The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines
The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effect...
Saved in:
Published in | mBio Vol. 13; no. 2; p. e0297921 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
26.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high.
The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms. |
---|---|
AbstractList | ABSTRACT The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms. The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms. The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms.The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms. The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms. |
Author | Sahin, Ugur Schulz, Thomas F. Muik, Alexander Moore, Penny Türeci, Özlem Lee, Benhur McLean, Gary Pather, Shanti Kamil, Jeremy |
Author_xml | – sequence: 1 givenname: Gary orcidid: 0000-0002-1278-1743 surname: McLean fullname: McLean, Gary organization: School of Human Sciences, London Metropolitan University and National Heart and Lung Institute, Imperial College London, London, United Kingdom – sequence: 2 givenname: Jeremy orcidid: 0000-0001-8422-7656 surname: Kamil fullname: Kamil, Jeremy organization: Louisiana State University Health, Shreveport, Louisiana, USA – sequence: 3 givenname: Benhur orcidid: 0000-0003-0760-1709 surname: Lee fullname: Lee, Benhur organization: Icahn School of Medicine at Mount Sinai, New York, New York, USA – sequence: 4 givenname: Penny orcidid: 0000-0001-8719-4028 surname: Moore fullname: Moore, Penny organization: Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa, MRC Antibody Immunity Research Unit, School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa – sequence: 5 givenname: Thomas F. orcidid: 0000-0001-8792-5345 surname: Schulz fullname: Schulz, Thomas F. organization: Institute of Virology, Hannover Medical School, Hannover, Germany, Cluster of Excellence 2155 RESIST, Hannover, Germany, German Centre for Infection Research, Hannover-Braunschweig Site, Germany – sequence: 6 givenname: Alexander orcidid: 0000-0003-4561-2273 surname: Muik fullname: Muik, Alexander organization: BioNTech, Mainz, Germany – sequence: 7 givenname: Ugur orcidid: 0000-0003-0363-1564 surname: Sahin fullname: Sahin, Ugur organization: BioNTech, Mainz, Germany – sequence: 8 givenname: Özlem surname: Türeci fullname: Türeci, Özlem organization: BioNTech, Mainz, Germany – sequence: 9 givenname: Shanti orcidid: 0000-0003-1244-6264 surname: Pather fullname: Pather, Shanti organization: BioNTech, Mainz, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35352979$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd1rFDEUxYNUbK199FXyKMLUfM_Mi1DWqgstBVv3NdxJMtssM8mazCz43zu700ormpeEm3N-HO55jY5CDA6ht5ScU8qqj33j4zlhdVkXjL5AJ4xKUpSS0qMn72N0lvOGTIdzWnHyCh1zyeXedYKu7-4dXvZbMAOOLb7cxW7nwxrfXny_LRZxVTB8PQ4w-BgyhmDxCpKHMGQcA17crJafC1pPQ2N8cPkNetlCl93Zw32Kfny5vFt8K65uvi4XF1cFSCmGopKmdMZYImuniGmVK6mhlkki25ZzIlrgVlgGRBELDQVixWRQRBhDXVPxU7ScuTbCRm-T7yH90hG8PgxiWmtIgzed00IoKZlUe4RQTIItK9bUgnHeEs7oxPo0s7Zj0ztrXBgSdM-gz3-Cv9fruNM1EaQ6AN4_AFL8Obo86N5n47oOgotj1kwJKVStiJykH2Yp5J7pTRxTmNakKdH7OvW-Tn2oUx-4754G-5PosbxJwGeBSTHn5Fpt_FzVlNN3_8UWf7kewf_W_wbgnrpK |
CitedBy_id | crossref_primary_10_1007_s40618_023_02055_x crossref_primary_10_3390_vaccines11101554 crossref_primary_10_1002_cbic_202200158 crossref_primary_10_3390_ijms232415658 crossref_primary_10_35627_2219_5238_2024_32_3_63_69 crossref_primary_10_1093_biomethods_bpae002 crossref_primary_10_1111_febs_16777 crossref_primary_10_3390_vaccines12111214 crossref_primary_10_1089_vim_2023_0058 crossref_primary_10_12688_f1000research_131522_1 crossref_primary_10_1371_journal_pone_0283400 crossref_primary_10_1111_risa_14291 crossref_primary_10_3390_v15040855 crossref_primary_10_1177_15353702231181343 crossref_primary_10_3389_fnano_2024_1335346 crossref_primary_10_3390_v17020182 crossref_primary_10_1186_s12890_023_02473_w crossref_primary_10_1177_11769343231169377 crossref_primary_10_1016_j_virusres_2022_199016 crossref_primary_10_3390_vaccines11101564 crossref_primary_10_1016_j_cytogfr_2023_11_005 crossref_primary_10_3389_fimmu_2023_1130539 crossref_primary_10_1016_j_ebiom_2024_105437 crossref_primary_10_3390_vaccines10101572 crossref_primary_10_1016_j_jaut_2024_103218 crossref_primary_10_3390_medicina59081393 crossref_primary_10_3390_healthcare10050790 crossref_primary_10_1002_jmv_27936 crossref_primary_10_3390_vaccines11030682 crossref_primary_10_1038_s41541_023_00638_6 crossref_primary_10_1039_D4CP01199F crossref_primary_10_3389_fpubh_2022_1038017 crossref_primary_10_1016_j_ebiom_2023_104683 crossref_primary_10_1016_j_vaccine_2023_08_076 crossref_primary_10_3390_pathogens13121051 crossref_primary_10_3390_pathogens11091058 crossref_primary_10_1016_j_virusres_2023_199289 crossref_primary_10_1080_14760584_2022_2092472 crossref_primary_10_1016_j_celrep_2023_112888 crossref_primary_10_1002_hsr2_1914 crossref_primary_10_1172_JCI162192 crossref_primary_10_3389_fchem_2022_948553 crossref_primary_10_3390_vaccines10122144 crossref_primary_10_3390_biomedicines11113050 crossref_primary_10_1038_s42003_022_04170_6 crossref_primary_10_1126_science_abm0271 crossref_primary_10_3390_bios14020099 crossref_primary_10_1016_j_jiph_2024_102556 crossref_primary_10_3390_cells12091213 crossref_primary_10_3390_vaccines10122149 crossref_primary_10_1097_ACO_0000000000001364 crossref_primary_10_17816_clinpract106239 crossref_primary_10_3390_v14071408 crossref_primary_10_1007_s12144_022_03622_w crossref_primary_10_1016_j_isci_2023_105972 crossref_primary_10_3390_vaccines10122035 crossref_primary_10_1007_s11071_024_10635_6 crossref_primary_10_1002_mef2_90 crossref_primary_10_3390_vaccines12070792 crossref_primary_10_3390_v16010156 crossref_primary_10_3389_fpubh_2022_1008521 crossref_primary_10_3389_fmed_2022_995960 crossref_primary_10_1016_j_xcrm_2024_101668 crossref_primary_10_1002_jmv_28131 crossref_primary_10_1038_s41598_023_45517_1 crossref_primary_10_3389_fmolb_2024_1451280 crossref_primary_10_3390_tropicalmed9020050 crossref_primary_10_1093_jtm_taae074 crossref_primary_10_3390_vaccines12030281 crossref_primary_10_1038_s41598_024_53111_2 crossref_primary_10_3390_v15081756 crossref_primary_10_3390_microorganisms11030580 crossref_primary_10_1186_s12889_023_15174_0 crossref_primary_10_3390_vaccines12040362 crossref_primary_10_1097_TXD_0000000000001676 crossref_primary_10_1007_s12020_024_03891_4 crossref_primary_10_1016_j_celrep_2022_110969 crossref_primary_10_1016_j_clim_2022_109103 crossref_primary_10_1038_s42005_024_01865_6 crossref_primary_10_3390_vaccines11050920 crossref_primary_10_1080_14760584_2023_2232851 crossref_primary_10_1093_immadv_ltad005 crossref_primary_10_1007_s12088_023_01121_5 crossref_primary_10_1136_ard_2023_224301 crossref_primary_10_3389_fimmu_2022_901217 crossref_primary_10_3390_v15112175 crossref_primary_10_3390_pharmaceutics15010194 crossref_primary_10_3389_fsci_2024_1298248 crossref_primary_10_1016_j_biopha_2025_117844 crossref_primary_10_1016_j_hlife_2023_12_001 crossref_primary_10_3389_fimmu_2024_1450380 crossref_primary_10_1039_D3TB02895J crossref_primary_10_3390_biomedicines12112530 crossref_primary_10_1016_j_imj_2023_08_005 crossref_primary_10_3390_vaccines10081208 crossref_primary_10_1016_j_vaccine_2022_08_017 crossref_primary_10_3389_fpubh_2022_1072137 crossref_primary_10_1111_1751_7915_70073 crossref_primary_10_1038_s41598_023_43357_7 crossref_primary_10_1021_acsnano_4c13146 crossref_primary_10_1002_slct_202201380 crossref_primary_10_3390_ijms26031263 crossref_primary_10_1016_j_heliyon_2023_e18093 crossref_primary_10_1128_mbio_00899_23 crossref_primary_10_3389_fimmu_2022_1042784 crossref_primary_10_3389_fmolb_2023_1288686 crossref_primary_10_1038_s41598_024_65468_5 crossref_primary_10_1021_acs_jmedchem_4c00534 crossref_primary_10_1016_j_vaccine_2023_12_024 crossref_primary_10_1038_s41598_023_48186_2 crossref_primary_10_3390_life14020264 crossref_primary_10_1016_j_isci_2024_110117 crossref_primary_10_3390_v14122609 crossref_primary_10_2147_JMDH_S419859 crossref_primary_10_1038_s41598_023_30052_w crossref_primary_10_1155_2022_4677720 crossref_primary_10_3390_ijms232214367 crossref_primary_10_1002_hsr2_1209 crossref_primary_10_1002_jmv_28609 crossref_primary_10_1016_j_compbiomed_2022_106449 crossref_primary_10_3389_fmats_2022_1039247 crossref_primary_10_3389_fimmu_2023_1221587 crossref_primary_10_3389_fmicb_2022_999783 crossref_primary_10_3390_v16121844 crossref_primary_10_3389_fmicb_2024_1386271 crossref_primary_10_1016_j_mran_2023_100273 crossref_primary_10_3390_v15040944 crossref_primary_10_1016_j_ijid_2022_12_037 crossref_primary_10_3389_fnut_2023_1152254 crossref_primary_10_5812_jjm_142644 |
Cites_doi | 10.1038/s41577-020-00480-0 10.1016/j.meegid.2021.105038 10.1126/sciadv.abb9153 10.1056/NEJMoa2107659 10.1101/2021.05.05.21256716 10.15585/mmwr.mm7037e2 10.1038/s41586-021-03402-9 10.1016/j.immuni.2021.03.023 10.1038/d41586-021-03825-4 10.1093/cid/ciab072 10.1126/science.abf6950 10.1038/s41586-020-2895-3 10.3390/microorganisms9071542 10.1101/2021.06.28.21259420 10.1056/NEJMc2102179 10.1016/j.cell.2021.12.033 10.1101/2021.12.28.474333 10.1101/2021.04.04.21254881 10.1016/S0140-6736(21)01358-1 10.1038/s41586-021-03412-7 10.1056/NEJMc2104974 10.1038/s41586-021-04352-y 10.1101/2021.06.09.447722 10.1128/mBio.00696-21 10.1016/j.chom.2021.04.007 10.1056/NEJMoa2108891 10.1001/jama.2021.4388 10.1101/2021.09.06.459005 10.1056/NEJMc2113468 10.1371/journal.ppat.1009226 10.1101/2021.01.07.425740 10.1371/journal.pgen.1009272 10.2471/BLT.20.253591 10.3201/eid2701.203611 10.1016/S1473-3099(22)00141-4 10.1101/2021.07.28.21261159 10.1186/s12985-021-01554-8 10.1056/NEJMoa2102214 10.1101/2021.12.15.21267805 10.1101/2021.12.08.21267417 10.1038/s41467-021-25167-5 10.3390/v13040633 10.1016/j.antiviral.2020.104792 10.1042/BSR20201312 10.1056/NEJMc2104192 10.1038/s41590-020-0782-6 10.3390/pathogens9030240 10.1128/mBio.01062-13 10.1126/sciimmunol.abg6461 10.1016/j.cell.2021.02.033 10.1038/s41467-021-24909-9 10.1056/NEJMc2031670 10.1038/s41591-021-01294-w 10.1128/JVI.02683-07 10.1038/s41586-021-03398-2 10.1038/s41586-021-03324-6 10.1016/j.cell.2021.02.042 10.1038/s41467-020-19883-7 10.1101/2021.12.12.21267646 10.1073/pnas.0808116105 10.2139/ssrn.3909743 10.1016/j.cell.2020.07.012 10.1016/j.xcrm.2021.100204 10.1126/science.abg6105 10.2139/ssrn.3816840 10.1016/j.cell.2021.03.036 10.1101/2021.06.21.21258528 10.1126/sciimmunol.abj1750 10.1038/s41586-020-2012-7 10.1101/2021.12.07.21267432 10.1038/s41586-021-03207-w 10.1016/j.cell.2020.09.038 10.1038/s41598-020-78703-6 10.1016/S0140-6736(21)01290-3 10.3389/fmicb.2020.01800 10.1038/s41586-021-03653-6 10.1101/2021.12.08.21267491 10.1101/2021.04.29.441258 10.1016/j.tim.2016.03.003 10.1016/j.molcel.2020.04.022 10.1056/NEJMc2102017 10.1038/s41586-021-03777-9 10.1016/S0065-3527(08)60286-9 10.1016/j.cell.2020.09.032 10.3390/biology10020091 10.1126/science.abg3055 10.1038/s41591-021-01285-x 10.1101/2021.01.27.427998 10.2139/ssrn.3891065 10.1016/j.cell.2020.06.043 10.1101/2021.12.20.21267966 10.1038/s41564-020-0771-4 10.1101/2021.12.02.21267198 10.1101/2021.08.30.21262446 10.1101/2020.08.26.267724 10.1101/2021.01.22.427830 10.1101/2021.01.25.427948 10.1093/cid/ciab308 10.1101/2021.12.26.21268380 10.1101/2022.01.07.22268919 10.1101/2021.05.22.21257658 10.1016/j.cell.2020.10.049 10.1101/2021.12.31.21268583 10.1101/2021.01.10.20248871 10.1101/2021.08.30.21262465 10.2139/ssrn.3873839 10.1128/mBio.01386-21 10.1186/1471-2148-4-21 10.1016/j.cell.2020.10.001 10.1101/2021.07.23.21261026 10.4161/rna.8.2.15013 10.1038/s41577-021-00544-9 10.1038/s41591-021-01527-y 10.1101/2021.12.14.21267615 10.1371/journal.pbio.3001115 10.21203/rs.3.rs-1207071/v1 10.1101/2021.12.22.21268103 10.1056/NEJMoa2101765 10.1056/NEJMc2031364 10.1038/s41591-021-01318-5 10.1101/2021.10.10.21264827 10.1016/j.ygeno.2020.09.059 10.1101/2021.08.18.21262237 10.1073/pnas.0508200103 10.1038/s41591-021-01377-8 10.1016/S2666-5247(21)00068-9 10.1002/jmv.27247 10.1101/2020.03.04.975995 10.1101/2021.09.08.21263095 10.1101/2021.12.24.474095 10.1101/2021.12.21.21268116 10.1038/s41586-021-03681-2 10.1007/s40142-020-00197-5 10.1016/j.chom.2021.03.002 10.1038/s41586-021-03471-w 10.1016/S0140-6736(21)00628-0 10.1016/S2468-2667(21)00036-0 10.1101/2021.06.08.447308 10.1038/s41564-021-00908-w 10.1016/j.celrep.2021.109292 10.1016/j.chom.2021.03.009 10.1016/j.cell.2021.01.037 10.1016/j.cell.2020.08.012 10.2807/1560-7917.ES.2021.26.35.2100793 10.1128/mBio.01590-21 10.1056/NEJMoa2103055 10.1101/2021.06.03.21258307 10.1038/s41586-021-03291-y 10.1056/NEJMc2106083 10.1126/science.abd4251 10.1016/j.cell.2021.03.055 10.21203/rs.3.rs-871965/v1 |
ContentType | Journal Article |
Copyright | Copyright © 2022 McLean et al. Copyright © 2022 McLean et al. 2022 McLean et al. |
Copyright_xml | – notice: Copyright © 2022 McLean et al. – notice: Copyright © 2022 McLean et al. 2022 McLean et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mbio.02979-21 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Prasad, Vinayaka R |
Editor_xml | – sequence: 1 givenname: Vinayaka R surname: Prasad fullname: Prasad, Vinayaka R |
ExternalDocumentID | oai_doaj_org_article_446552560d474625ad782b94233f0321 PMC9040821 02979-21 35352979 10_1128_mbio_02979_21 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM121307 – fundername: BioNtech grantid: N/A – fundername: ; grantid: N/A |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF - 0R ADACO BXI HZ 7X8 5PM |
ID | FETCH-LOGICAL-a554t-85c7eccd059e60cf6e71c1d2505ff3304fa3d4d2a060dab1a0d47ec604cc1eb83 |
IEDL.DBID | DOA |
ISSN | 2150-7511 |
IngestDate | Wed Aug 27 01:26:11 EDT 2025 Thu Aug 21 14:05:06 EDT 2025 Fri Jul 11 10:05:53 EDT 2025 Tue Apr 26 23:06:26 EDT 2022 Wed Feb 19 02:25:22 EST 2025 Thu Apr 24 23:05:48 EDT 2025 Tue Jul 01 00:57:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | COVID-19 variant mutation SARS-CoV-2 vaccines |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a554t-85c7eccd059e60cf6e71c1d2505ff3304fa3d4d2a060dab1a0d47ec604cc1eb83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 The authors declare a conflict of interest. GRM, TFS, BL, and PLM have no conflicts of interest to report. ÖT and US are management board members and employees at BioNTech SE (Mainz, Germany). JK has a grant from the Rockefeller Foundation to increase equity and representativeness in SARS-CoV-2 sequencing, has a role on an NIH grant to carry out SARS-CoV-2 sequencing and detection of viral variants, served on a BioNTech advisory panel, and holds stock in BioNTech and Pfizer, who manufacture COVID-19 vaccines. AM and SP are employees at BioNTech SE. AM, ÖT, and US are inventors on patents and patent applications related to RNA technology and COVID-19 vaccines. AM, ÖT, and US have securities from BioNTech SE. |
ORCID | 0000-0001-8422-7656 0000-0001-8792-5345 0000-0001-8719-4028 0000-0003-0760-1709 0000-0002-1278-1743 0000-0003-0363-1564 0000-0003-4561-2273 0000-0003-1244-6264 |
OpenAccessLink | https://doaj.org/article/446552560d474625ad782b94233f0321 |
PMID | 35352979 |
PQID | 2645469605 |
PQPubID | 23479 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_446552560d474625ad782b94233f0321 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9040821 proquest_miscellaneous_2645469605 asm2_journals_10_1128_mbio_02979_21 pubmed_primary_35352979 crossref_citationtrail_10_1128_mbio_02979_21 crossref_primary_10_1128_mbio_02979_21 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-26 |
PublicationDateYYYYMMDD | 2022-04-26 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2022 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_28_2 e_1_3_2_172_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_123_2 e_1_3_2_146_2 e_1_3_2_169_2 e_1_3_2_104_2 e_1_3_2_142_2 e_1_3_2_165_2 e_1_3_2_188_2 e_1_3_2_81_2 e_1_3_2_127_2 e_1_3_2_108_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_161_2 e_1_3_2_184_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_180_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_112_2 e_1_3_2_135_2 e_1_3_2_158_2 e_1_3_2_92_2 e_1_3_2_131_2 e_1_3_2_154_2 e_1_3_2_177_2 e_1_3_2_50_2 e_1_3_2_116_2 e_1_3_2_139_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_171_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_145_2 e_1_3_2_126_2 e_1_3_2_168_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_141_2 e_1_3_2_187_2 e_1_3_2_122_2 e_1_3_2_164_2 e_1_3_2_149_2 e_1_3_2_107_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_183_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_160_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_134_2 e_1_3_2_93_2 e_1_3_2_115_2 e_1_3_2_157_2 e_1_3_2_130_2 e_1_3_2_176_2 e_1_3_2_70_2 e_1_3_2_111_2 e_1_3_2_153_2 e_1_3_2_138_2 e_1_3_2_119_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_151_2 e_1_3_2_170_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_125_2 e_1_3_2_148_2 e_1_3_2_167_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_121_2 e_1_3_2_144_2 e_1_3_2_163_2 e_1_3_2_186_2 e_1_3_2_106_2 e_1_3_2_129_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_140_2 e_1_3_2_182_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_114_2 e_1_3_2_137_2 e_1_3_2_156_2 e_1_3_2_179_2 e_1_3_2_94_2 Maison DP (e_1_3_2_59_2) 2021; 80 e_1_3_2_71_2 e_1_3_2_110_2 e_1_3_2_133_2 e_1_3_2_152_2 e_1_3_2_175_2 e_1_3_2_90_2 e_1_3_2_118_2 e_1_3_2_27_2 e_1_3_2_150_2 e_1_3_2_173_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_124_2 e_1_3_2_147_2 e_1_3_2_61_2 e_1_3_2_120_2 e_1_3_2_166_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_143_2 e_1_3_2_185_2 e_1_3_2_109_2 e_1_3_2_105_2 e_1_3_2_128_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_162_2 e_1_3_2_181_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_113_2 e_1_3_2_159_2 e_1_3_2_136_2 e_1_3_2_178_2 e_1_3_2_72_2 e_1_3_2_155_2 e_1_3_2_132_2 e_1_3_2_174_2 e_1_3_2_117_2 Skelly, DT, Harding, AC, Gilbert-Jaramillo, J, Knight, ML, Longet, S, Brown, A, Adele, S, Adland, E, Brown, H, Tipton, T, Stafford, L, Mentzer, AJ, Johnson, SA, Amini, A, Tan, TK, Schimanski, L, Huang, KA, Rijal, P, Frater, J, Goulder, P, Conlon, CP, Jeffery, K, Dold, C, Pollard, AJ, Sigal, A, de Oliveira, T, Townsend, AR, Klenerman, P, Dunachie, SJ, Barnes, E, Carroll, MW, James, WS (B77) 2021; 12 Aydillo, T, Gonzalez-Reiche, AS, Aslam, S, van de Guchte, A, Khan, Z, Obla, A, Dutta, J, van Bakel, H, Aberg, J, Garcia-Sastre, A, Shah, G, Hohl, T, Papanicolaou, G, Perales, MA, Sepkowitz, K, Babady, NE, Kamboj, M (B40) 2020; 383 Maison, DP, Ching, LL, Shikuma, CM, Nerurkar, VR (B58) 2021; 80 Betton, M, Livrozet, M, Planas, D, Fayol, A, Monel, B, Vedie, B, Bruel, T, Tartour, E, Robillard, N, Manuguerra, JC, Blanchard, A, Ghosn, J, Visseaux, B, Pere, H, Lebeaux, D, Schwartz, O, Veyer, D, Hulot, JS (B92) 2021; 73 Supasa, P, Zhou, D, Dejnirattisai, W, Liu, C, Mentzer, AJ, Ginn, HM, Zhao, Y, Duyvesteyn, HME, Nutalai, R, Tuekprakhon, A, Wang, B, Paesen, GC, Slon-Campos, J, Lopez-Camacho, C, Hallis, B, Coombes, N, Bewley, KR, Charlton, S, Walter, TS, Barnes, E, Dunachie, SJ, Skelly, D, Lumley, SF, Baker, N, Shaik, I, Humphries, HE, Godwin, K, Gent, N, Sienkiewicz, A, Dold, C, Levin, R, Dong, T, Pollard, AJ, Knight, JC, Klenerman, P, Crook, D, Lambe, T, Clutterbuck, E, Bibi, S, Flaxman, A, Bittaye, M, Belij-Rammerstorfer, S, Gilbert, S, Hall, DR, Williams, MA, Paterson, NG, James, W, Carroll, MW, Fry, EE, Mongkolsapaya, J (B86) 2021; 184 B158 Wu, K, Choi, A, Koch, M, Ma, L, Hill, A, Nunna, N, Huang, W, Oestreicher, J, Colpitts, T, Bennett, H, Legault, H, Paila, Y, Nestorova, B, Ding, B, Pajon, R, Miller, JM, Leav, B, Carfi, A, McPhee, R, Edwards, DK (B165) 2021 Cheng, L, Song, S, Zhou, B, Ge, X, Yu, J, Zhang, M, Ju, B, Zhang, Z (B93) 2021; 18 Gallais, F, Velay, A, Nazon, C, Wendling, MJ, Partisani, M, Sibilia, J, Candon, S, Fafi-Kremer, S (B127) 2021; 27 B156 Gaebler, C, Wang, Z, Lorenzi, JCC, Muecksch, F, Finkin, S, Tokuyama, M, Cho, A, Jankovic, M, Schaefer-Babajew, D, Oliveira, TY, Cipolla, M, Viant, C, Barnes, CO, Bram, Y, Breton, G, Hagglof, T, Mendoza, P, Hurley, A, Turroja, M, Gordon, K, Millard, KG, Ramos, V, Schmidt, F, Weisblum, Y, Jha, D, Tankelevich, M, Martinez-Delgado, G, Yee, J, Patel, R, Dizon, J, Unson-O'Brien, C, Shimeliovich, I, Robbiani, DF, Zhao, Z, Gazumyan, A, Schwartz, RE, Hatziioannou, T, Bjorkman, PJ, Mehandru, S, Bieniasz, PD, Caskey, M, Nussenzweig, MC (B120) 2021; 591 B155 Madhi, SA, Baillie, V, Cutland, CL, Voysey, M, Koen, AL, Fairlie, L, Padayachee, SD, Dheda, K, Barnabas, SL, Bhorat, QE, Briner, C, Kwatra, G, Ahmed, K, Aley, P, Bhikha, S, Bhiman, JN, Bhorat, AE, Du Plessis, J, Esmail, A, Groenewald, M, Horne, E, Hwa, SH, Jose, A, Lambe, T, Laubscher, M, Malahleha, M, Masenya, M, Masilela, M, McKenzie, S, Molapo, K, Moultrie, A, Oelofse, S, Patel, F, Pillay, S, Rhead, S, Rodel, H, Rossouw, L, Taoushanis, C, Tegally, H, Thombrayil, A, van Eck, S, Wibmer, CK, Durham, NM, Kelly, EJ, Villafana, TL, Gilbert, S, Pollard, AJ, de Oliveira, T, Moore, PL, Sigal, A (B73) 2021; 384 Pan, H, Wu, Q, Zeng, G, Yang, J, Jiang, D, Deng, X, Chu, K, Zheng, W, Zhu, F, Yu, H, Yin, W (B168) 2021 Choi, B, Choudhary, MC, Regan, J, Sparks, JA, Padera, RF, Qiu, X, Solomon, IH, Kuo, HH, Boucau, J, Bowman, K, Adhikari, UD, Winkler, ML, Mueller, AA, Hsu, TY, Desjardins, M, Baden, LR, Chan, BT, Walker, BD, Lichterfeld, M, Brigl, M, Kwon, DS, Kanjilal, S, Richardson, ET, Jonsson, AH, Alter, G, Barczak, AK, Hanage, WP, Yu, XG, Gaiha, GD, Seaman, MS, Cernadas, M, Li, JZ (B37) 2020; 383 Katz, MA, Harlev, EB, Chazan, B, Chowers, M, Greenberg, D, Peretz, A, Tshori, S, Levy, J, Yacobi, M, Hirsch, A, Amichay, D, Weinberger, R, Dor, AB, Taraday, EK, Reznik, D, Chayat, CB, Sagas, D, Zvi, HB, Berdinstein, R, Rashid, G, Avni, YS, Mandelboim, M, Zuckerman, N, Rainy, N, Akriv, A, Dagan, N, Kepten, E, Barda, N, Balicer, RD (B147) 2021 Hansen, CH, Schelde, AB, Moustsen-Helm, IR, Emborg, H-D, Krause, TG, Mølbak, K, Valentiner-Branth, P (B161) 2021 Sofonea, MT, Roquebert, B, Foulongne, V, Verdurme, L, Trombert-Paolantoni, S, Roussel, M, Haim-Boukobza, S, Alizon, S (B68) 2022 Andrews, N, Stowe, J, Kirsebom, F, Toffa, S, Rickeard, T, Gallagher, E, Gower, C, Kall, M, Groves, N, O’Connell, A-M, Simons, D, Blomquist, PB, Zaidi, A, Nash, S, Aziz, NIBA, Thelwall, S, Dabrera, G, Myers, R, Amirthalingam, G, Gharbia, S, Barrett, JC, Elson, R, Ladhani, SN, Ferguson, N, Zambon, M, Campbell, CN, Brown, K, Hopkins, S, Chand, M, Ramsay, M, Bernal, JL (B159) 2021 Riou, C, Keeton, R, Moyo-Gwete, T, Hermanus, T, Kgagudi, P, Baguma, R, Tegally, H, Doolabh, D, Iranzadeh, A, Tyers, L, Mutavhatsindi, H, Tincho, MB, Benede, N, Marais, G, Chinhoyi, LR, Mennen, M, Skelem, S, Du Bruyn, E, Stek, C, de Oliveira, T, Williamson, C, Moore, PL, Wilkinson, RJ, Ntusi, NAB, Burgers, WA (B134) 2021 Chen, RE, Zhang, X, Case, JB, Winkler, ES, Liu, Y, VanBlargan, LA, Liu, J, Errico, JM, Xie, X, Suryadevara, N, Gilchuk, P, Zost, SJ, Tahan, S, Droit, L, Turner, JS, Kim, W, Schmitz, AJ, Thapa, M, Wang, D, Boon, ACM, Presti, RM, O'Halloran, JA, Kim, AHJ, Deepak, P, Pinto, D, Fremont, DH, Crowe, JE, Corti, D, Virgin, HW, Ellebedy, AH, Shi, PY, Diamond, MS (B72) 2021; 27 B34 B35 Dejnirattisai, W, Zhou, D, Supasa, P, Liu, C, Mentzer, AJ, Ginn, HM, Zhao, Y, Duyvesteyn, HME, Tuekprakhon, A, Nutalai, R, Wang, B, Lopez-Camacho, C, Slon-Campos, J, Walter, TS, Skelly, D, Costa Clemens, SA, Naveca, FG, Nascimento, V, Nascimento, F, Fernandes da Costa, C, Resende, PC, Pauvolid-Correa, A, Siqueira, MM, Dold, C, Levin, R, Dong, T, Pollard, AJ, Knight, JC, Crook, D, Lambe, T, Clutterbuck, E, Bibi, S, Flaxman, A, Bittaye, M, Belij-Rammerstorfer, S, Gilbert, SC, Carroll, MW, Klenerman, P, Barnes, E, Dunachie, SJ, Paterson, NG, Williams, MA, Hall, DR, Hulswit, RJG, Bowden, TA, Fry, EE, Mongkolsapaya, J, Ren, J, Stuart, DI, Screaton, GR (B85) 2021; 184 Agerer, B, Koblischke, M, Gudipati, V, Montano-Gutierrez, LF, Smyth, M, Popa, A, Genger, JW, Endler, L, Florian, DM, Muhlgrabner, V, Graninger, M, Aberle, SW, Husa, AM, Shaw, LE, Lercher, A, Gattinger, P, Torralba-Gombau, R, Trapin, D, Penz, T, Barreca, D, Fae, I, Wenda, S, Traugott, M, Walder, G, Pickl, WF, Thiel, V, Allerberger, F, Stockinger, H, Puchhammer-Stockl, E, Weninger, W, Fischer, G, Hoepler, W, Pawelka, E, Zoufaly, A, Valenta, R, Bock, C, Paster, W, Geyeregger, R, Farlik, M, Halbritter, F, Huppa, JB, Aberle, JH, Bergthaler, A (B132) 2021; 6 Qing, E, Kicmal, T, Kumar, B, Hawkins, GM, Timm, E, Perlman, S, Gallagher, T (B9) 2021; 12 B167 B1 Wang, Z, Schmidt, F, Weisblum, Y, Muecksch, F, Barnes, CO, Finkin, S, Schaefer-Babajew, D, Cipolla, M, Gaebler, C, Lieberman, JA, Oliveira, TY, Yang, Z, Abernathy, ME, Huey-Tubman, KE, Hurley, A, Turroja, M, West, KA, Gordon, K, Millard, KG, Ramos, V, Da Silva, J, Xu, J, Colbert, RA, Patel, R, Dizon, J, Unson-O'Brien, C, Shimeliovich, I, Gazumyan, A, Caskey, M, Bjorkman, PJ, Casellas, R, Hatziioannou, T, Bieniasz, PD, Nussenzweig, MC (B105) 2021; 592 Rössler, A, Riepler, L, Bante, D, Laer, D, Kimpel, J (B113) 2021 B163 B164 Zhou, P, Yang, XL, Wang, XG, Hu, B, Zhang, L, Zhang, W, Si, HR, Zhu, Y, Li, B, Huang, CL, Chen, HD, Chen, J, Luo, Y, Guo, H, Jiang, RD, Liu, MQ, Chen, Y, Shen, XR, Wang, X, Zheng, XS, Zhao, K, Chen, QJ, Deng, F, Liu, LL, Yan, B, Zhan, FX, Wang, YY, Xiao, GF, Shi, ZL (B27) 2020; 579 B162 Tan, CS, Collier, A-r, Liu, J, Yu, J, Wan, H, McMahan, K, He, X, Jacob-Dolan, C, Chandrashekar, A, Sellers, D, Stephenson, KE, Vidal, SJ, Jaegle, K, Curran, JL, Rowe, M, Hemond, R, Rivera, LB, Anioke, T, Barrett, J, Chung, B, Gardner, S, Gebre, MS, Lifton, M, Powers, O, VanWyk, H, Wu, C, Barouch, DH (B169) 2021 Gribble, J, Stevens, LJ, Agostini, ML, Anderson-Daniels, J, Chappell, JD, Lu, X, Pruijssers, AJ, Routh, AL, Denison, MR (B18) 2021; 17 B43 B44 B45 B46 B47 B48 Zhou, H, Dcosta, BM, Samanovic, MI, Mulligan, MJ, Landau, NR, Tada, T (B107) 2021; 12 Tarke, A, Sidney, J, Kidd, CK, Dan, JM, Ramirez, SI, Yu, ED, Mateus, J, da Silva Antunes, R, Moore, E, Rubiro, P, Methot, N, Phillips, E, Mallal, S, Frazier, A, Rawlings, SA, Greenbaum, JA, Peters, B, Smith, DM, Crotty, S, Weiskopf, D, Grifoni, A, Sette, A (B131) 2021; 2 B49 Choi, A, Koch, M, Wu, K, Chu, L, Ma, L, Hill, A, Nunna, N, Huang, W, Oestreicher, J, Colpitts, T, Bennett, H, Legault, H, Paila, Y, Nestorova, B, Ding, B, Montefiori, D, Pajon, R, Miller, JM, Leav, B, Carfi, A, McPhee, R, Edwards, DK (B166) 2021; 27 Khatamzas, E, Rehn, A, Muenchhoff, M, Hellmuth, J, Gaitzsch, E, Weiglein, T, Georgi, E, Scherer, C, Stecher, S, Weigert, O, Girl, P, Zange, S, Keppler, OT, Stemmler, J, von Bergwelt-Baildon, M, Wölfel, R, Antwerpen, M (B51) 2021 Alexandersen, S, Chamings, A, Bhatta, TR (B20) 2020; 11 Meckiff, BJ, Ramirez-Suastegui, C, Fajardo, V, Chee, SJ, Kusnadi, A, Simon, H, Eschweiler, S, Grifoni, A, Pelosi, E, Weiskopf, D, Sette, A, Ay, F, Seumois, G, Ottensmeier, CH, Vijayanand, P (B128) 2020; 183 B178 B179 B176 B177 B174 Koyama, T, Platt, D, Parida, L (B22) 2020; 98 B175 B172 B173 Alter, G, Yu, J, Liu, J, Chandrashekar, A, Borducchi, EN, Tostanoski, LH, McMahan, K, Jacob-Dolan, C, Martinez, DR, Chang, A, Anioke, T, Lifton, M, Nkolola, J, Stephenson, KE, Atyeo, C, Shin, S, Fields, P, Kaplan, I, Robins, H, Amanat, F, Krammer, F, Baric, RS, Le Gars, M, Sadoff, J, de Groot, AM, Heerwegh, D, Struyf, F, Douoguih, M, van Hoof, J, Schuitemaker, H, Barouch, DH (B98) 2021; 596 B171 Peng, Y, Mentzer, AJ, Liu, G, Yao, X, Yin, Z, Dong, D, Dejnirattisai, W, Rostron, T, Supasa, P, Liu, C, Lopez-Camacho, C, Slon-Campos, J, Zhao, Y, Stuart, DI, Paesen, GC, Grimes, JM, Antson, AA, Bayfield, OW, Hawkins, D, Ker, DS, Wang, B, Turtle, L, Subramaniam, K, Thomson, P, Zhang, P, Dold, C, Ratcliff, J, Simmonds, P, de Silva, T, Sopp, P, Wellington, D, Rajapaksa, U, Chen, YL, Salio, M, Napolitani, G, Paes, W, Borrow, P, Kessler, BM, Fry, JW, Schwabe, NF, Semple, MG, Baillie, JK, Moore, SC, Openshaw, PJM, Ansari, MA, Dunachie, S, Barnes, |
References_xml | – ident: e_1_3_2_184_2 doi: 10.1038/s41577-020-00480-0 – ident: e_1_3_2_72_2 doi: 10.1016/j.meegid.2021.105038 – ident: e_1_3_2_51_2 – ident: e_1_3_2_18_2 doi: 10.1126/sciadv.abb9153 – ident: e_1_3_2_141_2 doi: 10.1056/NEJMoa2107659 – ident: e_1_3_2_65_2 – ident: e_1_3_2_143_2 – ident: e_1_3_2_166_2 doi: 10.1101/2021.05.05.21256716 – ident: e_1_3_2_155_2 doi: 10.15585/mmwr.mm7037e2 – ident: e_1_3_2_60_2 doi: 10.1038/s41586-021-03402-9 – ident: e_1_3_2_95_2 doi: 10.1016/j.immuni.2021.03.023 – ident: e_1_3_2_49_2 – ident: e_1_3_2_48_2 – ident: e_1_3_2_110_2 doi: 10.1038/d41586-021-03825-4 – ident: e_1_3_2_39_2 doi: 10.1093/cid/ciab072 – ident: e_1_3_2_11_2 doi: 10.1126/science.abf6950 – ident: e_1_3_2_34_2 doi: 10.1038/s41586-020-2895-3 – ident: e_1_3_2_63_2 doi: 10.3390/microorganisms9071542 – ident: e_1_3_2_152_2 doi: 10.1101/2021.06.28.21259420 – volume: 80 start-page: 52 year: 2021 ident: e_1_3_2_59_2 article-title: Genetic characteristics and phylogeny of 969-bp S gene sequence of SARS-CoV-2 from Hawai'i reveals the worldwide emerging P681H mutation publication-title: Hawaii J Health Soc Welf – ident: e_1_3_2_80_2 doi: 10.1056/NEJMc2102179 – ident: e_1_3_2_117_2 doi: 10.1016/j.cell.2021.12.033 – ident: e_1_3_2_50_2 – ident: e_1_3_2_173_2 – ident: e_1_3_2_139_2 doi: 10.1101/2021.12.28.474333 – ident: e_1_3_2_89_2 doi: 10.1101/2021.04.04.21254881 – ident: e_1_3_2_172_2 – ident: e_1_3_2_175_2 – ident: e_1_3_2_36_2 – ident: e_1_3_2_149_2 doi: 10.1016/S0140-6736(21)01358-1 – ident: e_1_3_2_83_2 doi: 10.1038/s41586-021-03412-7 – ident: e_1_3_2_47_2 – ident: e_1_3_2_151_2 doi: 10.1056/NEJMc2104974 – ident: e_1_3_2_12_2 doi: 10.1038/s41586-021-04352-y – ident: e_1_3_2_127_2 doi: 10.1101/2021.06.09.447722 – ident: e_1_3_2_101_2 doi: 10.1128/mBio.00696-21 – ident: e_1_3_2_90_2 doi: 10.1016/j.chom.2021.04.007 – ident: e_1_3_2_150_2 doi: 10.1056/NEJMoa2108891 – ident: e_1_3_2_84_2 doi: 10.1001/jama.2021.4388 – ident: e_1_3_2_123_2 doi: 10.1101/2021.09.06.459005 – ident: e_1_3_2_156_2 – ident: e_1_3_2_126_2 doi: 10.1056/NEJMc2113468 – ident: e_1_3_2_66_2 – ident: e_1_3_2_19_2 doi: 10.1371/journal.ppat.1009226 – ident: e_1_3_2_81_2 doi: 10.1101/2021.01.07.425740 – ident: e_1_3_2_14_2 doi: 10.1371/journal.pgen.1009272 – ident: e_1_3_2_23_2 doi: 10.2471/BLT.20.253591 – ident: e_1_3_2_128_2 doi: 10.3201/eid2701.203611 – ident: e_1_3_2_71_2 doi: 10.1016/S1473-3099(22)00141-4 – ident: e_1_3_2_145_2 doi: 10.1101/2021.07.28.21261159 – ident: e_1_3_2_94_2 doi: 10.1186/s12985-021-01554-8 – ident: e_1_3_2_2_2 – ident: e_1_3_2_74_2 doi: 10.1056/NEJMoa2102214 – ident: e_1_3_2_112_2 doi: 10.1101/2021.12.15.21267805 – ident: e_1_3_2_111_2 doi: 10.1101/2021.12.08.21267417 – ident: e_1_3_2_78_2 doi: 10.1038/s41467-021-25167-5 – ident: e_1_3_2_68_2 – ident: e_1_3_2_92_2 doi: 10.3390/v13040633 – ident: e_1_3_2_122_2 doi: 10.1016/j.antiviral.2020.104792 – ident: e_1_3_2_146_2 – ident: e_1_3_2_55_2 doi: 10.1042/BSR20201312 – ident: e_1_3_2_62_2 – ident: e_1_3_2_186_2 doi: 10.1056/NEJMc2104192 – ident: e_1_3_2_46_2 – ident: e_1_3_2_130_2 doi: 10.1038/s41590-020-0782-6 – ident: e_1_3_2_4_2 doi: 10.3390/pathogens9030240 – ident: e_1_3_2_25_2 doi: 10.1128/mBio.01062-13 – ident: e_1_3_2_133_2 doi: 10.1126/sciimmunol.abg6461 – ident: e_1_3_2_87_2 doi: 10.1016/j.cell.2021.02.033 – ident: e_1_3_2_107_2 doi: 10.1038/s41467-021-24909-9 – ident: e_1_3_2_41_2 doi: 10.1056/NEJMc2031670 – ident: e_1_3_2_73_2 doi: 10.1038/s41591-021-01294-w – ident: e_1_3_2_22_2 doi: 10.1128/JVI.02683-07 – ident: e_1_3_2_56_2 doi: 10.1038/s41586-021-03398-2 – ident: e_1_3_2_106_2 doi: 10.1038/s41586-021-03324-6 – ident: e_1_3_2_96_2 doi: 10.1016/j.cell.2021.02.042 – ident: e_1_3_2_21_2 doi: 10.1038/s41467-020-19883-7 – ident: e_1_3_2_115_2 doi: 10.1101/2021.12.12.21267646 – ident: e_1_3_2_20_2 doi: 10.1073/pnas.0808116105 – ident: e_1_3_2_157_2 doi: 10.2139/ssrn.3909743 – ident: e_1_3_2_64_2 doi: 10.1016/j.cell.2020.07.012 – ident: e_1_3_2_132_2 doi: 10.1016/j.xcrm.2021.100204 – ident: e_1_3_2_76_2 doi: 10.1126/science.abg6105 – ident: e_1_3_2_91_2 doi: 10.2139/ssrn.3816840 – ident: e_1_3_2_103_2 doi: 10.1016/j.cell.2021.03.036 – ident: e_1_3_2_120_2 doi: 10.1101/2021.06.21.21258528 – ident: e_1_3_2_134_2 doi: 10.1126/sciimmunol.abj1750 – ident: e_1_3_2_28_2 doi: 10.1038/s41586-020-2012-7 – ident: e_1_3_2_116_2 doi: 10.1101/2021.12.07.21267432 – ident: e_1_3_2_121_2 doi: 10.1038/s41586-021-03207-w – ident: e_1_3_2_131_2 doi: 10.1016/j.cell.2020.09.038 – ident: e_1_3_2_174_2 – ident: e_1_3_2_31_2 doi: 10.1038/s41598-020-78703-6 – ident: e_1_3_2_97_2 doi: 10.1016/S0140-6736(21)01290-3 – ident: e_1_3_2_7_2 doi: 10.3389/fmicb.2020.01800 – ident: e_1_3_2_138_2 doi: 10.1038/s41586-021-03653-6 – ident: e_1_3_2_114_2 doi: 10.1101/2021.12.08.21267491 – ident: e_1_3_2_136_2 doi: 10.1101/2021.04.29.441258 – ident: e_1_3_2_16_2 doi: 10.1016/j.tim.2016.03.003 – ident: e_1_3_2_57_2 doi: 10.1016/j.molcel.2020.04.022 – ident: e_1_3_2_75_2 doi: 10.1056/NEJMc2102017 – ident: e_1_3_2_109_2 doi: 10.1038/s41586-021-03777-9 – ident: e_1_3_2_15_2 doi: 10.1016/S0065-3527(08)60286-9 – ident: e_1_3_2_32_2 doi: 10.1016/j.cell.2020.09.032 – ident: e_1_3_2_182_2 – ident: e_1_3_2_8_2 doi: 10.3390/biology10020091 – ident: e_1_3_2_67_2 doi: 10.1126/science.abg3055 – ident: e_1_3_2_100_2 doi: 10.1038/s41591-021-01285-x – ident: e_1_3_2_181_2 – ident: e_1_3_2_82_2 doi: 10.1101/2021.01.27.427998 – ident: e_1_3_2_159_2 doi: 10.2139/ssrn.3891065 – ident: e_1_3_2_33_2 doi: 10.1016/j.cell.2020.06.043 – ident: e_1_3_2_162_2 doi: 10.1101/2021.12.20.21267966 – ident: e_1_3_2_179_2 – ident: e_1_3_2_26_2 doi: 10.1038/s41564-020-0771-4 – ident: e_1_3_2_170_2 doi: 10.1101/2021.12.02.21267198 – ident: e_1_3_2_154_2 doi: 10.1101/2021.08.30.21262446 – ident: e_1_3_2_165_2 – ident: e_1_3_2_137_2 doi: 10.1101/2020.08.26.267724 – ident: e_1_3_2_17_2 doi: 10.1101/2021.01.22.427830 – ident: e_1_3_2_79_2 doi: 10.1101/2021.01.25.427948 – ident: e_1_3_2_93_2 doi: 10.1093/cid/ciab308 – ident: e_1_3_2_178_2 – ident: e_1_3_2_183_2 – ident: e_1_3_2_140_2 doi: 10.1101/2021.12.26.21268380 – ident: e_1_3_2_161_2 doi: 10.1101/2022.01.07.22268919 – ident: e_1_3_2_158_2 doi: 10.1101/2021.05.22.21257658 – ident: e_1_3_2_180_2 – ident: e_1_3_2_40_2 doi: 10.1016/j.cell.2020.10.049 – ident: e_1_3_2_44_2 – ident: e_1_3_2_69_2 doi: 10.1101/2021.12.31.21268583 – ident: e_1_3_2_164_2 – ident: e_1_3_2_52_2 doi: 10.1101/2021.01.10.20248871 – ident: e_1_3_2_148_2 doi: 10.1101/2021.08.30.21262465 – ident: e_1_3_2_168_2 doi: 10.2139/ssrn.3873839 – ident: e_1_3_2_108_2 doi: 10.1128/mBio.01386-21 – ident: e_1_3_2_24_2 doi: 10.1186/1471-2148-4-21 – ident: e_1_3_2_129_2 doi: 10.1016/j.cell.2020.10.001 – ident: e_1_3_2_169_2 doi: 10.1101/2021.07.23.21261026 – ident: e_1_3_2_6_2 doi: 10.4161/rna.8.2.15013 – ident: e_1_3_2_43_2 doi: 10.1038/s41577-021-00544-9 – ident: e_1_3_2_167_2 doi: 10.1038/s41591-021-01527-y – ident: e_1_3_2_160_2 doi: 10.1101/2021.12.14.21267615 – ident: e_1_3_2_27_2 doi: 10.1371/journal.pbio.3001115 – ident: e_1_3_2_113_2 doi: 10.21203/rs.3.rs-1207071/v1 – ident: e_1_3_2_118_2 doi: 10.1101/2021.12.22.21268103 – ident: e_1_3_2_147_2 doi: 10.1056/NEJMoa2101765 – ident: e_1_3_2_38_2 doi: 10.1056/NEJMc2031364 – ident: e_1_3_2_88_2 doi: 10.1038/s41591-021-01318-5 – ident: e_1_3_2_171_2 doi: 10.1101/2021.10.10.21264827 – ident: e_1_3_2_3_2 doi: 10.1016/j.ygeno.2020.09.059 – ident: e_1_3_2_153_2 doi: 10.1101/2021.08.18.21262237 – ident: e_1_3_2_5_2 doi: 10.1073/pnas.0508200103 – ident: e_1_3_2_119_2 doi: 10.1038/s41591-021-01377-8 – ident: e_1_3_2_102_2 doi: 10.1016/S2666-5247(21)00068-9 – ident: e_1_3_2_124_2 doi: 10.1002/jmv.27247 – ident: e_1_3_2_13_2 doi: 10.1101/2020.03.04.975995 – ident: e_1_3_2_125_2 doi: 10.1101/2021.09.08.21263095 – ident: e_1_3_2_185_2 doi: 10.1101/2021.12.24.474095 – ident: e_1_3_2_70_2 doi: 10.1101/2021.12.21.21268116 – ident: e_1_3_2_99_2 doi: 10.1038/s41586-021-03681-2 – ident: e_1_3_2_176_2 – ident: e_1_3_2_29_2 doi: 10.1007/s40142-020-00197-5 – ident: e_1_3_2_77_2 doi: 10.1016/j.chom.2021.03.002 – ident: e_1_3_2_104_2 doi: 10.1038/s41586-021-03471-w – ident: e_1_3_2_45_2 – ident: e_1_3_2_61_2 – ident: e_1_3_2_105_2 doi: 10.1016/S0140-6736(21)00628-0 – ident: e_1_3_2_37_2 doi: 10.1016/S2468-2667(21)00036-0 – ident: e_1_3_2_177_2 doi: 10.1101/2021.06.08.447308 – ident: e_1_3_2_58_2 doi: 10.1038/s41564-021-00908-w – ident: e_1_3_2_54_2 doi: 10.1016/j.celrep.2021.109292 – ident: e_1_3_2_85_2 doi: 10.1016/j.chom.2021.03.009 – ident: e_1_3_2_9_2 doi: 10.1016/j.cell.2021.01.037 – ident: e_1_3_2_53_2 doi: 10.1016/j.cell.2020.08.012 – ident: e_1_3_2_188_2 doi: 10.2807/1560-7917.ES.2021.26.35.2100793 – ident: e_1_3_2_10_2 doi: 10.1128/mBio.01590-21 – ident: e_1_3_2_142_2 doi: 10.1056/NEJMoa2103055 – ident: e_1_3_2_135_2 doi: 10.1101/2021.06.03.21258307 – ident: e_1_3_2_42_2 doi: 10.1038/s41586-021-03291-y – ident: e_1_3_2_163_2 – ident: e_1_3_2_98_2 doi: 10.1056/NEJMc2106083 – ident: e_1_3_2_187_2 doi: 10.1126/science.abd4251 – ident: e_1_3_2_86_2 doi: 10.1016/j.cell.2021.03.055 – ident: e_1_3_2_35_2 – ident: e_1_3_2_30_2 doi: 10.21203/rs.3.rs-871965/v1 – ident: e_1_3_2_144_2 – volume: 595 start-page: 572 year: 2021 end-page: 577 ident: B137 article-title: BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans publication-title: Nature doi: 10.1038/s41586-021-03653-6 – year: 2021 ident: B51 article-title: Emergence of multiple SARS-CoV-2 mutations in an immunocompromised host publication-title: medRxiv doi: 10.1101/2021.01.10.20248871 – volume: 48 start-page: 1 year: 1997 end-page: 100 ident: B14 article-title: The molecular biology of coronaviruses publication-title: Adv Virus Res doi: 10.1016/S0065-3527(08)60286-9 – volume: 9 start-page: 240 year: 2020 ident: B3 article-title: Evolutionary trajectory for the emergence of novel coronavirus SARS-CoV-2 publication-title: Pathogens doi: 10.3390/pathogens9030240 – volume: 182 start-page: 812 year: 2020 end-page: 827.e19 ident: B32 article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus publication-title: Cell doi: 10.1016/j.cell.2020.06.043 – volume: 397 start-page: 2331 year: 2021 end-page: 2333 ident: B96 article-title: Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination publication-title: Lancet doi: 10.1016/S0140-6736(21)01290-3 – year: 2021 ident: B170 article-title: Heterologous SARS-CoV-2 booster vaccinations—preliminary report publication-title: medRxiv doi: 10.1101/2021.10.10.21264827 – volume: 369 start-page: 1586 year: 2020 end-page: 1592 ident: B186 article-title: Distinct conformational states of SARS-CoV-2 spike protein publication-title: Science doi: 10.1126/science.abd4251 – ident: B50 article-title: Public Health England . 2020 Investigation of novel SARS-COV-2 variant: Variant of Concern 202012/01: technical briefing 1 . – volume: 384 start-page: 1412 year: 2021 end-page: 1423 ident: B146 article-title: BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting publication-title: N Engl J Med doi: 10.1056/NEJMoa2101765 – volume: 6 year: 2021 ident: B132 article-title: SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8(+) T cell responses publication-title: Sci Immunol doi: 10.1126/sciimmunol.abg6461 – volume: 325 start-page: 1896 year: 2021 end-page: 1898 ident: B83 article-title: Neutralizing antibodies against SARS-CoV-2 variants after infection and vaccination publication-title: JAMA doi: 10.1001/jama.2021.4388 – ident: B164 article-title: Public Health England . 2021 . SARS-CoV-2 variants of concern and variants under investigation in England: technical briefing: update on hospitalisation and vaccine effectiveness for Omicron VOC-21NOV-01 (B.1.1.529) . – volume: 596 start-page: 276 year: 2021 end-page: 280 ident: B108 article-title: Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization publication-title: Nature doi: 10.1038/s41586-021-03777-9 – volume: 78 start-page: 779 year: 2020 end-page: 784.e5 ident: B56 article-title: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells publication-title: Mol Cell doi: 10.1016/j.molcel.2020.04.022 – volume: 12 year: 2021 ident: B9 article-title: Dynamics of SARS-CoV-2 spike proteins in cell entry: control elements in the amino-terminal domains publication-title: mBio doi: 10.1128/mBio.01590-21 – volume: 80 start-page: 52 year: 2021 end-page: 61 ident: B58 article-title: Genetic characteristics and phylogeny of 969-bp S gene sequence of SARS-CoV-2 from Hawai'i reveals the worldwide emerging P681H mutation publication-title: Hawaii J Health Soc Welf – volume: 385 start-page: 1172 year: 2021 end-page: 1183 ident: B140 article-title: Safety and efficacy of NVX-CoV2373 Covid-19 vaccine publication-title: N Engl J Med doi: 10.1056/NEJMoa2107659 – year: 2021 ident: B117 article-title: Neutralization of SARS-CoV-2 Omicron pseudovirus by BNT162b2 vaccine-elicited human sera publication-title: medRxiv doi: 10.1101/2021.12.22.21268103 – volume: 602 start-page: 487 year: 2021 end-page: 495 ident: B11 article-title: Evolution of enhanced innate immune evasion by SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-021-04352-y – volume: 54 start-page: 1276 year: 2021 end-page: 1289.e6 ident: B94 article-title: Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant publication-title: Immunity doi: 10.1016/j.immuni.2021.03.023 – year: 2021 ident: B169 article-title: Ad26.COV2.S or BNT162b2 boosting of BNT162b2 vaccinated individuals publication-title: medRxiv doi: 10.1101/2021.12.02.21267198 – ident: B47 article-title: European Centre for Disease Prevention and Control (ECDC) . 2022 SARS-CoV-2 variants of concern as of 13 January 2022 . – volume: 184 start-page: 2384 year: 2021 end-page: 2393.e12 ident: B102 article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies publication-title: Cell doi: 10.1016/j.cell.2021.03.036 – ident: B34 article-title: GISAID . 2021 . https://www.gisaid.org/phylodynamics/global/nextstrain/ . Accessed 14 July, 2021 . – volume: 183 start-page: 996 year: 2020 end-page: 1012.e19 ident: B130 article-title: Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity publication-title: Cell doi: 10.1016/j.cell.2020.09.038 – ident: B126 article-title: Moore PL , Moyo-Gwete T , Hermanus T , Kgagudi P , Ayres F , Makhado Z , Sadoff J , Le Gars M , van Roey G , Crowther C , Garrett N , Bekker L-G , Morris L , Schuitemaker H , Gray G . 2021 . Neutralizing antibodies elicited by the Ad26.COV2.S COVID-19 vaccine show reduced activity against 501Y.V2 (B.1.351), despite protection against severe disease by this variant . bioRxiv doi: 10.1101/2021.06.09.447722 . – volume: 384 start-page: 1885 year: 2021 end-page: 1898 ident: B73 article-title: Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant publication-title: N Engl J Med doi: 10.1056/NEJMoa2102214 – ident: B138 article-title: Tarke A , Coelho CH , Zhang Z , Dan JM , Yu ED , Methot N , Bloom NI , Goodwin B , Phillips E , Mallal S , Sidney J , Filaci G , Weiskopf D , da Silva Antunes R , Crotty S , Grifoni A , Sette A . 2021 . SARS-CoV-2 vaccination induces immunological memory able to cross-recognize variants from Alpha to Omicron . bioRxiv doi: 10.1101/2021.12.28.474333 . – volume: 103 start-page: 5108 year: 2006 end-page: 5113 ident: B4 article-title: Discovery of an RNA virus 3'→5' exoribonuclease that is critically involved in coronavirus RNA synthesis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0508200103 – year: 2022 ident: B160 article-title: Effectiveness of mRNA-1273 against SARS-CoV-2 omicron and delta variants publication-title: medRxiv doi: 10.1101/2022.01.07.22268919 – volume: 95 start-page: 105038 year: 2021 ident: B71 article-title: Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2 publication-title: Infect Genet Evol doi: 10.1016/j.meegid.2021.105038 – volume: 185 start-page: 457 year: 2022 end-page: 466.e4 ident: B116 article-title: mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant publication-title: Cell doi: 10.1016/j.cell.2021.12.033 – ident: B177 article-title: Russian Direct Investment Fund, Gamaleya Institute . 2021 . Statement of RDIF and the Gamaleya Institute on omicron variant of COVID . https://sputnikvaccine.com/newsroom/pressreleases/statement-of-rdif-and-the-gamaleya-institute-on-omicron-variant-of-covid/ . Accessed 14 January, 2022 . – ident: B90 article-title: Parry HM , Tut G , Faustini S , Stephens C , Saunders P , Bentley C , Hilyard K , Brown K , Amirthalingam G , Charlton S , Leung S , Chiplin E , Coombes NS , Bewley KR , Penn EJ , Rowe C , Otter A , Watts R , D’Arcangelo S , Hallis B , Makin A , Richter AG , Zuo J . 2021 . BNT162b2 vaccination in people over 80 years of age induces strong humoral immune responses with cross neutralisation of P.1 Brazilian variant . https://ssrn.com/abstract=3816840 . Accessed 14 June, 2021 – volume: 385 start-page: 1627 year: 2021 end-page: 1629 ident: B125 article-title: SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3 publication-title: N Engl J Med doi: 10.1056/NEJMc2113468 – volume: 82 start-page: 4807 year: 2008 end-page: 4811 ident: B21 article-title: Homologous recombination is very rare or absent in human influenza A virus publication-title: J Virol doi: 10.1128/JVI.02683-07 – volume: 384 start-page: 1466 year: 2021 end-page: 1468 ident: B74 article-title: Neutralizing activity of BNT162b2-elicited serum publication-title: N Engl J Med doi: 10.1056/NEJMc2102017 – year: 2021 ident: B124 article-title: Exposures to different SARS-CoV-2 spike variants elicit neutralizing antibody responses with differential specificity towards established and emerging strains publication-title: medRxiv doi: 10.1101/2021.09.08.21263095 – year: 2021 ident: B144 article-title: Six month safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine publication-title: medRxiv doi: 10.1101/2021.07.28.21261159 – ident: B143 article-title: U.S. Department of Health and Human Services, U.S. Food and Drug Administration, Center for Biologics Evaluation and Research . 2020 . Development and licensure of vaccines to prevent COVID-19: guidance for industry . https://www.fda.gov/regulatory-information/search-fda-guidance-documents/development-and-licensure-vaccines-prevent-covid-19 . Accessed 3 March, 2021 – volume: 113 start-page: 1221 year: 2021 end-page: 1232 ident: B2 article-title: Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection publication-title: Genomics doi: 10.1016/j.ygeno.2020.09.059 – ident: B65 article-title: GISAID . 2022 . Tracking of variants . https://www.gisaid.org/hcov19-variants/ . Accessed 14 January, 2022 . – volume: 385 start-page: 585 year: 2021 end-page: 594 ident: B149 article-title: Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant publication-title: N Engl J Med doi: 10.1056/NEJMoa2108891 – year: 2021 ident: B69 article-title: Early assessment of the clinical severity of the SARS-CoV-2 Omicron variant in South Africa publication-title: medRxiv doi: 10.1101/2021.12.21.21268116 – volume: 27 start-page: 622 year: 2021 end-page: 625 ident: B99 article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma publication-title: Nat Med doi: 10.1038/s41591-021-01285-x – volume: 372 year: 2021 ident: B66 article-title: Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England publication-title: Science doi: 10.1126/science.abg3055 – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: B27 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – ident: B81 article-title: Xie X , Liu Y , Liu J , Zhang X , Zou J , Fontes-Garfias CR , Xia H , Swanson KA , Cutler M , Cooper D , Menachery VD , Weaver S , Dormitzer PR , Shi PY . 2021 . Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K, and N501Y variants by BNT162b2 vaccine-elicited sera . bioRxiv doi: 10.1101/2021.01.27.427998 . – volume: 35 start-page: 109292 year: 2021 ident: B53 article-title: Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7 publication-title: Cell Rep doi: 10.1016/j.celrep.2021.109292 – ident: B171 article-title: BioNTech. 2021 . BioNTech announces second quarter 2021 financial results and corporate update . https://investors.biontech.de/node/10446/pdf . Accessed 14 September, 2021 – ident: B173 article-title: BioNTech . 2021 . Update: Omicron variant (B.1.1.529) . https://investors.biontech.de/static-files/47b4131a-0545-4a0b-a353-49b3a1d01789 . Accessed 20 January, 2022 . – volume: 178 start-page: 104792 year: 2020 ident: B121 article-title: Coronavirus membrane fusion mechanism offers a potential target for antiviral development publication-title: Antiviral Res doi: 10.1016/j.antiviral.2020.104792 – volume: 593 start-page: 142 year: 2021 end-page: 146 ident: B103 article-title: Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma publication-title: Nature doi: 10.1038/s41586-021-03471-w – volume: 105 start-page: 19944 year: 2008 end-page: 19949 ident: B19 article-title: Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0808116105 – ident: B80 article-title: Xie X , Zou J , Fontes-Garfias CR , Xia H , Swanson KA , Cutler M , Cooper D , Menachery VD , Weaver S , Dormitzer PR , Shi PY . 2021 . Neutralization of N501Y mutant SARS-CoV-2 by BNT162b2 vaccine-elicited sera . bioRxiv doi: 10.1101/2021.01.07.425740 . – volume: 73 start-page: e815 year: 2021 end-page: e821 ident: B38 article-title: Intractable coronavirus disease 2019 (COVID-19) and prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in a chimeric antigen receptor-modified T-cell therapy recipient: A case study publication-title: Clin Infect Dis doi: 10.1093/cid/ciab072 – volume: 21 start-page: 1336 year: 2020 end-page: 1345 ident: B129 article-title: Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19 publication-title: Nat Immunol doi: 10.1038/s41590-020-0782-6 – volume: 26 start-page: 2100793 year: 2021 ident: B187 article-title: Vaccine effectiveness against infection with the Delta (B.1.617.2) variant, Norway, April to August 2021 publication-title: Euro Surveill doi: 10.2807/1560-7917.ES.2021.26.35.2100793 – ident: B44 article-title: Public Health England . 2021 SARS-CoV-2 variants of concern and variants under investigation in England: technical briefing 7 . – year: 2022 ident: B68 article-title: From Delta to Omicron: analysing the SARS-CoV-2 epidemic in France using variant-specific screening tests (September 1 to December 18, 2021) publication-title: medRxiv doi: 10.1101/2021.12.31.21268583 – volume: 12 year: 2021 ident: B107 article-title: B.1.526 SARS-CoV-2 variants identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies publication-title: mBio doi: 10.1128/mBio.01386-21 – ident: B45 article-title: Public Health England . 2022 . Variants: distribution of case data, 14 January 2022 . https://www.gov.uk/government/publications/covid-19-variants-genomically-confirmed-case-numbers/variants-distribution-of-case-data-14-january-2022 . Accessed 14 January, 2022 . – ident: B174 article-title: Moderna . 2021 . MODERNA announces preliminary booster data and updates strategy to address omicron variant . https://investors.modernatx.com/news/news-details/2021/Moderna-Announces-Preliminary-Booster-Data-and-Updates-Strategy-to-Address-Omicron-Variant/default.aspx . Accessed 14 January, 2022 . – ident: B162 article-title: Ferguson N , Ghani A , Cori A , Hogan A , Hinsley W , Volz E , Imperial College COVID-19 response team . 2021 . Report 49—Growth, population distribution and immune escape of the Omicron in England . MRC Centre for Global Infectious Disease Analysis , London, United Kingdom . – year: 2021 ident: B88 article-title: Neutralization of SARS-CoV-2 variants by convalescent and vaccinated serum publication-title: medRxiv doi: 10.1101/2021.04.04.21254881 – year: 2022 ident: B29 article-title: Coronaviruses with a SARS-CoV-2-like receptor-binding domain allowing ACE2-mediated entry into human cells isolated from bats of Indochinese peninsula publication-title: Nature Portfolio doi: 10.21203/rs.3.rs-871965/v1 – volume: 93 start-page: 6468 year: 2021 end-page: 6470 ident: B123 article-title: A cluster of the new SARS-CoV-2 B.1.621 lineage in Italy and sensitivity of the viral isolate to the BNT162b2 vaccine publication-title: J Med Virol doi: 10.1002/jmv.27247 – ident: B1 article-title: CoVariants . 2022 . CoVariants . https://covariants.org/ . Accessed 14 January, 2022 . – volume: 27 start-page: 113 year: 2021 end-page: 121 ident: B127 article-title: Intrafamilial exposure to SARS-CoV-2 associated with cellular immune response without seroconversion, France publication-title: Emerg Infect Dis doi: 10.3201/eid2701.203611 – volume: 18 start-page: 87 year: 2021 ident: B93 article-title: Impact of the N501Y substitution of SARS-CoV-2 Spike on neutralizing monoclonal antibodies targeting diverse epitopes publication-title: Virol J doi: 10.1186/s12985-021-01554-8 – ident: B122 article-title: Uriu K , Kimura I , Shirakawa K , Takaori-Kondo A , Nakada T-a , Kaneda A , Nakagawa S , Sato K . 2021 . Ineffective neutralization of the SARS-CoV-2 Mu variant by convalescent and vaccine sera . bioRxiv doi: 10.1101/2021.09.06.459005 . – ident: B175 article-title: University of Oxford . 2021 . ChAdOx1 nCov-19 provides minimal protection against mild-moderate COVID-19 infection from B.1.351 coronavirus variant in young South African adults . https://www.ox.ac.uk/news/2021-02-07-chadox1-ncov-19-provides-minimal-protection-against-mild-moderate-covid-19-infection . Accessed 4 March, 2021 . – year: 2021 ident: B114 article-title: Plasma neutralization properties of the SARS-CoV-2 Omicron variant publication-title: medRxiv doi: 10.1101/2021.12.12.21267646 – volume: 6 year: 2021 ident: B133 article-title: SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees publication-title: Sci Immunol doi: 10.1126/sciimmunol.abj1750 – ident: B158 article-title: Payne RP , Longet S , Austin JA , Skelly DT , Dejnirattisai W , Adele S , Meardon N . 2021 . Sustained T cell immunity, protection and boosting using extended dosing intervals of BNT162b2 mRNA vaccine . SSRN doi: 10.2139/ssrn.3891065 . – volume: 385 start-page: 472 year: 2021 end-page: 474 ident: B97 article-title: BNT162b2-elicited neutralization against new SARS-CoV-2 spike variants publication-title: N Engl J Med doi: 10.1056/NEJMc2106083 – volume: 16 year: 2020 ident: B13 article-title: Recombination events are concentrated in the spike protein region of Betacoronaviruses publication-title: PLoS Genet doi: 10.1371/journal.pgen.1009272 – ident: B70 article-title: Sheikh A , Kerr S , Woolhouse M , McMenamin J , Robertson C . 2021 Severity of Omicron variant of concern and vaccine effectiveness against symptomatic disease: national cohort with nested test negative design study in Scotland . Epub ahead of print . – volume: 10 start-page: 21617 year: 2020 ident: B30 article-title: Genomic recombination events may reveal the evolution of coronavirus and the origin of SARS-CoV-2 publication-title: Sci Rep doi: 10.1038/s41598-020-78703-6 – volume: 592 start-page: 616 year: 2021 end-page: 622 ident: B105 article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants publication-title: Nature doi: 10.1038/s41586-021-03324-6 – ident: B156 article-title: Tartof SY , Slezak JM , Heidi F , Hong V , Ackerson BK , Ranasinghe ON , Frankland TB , Ogun OA , Zamparo JM , Gray S , Valluri SR , Pan K , Angulo FJ , Jodar L , McLaughlin JM . 2021 . Six-month effectiveness of BNT162b2 mRNA COVID-19 vaccine in a large US integrated health system: a retrospective cohort study . SSRN doi: 10.2139/ssrn.3909743 . – volume: 592 start-page: 277 year: 2021 end-page: 282 ident: B41 article-title: SARS-CoV-2 evolution during treatment of chronic infection publication-title: Nature doi: 10.1038/s41586-021-03291-y – volume: 73 start-page: e1337 year: 2021 end-page: e1344 ident: B92 article-title: Sera neutralizing activities against severe acute respiratory syndrome coronavirus 2 and multiple variants 6 months after hospitalization for coronavirus disease 2019 publication-title: Clin Infect Dis doi: 10.1093/cid/ciab308 – ident: B61 article-title: Faria NR , Claro IM , Candido D , Moyses Franco LA , Andrade PS , Coletti TM , Silva CAM , Sales FC , Manuli ER , Aguiar RS , Gaburo N , Camilo C , Fraiji NA , Esashika Crispim MA , Carvalho M , Rambaut A , Loman N , Pybus OG , Sabino EC , CADDE Genomic Network . 2021 . Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings . https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586 . Accessed 18 February, 2021 – volume: 70 start-page: 1291 year: 2021 end-page: 1293 ident: B154 article-title: Interim estimates of COVID-19 vaccine effectiveness against COVID-19–associated emergency department or urgent care clinic encounters and hospitalizations among adults during SARS-CoV-2 B.1.617.2 (Delta) variant predominance—nine states, June–August 2021 publication-title: MMWR Morb Mortal Wkly Rep doi: 10.15585/mmwr.mm7037e2 – ident: B49 article-title: Rambaut A , Loman N , Pybus OG , Barclay W , Barrett J , Carabelli A , Connor T , Peacock T , Robertson DL , Volz E , COVID-19 Genomics Consortium UK (CoG-UK) . 2021 . Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations . https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563 . Accessed 14 September, 2021 . – year: 2021 ident: B161 article-title: Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: a Danish cohort study publication-title: medRxiv doi: 10.1101/2021.12.20.21267966 – ident: B78 article-title: Wu K , Werner AP , Moliva JI , Koch M , Choi A , Stewart-Jones GBE , Bennett H , Boyoglu-Barnum S , Shi W , Graham BS , Carfi A , Corbett KS , Seder RA , Edwards DK . 2021 . mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants . bioRxiv doi: 10.1101/2021.01.25.427948 . – volume: 8 start-page: 270 year: 2011 end-page: 279 ident: B5 article-title: Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity publication-title: RNA Biol doi: 10.4161/rna.8.2.15013 – volume: 183 start-page: 1901 year: 2020 end-page: 1912.e9 ident: B39 article-title: Case study: prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer publication-title: Cell doi: 10.1016/j.cell.2020.10.049 – ident: B155 article-title: Israel Ministry of Health . 2021 . Decline in vaccine effectiveness against infection and symptomatic illness . https://www.gov.il/en/departments/news/05072021-03 . Accessed 14 July, 2021 – volume: 11 start-page: 1800 year: 2020 ident: B6 article-title: Geographic and genomic distribution of SARS-CoV-2 mutations publication-title: Front Microbiol doi: 10.3389/fmicb.2020.01800 – volume: 21 start-page: 330 year: 2021 end-page: 335 ident: B42 article-title: Concerns about SARS-CoV-2 evolution should not hold back efforts to expand vaccination publication-title: Nat Rev Immunol doi: 10.1038/s41577-021-00544-9 – ident: B142 article-title: Johnson & Johnson . 2021 . Johnson & Johnson announces single-shot Janssen COVID-19 vaccine candidate met primary endpoints in interim analysis of its phase 3 ENSEMBLE trial . https://www.jnj.com/johnson-and-johnson-announces-single-shot-janssen-covid-19-vaccine-candidate-met-primary-endpoints-in-interim-analysis-of-its-phase-3-ensemble-trial . Accessed 3 March, 2021 . – ident: B181 article-title: Medicines and Healthcare products Regulatory Agency . 2021 . ACCESS Consortium guidance on strain changes in authorised COVID-19 vaccines . https://www.gov.uk/government/publications/access-consortium-guidance-on-strain-changes-in-authorised-covid-19-vaccines . Accessed 4 March, 2021 . – volume: 592 start-page: 116 year: 2021 end-page: 121 ident: B33 article-title: Spike mutation D614G alters SARS-CoV-2 fitness publication-title: Nature doi: 10.1038/s41586-020-2895-3 – volume: 5 year: 2014 ident: B24 article-title: Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus publication-title: mBio doi: 10.1128/mBio.01062-13 – ident: B145 article-title: Pfizer, BioNTech . 2021 Pfizer and BioNTech announce phase 3 trial data showing high efficacy of a booster dose of their COVID-19 vaccine . https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-phase-3-trial-data-showing . Accessed 14 January, 2022 . – ident: B176 article-title: Spencer AJ , Morris S , Ulaszewska M , Powers C , Kailath R , Bissett C , Truby A , Thakur N , Newman J , Allen ER , Rudiansyah I , Liu C , Dejnirattisai W , Mongkolsapaya J , Davies H , Donnellan FR , Pulido D , Peacock TP , Barclay WS , Bright H , Ren K , Screaton G , McTamney P , Bailey D , Gilbert SC , Lambe T . 2021 . The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 Beta (B.1.351) and other variants of concern in preclinical studies . bioRxiv doi: 10.1101/2021.06.08.447308 . – volume: 27 start-page: 717 year: 2021 end-page: 726 ident: B72 article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies publication-title: Nat Med doi: 10.1038/s41591-021-01294-w – year: 2021 ident: B152 article-title: Impact of Delta on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK publication-title: medRxiv doi: 10.1101/2021.08.18.21262237 – volume: 397 start-page: 1351 year: 2021 end-page: 1362 ident: B104 article-title: Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(21)00628-0 – volume: 592 start-page: 438 year: 2021 end-page: 443 ident: B59 article-title: Detection of a SARS-CoV-2 variant of concern in South Africa publication-title: Nature doi: 10.1038/s41586-021-03402-9 – ident: B67 article-title: Scientific Advisory Group for Emergencies (SAGE) . 2021 . SPI-M-O: consensus statement on COVID-19, 3 June 2021 . https://www.gov.uk/government/publications/spi-m-o-consensus-statement-on-covid-19-3-june-2021 . Accessed 16 September, 2021 – volume: 29 start-page: 747 year: 2021 end-page: 751.e4 ident: B89 article-title: Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.04.007 – ident: B182 article-title: World Health Organization . 2022 . Interim statement on COVID-19 vaccines in the context of the circulation of the Omicron SARS-CoV-2 variant from the WHO Technical Advisory Group on COVID-19 Vaccine Composition (TAG-CO-VAC) . https://www.who.int/news/item/11-01-2022-interim-statement-on-covid-19-vaccines-in-the-context-of-the-circulation-of-the-omicron-sars-cov-2-variant-from-the-who-technical-advisory-group-on-covid-19-vaccine-composition . Accessed 14 January, 2022 . – volume: 384 start-page: 1899 year: 2021 end-page: 1909 ident: B141 article-title: Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant publication-title: N Engl J Med doi: 10.1056/NEJMoa2103055 – ident: B179 article-title: European Medicines Agency . 2021 . Regulatory requirements for vaccines intended to provide protection against variant strain(s) of SARS-CoV-2 . https://www.ema.europa.eu/en/regulatory-requirements-vaccines-intended-provide-protection-against-variant-strains-sars-cov-2 . Accessed 4 March, 2021 . – ident: B180 article-title: U.S. Food and Drug Administration . 2021 . Emergency use authorization for vaccines to prevent COVID-19: guidance for industry . https://www.fda.gov/media/142749/download . Accessed 3 March, 2021 . – volume: 384 start-page: 2161 year: 2021 end-page: 2163 ident: B185 article-title: Cross-reactive neutralizing antibody responses elicited by SARS-CoV-2 501Y.V2 (B.1.351) publication-title: N Engl J Med doi: 10.1056/NEJMc2104192 – volume: 184 start-page: 2939 year: 2021 end-page: 2954 e9 ident: B85 article-title: Antibody evasion by the P.1 strain of SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2021.03.055 – volume: 184 start-page: 2362 year: 2021 end-page: 2371.e9 ident: B95 article-title: SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape publication-title: Cell doi: 10.1016/j.cell.2021.02.042 – volume: 29 start-page: 529 year: 2021 end-page: 539.e3 ident: B76 article-title: SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.03.002 – year: 2022 ident: B112 article-title: Neutralizing antibody titres to SARS-CoV-2 Omicron variant and wild-type virus in those with past infection or vaccinated or boosted with mRNA BNT162b2 or inactivated CoronaVac vaccines publication-title: Nature Portfolio doi: 10.21203/rs.3.rs-1207071/v1 – volume: 2 start-page: e283 year: 2021 end-page: e284 ident: B101 article-title: SARS-CoV-2 spike E484K mutation reduces antibody neutralisation publication-title: Lancet Microbe doi: 10.1016/S2666-5247(21)00068-9 – year: 2021 ident: B119 article-title: Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection publication-title: medRxiv doi: 10.1101/2021.06.21.21258528 – ident: B135 article-title: Francis JM , Leistritz-Edwards D , Dunn A , Tarr C , Lehman J , Dempsey C , Hamel A , Rayon V , Liu G , Wang Y , Wille M , Durkin M , Hadley K , Sheena A , Roscoe B , Ng M , Rockwell G , Manto M , Gienger E , Nickerson J , Moarefi A , Noble M , Malia T , Bardwell PD , Gordon W , Swain J , Skoberne M , Sauer K , Harris T , Goldrath AW , Shalek AK , Coyle AJ , Benoist C , Pregibon DC . 2021 . Allelic variation in Class I HLA determines pre-existing memory responses to SARS-CoV-2 that shape the CD8+ T cell repertoire upon viral exposure . bioRxiv doi: 10.1101/2021.04.29.441258 . – volume: 385 start-page: 187 year: 2021 end-page: 189 ident: B150 article-title: Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants publication-title: N Engl J Med doi: 10.1056/NEJMc2104974 – year: 2021 ident: B151 article-title: Effectiveness of COVID-19 vaccines against variants of concern in Ontario publication-title: medRxiv doi: 10.1101/2021.06.28.21259420 – year: 2021 ident: B153 article-title: Effectiveness of COVID-19 vaccines against SARS-CoV-2 infection during a delta variant epidemic surge in Multnomah County, Oregon, July 2021 publication-title: medRxiv doi: 10.1101/2021.08.30.21262446 – year: 2021 ident: B165 article-title: Preliminary analysis of safety and immunogenicity of a SARS-CoV-2 variant vaccine booster publication-title: medRxiv doi: 10.1101/2021.05.05.21256716 – year: 2021 ident: B168 article-title: Immunogenicity and safety of a third dose, and immune persistence of CoronaVac vaccine in healthy adults aged 18–59 years: interim results from a double-blind, randomized, placebo-controlled phase 2 clinical trial publication-title: medRxiv doi: 10.1101/2021.07.23.21261026 – volume: 27 start-page: 1205 year: 2021 end-page: 1211 ident: B118 article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection publication-title: Nat Med doi: 10.1038/s41591-021-01377-8 – volume: 384 start-page: 1468 year: 2021 end-page: 1470 ident: B79 article-title: Serum neutralizing activity elicited by mRNA-1273 vaccine publication-title: N Engl J Med doi: 10.1056/NEJMc2102179 – volume: 591 start-page: 639 year: 2021 end-page: 644 ident: B120 article-title: Evolution of antibody immunity to SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-021-03207-w – year: 2021 ident: B115 article-title: Reduced neutralization of SARS-CoV-2 Omicron variant by vaccine sera and monoclonal antibodies publication-title: medRxiv doi: 10.1101/2021.12.07.21267432 – volume: 19 year: 2021 ident: B26 article-title: Natural selection in the evolution of SARS-CoV-2 in bats created a generalist virus and highly capable human pathogen publication-title: PLoS Biol doi: 10.1371/journal.pbio.3001115 – volume: 184 start-page: 1171 year: 2021 end-page: 1187.e20 ident: B8 article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity publication-title: Cell doi: 10.1016/j.cell.2021.01.037 – volume: 6 start-page: e199 year: 2021 end-page: e200 ident: B36 article-title: Immune evasion means we need a new COVID-19 social contract publication-title: Lancet Public Health doi: 10.1016/S2468-2667(21)00036-0 – volume: 397 start-page: 2461 year: 2021 end-page: 2462 ident: B148 article-title: SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness publication-title: Lancet doi: 10.1016/S0140-6736(21)01358-1 – ident: B178 article-title: Novavax . 2021 . Novavax announces initial Omicron cross-reactivity data from COVID-19 vaccine booster and adolescent studies . https://ir.novavax.com/2021-12-22-Novavax-Announces-Initial-Omicron-Cross-Reactivity-Data-from-COVID-19-Vaccine-Booster-and-Adolescent-Studies . Accessed 14 January, 2022 . – volume: 371 start-page: 1152 year: 2021 end-page: 1153 ident: B75 article-title: Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera publication-title: Science doi: 10.1126/science.abg6105 – volume: 13 start-page: 633 year: 2021 ident: B91 article-title: The impact on infectivity and neutralization efficiency of SARS-CoV-2 lineage B.1.351 pseudovirus publication-title: Viruses doi: 10.3390/v13040633 – volume: 2 start-page: 100204 year: 2021 ident: B131 article-title: Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2021.100204 – volume: 40 start-page: BSR20201312 year: 2020 ident: B54 article-title: A virus that has gone viral: amino acid mutation in S protein of Indian isolate of Coronavirus COVID-19 might impact receptor binding, and thus, infectivity publication-title: Biosci Rep doi: 10.1042/BSR20201312 – volume: 4 start-page: 21 year: 2004 ident: B23 article-title: Moderate mutation rate in the SARS coronavirus genome and its implications publication-title: BMC Evol Biol doi: 10.1186/1471-2148-4-21 – ident: B46 article-title: World Health Organization . 2022 . Tracking SARS-CoV-2 variants . https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ . Accessed 14 January, 2022 . – volume: 21 start-page: 73 year: 2021 end-page: 82 ident: B183 article-title: Viral targets for vaccines against COVID-19 publication-title: Nat Rev Immunol doi: 10.1038/s41577-020-00480-0 – volume: 383 start-page: 2291 year: 2020 end-page: 2293 ident: B37 article-title: Persistence and evolution of SARS-CoV-2 in an immunocompromised host publication-title: N Engl J Med doi: 10.1056/NEJMc2031364 – ident: B172 article-title: Pfizer, BioNTech . 2021 . Pfizer and BioNTech provide update on omicron variant . https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-provide-update-omicron-variant . Accessed 14 January, 2022 . – year: 2021 ident: B110 article-title: SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection publication-title: medRxiv doi: 10.1101/2021.12.08.21267417 – volume: 10 start-page: 91 year: 2021 ident: B7 article-title: One year of SARS-CoV-2: how much has the virus changed? publication-title: Biology (Basel) doi: 10.3390/biology10020091 – volume: 24 start-page: 490 year: 2016 end-page: 502 ident: B15 article-title: Epidemiology, genetic recombination, and pathogenesis of coronaviruses publication-title: Trends Microbiol doi: 10.1016/j.tim.2016.03.003 – year: 2021 ident: B134 article-title: Loss of recognition of SARS-CoV-2 B.1.351 variant spike epitopes but overall preservation of T cell immunity publication-title: medRxiv doi: 10.1101/2021.06.03.21258307 – volume: 183 start-page: 739 year: 2020 end-page: 751.e8 ident: B31 article-title: Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant publication-title: Cell doi: 10.1016/j.cell.2020.09.032 – volume: 12 start-page: 5061 year: 2021 ident: B77 article-title: Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern publication-title: Nat Commun doi: 10.1038/s41467-021-25167-5 – volume: 183 start-page: 1340 year: 2020 end-page: 1353.e16 ident: B128 article-title: Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4(+) T cells in COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.10.001 – volume: 182 start-page: 1284 year: 2020 end-page: 1294.e9 ident: B63 article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity publication-title: Cell doi: 10.1016/j.cell.2020.07.012 – ident: B109 article-title: Cameroni E , Saliba C , Bowen JE , Rosen LE , Culap K , Pinto D , VanBlargan LA , De Marco A , Zepeda SK , Iulio J , Zatta F , Kaiser H , Noack J , Farhat N , Czudnochowski N , Havenar-Daughton C , Sprouse KR , Dillen JR , Powell AE , Chen A , Maher C , Yin L , Sun D , Soriaga L , Bassi J , Silacci-Fregni C , Gustafsson C , Franko NM , Logue J , Iqbal NT , Mazzitelli I , Geffner J , Grifantini R , Chu H , Gori A , Riva A , Giannini O , Ceschi A , Ferrari P , Cippà P , Franzetti-Pellanda A , Garzoni C , Halfmann PJ , Kawaoka Y , Hebner C , Purcell LA , Piccoli L , Pizzuto MS , Walls AC , Diamond MS , et al . 2021 . Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift . bioRxiv doi: 10.1101/2021.12.12.472269 . – volume: 383 start-page: 2586 year: 2020 end-page: 2588 ident: B40 article-title: Shedding of viable SARS-CoV-2 after immunosuppressive therapy for cancer publication-title: N Engl J Med doi: 10.1056/NEJMc2031670 – volume: 593 start-page: 130 year: 2021 end-page: 135 ident: B55 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature doi: 10.1038/s41586-021-03398-2 – year: 2021 ident: B139 article-title: SARS-CoV-2 spike T cell responses induced upon vaccination or infection remain robust against Omicron publication-title: medRxiv doi: 10.1101/2021.12.26.21268380 – ident: B60 article-title: PANGO . 2022 . PANGO lineages: global report investigating novel coronavirus haplotypes . https://cov-lineages.org/global_report.html . Accessed 14 January, 2022 . – ident: B136 article-title: Quadeer AA , Ahmed SF , McKay MR . 2020 . Epitopes targeted by T cells in convalescent COVID-19 patients . bioRxiv doi: 10.1101/2020.08.26.267724 . – volume: 12 start-page: 4598 year: 2021 ident: B106 article-title: Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants publication-title: Nat Commun doi: 10.1038/s41467-021-24909-9 – volume: 596 start-page: 268 year: 2021 end-page: 272 ident: B98 article-title: Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans publication-title: Nature doi: 10.1038/s41586-021-03681-2 – volume: 98 start-page: 495 year: 2020 end-page: 504 ident: B22 article-title: Variant analysis of SARS-CoV-2 genomes publication-title: Bull World Health Organ doi: 10.2471/BLT.20.253591 – year: 2021 ident: B159 article-title: Effectiveness of COVID-19 vaccines against the Omicron (B.1.1.529) variant of concern publication-title: medRxiv doi: 10.1101/2021.12.14.21267615 – volume: 27 start-page: 2025 year: 2021 end-page: 2031 ident: B166 article-title: Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis publication-title: Nat Med doi: 10.1038/s41591-021-01527-y – volume: 17 year: 2021 ident: B18 article-title: The coronavirus proofreading exoribonuclease mediates extensive viral recombination publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1009226 – ident: B35 article-title: Nextclade . 2021 . Nextstrain/ncov . https://github.com/nextstrain/ncov/blob/master/defaults/clades.tsv . Accessed 14 July, 2021 . – volume: 29 start-page: 516 year: 2021 end-page: 521.e3 ident: B84 article-title: Infection- and vaccine-induced antibody binding and neutralization of the B.1.351 SARS-CoV-2 variant publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.03.009 – volume: 184 start-page: 2201 year: 2021 end-page: 2211.e7 ident: B86 article-title: Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera publication-title: Cell doi: 10.1016/j.cell.2021.02.033 – ident: B12 article-title: Wu Y . 2020 . Strong evolutionary convergence of receptor-binding protein spike between COVID-19 and SARS-related coronaviruses . bioRxiv doi: 10.1101/2020.03.04.975995 . – ident: B16 article-title: Lytras S , Hughes J , Martin D , de Klerk A , Lourens R , Kosakovsky Pond SL , Xia W , Jiang X , Robertson DL . 2021 . Exploring the natural origins of SARS-CoV-2 in the light of recombination . bioRxiv doi: 10.1093/gbe/evac018 . – volume: 593 start-page: 136 year: 2021 end-page: 141 ident: B82 article-title: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies publication-title: Nature doi: 10.1038/s41586-021-03412-7 – year: 2021 ident: B147 article-title: Covid-19 vaccine effectiveness in healthcare personnel in six Israeli hospitals (CoVEHPI) publication-title: medRxiv doi: 10.1101/2021.08.30.21262465 – volume: 9 start-page: 1 year: 2021 end-page: 12 ident: B28 article-title: Decoding Covid-19 with the SARS-CoV-2 genome publication-title: Curr Genet Med Rep doi: 10.1007/s40142-020-00197-5 – volume: 9 start-page: 1542 year: 2021 ident: B62 article-title: SARS-CoV-2 spike mutations, L452R, T478K, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India publication-title: Microorganisms doi: 10.3390/microorganisms9071542 – ident: B64 article-title: World Health Organization . 2022 . Enhancing response to Omicron SARS-CoV-2 variant . https://www.who.int/publications/m/item/enhancing-readiness-for-omicron-(b.1.1.529)-technical-brief-and-priority-actions-for-member-states . Accessed 25 January, 2022 . – year: 2021 ident: B111 article-title: Booster of mRNA-1273 Strengthens SARS-CoV-2 Omicron neutralization publication-title: medRxiv doi: 10.1101/2021.12.15.21267805 – volume: 6 year: 2020 ident: B17 article-title: Emergence of SARS-CoV-2 through recombination and strong purifying selection publication-title: Sci Adv doi: 10.1126/sciadv.abb9153 – volume: 27 start-page: 917 year: 2021 end-page: 924 ident: B87 article-title: Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies publication-title: Nat Med doi: 10.1038/s41591-021-01318-5 – ident: B43 article-title: World Health Organization . 2021 COVID-19 Weekly Epidemiological Update: special edition: Proposed working definitions of SARS-CoV-2 variants of interest and variants of concern . – volume: 11 start-page: 6059 year: 2020 ident: B20 article-title: SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication publication-title: Nat Commun doi: 10.1038/s41467-020-19883-7 – ident: B184 article-title: Beguir K , Skwark MJ , Fu Y , Pierrot T , Lopez Carranza N , Laterre A , Kadri I , Lui BG , Sänger B , Liu Y , Poran A , Muik A , Sahin U . 2021 . Early computational detection of potential high risk SARS-CoV-2 variants . bioRxiv doi: 10.1101/2021.12.24.474095 . – volume: 5 start-page: 1408 year: 2020 end-page: 1417 ident: B25 article-title: Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic publication-title: Nat Microbiol doi: 10.1038/s41564-020-0771-4 – ident: B163 article-title: UK Health Security Agency . 2021 . Effectiveness of 3 doses of COVID-19 vaccines against symptomatic COVID-19 and hospitalisation in adults aged 65 years and older . – ident: B167 article-title: Flaxman A , Marchevsky N , Jenkin D , Aboagye J , Aley PK , Angus BJ , Belij-Rammerstorfer S , Bibi S , Bittaye M , Cappuccini F , Cicconi P , Clutterbuck E , Davies S , Dejnirattisai W , Dold C , Ewer K , Folegatti PM , Fowler J , Hill AVS , Kerridge S , Minassian AM , Mongkolspaya J , Farooq Mujadidi Y , Plested E , Ramasamy MN , Robinson H , Sanders H , Sheehan E , Smith H , Snape MD , Song R , Woods D , Screaton GR , Gilbert SC , Voysey M , Pollard A , Lambe T , The Oxford Covid Vaccine Group . 2021 . Tolerability and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 (AZD1222) . SSRN . doi: 10.2139/ssrn.3873839 . – year: 2021 ident: B113 article-title: SARS-CoV-2 B.1.1.529 variant (Omicron) evades neutralization by sera from vaccinated and convalescent individuals publication-title: medRxiv doi: 10.1101/2021.12.08.21267491 – volume: 371 start-page: 1139 year: 2021 end-page: 1142 ident: B10 article-title: Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape publication-title: Science doi: 10.1126/science.abf6950 – year: 2021 ident: B157 article-title: Effectiveness of COVID-19 vaccines against the B.1.617.2 variant publication-title: medRxiv doi: 10.1101/2021.05.22.21257658 – volume: 182 start-page: 1295 year: 2020 end-page: 1310.e20 ident: B52 article-title: Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding publication-title: Cell doi: 10.1016/j.cell.2020.08.012 – volume: 6 start-page: 899 year: 2021 end-page: 909 ident: B57 article-title: The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets publication-title: Nat Microbiol doi: 10.1038/s41564-021-00908-w – ident: B48 article-title: Outbreak.info . 2021 . https://outbreak.info/ . Accessed 14 January, 2022 . – volume: 12 year: 2021 ident: B100 article-title: Convalescent-phase sera and vaccine-elicited antibodies largely maintain neutralizing titer against global SARS-CoV-2 variant spikes publication-title: mBio doi: 10.1128/mBio.00696-21 |
SSID | ssj0000331830 |
Score | 2.6344552 |
SecondaryResourceType | review_article |
Snippet | The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential... ABSTRACT The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0297921 |
SubjectTerms | Antibodies, Viral COVID-19 COVID-19 - prevention & control COVID-19 Vaccines Humans Minireview Mutation SARS-CoV-2 SARS-CoV-2 - genetics Vaccines variant Viral Vaccines |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbQIqReKlr6WEorI6qeauo4Xm9yXLYgoNoile6Km-WnilQSRHYP_ffM5CUWFYlrYjvOjB_feDzfEPJZGG8smBoM46yZVFYww63FW4Q-DcqENOB5x-ynOp3L86vR1QYRXSxMK8Hq0FQ3tSO_n9ki-3Zjr8tDzLaUM4wd3xyJXPIB2ZxM5hc_-pMVnuI45R2h5uN6sPZC22JtH6rp-v-HMR9flXyw95xsk5ctaKSTRsuvyEYoXpOtJo3kvx0yA13TszrckZaRHsOKg8cE9HLy65JNywUTdLZqXO4VNYWnCzCQ8f4LLQs6vVicfWdJDg8dOtmrN2R-cvx7esraNAnMABZYsmzkxqAID0ApKO6iCuPEJR6xTYx4XBFN6qUXhiuOijHcS6iguHQuCTZL35JBURbhPaHGIoOa9CrkSroYTZKZABjCZeidi25IDlB2utOSrk0IkWmUsK4lrEUyJF870WrXMo1jwou_TxX_0he_bSg2nip4hHrqCyEzdv0AxoluJ5quCeEQx8FPSjDujIf-2xxQYxp5io3sd1rWMJPQPWKKUK4qLZDcTIFFNxqSd43W-0-lyIIDvRiS8dp4WOvL-pvi-k_N1p1zzOmd7D5LdB_IC4HxFVwyofbIYHm3Ch8B9Sztp3aY3wPqWPwH priority: 102 providerName: American Society for Microbiology – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJiReEOOzbCAj0J7wcBzXTR4QGmXThlQmbbTam-VPmLQlW9NK7L_nzknLOm1vvDp24tz57N_Zvt8R8kEYbyy4GgzjrJlUVjDDrcVbhD4PyoQ84H7H6Ic6GMvvp_3Tf5RCnQCbO107zCc1np7v_Lm6_gIG_7kNgCk-XdizegeTMJUMQ8rXYVEaoI2OOqSfJuUcBy9fsGzebgUTsmkuxMrilDj87wKet-9P3liQ9p-Qxx2SpLut6jfIg1A9JQ_b3JLXz8gIBgA9TDGQtI50D6Yh3DugJ7vHJ2xYT5igo3l7Dt9QU3k6Aa8ZL8XQuqLDo8nhN5aVUOjw5L15Tsb7ez-HB6zLncAMAIQZK_puANrxgJ6C4i6qMMhc5hHwxIh7GNHkXnphuOKoLcO9hAaKS-eyYIv8BVmr6iq8ItRYpFWTXoVSSRejyQoTAFi4Ao_souuR9yg7vdCdTn6FKDRKWCcJa5H1yMeFaLXr6McxC8b5fdW3l9UvW96N-yp-RT0tKyFddiqop790Z306scQhuIOflODxGQ_9tyVAyTzyHF_ybqFlDeaFZyamCvW80QIZzxS4ef0eedlqffmpHKlxoBc9MlgZDyt9WX1Snf1OFN4lx0Tf2ev_0flN8khgTAaXTKgtsjabzsMbQEoz-zbZwF_UCQ4m priority: 102 providerName: Scholars Portal |
Title | The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35352979 https://journals.asm.org/doi/10.1128/mbio.02979-21 https://www.proquest.com/docview/2645469605 https://pubmed.ncbi.nlm.nih.gov/PMC9040821 https://doaj.org/article/446552560d474625ad782b94233f0321 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaKDAV2GbZ1D3ddoaLDTtNqy4piH7P0uSErsC5BboKeaIHWHubk0H8_UnaCpFixyy46yAJMkJRIitRHQj5w7bSBUIPhO2smpOFMp8ZgFaHLvdQ-93jfMf4uzyfi66w_W2v1hTVhLTxwy7ijCPCFdtmJgQBnXTuwaaYELyAPaR6fkHOweWvBVDyDc9TVdAmqyYujO3NTf8ZOTSVDXNCebu74hi2KkP1_8zMflkuu2Z_T5-RZ5zjSYUvwC7Llq5dku20leb9DxiBvehGfPNI60BM4dfCqgF4Nf1yxUT1lnI4Xbdq9obpydApBMtbA0Lqio8vpxTHLSpi0mGhvXpHJ6cnP0TnrWiUwDf7AnBV9OwBhOHCWvExtkH6Q2cyhfxMCXlkEnTvhuE6BkSAcjez0VqbC2sybIn9NelVd-beEaoMoasJJX0phQ9BZoT3w3BaYoQs2IYfIO9XpeqNiGMELhRxWkcOKZwn5tGStsh3aODa9uH1s-cfV8l8tzMZjC7-gnFaLEB07ToDOqE5n1L90JiEHSykr2E2YItGVrxeN4ghwJiGq6yfkTSv11a9yRMIBKhIy2NCHDVo2v1Q31xGxu0yxr3e2-z-If0eecnyCkQrG5R7pzX8v_HtwjOZmnzwZDieX3_bjXoDxbJbBOBbFH--uCPE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcQCG0v02BfZWN42rSnGRzHdZPHrgO1QEEatOLN8qfGBAla2of997tL0mpFIPGaOIlzd05-d-f7HSFfhPHGgqvBsM6aSWUFM9xa3EXo06BMSAPGO8ZnajiRx1fdqzWiFrUwv7Ev7021b6rbOo-PCxsD0W0_wuzg1l6X-9hxKWdYP76BeUOw7I1-f3J-soyu8BRtlS9INe9fB99feIBY-RfVlP0P4cz72yX_-_8cvSQvWuBI-42mt8haKLbJZtNK8u8rMgZ901Fd8kjLSA_hq4OhAnrR_3nBBuWUCTqeN2n3iprC0yk4ybgHhpYFHZxPRz9YksNBh4n26jWZHB1eDoasbZXADOCBGcu6rgfK8ACWguIuqtBLXOIR38SIIYtoUi-9MFxxVI7hXsIFikvnkmCz9A1ZL8oivCPUWGRRk16FXEkXo0kyEwBHuAwzdNF1yGeUnW5tvdK1GyEyjRLWtYS1SDrk20K02rVs49j04uax4V-Xw-8amo3HBn5HPS0HITt2fQCMRbeLTdekcIjl4CUlOHjGw_xtDsgxjTzFm3xaaFnDasIUiSlCOa-0QIIzBV5dt0PeNlpfPipFJhyYRYf0VuxhZS6rZ4rrXzVjd86xr3ey8yTR7ZFnw8vxqT4dnZ28J88F1ltwyYT6QNZnf-ZhF1DQzH5sTf4fySwAeQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcQiGkv0wb76L7wBNrTzBzHdZPHrlDRQWEaa8Wb5U8NaSRoaR_23-8uH9WKhsRrYjvO3Tn5nc_3O0IOhPHGgqvBMM-aSWUFM9xaPEXo06BMSAPud0zP1clMfr3qX20Q1eXCtBKsDk11UwfycWXf-tjWI8w-39jr8hArLuUM88e3MFAF9r01HM4uTle7KzxFW-UdqebdfvD9hfHF2r-opuz_H868e1zyn__P-Cl50gJHOmw0_YxshGKHbDelJP_skinom07qlEdaRnoMXx3cKqCXw--XbFTOmaDTZRN2r6gpPJ2Dk4xnYGhZ0NHFfHLEkhwuOgy0V8_JbHz8Y3TC2lIJzAAeWLCs7wagDA9gKSjuogqDxCUe8U2MuGURTeqlF4Yrjsox3EvooLh0Lgk2S1-QzaIswitCjUUWNelVyJV0MZokMwFwhMswQhddj-yj7HSnKV27ESLTKGFdS1iLpEc-daLVrmUbx6IXv-5r_nHV_Lah2biv4RfU06oRsmPXF8BWdLvYdE0Kh1gOXlKCg2c8zN_mgBzTyFMc5EOnZQ2rCUMkpgjlstICCc4UeHX9HnnZaH31qBSZcGAWPTJYs4e1uazfKa5_1ozdOce63snrB4lujzz6djTWZ5Pz0zfkscB0Cy6ZUG_J5uL3MrwDELSw71uL_wusfgAV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+Evolving+SARS-CoV-2+Mutations+and+Variants+on+COVID-19+Vaccines&rft.jtitle=mBio&rft.au=Gary+McLean&rft.au=Jeremy+Kamil&rft.au=Benhur+Lee&rft.au=Penny+Moore&rft.date=2022-04-26&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=13&rft.issue=2&rft_id=info:doi/10.1128%2Fmbio.02979-21&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_446552560d474625ad782b94233f0321 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |