brigl, M, Kwon, DS, Kanjilal, S, Richardson, ET, Jonsson, AH, Alter, G, Barczak, AK, Hanage, WP, Yu, XG, Gaiha, GD, Seaman, MS, Cernadas, M, Li, JZ (B37) 2020; 383
Katz, MA, Harlev, EB, Chazan, B, Chowers, M, Greenberg, D, Peretz, A, Tshori, S, Levy, J, Yacobi, M, Hirsch, A, Amichay, D, Weinberger, R, Dor, AB, Taraday, EK, Reznik, D, Chayat, CB, Sagas, D, Zvi, HB, Berdinstein, R, Rashid, G, Avni, YS, Mandelboim, M, Zuckerman, N, Rainy, N, Akriv, A, Dagan, N, Kepten, E, Barda, N, Balicer, RD (B147) 2021
Hansen, CH, Schelde, AB, Moustsen-Helm, IR, Emborg, H-D, Krause, TG, Mølbak, K, Valentiner-Branth, P (B161) 2021
Sofonea, MT, Roquebert, B, Foulongne, V, Verdurme, L, Trombert-Paolantoni, S, Roussel, M, Haim-Boukobza, S, Alizon, S (B68) 2022
Andrews, N, Stowe, J, Kirsebom, F, Toffa, S, Rickeard, T, Gallagher, E, Gower, C, Kall, M, Groves, N, O’Connell, A-M, Simons, D, Blomquist, PB, Zaidi, A, Nash, S, Aziz, NIBA, Thelwall, S, Dabrera, G, Myers, R, Amirthalingam, G, Gharbia, S, Barrett, JC, Elson, R, Ladhani, SN, Ferguson, N, Zambon, M, Campbell, CN, Brown, K, Hopkins, S, Chand, M, Ramsay, M, Bernal, JL (B159) 2021
Riou, C, Keeton, R, Moyo-Gwete, T, Hermanus, T, Kgagudi, P, Baguma, R, Tegally, H, Doolabh, D, Iranzadeh, A, Tyers, L, Mutavhatsindi, H, Tincho, MB, Benede, N, Marais, G, Chinhoyi, LR, Mennen, M, Skelem, S, Du Bruyn, E, Stek, C, de Oliveira, T, Williamson, C, Moore, PL, Wilkinson, RJ, Ntusi, NAB, Burgers, WA (B134) 2021
Chen, RE, Zhang, X, Case, JB, Winkler, ES, Liu, Y, VanBlargan, LA, Liu, J, Errico, JM, Xie, X, Suryadevara, N, Gilchuk, P, Zost, SJ, Tahan, S, Droit, L, Turner, JS, Kim, W, Schmitz, AJ, Thapa, M, Wang, D, Boon, ACM, Presti, RM, O'Halloran, JA, Kim, AHJ, Deepak, P, Pinto, D, Fremont, DH, Crowe, JE, Corti, D, Virgin, HW, Ellebedy, AH, Shi, PY, Diamond, MS (B72) 2021; 27
B34
B35
Dejnirattisai, W, Zhou, D, Supasa, P, Liu, C, Mentzer, AJ, Ginn, HM, Zhao, Y, Duyvesteyn, HME, Tuekprakhon, A, Nutalai, R, Wang, B, Lopez-Camacho, C, Slon-Campos, J, Walter, TS, Skelly, D, Costa Clemens, SA, Naveca, FG, Nascimento, V, Nascimento, F, Fernandes da Costa, C, Resende, PC, Pauvolid-Correa, A, Siqueira, MM, Dold, C, Levin, R, Dong, T, Pollard, AJ, Knight, JC, Crook, D, Lambe, T, Clutterbuck, E, Bibi, S, Flaxman, A, Bittaye, M, Belij-Rammerstorfer, S, Gilbert, SC, Carroll, MW, Klenerman, P, Barnes, E, Dunachie, SJ, Paterson, NG, Williams, MA, Hall, DR, Hulswit, RJG, Bowden, TA, Fry, EE, Mongkolsapaya, J, Ren, J, Stuart, DI, Screaton, GR (B85) 2021; 184
Agerer, B, Koblischke, M, Gudipati, V, Montano-Gutierrez, LF, Smyth, M, Popa, A, Genger, JW, Endler, L, Florian, DM, Muhlgrabner, V, Graninger, M, Aberle, SW, Husa, AM, Shaw, LE, Lercher, A, Gattinger, P, Torralba-Gombau, R, Trapin, D, Penz, T, Barreca, D, Fae, I, Wenda, S, Traugott, M, Walder, G, Pickl, WF, Thiel, V, Allerberger, F, Stockinger, H, Puchhammer-Stockl, E, Weninger, W, Fischer, G, Hoepler, W, Pawelka, E, Zoufaly, A, Valenta, R, Bock, C, Paster, W, Geyeregger, R, Farlik, M, Halbritter, F, Huppa, JB, Aberle, JH, Bergthaler, A (B132) 2021; 6
Qing, E, Kicmal, T, Kumar, B, Hawkins, GM, Timm, E, Perlman, S, Gallagher, T (B9) 2021; 12
B167
B1
Wang, Z, Schmidt, F, Weisblum, Y, Muecksch, F, Barnes, CO, Finkin, S, Schaefer-Babajew, D, Cipolla, M, Gaebler, C, Lieberman, JA, Oliveira, TY, Yang, Z, Abernathy, ME, Huey-Tubman, KE, Hurley, A, Turroja, M, West, KA, Gordon, K, Millard, KG, Ramos, V, Da Silva, J, Xu, J, Colbert, RA, Patel, R, Dizon, J, Unson-O'Brien, C, Shimeliovich, I, Gazumyan, A, Caskey, M, Bjorkman, PJ, Casellas, R, Hatziioannou, T, Bieniasz, PD, Nussenzweig, MC (B105) 2021; 592
Rössler, A, Riepler, L, Bante, D, Laer, D, Kimpel, J (B113) 2021
B163
B164
Zhou, P, Yang, XL, Wang, XG, Hu, B, Zhang, L, Zhang, W, Si, HR, Zhu, Y, Li, B, Huang, CL, Chen, HD, Chen, J, Luo, Y, Guo, H, Jiang, RD, Liu, MQ, Chen, Y, Shen, XR, Wang, X, Zheng, XS, Zhao, K, Chen, QJ, Deng, F, Liu, LL, Yan, B, Zhan, FX, Wang, YY, Xiao, GF, Shi, ZL (B27) 2020; 579
B162
Tan, CS, Collier, A-r, Liu, J, Yu, J, Wan, H, McMahan, K, He, X, Jacob-Dolan, C, Chandrashekar, A, Sellers, D, Stephenson, KE, Vidal, SJ, Jaegle, K, Curran, JL, Rowe, M, Hemond, R, Rivera, LB, Anioke, T, Barrett, J, Chung, B, Gardner, S, Gebre, MS, Lifton, M, Powers, O, VanWyk, H, Wu, C, Barouch, DH (B169) 2021
Gribble, J, Stevens, LJ, Agostini, ML, Anderson-Daniels, J, Chappell, JD, Lu, X, Pruijssers, AJ, Routh, AL, Denison, MR (B18) 2021; 17
B43
B44
B45
B46
B47
B48
Zhou, H, Dcosta, BM, Samanovic, MI, Mulligan, MJ, Landau, NR, Tada, T (B107) 2021; 12
Tarke, A, Sidney, J, Kidd, CK, Dan, JM, Ramirez, SI, Yu, ED, Mateus, J, da Silva Antunes, R, Moore, E, Rubiro, P, Methot, N, Phillips, E, Mallal, S, Frazier, A, Rawlings, SA, Greenbaum, JA, Peters, B, Smith, DM, Crotty, S, Weiskopf, D, Grifoni, A, Sette, A (B131) 2021; 2
B49
Choi, A, Koch, M, Wu, K, Chu, L, Ma, L, Hill, A, Nunna, N, Huang, W, Oestreicher, J, Colpitts, T, Bennett, H, Legault, H, Paila, Y, Nestorova, B, Ding, B, Montefiori, D, Pajon, R, Miller, JM, Leav, B, Carfi, A, McPhee, R, Edwards, DK (B166) 2021; 27
Khatamzas, E, Rehn, A, Muenchhoff, M, Hellmuth, J, Gaitzsch, E, Weiglein, T, Georgi, E, Scherer, C, Stecher, S, Weigert, O, Girl, P, Zange, S, Keppler, OT, Stemmler, J, von Bergwelt-Baildon, M, Wölfel, R, Antwerpen, M (B51) 2021
Alexandersen, S, Chamings, A, Bhatta, TR (B20) 2020; 11
Meckiff, BJ, Ramirez-Suastegui, C, Fajardo, V, Chee, SJ, Kusnadi, A, Simon, H, Eschweiler, S, Grifoni, A, Pelosi, E, Weiskopf, D, Sette, A, Ay, F, Seumois, G, Ottensmeier, CH, Vijayanand, P (B128) 2020; 183
B178
B179
B176
B177
B174
Koyama, T, Platt, D, Parida, L (B22) 2020; 98
B175
B172
B173
Alter, G, Yu, J, Liu, J, Chandrashekar, A, Borducchi, EN, Tostanoski, LH, McMahan, K, Jacob-Dolan, C, Martinez, DR, Chang, A, Anioke, T, Lifton, M, Nkolola, J, Stephenson, KE, Atyeo, C, Shin, S, Fields, P, Kaplan, I, Robins, H, Amanat, F, Krammer, F, Baric, RS, Le Gars, M, Sadoff, J, de Groot, AM, Heerwegh, D, Struyf, F, Douoguih, M, van Hoof, J, Schuitemaker, H, Barouch, DH (B98) 2021; 596
B171
Peng, Y, Mentzer, AJ, Liu, G, Yao, X, Yin, Z, Dong, D, Dejnirattisai, W, Rostron, T, Supasa, P, Liu, C, Lopez-Camacho, C, Slon-Campos, J, Zhao, Y, Stuart, DI, Paesen, GC, Grimes, JM, Antson, AA, Bayfield, OW, Hawkins, D, Ker, DS, Wang, B, Turtle, L, Subramaniam, K, Thomson, P, Zhang, P, Dold, C, Ratcliff, J, Simmonds, P, de Silva, T, Sopp, P, Wellington, D, Rajapaksa, U, Chen, YL, Salio, M, Napolitani, G, Paes, W, Borrow, P, Kessler, BM, Fry, JW, Schwabe, NF, Semple, MG, Baillie, JK, Moore, SC, Openshaw, PJM, Ansari, MA, Dunachie, S, Barnes,
References_xml – ident: e_1_3_2_184_2
  doi: 10.1038/s41577-020-00480-0
– ident: e_1_3_2_72_2
  doi: 10.1016/j.meegid.2021.105038
– ident: e_1_3_2_51_2
– ident: e_1_3_2_18_2
  doi: 10.1126/sciadv.abb9153
– ident: e_1_3_2_141_2
  doi: 10.1056/NEJMoa2107659
– ident: e_1_3_2_65_2
– ident: e_1_3_2_143_2
– ident: e_1_3_2_166_2
  doi: 10.1101/2021.05.05.21256716
– ident: e_1_3_2_155_2
  doi: 10.15585/mmwr.mm7037e2
– ident: e_1_3_2_60_2
  doi: 10.1038/s41586-021-03402-9
– ident: e_1_3_2_95_2
  doi: 10.1016/j.immuni.2021.03.023
– ident: e_1_3_2_49_2
– ident: e_1_3_2_48_2
– ident: e_1_3_2_110_2
  doi: 10.1038/d41586-021-03825-4
– ident: e_1_3_2_39_2
  doi: 10.1093/cid/ciab072
– ident: e_1_3_2_11_2
  doi: 10.1126/science.abf6950
– ident: e_1_3_2_34_2
  doi: 10.1038/s41586-020-2895-3
– ident: e_1_3_2_63_2
  doi: 10.3390/microorganisms9071542
– ident: e_1_3_2_152_2
  doi: 10.1101/2021.06.28.21259420
– volume: 80
  start-page: 52
  year: 2021
  ident: e_1_3_2_59_2
  article-title: Genetic characteristics and phylogeny of 969-bp S gene sequence of SARS-CoV-2 from Hawai'i reveals the worldwide emerging P681H mutation
  publication-title: Hawaii J Health Soc Welf
– ident: e_1_3_2_80_2
  doi: 10.1056/NEJMc2102179
– ident: e_1_3_2_117_2
  doi: 10.1016/j.cell.2021.12.033
– ident: e_1_3_2_50_2
– ident: e_1_3_2_173_2
– ident: e_1_3_2_139_2
  doi: 10.1101/2021.12.28.474333
– ident: e_1_3_2_89_2
  doi: 10.1101/2021.04.04.21254881
– ident: e_1_3_2_172_2
– ident: e_1_3_2_175_2
– ident: e_1_3_2_36_2
– ident: e_1_3_2_149_2
  doi: 10.1016/S0140-6736(21)01358-1
– ident: e_1_3_2_83_2
  doi: 10.1038/s41586-021-03412-7
– ident: e_1_3_2_47_2
– ident: e_1_3_2_151_2
  doi: 10.1056/NEJMc2104974
– ident: e_1_3_2_12_2
  doi: 10.1038/s41586-021-04352-y
– ident: e_1_3_2_127_2
  doi: 10.1101/2021.06.09.447722
– ident: e_1_3_2_101_2
  doi: 10.1128/mBio.00696-21
– ident: e_1_3_2_90_2
  doi: 10.1016/j.chom.2021.04.007
– ident: e_1_3_2_150_2
  doi: 10.1056/NEJMoa2108891
– ident: e_1_3_2_84_2
  doi: 10.1001/jama.2021.4388
– ident: e_1_3_2_123_2
  doi: 10.1101/2021.09.06.459005
– ident: e_1_3_2_156_2
– ident: e_1_3_2_126_2
  doi: 10.1056/NEJMc2113468
– ident: e_1_3_2_66_2
– ident: e_1_3_2_19_2
  doi: 10.1371/journal.ppat.1009226
– ident: e_1_3_2_81_2
  doi: 10.1101/2021.01.07.425740
– ident: e_1_3_2_14_2
  doi: 10.1371/journal.pgen.1009272
– ident: e_1_3_2_23_2
  doi: 10.2471/BLT.20.253591
– ident: e_1_3_2_128_2
  doi: 10.3201/eid2701.203611
– ident: e_1_3_2_71_2
  doi: 10.1016/S1473-3099(22)00141-4
– ident: e_1_3_2_145_2
  doi: 10.1101/2021.07.28.21261159
– ident: e_1_3_2_94_2
  doi: 10.1186/s12985-021-01554-8
– ident: e_1_3_2_2_2
– ident: e_1_3_2_74_2
  doi: 10.1056/NEJMoa2102214
– ident: e_1_3_2_112_2
  doi: 10.1101/2021.12.15.21267805
– ident: e_1_3_2_111_2
  doi: 10.1101/2021.12.08.21267417
– ident: e_1_3_2_78_2
  doi: 10.1038/s41467-021-25167-5
– ident: e_1_3_2_68_2
– ident: e_1_3_2_92_2
  doi: 10.3390/v13040633
– ident: e_1_3_2_122_2
  doi: 10.1016/j.antiviral.2020.104792
– ident: e_1_3_2_146_2
– ident: e_1_3_2_55_2
  doi: 10.1042/BSR20201312
– ident: e_1_3_2_62_2
– ident: e_1_3_2_186_2
  doi: 10.1056/NEJMc2104192
– ident: e_1_3_2_46_2
– ident: e_1_3_2_130_2
  doi: 10.1038/s41590-020-0782-6
– ident: e_1_3_2_4_2
  doi: 10.3390/pathogens9030240
– ident: e_1_3_2_25_2
  doi: 10.1128/mBio.01062-13
– ident: e_1_3_2_133_2
  doi: 10.1126/sciimmunol.abg6461
– ident: e_1_3_2_87_2
  doi: 10.1016/j.cell.2021.02.033
– ident: e_1_3_2_107_2
  doi: 10.1038/s41467-021-24909-9
– ident: e_1_3_2_41_2
  doi: 10.1056/NEJMc2031670
– ident: e_1_3_2_73_2
  doi: 10.1038/s41591-021-01294-w
– ident: e_1_3_2_22_2
  doi: 10.1128/JVI.02683-07
– ident: e_1_3_2_56_2
  doi: 10.1038/s41586-021-03398-2
– ident: e_1_3_2_106_2
  doi: 10.1038/s41586-021-03324-6
– ident: e_1_3_2_96_2
  doi: 10.1016/j.cell.2021.02.042
– ident: e_1_3_2_21_2
  doi: 10.1038/s41467-020-19883-7
– ident: e_1_3_2_115_2
  doi: 10.1101/2021.12.12.21267646
– ident: e_1_3_2_20_2
  doi: 10.1073/pnas.0808116105
– ident: e_1_3_2_157_2
  doi: 10.2139/ssrn.3909743
– ident: e_1_3_2_64_2
  doi: 10.1016/j.cell.2020.07.012
– ident: e_1_3_2_132_2
  doi: 10.1016/j.xcrm.2021.100204
– ident: e_1_3_2_76_2
  doi: 10.1126/science.abg6105
– ident: e_1_3_2_91_2
  doi: 10.2139/ssrn.3816840
– ident: e_1_3_2_103_2
  doi: 10.1016/j.cell.2021.03.036
– ident: e_1_3_2_120_2
  doi: 10.1101/2021.06.21.21258528
– ident: e_1_3_2_134_2
  doi: 10.1126/sciimmunol.abj1750
– ident: e_1_3_2_28_2
  doi: 10.1038/s41586-020-2012-7
– ident: e_1_3_2_116_2
  doi: 10.1101/2021.12.07.21267432
– ident: e_1_3_2_121_2
  doi: 10.1038/s41586-021-03207-w
– ident: e_1_3_2_131_2
  doi: 10.1016/j.cell.2020.09.038
– ident: e_1_3_2_174_2
– ident: e_1_3_2_31_2
  doi: 10.1038/s41598-020-78703-6
– ident: e_1_3_2_97_2
  doi: 10.1016/S0140-6736(21)01290-3
– ident: e_1_3_2_7_2
  doi: 10.3389/fmicb.2020.01800
– ident: e_1_3_2_138_2
  doi: 10.1038/s41586-021-03653-6
– ident: e_1_3_2_114_2
  doi: 10.1101/2021.12.08.21267491
– ident: e_1_3_2_136_2
  doi: 10.1101/2021.04.29.441258
– ident: e_1_3_2_16_2
  doi: 10.1016/j.tim.2016.03.003
– ident: e_1_3_2_57_2
  doi: 10.1016/j.molcel.2020.04.022
– ident: e_1_3_2_75_2
  doi: 10.1056/NEJMc2102017
– ident: e_1_3_2_109_2
  doi: 10.1038/s41586-021-03777-9
– ident: e_1_3_2_15_2
  doi: 10.1016/S0065-3527(08)60286-9
– ident: e_1_3_2_32_2
  doi: 10.1016/j.cell.2020.09.032
– ident: e_1_3_2_182_2
– ident: e_1_3_2_8_2
  doi: 10.3390/biology10020091
– ident: e_1_3_2_67_2
  doi: 10.1126/science.abg3055
– ident: e_1_3_2_100_2
  doi: 10.1038/s41591-021-01285-x
– ident: e_1_3_2_181_2
– ident: e_1_3_2_82_2
  doi: 10.1101/2021.01.27.427998
– ident: e_1_3_2_159_2
  doi: 10.2139/ssrn.3891065
– ident: e_1_3_2_33_2
  doi: 10.1016/j.cell.2020.06.043
– ident: e_1_3_2_162_2
  doi: 10.1101/2021.12.20.21267966
– ident: e_1_3_2_179_2
– ident: e_1_3_2_26_2
  doi: 10.1038/s41564-020-0771-4
– ident: e_1_3_2_170_2
  doi: 10.1101/2021.12.02.21267198
– ident: e_1_3_2_154_2
  doi: 10.1101/2021.08.30.21262446
– ident: e_1_3_2_165_2
– ident: e_1_3_2_137_2
  doi: 10.1101/2020.08.26.267724
– ident: e_1_3_2_17_2
  doi: 10.1101/2021.01.22.427830
– ident: e_1_3_2_79_2
  doi: 10.1101/2021.01.25.427948
– ident: e_1_3_2_93_2
  doi: 10.1093/cid/ciab308
– ident: e_1_3_2_178_2
– ident: e_1_3_2_183_2
– ident: e_1_3_2_140_2
  doi: 10.1101/2021.12.26.21268380
– ident: e_1_3_2_161_2
  doi: 10.1101/2022.01.07.22268919
– ident: e_1_3_2_158_2
  doi: 10.1101/2021.05.22.21257658
– ident: e_1_3_2_180_2
– ident: e_1_3_2_40_2
  doi: 10.1016/j.cell.2020.10.049
– ident: e_1_3_2_44_2
– ident: e_1_3_2_69_2
  doi: 10.1101/2021.12.31.21268583
– ident: e_1_3_2_164_2
– ident: e_1_3_2_52_2
  doi: 10.1101/2021.01.10.20248871
– ident: e_1_3_2_148_2
  doi: 10.1101/2021.08.30.21262465
– ident: e_1_3_2_168_2
  doi: 10.2139/ssrn.3873839
– ident: e_1_3_2_108_2
  doi: 10.1128/mBio.01386-21
– ident: e_1_3_2_24_2
  doi: 10.1186/1471-2148-4-21
– ident: e_1_3_2_129_2
  doi: 10.1016/j.cell.2020.10.001
– ident: e_1_3_2_169_2
  doi: 10.1101/2021.07.23.21261026
– ident: e_1_3_2_6_2
  doi: 10.4161/rna.8.2.15013
– ident: e_1_3_2_43_2
  doi: 10.1038/s41577-021-00544-9
– ident: e_1_3_2_167_2
  doi: 10.1038/s41591-021-01527-y
– ident: e_1_3_2_160_2
  doi: 10.1101/2021.12.14.21267615
– ident: e_1_3_2_27_2
  doi: 10.1371/journal.pbio.3001115
– ident: e_1_3_2_113_2
  doi: 10.21203/rs.3.rs-1207071/v1
– ident: e_1_3_2_118_2
  doi: 10.1101/2021.12.22.21268103
– ident: e_1_3_2_147_2
  doi: 10.1056/NEJMoa2101765
– ident: e_1_3_2_38_2
  doi: 10.1056/NEJMc2031364
– ident: e_1_3_2_88_2
  doi: 10.1038/s41591-021-01318-5
– ident: e_1_3_2_171_2
  doi: 10.1101/2021.10.10.21264827
– ident: e_1_3_2_3_2
  doi: 10.1016/j.ygeno.2020.09.059
– ident: e_1_3_2_153_2
  doi: 10.1101/2021.08.18.21262237
– ident: e_1_3_2_5_2
  doi: 10.1073/pnas.0508200103
– ident: e_1_3_2_119_2
  doi: 10.1038/s41591-021-01377-8
– ident: e_1_3_2_102_2
  doi: 10.1016/S2666-5247(21)00068-9
– ident: e_1_3_2_124_2
  doi: 10.1002/jmv.27247
– ident: e_1_3_2_13_2
  doi: 10.1101/2020.03.04.975995
– ident: e_1_3_2_125_2
  doi: 10.1101/2021.09.08.21263095
– ident: e_1_3_2_185_2
  doi: 10.1101/2021.12.24.474095
– ident: e_1_3_2_70_2
  doi: 10.1101/2021.12.21.21268116
– ident: e_1_3_2_99_2
  doi: 10.1038/s41586-021-03681-2
– ident: e_1_3_2_176_2
– ident: e_1_3_2_29_2
  doi: 10.1007/s40142-020-00197-5
– ident: e_1_3_2_77_2
  doi: 10.1016/j.chom.2021.03.002
– ident: e_1_3_2_104_2
  doi: 10.1038/s41586-021-03471-w
– ident: e_1_3_2_45_2
– ident: e_1_3_2_61_2
– ident: e_1_3_2_105_2
  doi: 10.1016/S0140-6736(21)00628-0
– ident: e_1_3_2_37_2
  doi: 10.1016/S2468-2667(21)00036-0
– ident: e_1_3_2_177_2
  doi: 10.1101/2021.06.08.447308
– ident: e_1_3_2_58_2
  doi: 10.1038/s41564-021-00908-w
– ident: e_1_3_2_54_2
  doi: 10.1016/j.celrep.2021.109292
– ident: e_1_3_2_85_2
  doi: 10.1016/j.chom.2021.03.009
– ident: e_1_3_2_9_2
  doi: 10.1016/j.cell.2021.01.037
– ident: e_1_3_2_53_2
  doi: 10.1016/j.cell.2020.08.012
– ident: e_1_3_2_188_2
  doi: 10.2807/1560-7917.ES.2021.26.35.2100793
– ident: e_1_3_2_10_2
  doi: 10.1128/mBio.01590-21
– ident: e_1_3_2_142_2
  doi: 10.1056/NEJMoa2103055
– ident: e_1_3_2_135_2
  doi: 10.1101/2021.06.03.21258307
– ident: e_1_3_2_42_2
  doi: 10.1038/s41586-021-03291-y
– ident: e_1_3_2_163_2
– ident: e_1_3_2_98_2
  doi: 10.1056/NEJMc2106083
– ident: e_1_3_2_187_2
  doi: 10.1126/science.abd4251
– ident: e_1_3_2_86_2
  doi: 10.1016/j.cell.2021.03.055
– ident: e_1_3_2_35_2
– ident: e_1_3_2_30_2
  doi: 10.21203/rs.3.rs-871965/v1
– ident: e_1_3_2_144_2
– volume: 595
  start-page: 572
  year: 2021
  end-page: 577
  ident: B137
  article-title: BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans
  publication-title: Nature
  doi: 10.1038/s41586-021-03653-6
– year: 2021
  ident: B51
  article-title: Emergence of multiple SARS-CoV-2 mutations in an immunocompromised host
  publication-title: medRxiv
  doi: 10.1101/2021.01.10.20248871
– volume: 48
  start-page: 1
  year: 1997
  end-page: 100
  ident: B14
  article-title: The molecular biology of coronaviruses
  publication-title: Adv Virus Res
  doi: 10.1016/S0065-3527(08)60286-9
– volume: 9
  start-page: 240
  year: 2020
  ident: B3
  article-title: Evolutionary trajectory for the emergence of novel coronavirus SARS-CoV-2
  publication-title: Pathogens
  doi: 10.3390/pathogens9030240
– volume: 182
  start-page: 812
  year: 2020
  end-page: 827.e19
  ident: B32
  article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.043
– volume: 397
  start-page: 2331
  year: 2021
  end-page: 2333
  ident: B96
  article-title: Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)01290-3
– year: 2021
  ident: B170
  article-title: Heterologous SARS-CoV-2 booster vaccinations—preliminary report
  publication-title: medRxiv
  doi: 10.1101/2021.10.10.21264827
– volume: 369
  start-page: 1586
  year: 2020
  end-page: 1592
  ident: B186
  article-title: Distinct conformational states of SARS-CoV-2 spike protein
  publication-title: Science
  doi: 10.1126/science.abd4251
– ident: B50
  article-title: Public Health England . 2020 Investigation of novel SARS-COV-2 variant: Variant of Concern 202012/01: technical briefing 1 .
– volume: 384
  start-page: 1412
  year: 2021
  end-page: 1423
  ident: B146
  article-title: BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2101765
– volume: 6
  year: 2021
  ident: B132
  article-title: SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8(+) T cell responses
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.abg6461
– volume: 325
  start-page: 1896
  year: 2021
  end-page: 1898
  ident: B83
  article-title: Neutralizing antibodies against SARS-CoV-2 variants after infection and vaccination
  publication-title: JAMA
  doi: 10.1001/jama.2021.4388
– ident: B164
  article-title: Public Health England . 2021 . SARS-CoV-2 variants of concern and variants under investigation in England: technical briefing: update on hospitalisation and vaccine effectiveness for Omicron VOC-21NOV-01 (B.1.1.529) .
– volume: 596
  start-page: 276
  year: 2021
  end-page: 280
  ident: B108
  article-title: Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization
  publication-title: Nature
  doi: 10.1038/s41586-021-03777-9
– volume: 78
  start-page: 779
  year: 2020
  end-page: 784.e5
  ident: B56
  article-title: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2020.04.022
– volume: 12
  year: 2021
  ident: B9
  article-title: Dynamics of SARS-CoV-2 spike proteins in cell entry: control elements in the amino-terminal domains
  publication-title: mBio
  doi: 10.1128/mBio.01590-21
– volume: 80
  start-page: 52
  year: 2021
  end-page: 61
  ident: B58
  article-title: Genetic characteristics and phylogeny of 969-bp S gene sequence of SARS-CoV-2 from Hawai'i reveals the worldwide emerging P681H mutation
  publication-title: Hawaii J Health Soc Welf
– volume: 385
  start-page: 1172
  year: 2021
  end-page: 1183
  ident: B140
  article-title: Safety and efficacy of NVX-CoV2373 Covid-19 vaccine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2107659
– year: 2021
  ident: B117
  article-title: Neutralization of SARS-CoV-2 Omicron pseudovirus by BNT162b2 vaccine-elicited human sera
  publication-title: medRxiv
  doi: 10.1101/2021.12.22.21268103
– volume: 602
  start-page: 487
  year: 2021
  end-page: 495
  ident: B11
  article-title: Evolution of enhanced innate immune evasion by SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-021-04352-y
– volume: 54
  start-page: 1276
  year: 2021
  end-page: 1289.e6
  ident: B94
  article-title: Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.03.023
– year: 2021
  ident: B169
  article-title: Ad26.COV2.S or BNT162b2 boosting of BNT162b2 vaccinated individuals
  publication-title: medRxiv
  doi: 10.1101/2021.12.02.21267198
– ident: B47
  article-title: European Centre for Disease Prevention and Control (ECDC) . 2022 SARS-CoV-2 variants of concern as of 13 January 2022 .
– volume: 184
  start-page: 2384
  year: 2021
  end-page: 2393.e12
  ident: B102
  article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.036
– ident: B34
  article-title: GISAID . 2021 . https://www.gisaid.org/phylodynamics/global/nextstrain/ . Accessed 14 July, 2021 .
– volume: 183
  start-page: 996
  year: 2020
  end-page: 1012.e19
  ident: B130
  article-title: Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.038
– ident: B126
  article-title: Moore PL , Moyo-Gwete T , Hermanus T , Kgagudi P , Ayres F , Makhado Z , Sadoff J , Le Gars M , van Roey G , Crowther C , Garrett N , Bekker L-G , Morris L , Schuitemaker H , Gray G . 2021 . Neutralizing antibodies elicited by the Ad26.COV2.S COVID-19 vaccine show reduced activity against 501Y.V2 (B.1.351), despite protection against severe disease by this variant . bioRxiv doi: 10.1101/2021.06.09.447722 .
– volume: 384
  start-page: 1885
  year: 2021
  end-page: 1898
  ident: B73
  article-title: Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2102214
– ident: B138
  article-title: Tarke A , Coelho CH , Zhang Z , Dan JM , Yu ED , Methot N , Bloom NI , Goodwin B , Phillips E , Mallal S , Sidney J , Filaci G , Weiskopf D , da Silva Antunes R , Crotty S , Grifoni A , Sette A . 2021 . SARS-CoV-2 vaccination induces immunological memory able to cross-recognize variants from Alpha to Omicron . bioRxiv doi: 10.1101/2021.12.28.474333 .
– volume: 103
  start-page: 5108
  year: 2006
  end-page: 5113
  ident: B4
  article-title: Discovery of an RNA virus 3'→5' exoribonuclease that is critically involved in coronavirus RNA synthesis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0508200103
– year: 2022
  ident: B160
  article-title: Effectiveness of mRNA-1273 against SARS-CoV-2 omicron and delta variants
  publication-title: medRxiv
  doi: 10.1101/2022.01.07.22268919
– volume: 95
  start-page: 105038
  year: 2021
  ident: B71
  article-title: Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2
  publication-title: Infect Genet Evol
  doi: 10.1016/j.meegid.2021.105038
– volume: 185
  start-page: 457
  year: 2022
  end-page: 466.e4
  ident: B116
  article-title: mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant
  publication-title: Cell
  doi: 10.1016/j.cell.2021.12.033
– ident: B177
  article-title: Russian Direct Investment Fund, Gamaleya Institute . 2021 . Statement of RDIF and the Gamaleya Institute on omicron variant of COVID . https://sputnikvaccine.com/newsroom/pressreleases/statement-of-rdif-and-the-gamaleya-institute-on-omicron-variant-of-covid/ . Accessed 14 January, 2022 .
– ident: B90
  article-title: Parry HM , Tut G , Faustini S , Stephens C , Saunders P , Bentley C , Hilyard K , Brown K , Amirthalingam G , Charlton S , Leung S , Chiplin E , Coombes NS , Bewley KR , Penn EJ , Rowe C , Otter A , Watts R , D’Arcangelo S , Hallis B , Makin A , Richter AG , Zuo J . 2021 . BNT162b2 vaccination in people over 80 years of age induces strong humoral immune responses with cross neutralisation of P.1 Brazilian variant . https://ssrn.com/abstract=3816840 . Accessed 14 June, 2021
– volume: 385
  start-page: 1627
  year: 2021
  end-page: 1629
  ident: B125
  article-title: SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2113468
– volume: 82
  start-page: 4807
  year: 2008
  end-page: 4811
  ident: B21
  article-title: Homologous recombination is very rare or absent in human influenza A virus
  publication-title: J Virol
  doi: 10.1128/JVI.02683-07
– volume: 384
  start-page: 1466
  year: 2021
  end-page: 1468
  ident: B74
  article-title: Neutralizing activity of BNT162b2-elicited serum
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2102017
– year: 2021
  ident: B124
  article-title: Exposures to different SARS-CoV-2 spike variants elicit neutralizing antibody responses with differential specificity towards established and emerging strains
  publication-title: medRxiv
  doi: 10.1101/2021.09.08.21263095
– year: 2021
  ident: B144
  article-title: Six month safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine
  publication-title: medRxiv
  doi: 10.1101/2021.07.28.21261159
– ident: B143
  article-title: U.S. Department of Health and Human Services, U.S. Food and Drug Administration, Center for Biologics Evaluation and Research . 2020 . Development and licensure of vaccines to prevent COVID-19: guidance for industry . https://www.fda.gov/regulatory-information/search-fda-guidance-documents/development-and-licensure-vaccines-prevent-covid-19 . Accessed 3 March, 2021
– volume: 113
  start-page: 1221
  year: 2021
  end-page: 1232
  ident: B2
  article-title: Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.09.059
– ident: B65
  article-title: GISAID . 2022 . Tracking of variants . https://www.gisaid.org/hcov19-variants/ . Accessed 14 January, 2022 .
– volume: 385
  start-page: 585
  year: 2021
  end-page: 594
  ident: B149
  article-title: Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2108891
– year: 2021
  ident: B69
  article-title: Early assessment of the clinical severity of the SARS-CoV-2 Omicron variant in South Africa
  publication-title: medRxiv
  doi: 10.1101/2021.12.21.21268116
– volume: 27
  start-page: 622
  year: 2021
  end-page: 625
  ident: B99
  article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01285-x
– volume: 372
  year: 2021
  ident: B66
  article-title: Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England
  publication-title: Science
  doi: 10.1126/science.abg3055
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: B27
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– ident: B81
  article-title: Xie X , Liu Y , Liu J , Zhang X , Zou J , Fontes-Garfias CR , Xia H , Swanson KA , Cutler M , Cooper D , Menachery VD , Weaver S , Dormitzer PR , Shi PY . 2021 . Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K, and N501Y variants by BNT162b2 vaccine-elicited sera . bioRxiv doi: 10.1101/2021.01.27.427998 .
– volume: 35
  start-page: 109292
  year: 2021
  ident: B53
  article-title: Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2021.109292
– ident: B171
  article-title: BioNTech. 2021 . BioNTech announces second quarter 2021 financial results and corporate update . https://investors.biontech.de/node/10446/pdf . Accessed 14 September, 2021
– ident: B173
  article-title: BioNTech . 2021 . Update: Omicron variant (B.1.1.529) . https://investors.biontech.de/static-files/47b4131a-0545-4a0b-a353-49b3a1d01789 . Accessed 20 January, 2022 .
– volume: 178
  start-page: 104792
  year: 2020
  ident: B121
  article-title: Coronavirus membrane fusion mechanism offers a potential target for antiviral development
  publication-title: Antiviral Res
  doi: 10.1016/j.antiviral.2020.104792
– volume: 593
  start-page: 142
  year: 2021
  end-page: 146
  ident: B103
  article-title: Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma
  publication-title: Nature
  doi: 10.1038/s41586-021-03471-w
– volume: 105
  start-page: 19944
  year: 2008
  end-page: 19949
  ident: B19
  article-title: Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0808116105
– ident: B80
  article-title: Xie X , Zou J , Fontes-Garfias CR , Xia H , Swanson KA , Cutler M , Cooper D , Menachery VD , Weaver S , Dormitzer PR , Shi PY . 2021 . Neutralization of N501Y mutant SARS-CoV-2 by BNT162b2 vaccine-elicited sera . bioRxiv doi: 10.1101/2021.01.07.425740 .
– volume: 73
  start-page: e815
  year: 2021
  end-page: e821
  ident: B38
  article-title: Intractable coronavirus disease 2019 (COVID-19) and prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in a chimeric antigen receptor-modified T-cell therapy recipient: A case study
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciab072
– volume: 21
  start-page: 1336
  year: 2020
  end-page: 1345
  ident: B129
  article-title: Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19
  publication-title: Nat Immunol
  doi: 10.1038/s41590-020-0782-6
– volume: 26
  start-page: 2100793
  year: 2021
  ident: B187
  article-title: Vaccine effectiveness against infection with the Delta (B.1.617.2) variant, Norway, April to August 2021
  publication-title: Euro Surveill
  doi: 10.2807/1560-7917.ES.2021.26.35.2100793
– ident: B44
  article-title: Public Health England . 2021 SARS-CoV-2 variants of concern and variants under investigation in England: technical briefing 7 .
– year: 2022
  ident: B68
  article-title: From Delta to Omicron: analysing the SARS-CoV-2 epidemic in France using variant-specific screening tests (September 1 to December 18, 2021)
  publication-title: medRxiv
  doi: 10.1101/2021.12.31.21268583
– volume: 12
  year: 2021
  ident: B107
  article-title: B.1.526 SARS-CoV-2 variants identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies
  publication-title: mBio
  doi: 10.1128/mBio.01386-21
– ident: B45
  article-title: Public Health England . 2022 . Variants: distribution of case data, 14 January 2022 . https://www.gov.uk/government/publications/covid-19-variants-genomically-confirmed-case-numbers/variants-distribution-of-case-data-14-january-2022 . Accessed 14 January, 2022 .
– ident: B174
  article-title: Moderna . 2021 . MODERNA announces preliminary booster data and updates strategy to address omicron variant . https://investors.modernatx.com/news/news-details/2021/Moderna-Announces-Preliminary-Booster-Data-and-Updates-Strategy-to-Address-Omicron-Variant/default.aspx . Accessed 14 January, 2022 .
– ident: B162
  article-title: Ferguson N , Ghani A , Cori A , Hogan A , Hinsley W , Volz E , Imperial College COVID-19 response team . 2021 . Report 49—Growth, population distribution and immune escape of the Omicron in England . MRC Centre for Global Infectious Disease Analysis , London, United Kingdom .
– year: 2021
  ident: B88
  article-title: Neutralization of SARS-CoV-2 variants by convalescent and vaccinated serum
  publication-title: medRxiv
  doi: 10.1101/2021.04.04.21254881
– year: 2022
  ident: B29
  article-title: Coronaviruses with a SARS-CoV-2-like receptor-binding domain allowing ACE2-mediated entry into human cells isolated from bats of Indochinese peninsula
  publication-title: Nature Portfolio
  doi: 10.21203/rs.3.rs-871965/v1
– volume: 93
  start-page: 6468
  year: 2021
  end-page: 6470
  ident: B123
  article-title: A cluster of the new SARS-CoV-2 B.1.621 lineage in Italy and sensitivity of the viral isolate to the BNT162b2 vaccine
  publication-title: J Med Virol
  doi: 10.1002/jmv.27247
– ident: B1
  article-title: CoVariants . 2022 . CoVariants . https://covariants.org/ . Accessed 14 January, 2022 .
– volume: 27
  start-page: 113
  year: 2021
  end-page: 121
  ident: B127
  article-title: Intrafamilial exposure to SARS-CoV-2 associated with cellular immune response without seroconversion, France
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid2701.203611
– volume: 18
  start-page: 87
  year: 2021
  ident: B93
  article-title: Impact of the N501Y substitution of SARS-CoV-2 Spike on neutralizing monoclonal antibodies targeting diverse epitopes
  publication-title: Virol J
  doi: 10.1186/s12985-021-01554-8
– ident: B122
  article-title: Uriu K , Kimura I , Shirakawa K , Takaori-Kondo A , Nakada T-a , Kaneda A , Nakagawa S , Sato K . 2021 . Ineffective neutralization of the SARS-CoV-2 Mu variant by convalescent and vaccine sera . bioRxiv doi: 10.1101/2021.09.06.459005 .
– ident: B175
  article-title: University of Oxford . 2021 . ChAdOx1 nCov-19 provides minimal protection against mild-moderate COVID-19 infection from B.1.351 coronavirus variant in young South African adults . https://www.ox.ac.uk/news/2021-02-07-chadox1-ncov-19-provides-minimal-protection-against-mild-moderate-covid-19-infection . Accessed 4 March, 2021 .
– year: 2021
  ident: B114
  article-title: Plasma neutralization properties of the SARS-CoV-2 Omicron variant
  publication-title: medRxiv
  doi: 10.1101/2021.12.12.21267646
– volume: 6
  year: 2021
  ident: B133
  article-title: SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.abj1750
– ident: B158
  article-title: Payne RP , Longet S , Austin JA , Skelly DT , Dejnirattisai W , Adele S , Meardon N . 2021 . Sustained T cell immunity, protection and boosting using extended dosing intervals of BNT162b2 mRNA vaccine . SSRN doi: 10.2139/ssrn.3891065 .
– volume: 385
  start-page: 472
  year: 2021
  end-page: 474
  ident: B97
  article-title: BNT162b2-elicited neutralization against new SARS-CoV-2 spike variants
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2106083
– volume: 16
  year: 2020
  ident: B13
  article-title: Recombination events are concentrated in the spike protein region of Betacoronaviruses
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1009272
– ident: B70
  article-title: Sheikh A , Kerr S , Woolhouse M , McMenamin J , Robertson C . 2021 Severity of Omicron variant of concern and vaccine effectiveness against symptomatic disease: national cohort with nested test negative design study in Scotland . Epub ahead of print .
– volume: 10
  start-page: 21617
  year: 2020
  ident: B30
  article-title: Genomic recombination events may reveal the evolution of coronavirus and the origin of SARS-CoV-2
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-78703-6
– volume: 592
  start-page: 616
  year: 2021
  end-page: 622
  ident: B105
  article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants
  publication-title: Nature
  doi: 10.1038/s41586-021-03324-6
– ident: B156
  article-title: Tartof SY , Slezak JM , Heidi F , Hong V , Ackerson BK , Ranasinghe ON , Frankland TB , Ogun OA , Zamparo JM , Gray S , Valluri SR , Pan K , Angulo FJ , Jodar L , McLaughlin JM . 2021 . Six-month effectiveness of BNT162b2 mRNA COVID-19 vaccine in a large US integrated health system: a retrospective cohort study . SSRN doi: 10.2139/ssrn.3909743 .
– volume: 592
  start-page: 277
  year: 2021
  end-page: 282
  ident: B41
  article-title: SARS-CoV-2 evolution during treatment of chronic infection
  publication-title: Nature
  doi: 10.1038/s41586-021-03291-y
– volume: 73
  start-page: e1337
  year: 2021
  end-page: e1344
  ident: B92
  article-title: Sera neutralizing activities against severe acute respiratory syndrome coronavirus 2 and multiple variants 6 months after hospitalization for coronavirus disease 2019
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciab308
– ident: B61
  article-title: Faria NR , Claro IM , Candido D , Moyses Franco LA , Andrade PS , Coletti TM , Silva CAM , Sales FC , Manuli ER , Aguiar RS , Gaburo N , Camilo C , Fraiji NA , Esashika Crispim MA , Carvalho M , Rambaut A , Loman N , Pybus OG , Sabino EC , CADDE Genomic Network . 2021 . Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings . https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586 . Accessed 18 February, 2021
– volume: 70
  start-page: 1291
  year: 2021
  end-page: 1293
  ident: B154
  article-title: Interim estimates of COVID-19 vaccine effectiveness against COVID-19–associated emergency department or urgent care clinic encounters and hospitalizations among adults during SARS-CoV-2 B.1.617.2 (Delta) variant predominance—nine states, June–August 2021
  publication-title: MMWR Morb Mortal Wkly Rep
  doi: 10.15585/mmwr.mm7037e2
– ident: B49
  article-title: Rambaut A , Loman N , Pybus OG , Barclay W , Barrett J , Carabelli A , Connor T , Peacock T , Robertson DL , Volz E , COVID-19 Genomics Consortium UK (CoG-UK) . 2021 . Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations . https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563 . Accessed 14 September, 2021 .
– year: 2021
  ident: B161
  article-title: Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: a Danish cohort study
  publication-title: medRxiv
  doi: 10.1101/2021.12.20.21267966
– ident: B78
  article-title: Wu K , Werner AP , Moliva JI , Koch M , Choi A , Stewart-Jones GBE , Bennett H , Boyoglu-Barnum S , Shi W , Graham BS , Carfi A , Corbett KS , Seder RA , Edwards DK . 2021 . mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants . bioRxiv doi: 10.1101/2021.01.25.427948 .
– volume: 8
  start-page: 270
  year: 2011
  end-page: 279
  ident: B5
  article-title: Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity
  publication-title: RNA Biol
  doi: 10.4161/rna.8.2.15013
– volume: 183
  start-page: 1901
  year: 2020
  end-page: 1912.e9
  ident: B39
  article-title: Case study: prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.049
– ident: B155
  article-title: Israel Ministry of Health . 2021 . Decline in vaccine effectiveness against infection and symptomatic illness . https://www.gov.il/en/departments/news/05072021-03 . Accessed 14 July, 2021
– volume: 11
  start-page: 1800
  year: 2020
  ident: B6
  article-title: Geographic and genomic distribution of SARS-CoV-2 mutations
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.01800
– volume: 21
  start-page: 330
  year: 2021
  end-page: 335
  ident: B42
  article-title: Concerns about SARS-CoV-2 evolution should not hold back efforts to expand vaccination
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-021-00544-9
– ident: B142
  article-title: Johnson & Johnson . 2021 . Johnson & Johnson announces single-shot Janssen COVID-19 vaccine candidate met primary endpoints in interim analysis of its phase 3 ENSEMBLE trial . https://www.jnj.com/johnson-and-johnson-announces-single-shot-janssen-covid-19-vaccine-candidate-met-primary-endpoints-in-interim-analysis-of-its-phase-3-ensemble-trial . Accessed 3 March, 2021 .
– ident: B181
  article-title: Medicines and Healthcare products Regulatory Agency . 2021 . ACCESS Consortium guidance on strain changes in authorised COVID-19 vaccines . https://www.gov.uk/government/publications/access-consortium-guidance-on-strain-changes-in-authorised-covid-19-vaccines . Accessed 4 March, 2021 .
– volume: 592
  start-page: 116
  year: 2021
  end-page: 121
  ident: B33
  article-title: Spike mutation D614G alters SARS-CoV-2 fitness
  publication-title: Nature
  doi: 10.1038/s41586-020-2895-3
– volume: 5
  year: 2014
  ident: B24
  article-title: Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus
  publication-title: mBio
  doi: 10.1128/mBio.01062-13
– ident: B145
  article-title: Pfizer, BioNTech . 2021 Pfizer and BioNTech announce phase 3 trial data showing high efficacy of a booster dose of their COVID-19 vaccine . https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-phase-3-trial-data-showing . Accessed 14 January, 2022 .
– ident: B176
  article-title: Spencer AJ , Morris S , Ulaszewska M , Powers C , Kailath R , Bissett C , Truby A , Thakur N , Newman J , Allen ER , Rudiansyah I , Liu C , Dejnirattisai W , Mongkolsapaya J , Davies H , Donnellan FR , Pulido D , Peacock TP , Barclay WS , Bright H , Ren K , Screaton G , McTamney P , Bailey D , Gilbert SC , Lambe T . 2021 . The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 Beta (B.1.351) and other variants of concern in preclinical studies . bioRxiv doi: 10.1101/2021.06.08.447308 .
– volume: 27
  start-page: 717
  year: 2021
  end-page: 726
  ident: B72
  article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01294-w
– year: 2021
  ident: B152
  article-title: Impact of Delta on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK
  publication-title: medRxiv
  doi: 10.1101/2021.08.18.21262237
– volume: 397
  start-page: 1351
  year: 2021
  end-page: 1362
  ident: B104
  article-title: Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00628-0
– volume: 592
  start-page: 438
  year: 2021
  end-page: 443
  ident: B59
  article-title: Detection of a SARS-CoV-2 variant of concern in South Africa
  publication-title: Nature
  doi: 10.1038/s41586-021-03402-9
– ident: B67
  article-title: Scientific Advisory Group for Emergencies (SAGE) . 2021 . SPI-M-O: consensus statement on COVID-19, 3 June 2021 . https://www.gov.uk/government/publications/spi-m-o-consensus-statement-on-covid-19-3-june-2021 . Accessed 16 September, 2021
– volume: 29
  start-page: 747
  year: 2021
  end-page: 751.e4
  ident: B89
  article-title: Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.04.007
– ident: B182
  article-title: World Health Organization . 2022 . Interim statement on COVID-19 vaccines in the context of the circulation of the Omicron SARS-CoV-2 variant from the WHO Technical Advisory Group on COVID-19 Vaccine Composition (TAG-CO-VAC) . https://www.who.int/news/item/11-01-2022-interim-statement-on-covid-19-vaccines-in-the-context-of-the-circulation-of-the-omicron-sars-cov-2-variant-from-the-who-technical-advisory-group-on-covid-19-vaccine-composition . Accessed 14 January, 2022 .
– volume: 384
  start-page: 1899
  year: 2021
  end-page: 1909
  ident: B141
  article-title: Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2103055
– ident: B179
  article-title: European Medicines Agency . 2021 . Regulatory requirements for vaccines intended to provide protection against variant strain(s) of SARS-CoV-2 . https://www.ema.europa.eu/en/regulatory-requirements-vaccines-intended-provide-protection-against-variant-strains-sars-cov-2 . Accessed 4 March, 2021 .
– ident: B180
  article-title: U.S. Food and Drug Administration . 2021 . Emergency use authorization for vaccines to prevent COVID-19: guidance for industry . https://www.fda.gov/media/142749/download . Accessed 3 March, 2021 .
– volume: 384
  start-page: 2161
  year: 2021
  end-page: 2163
  ident: B185
  article-title: Cross-reactive neutralizing antibody responses elicited by SARS-CoV-2 501Y.V2 (B.1.351)
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2104192
– volume: 184
  start-page: 2939
  year: 2021
  end-page: 2954 e9
  ident: B85
  article-title: Antibody evasion by the P.1 strain of SARS-CoV-2
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.055
– volume: 184
  start-page: 2362
  year: 2021
  end-page: 2371.e9
  ident: B95
  article-title: SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.042
– volume: 29
  start-page: 529
  year: 2021
  end-page: 539.e3
  ident: B76
  article-title: SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.03.002
– year: 2022
  ident: B112
  article-title: Neutralizing antibody titres to SARS-CoV-2 Omicron variant and wild-type virus in those with past infection or vaccinated or boosted with mRNA BNT162b2 or inactivated CoronaVac vaccines
  publication-title: Nature Portfolio
  doi: 10.21203/rs.3.rs-1207071/v1
– volume: 2
  start-page: e283
  year: 2021
  end-page: e284
  ident: B101
  article-title: SARS-CoV-2 spike E484K mutation reduces antibody neutralisation
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(21)00068-9
– year: 2021
  ident: B119
  article-title: Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection
  publication-title: medRxiv
  doi: 10.1101/2021.06.21.21258528
– ident: B135
  article-title: Francis JM , Leistritz-Edwards D , Dunn A , Tarr C , Lehman J , Dempsey C , Hamel A , Rayon V , Liu G , Wang Y , Wille M , Durkin M , Hadley K , Sheena A , Roscoe B , Ng M , Rockwell G , Manto M , Gienger E , Nickerson J , Moarefi A , Noble M , Malia T , Bardwell PD , Gordon W , Swain J , Skoberne M , Sauer K , Harris T , Goldrath AW , Shalek AK , Coyle AJ , Benoist C , Pregibon DC . 2021 . Allelic variation in Class I HLA determines pre-existing memory responses to SARS-CoV-2 that shape the CD8+ T cell repertoire upon viral exposure . bioRxiv doi: 10.1101/2021.04.29.441258 .
– volume: 385
  start-page: 187
  year: 2021
  end-page: 189
  ident: B150
  article-title: Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2104974
– year: 2021
  ident: B151
  article-title: Effectiveness of COVID-19 vaccines against variants of concern in Ontario
  publication-title: medRxiv
  doi: 10.1101/2021.06.28.21259420
– year: 2021
  ident: B153
  article-title: Effectiveness of COVID-19 vaccines against SARS-CoV-2 infection during a delta variant epidemic surge in Multnomah County, Oregon, July 2021
  publication-title: medRxiv
  doi: 10.1101/2021.08.30.21262446
– year: 2021
  ident: B165
  article-title: Preliminary analysis of safety and immunogenicity of a SARS-CoV-2 variant vaccine booster
  publication-title: medRxiv
  doi: 10.1101/2021.05.05.21256716
– year: 2021
  ident: B168
  article-title: Immunogenicity and safety of a third dose, and immune persistence of CoronaVac vaccine in healthy adults aged 18–59 years: interim results from a double-blind, randomized, placebo-controlled phase 2 clinical trial
  publication-title: medRxiv
  doi: 10.1101/2021.07.23.21261026
– volume: 27
  start-page: 1205
  year: 2021
  end-page: 1211
  ident: B118
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01377-8
– volume: 384
  start-page: 1468
  year: 2021
  end-page: 1470
  ident: B79
  article-title: Serum neutralizing activity elicited by mRNA-1273 vaccine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2102179
– volume: 591
  start-page: 639
  year: 2021
  end-page: 644
  ident: B120
  article-title: Evolution of antibody immunity to SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-021-03207-w
– year: 2021
  ident: B115
  article-title: Reduced neutralization of SARS-CoV-2 Omicron variant by vaccine sera and monoclonal antibodies
  publication-title: medRxiv
  doi: 10.1101/2021.12.07.21267432
– volume: 19
  year: 2021
  ident: B26
  article-title: Natural selection in the evolution of SARS-CoV-2 in bats created a generalist virus and highly capable human pathogen
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.3001115
– volume: 184
  start-page: 1171
  year: 2021
  end-page: 1187.e20
  ident: B8
  article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.037
– volume: 6
  start-page: e199
  year: 2021
  end-page: e200
  ident: B36
  article-title: Immune evasion means we need a new COVID-19 social contract
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(21)00036-0
– volume: 397
  start-page: 2461
  year: 2021
  end-page: 2462
  ident: B148
  article-title: SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)01358-1
– ident: B178
  article-title: Novavax . 2021 . Novavax announces initial Omicron cross-reactivity data from COVID-19 vaccine booster and adolescent studies . https://ir.novavax.com/2021-12-22-Novavax-Announces-Initial-Omicron-Cross-Reactivity-Data-from-COVID-19-Vaccine-Booster-and-Adolescent-Studies . Accessed 14 January, 2022 .
– volume: 371
  start-page: 1152
  year: 2021
  end-page: 1153
  ident: B75
  article-title: Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera
  publication-title: Science
  doi: 10.1126/science.abg6105
– volume: 13
  start-page: 633
  year: 2021
  ident: B91
  article-title: The impact on infectivity and neutralization efficiency of SARS-CoV-2 lineage B.1.351 pseudovirus
  publication-title: Viruses
  doi: 10.3390/v13040633
– volume: 2
  start-page: 100204
  year: 2021
  ident: B131
  article-title: Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2021.100204
– volume: 40
  start-page: BSR20201312
  year: 2020
  ident: B54
  article-title: A virus that has gone viral: amino acid mutation in S protein of Indian isolate of Coronavirus COVID-19 might impact receptor binding, and thus, infectivity
  publication-title: Biosci Rep
  doi: 10.1042/BSR20201312
– volume: 4
  start-page: 21
  year: 2004
  ident: B23
  article-title: Moderate mutation rate in the SARS coronavirus genome and its implications
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-4-21
– ident: B46
  article-title: World Health Organization . 2022 . Tracking SARS-CoV-2 variants . https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ . Accessed 14 January, 2022 .
– volume: 21
  start-page: 73
  year: 2021
  end-page: 82
  ident: B183
  article-title: Viral targets for vaccines against COVID-19
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-020-00480-0
– volume: 383
  start-page: 2291
  year: 2020
  end-page: 2293
  ident: B37
  article-title: Persistence and evolution of SARS-CoV-2 in an immunocompromised host
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2031364
– ident: B172
  article-title: Pfizer, BioNTech . 2021 . Pfizer and BioNTech provide update on omicron variant . https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-provide-update-omicron-variant . Accessed 14 January, 2022 .
– year: 2021
  ident: B110
  article-title: SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection
  publication-title: medRxiv
  doi: 10.1101/2021.12.08.21267417
– volume: 10
  start-page: 91
  year: 2021
  ident: B7
  article-title: One year of SARS-CoV-2: how much has the virus changed?
  publication-title: Biology (Basel)
  doi: 10.3390/biology10020091
– volume: 24
  start-page: 490
  year: 2016
  end-page: 502
  ident: B15
  article-title: Epidemiology, genetic recombination, and pathogenesis of coronaviruses
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2016.03.003
– year: 2021
  ident: B134
  article-title: Loss of recognition of SARS-CoV-2 B.1.351 variant spike epitopes but overall preservation of T cell immunity
  publication-title: medRxiv
  doi: 10.1101/2021.06.03.21258307
– volume: 183
  start-page: 739
  year: 2020
  end-page: 751.e8
  ident: B31
  article-title: Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.032
– volume: 12
  start-page: 5061
  year: 2021
  ident: B77
  article-title: Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25167-5
– volume: 183
  start-page: 1340
  year: 2020
  end-page: 1353.e16
  ident: B128
  article-title: Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4(+) T cells in COVID-19
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.001
– volume: 182
  start-page: 1284
  year: 2020
  end-page: 1294.e9
  ident: B63
  article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.012
– ident: B109
  article-title: Cameroni E , Saliba C , Bowen JE , Rosen LE , Culap K , Pinto D , VanBlargan LA , De Marco A , Zepeda SK , Iulio J , Zatta F , Kaiser H , Noack J , Farhat N , Czudnochowski N , Havenar-Daughton C , Sprouse KR , Dillen JR , Powell AE , Chen A , Maher C , Yin L , Sun D , Soriaga L , Bassi J , Silacci-Fregni C , Gustafsson C , Franko NM , Logue J , Iqbal NT , Mazzitelli I , Geffner J , Grifantini R , Chu H , Gori A , Riva A , Giannini O , Ceschi A , Ferrari P , Cippà P , Franzetti-Pellanda A , Garzoni C , Halfmann PJ , Kawaoka Y , Hebner C , Purcell LA , Piccoli L , Pizzuto MS , Walls AC , Diamond MS , et al . 2021 . Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift . bioRxiv doi: 10.1101/2021.12.12.472269 .
– volume: 383
  start-page: 2586
  year: 2020
  end-page: 2588
  ident: B40
  article-title: Shedding of viable SARS-CoV-2 after immunosuppressive therapy for cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2031670
– volume: 593
  start-page: 130
  year: 2021
  end-page: 135
  ident: B55
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
  doi: 10.1038/s41586-021-03398-2
– year: 2021
  ident: B139
  article-title: SARS-CoV-2 spike T cell responses induced upon vaccination or infection remain robust against Omicron
  publication-title: medRxiv
  doi: 10.1101/2021.12.26.21268380
– ident: B60
  article-title: PANGO . 2022 . PANGO lineages: global report investigating novel coronavirus haplotypes . https://cov-lineages.org/global_report.html . Accessed 14 January, 2022 .
– ident: B136
  article-title: Quadeer AA , Ahmed SF , McKay MR . 2020 . Epitopes targeted by T cells in convalescent COVID-19 patients . bioRxiv doi: 10.1101/2020.08.26.267724 .
– volume: 12
  start-page: 4598
  year: 2021
  ident: B106
  article-title: Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24909-9
– volume: 596
  start-page: 268
  year: 2021
  end-page: 272
  ident: B98
  article-title: Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans
  publication-title: Nature
  doi: 10.1038/s41586-021-03681-2
– volume: 98
  start-page: 495
  year: 2020
  end-page: 504
  ident: B22
  article-title: Variant analysis of SARS-CoV-2 genomes
  publication-title: Bull World Health Organ
  doi: 10.2471/BLT.20.253591
– year: 2021
  ident: B159
  article-title: Effectiveness of COVID-19 vaccines against the Omicron (B.1.1.529) variant of concern
  publication-title: medRxiv
  doi: 10.1101/2021.12.14.21267615
– volume: 27
  start-page: 2025
  year: 2021
  end-page: 2031
  ident: B166
  article-title: Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01527-y
– volume: 17
  year: 2021
  ident: B18
  article-title: The coronavirus proofreading exoribonuclease mediates extensive viral recombination
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1009226
– ident: B35
  article-title: Nextclade . 2021 . Nextstrain/ncov . https://github.com/nextstrain/ncov/blob/master/defaults/clades.tsv . Accessed 14 July, 2021 .
– volume: 29
  start-page: 516
  year: 2021
  end-page: 521.e3
  ident: B84
  article-title: Infection- and vaccine-induced antibody binding and neutralization of the B.1.351 SARS-CoV-2 variant
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.03.009
– volume: 184
  start-page: 2201
  year: 2021
  end-page: 2211.e7
  ident: B86
  article-title: Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.033
– ident: B12
  article-title: Wu Y . 2020 . Strong evolutionary convergence of receptor-binding protein spike between COVID-19 and SARS-related coronaviruses . bioRxiv doi: 10.1101/2020.03.04.975995 .
– ident: B16
  article-title: Lytras S , Hughes J , Martin D , de Klerk A , Lourens R , Kosakovsky Pond SL , Xia W , Jiang X , Robertson DL . 2021 . Exploring the natural origins of SARS-CoV-2 in the light of recombination . bioRxiv doi: 10.1093/gbe/evac018 .
– volume: 593
  start-page: 136
  year: 2021
  end-page: 141
  ident: B82
  article-title: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies
  publication-title: Nature
  doi: 10.1038/s41586-021-03412-7
– year: 2021
  ident: B147
  article-title: Covid-19 vaccine effectiveness in healthcare personnel in six Israeli hospitals (CoVEHPI)
  publication-title: medRxiv
  doi: 10.1101/2021.08.30.21262465
– volume: 9
  start-page: 1
  year: 2021
  end-page: 12
  ident: B28
  article-title: Decoding Covid-19 with the SARS-CoV-2 genome
  publication-title: Curr Genet Med Rep
  doi: 10.1007/s40142-020-00197-5
– volume: 9
  start-page: 1542
  year: 2021
  ident: B62
  article-title: SARS-CoV-2 spike mutations, L452R, T478K, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9071542
– ident: B64
  article-title: World Health Organization . 2022 . Enhancing response to Omicron SARS-CoV-2 variant . https://www.who.int/publications/m/item/enhancing-readiness-for-omicron-(b.1.1.529)-technical-brief-and-priority-actions-for-member-states . Accessed 25 January, 2022 .
– year: 2021
  ident: B111
  article-title: Booster of mRNA-1273 Strengthens SARS-CoV-2 Omicron neutralization
  publication-title: medRxiv
  doi: 10.1101/2021.12.15.21267805
– volume: 6
  year: 2020
  ident: B17
  article-title: Emergence of SARS-CoV-2 through recombination and strong purifying selection
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abb9153
– volume: 27
  start-page: 917
  year: 2021
  end-page: 924
  ident: B87
  article-title: Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01318-5
– ident: B43
  article-title: World Health Organization . 2021 COVID-19 Weekly Epidemiological Update: special edition: Proposed working definitions of SARS-CoV-2 variants of interest and variants of concern .
– volume: 11
  start-page: 6059
  year: 2020
  ident: B20
  article-title: SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19883-7
– ident: B184
  article-title: Beguir K , Skwark MJ , Fu Y , Pierrot T , Lopez Carranza N , Laterre A , Kadri I , Lui BG , Sänger B , Liu Y , Poran A , Muik A , Sahin U . 2021 . Early computational detection of potential high risk SARS-CoV-2 variants . bioRxiv doi: 10.1101/2021.12.24.474095 .
– volume: 5
  start-page: 1408
  year: 2020
  end-page: 1417
  ident: B25
  article-title: Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-020-0771-4
– ident: B163
  article-title: UK Health Security Agency . 2021 . Effectiveness of 3 doses of COVID-19 vaccines against symptomatic COVID-19 and hospitalisation in adults aged 65 years and older .
– ident: B167
  article-title: Flaxman A , Marchevsky N , Jenkin D , Aboagye J , Aley PK , Angus BJ , Belij-Rammerstorfer S , Bibi S , Bittaye M , Cappuccini F , Cicconi P , Clutterbuck E , Davies S , Dejnirattisai W , Dold C , Ewer K , Folegatti PM , Fowler J , Hill AVS , Kerridge S , Minassian AM , Mongkolspaya J , Farooq Mujadidi Y , Plested E , Ramasamy MN , Robinson H , Sanders H , Sheehan E , Smith H , Snape MD , Song R , Woods D , Screaton GR , Gilbert SC , Voysey M , Pollard A , Lambe T , The Oxford Covid Vaccine Group . 2021 . Tolerability and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 (AZD1222) . SSRN . doi: 10.2139/ssrn.3873839 .
– year: 2021
  ident: B113
  article-title: SARS-CoV-2 B.1.1.529 variant (Omicron) evades neutralization by sera from vaccinated and convalescent individuals
  publication-title: medRxiv
  doi: 10.1101/2021.12.08.21267491
– volume: 371
  start-page: 1139
  year: 2021
  end-page: 1142
  ident: B10
  article-title: Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape
  publication-title: Science
  doi: 10.1126/science.abf6950
– year: 2021
  ident: B157
  article-title: Effectiveness of COVID-19 vaccines against the B.1.617.2 variant
  publication-title: medRxiv
  doi: 10.1101/2021.05.22.21257658
– volume: 182
  start-page: 1295
  year: 2020
  end-page: 1310.e20
  ident: B52
  article-title: Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.012
– volume: 6
  start-page: 899
  year: 2021
  end-page: 909
  ident: B57
  article-title: The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-021-00908-w
– ident: B48
  article-title: Outbreak.info . 2021 . https://outbreak.info/ . Accessed 14 January, 2022 .
– volume: 12
  year: 2021
  ident: B100
  article-title: Convalescent-phase sera and vaccine-elicited antibodies largely maintain neutralizing titer against global SARS-CoV-2 variant spikes
  publication-title: mBio
  doi: 10.1128/mBio.00696-21
SSID ssj0000331830
Score 2.6344552
SecondaryResourceType review_article
Snippet The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential...
ABSTRACT The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0297921
SubjectTerms Antibodies, Viral
COVID-19
COVID-19 - prevention & control
COVID-19 Vaccines
Humans
Minireview
Mutation
SARS-CoV-2
SARS-CoV-2 - genetics
Vaccines
variant
Viral Vaccines
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbQIqReKlr6WEorI6qeauo4Xm9yXLYgoNoile6Km-WnilQSRHYP_ffM5CUWFYlrYjvOjB_feDzfEPJZGG8smBoM46yZVFYww63FW4Q-DcqENOB5x-ynOp3L86vR1QYRXSxMK8Hq0FQ3tSO_n9ki-3Zjr8tDzLaUM4wd3xyJXPIB2ZxM5hc_-pMVnuI45R2h5uN6sPZC22JtH6rp-v-HMR9flXyw95xsk5ctaKSTRsuvyEYoXpOtJo3kvx0yA13TszrckZaRHsOKg8cE9HLy65JNywUTdLZqXO4VNYWnCzCQ8f4LLQs6vVicfWdJDg8dOtmrN2R-cvx7esraNAnMABZYsmzkxqAID0ApKO6iCuPEJR6xTYx4XBFN6qUXhiuOijHcS6iguHQuCTZL35JBURbhPaHGIoOa9CrkSroYTZKZABjCZeidi25IDlB2utOSrk0IkWmUsK4lrEUyJF870WrXMo1jwou_TxX_0he_bSg2nip4hHrqCyEzdv0AxoluJ5quCeEQx8FPSjDujIf-2xxQYxp5io3sd1rWMJPQPWKKUK4qLZDcTIFFNxqSd43W-0-lyIIDvRiS8dp4WOvL-pvi-k_N1p1zzOmd7D5LdB_IC4HxFVwyofbIYHm3Ch8B9Sztp3aY3wPqWPwH
  priority: 102
  providerName: American Society for Microbiology
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJiReEOOzbCAj0J7wcBzXTR4QGmXThlQmbbTam-VPmLQlW9NK7L_nzknLOm1vvDp24tz57N_Zvt8R8kEYbyy4GgzjrJlUVjDDrcVbhD4PyoQ84H7H6Ic6GMvvp_3Tf5RCnQCbO107zCc1np7v_Lm6_gIG_7kNgCk-XdizegeTMJUMQ8rXYVEaoI2OOqSfJuUcBy9fsGzebgUTsmkuxMrilDj87wKet-9P3liQ9p-Qxx2SpLut6jfIg1A9JQ_b3JLXz8gIBgA9TDGQtI50D6Yh3DugJ7vHJ2xYT5igo3l7Dt9QU3k6Aa8ZL8XQuqLDo8nhN5aVUOjw5L15Tsb7ez-HB6zLncAMAIQZK_puANrxgJ6C4i6qMMhc5hHwxIh7GNHkXnphuOKoLcO9hAaKS-eyYIv8BVmr6iq8ItRYpFWTXoVSSRejyQoTAFi4Ao_souuR9yg7vdCdTn6FKDRKWCcJa5H1yMeFaLXr6McxC8b5fdW3l9UvW96N-yp-RT0tKyFddiqop790Z306scQhuIOflODxGQ_9tyVAyTzyHF_ybqFlDeaFZyamCvW80QIZzxS4ef0eedlqffmpHKlxoBc9MlgZDyt9WX1Snf1OFN4lx0Tf2ev_0flN8khgTAaXTKgtsjabzsMbQEoz-zbZwF_UCQ4m
  priority: 102
  providerName: Scholars Portal
Title The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines
URI https://www.ncbi.nlm.nih.gov/pubmed/35352979
https://journals.asm.org/doi/10.1128/mbio.02979-21
https://www.proquest.com/docview/2645469605
https://pubmed.ncbi.nlm.nih.gov/PMC9040821
https://doaj.org/article/446552560d474625ad782b94233f0321
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaKDAV2GbZ1D3ddoaLDTtNqy4piH7P0uSErsC5BboKeaIHWHubk0H8_UnaCpFixyy46yAJMkJRIitRHQj5w7bSBUIPhO2smpOFMp8ZgFaHLvdQ-93jfMf4uzyfi66w_W2v1hTVhLTxwy7ijCPCFdtmJgQBnXTuwaaYELyAPaR6fkHOweWvBVDyDc9TVdAmqyYujO3NTf8ZOTSVDXNCebu74hi2KkP1_8zMflkuu2Z_T5-RZ5zjSYUvwC7Llq5dku20leb9DxiBvehGfPNI60BM4dfCqgF4Nf1yxUT1lnI4Xbdq9obpydApBMtbA0Lqio8vpxTHLSpi0mGhvXpHJ6cnP0TnrWiUwDf7AnBV9OwBhOHCWvExtkH6Q2cyhfxMCXlkEnTvhuE6BkSAcjez0VqbC2sybIn9NelVd-beEaoMoasJJX0phQ9BZoT3w3BaYoQs2IYfIO9XpeqNiGMELhRxWkcOKZwn5tGStsh3aODa9uH1s-cfV8l8tzMZjC7-gnFaLEB07ToDOqE5n1L90JiEHSykr2E2YItGVrxeN4ghwJiGq6yfkTSv11a9yRMIBKhIy2NCHDVo2v1Q31xGxu0yxr3e2-z-If0eecnyCkQrG5R7pzX8v_HtwjOZmnzwZDieX3_bjXoDxbJbBOBbFH--uCPE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcQCG0v02BfZWN42rSnGRzHdZPHrgO1QEEatOLN8qfGBAla2of997tL0mpFIPGaOIlzd05-d-f7HSFfhPHGgqvBsM6aSWUFM9xa3EXo06BMSAPGO8ZnajiRx1fdqzWiFrUwv7Ev7021b6rbOo-PCxsD0W0_wuzg1l6X-9hxKWdYP76BeUOw7I1-f3J-soyu8BRtlS9INe9fB99feIBY-RfVlP0P4cz72yX_-_8cvSQvWuBI-42mt8haKLbJZtNK8u8rMgZ901Fd8kjLSA_hq4OhAnrR_3nBBuWUCTqeN2n3iprC0yk4ybgHhpYFHZxPRz9YksNBh4n26jWZHB1eDoasbZXADOCBGcu6rgfK8ACWguIuqtBLXOIR38SIIYtoUi-9MFxxVI7hXsIFikvnkmCz9A1ZL8oivCPUWGRRk16FXEkXo0kyEwBHuAwzdNF1yGeUnW5tvdK1GyEyjRLWtYS1SDrk20K02rVs49j04uax4V-Xw-8amo3HBn5HPS0HITt2fQCMRbeLTdekcIjl4CUlOHjGw_xtDsgxjTzFm3xaaFnDasIUiSlCOa-0QIIzBV5dt0PeNlpfPipFJhyYRYf0VuxhZS6rZ4rrXzVjd86xr3ey8yTR7ZFnw8vxqT4dnZ28J88F1ltwyYT6QNZnf-ZhF1DQzH5sTf4fySwAeQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcQiGkv0wb76L7wBNrTzBzHdZPHrlDRQWEaa8Wb5U8NaSRoaR_23-8uH9WKhsRrYjvO3Tn5nc_3O0IOhPHGgqvBMM-aSWUFM9xaPEXo06BMSAPud0zP1clMfr3qX20Q1eXCtBKsDk11UwfycWXf-tjWI8w-39jr8hArLuUM88e3MFAF9r01HM4uTle7KzxFW-UdqebdfvD9hfHF2r-opuz_H868e1zyn__P-Cl50gJHOmw0_YxshGKHbDelJP_skinom07qlEdaRnoMXx3cKqCXw--XbFTOmaDTZRN2r6gpPJ2Dk4xnYGhZ0NHFfHLEkhwuOgy0V8_JbHz8Y3TC2lIJzAAeWLCs7wagDA9gKSjuogqDxCUe8U2MuGURTeqlF4Yrjsox3EvooLh0Lgk2S1-QzaIswitCjUUWNelVyJV0MZokMwFwhMswQhddj-yj7HSnKV27ESLTKGFdS1iLpEc-daLVrmUbx6IXv-5r_nHV_Lah2biv4RfU06oRsmPXF8BWdLvYdE0Kh1gOXlKCg2c8zN_mgBzTyFMc5EOnZQ2rCUMkpgjlstICCc4UeHX9HnnZaH31qBSZcGAWPTJYs4e1uazfKa5_1ozdOce63snrB4lujzz6djTWZ5Pz0zfkscB0Cy6ZUG_J5uL3MrwDELSw71uL_wusfgAV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+Evolving+SARS-CoV-2+Mutations+and+Variants+on+COVID-19+Vaccines&rft.jtitle=mBio&rft.au=Gary+McLean&rft.au=Jeremy+Kamil&rft.au=Benhur+Lee&rft.au=Penny+Moore&rft.date=2022-04-26&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=13&rft.issue=2&rft_id=info:doi/10.1128%2Fmbio.02979-21&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_446552560d474625ad782b94233f0321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon