The distinct morphological and petrological features of shock melt veins in the Suizhou L6 chondrite
– The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron microprobe analyses, and Raman spectroscopy, synchrotron energy‐dispersive diffraction, and transmission electron microscopy. It is found that the mel...
Saved in:
Published in | Meteoritics & planetary science Vol. 46; no. 3; pp. 459 - 469 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.03.2011
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | – The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron microprobe analyses, and Raman spectroscopy, synchrotron energy‐dispersive diffraction, and transmission electron microscopy. It is found that the melt veins in the Suizhou meteorite morphologically are the simplest, straightest, and thinnest among all shock veins known from meteorites. At first glance, these veins look like fine fractures, but petrologically they are solid melt veins of chondritic composition and consist of fully crystalline materials of two distinct lithological assemblages, with no glassy material remaining. The Suizhou melt veins contain the most abundant high‐pressure mineral species when compared with all other veins known in chondrites. Thus, these veins in Suizhou are classified as shock veins. All rock‐forming and almost all accessory minerals in the Suizhou shock veins have been transformed to their high‐pressure polymorphs, and no fragments of the precursor minerals remain in the veins. Among the 11 high‐pressure mineral phases identified in the Suizhou veins, three are new high‐pressure minerals, namely, tuite after whitlockite, xieite, and the CF phase after chromite. On the basis of transformation of plagioclase into maskelynite, it is estimated that the Suizhou meteorite experienced shock pressures and shock temperatures up to 22 GPa and 1000 °C, respectively. Shearing and friction along shock veins raised the temperature up to 1900–2000 °C and the pressure up to 24 GPa within the veins. Hence, phase transition and crystallization of high‐pressure minerals took place only in the Suizhou shock veins. Fast cooling of the extremely thin shock veins is regarded as the main reason that up to 11 shock‐induced high‐pressure mineral phases could be preserved in these veins. |
---|---|
AbstractList | – The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron microprobe analyses, and Raman spectroscopy, synchrotron energy‐dispersive diffraction, and transmission electron microscopy. It is found that the melt veins in the Suizhou meteorite morphologically are the simplest, straightest, and thinnest among all shock veins known from meteorites. At first glance, these veins look like fine fractures, but petrologically they are solid melt veins of chondritic composition and consist of fully crystalline materials of two distinct lithological assemblages, with no glassy material remaining. The Suizhou melt veins contain the most abundant high‐pressure mineral species when compared with all other veins known in chondrites. Thus, these veins in Suizhou are classified as shock veins. All rock‐forming and almost all accessory minerals in the Suizhou shock veins have been transformed to their high‐pressure polymorphs, and no fragments of the precursor minerals remain in the veins. Among the 11 high‐pressure mineral phases identified in the Suizhou veins, three are new high‐pressure minerals, namely, tuite after whitlockite, xieite, and the CF phase after chromite. On the basis of transformation of plagioclase into maskelynite, it is estimated that the Suizhou meteorite experienced shock pressures and shock temperatures up to 22 GPa and 1000 °C, respectively. Shearing and friction along shock veins raised the temperature up to 1900–2000 °C and the pressure up to 24 GPa within the veins. Hence, phase transition and crystallization of high‐pressure minerals took place only in the Suizhou shock veins. Fast cooling of the extremely thin shock veins is regarded as the main reason that up to 11 shock‐induced high‐pressure mineral phases could be preserved in these veins. Abstract- The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron microprobe analyses, and Raman spectroscopy, synchrotron energy-dispersive diffraction, and transmission electron microscopy. It is found that the melt veins in the Suizhou meteorite morphologically are the simplest, straightest, and thinnest among all shock veins known from meteorites. At first glance, these veins look like fine fractures, but petrologically they are solid melt veins of chondritic composition and consist of fully crystalline materials of two distinct lithological assemblages, with no glassy material remaining. The Suizhou melt veins contain the most abundant high-pressure mineral species when compared with all other veins known in chondrites. Thus, these veins in Suizhou are classified as shock veins. All rock-forming and almost all accessory minerals in the Suizhou shock veins have been transformed to their high-pressure polymorphs, and no fragments of the precursor minerals remain in the veins. Among the 11 high-pressure mineral phases identified in the Suizhou veins, three are new high-pressure minerals, namely, tuite after whitlockite, xieite, and the CF phase after chromite. On the basis of transformation of plagioclase into maskelynite, it is estimated that the Suizhou meteorite experienced shock pressures and shock temperatures up to 22GPa and 1000°C, respectively. Shearing and friction along shock veins raised the temperature up to 1900-2000°C and the pressure up to 24GPa within the veins. Hence, phase transition and crystallization of high-pressure minerals took place only in the Suizhou shock veins. Fast cooling of the extremely thin shock veins is regarded as the main reason that up to 11 shock-induced high-pressure mineral phases could be preserved in these veins. [PUBLICATION ABSTRACT] Abstract– The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron microprobe analyses, and Raman spectroscopy, synchrotron energy‐dispersive diffraction, and transmission electron microscopy. It is found that the melt veins in the Suizhou meteorite morphologically are the simplest, straightest, and thinnest among all shock veins known from meteorites. At first glance, these veins look like fine fractures, but petrologically they are solid melt veins of chondritic composition and consist of fully crystalline materials of two distinct lithological assemblages, with no glassy material remaining. The Suizhou melt veins contain the most abundant high‐pressure mineral species when compared with all other veins known in chondrites. Thus, these veins in Suizhou are classified as shock veins. All rock‐forming and almost all accessory minerals in the Suizhou shock veins have been transformed to their high‐pressure polymorphs, and no fragments of the precursor minerals remain in the veins. Among the 11 high‐pressure mineral phases identified in the Suizhou veins, three are new high‐pressure minerals, namely, tuite after whitlockite, xieite, and the CF phase after chromite. On the basis of transformation of plagioclase into maskelynite, it is estimated that the Suizhou meteorite experienced shock pressures and shock temperatures up to 22 GPa and 1000 °C, respectively. Shearing and friction along shock veins raised the temperature up to 1900–2000 °C and the pressure up to 24 GPa within the veins. Hence, phase transition and crystallization of high‐pressure minerals took place only in the Suizhou shock veins. Fast cooling of the extremely thin shock veins is regarded as the main reason that up to 11 shock‐induced high‐pressure mineral phases could be preserved in these veins. Abstract- The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron microprobe analyses, and Raman spectroscopy, synchrotron energy-dispersive diffraction, and transmission electron microscopy. It is found that the melt veins in the Suizhou meteorite morphologically are the simplest, straightest, and thinnest among all shock veins known from meteorites. At first glance, these veins look like fine fractures, but petrologically they are solid melt veins of chondritic composition and consist of fully crystalline materials of two distinct lithological assemblages, with no glassy material remaining. The Suizhou melt veins contain the most abundant high-pressure mineral species when compared with all other veins known in chondrites. Thus, these veins in Suizhou are classified as shock veins. All rock-forming and almost all accessory minerals in the Suizhou shock veins have been transformed to their high-pressure polymorphs, and no fragments of the precursor minerals remain in the veins. Among the 11 high-pressure mineral phases identified in the Suizhou veins, three are new high-pressure minerals, namely, tuite after whitlockite, xieite, and the CF phase after chromite. On the basis of transformation of plagioclase into maskelynite, it is estimated that the Suizhou meteorite experienced shock pressures and shock temperatures up to 22GPa and 1000 degree C, respectively. Shearing and friction along shock veins raised the temperature up to 1900-2000 degree C and the pressure up to 24GPa within the veins. Hence, phase transition and crystallization of high-pressure minerals took place only in the Suizhou shock veins. Fast cooling of the extremely thin shock veins is regarded as the main reason that up to 11 shock-induced high-pressure mineral phases could be preserved in these veins. |
Author | XIE, Xiande CHEN, Ming SUN, Zhenya |
Author_xml | – sequence: 1 givenname: Xiande surname: XIE fullname: XIE, Xiande email: xdxie@gzb.ac.cn organization: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, P.O. Box 1131, Guangzhou GD 510640, China – sequence: 2 givenname: Zhenya surname: SUN fullname: SUN, Zhenya organization: Center for Materials Research and Analysis, Wuhan University of Technology, Wuhan HB 430070, China – sequence: 3 givenname: Ming surname: CHEN fullname: CHEN, Ming organization: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, P.O. Box 1131, Guangzhou GD 510640, China |
BookMark | eNqNkU1r3DAQhk1JoPnofxD00otdjWRL8qWQLu0msP2ApM1RaOVxrY3X2kp2sumvr9wte-ipgkHD6H0fhlfn2cngB8wyArSAdN5uCqjLKq-A0oJRgCKVUMX-RXZ2fDhJPVUir7msX2bnMW4o5RXw8ixr7jokjYujG-xItj7sOt_7H86anpihITscw3HQohmngJH4lsTO2weyxX4kj-iGSNxAxsS6ndyvzk9kJYjt_NAEN-JldtqaPuKrv_dF9u3jh7vFdb76srxZXK1yU1VM5cAqYaBaG1QCmJKUgUS5BmwkU00jaVnSda0a24K1TFSUC1tLxSlguTaM84vszYG7C_7nhHHUWxct9r0Z0E9RQ8lrWVIBdZK-_ke68VMY0nYamATBmGSQVOqgssHHGLDVu-C2JjxroHqOX2_0nLKeU9Zz_PpP_HqfrO8O1ifX4_N_-_Snq6-3c5sA-QGQPgf3R4AJD1pILit9_3mpv79fqHspuF7y35ham1E |
CODEN | MPSCFY |
CitedBy_id | crossref_primary_10_1021_acsearthspacechem_1c00157 crossref_primary_10_1186_s40623_021_01494_1 crossref_primary_10_1007_s11631_022_00585_4 crossref_primary_10_1111_maps_12902 crossref_primary_10_2478_v10118_012_0006_0 crossref_primary_10_1007_s11631_016_0093_7 crossref_primary_10_1111_maps_13426 crossref_primary_10_1111_maps_12379 crossref_primary_10_1111_maps_12577 crossref_primary_10_1111_maps_12742 crossref_primary_10_1111_maps_13009 crossref_primary_10_1016_j_rgg_2016_04_012 crossref_primary_10_2138_am_2019_6960 crossref_primary_10_1038_s43247_020_00090_7 crossref_primary_10_1111_maps_12143 crossref_primary_10_1007_s11430_014_5039_5 crossref_primary_10_1007_s11631_023_00594_x crossref_primary_10_1038_srep42674 |
Cites_doi | 10.1127/0935-1221/2001/0013-1177 10.1111/j.1945-5100.2004.tb00076.x 10.1016/S0012-821X(03)00585-5 10.1016/S0012-821X(01)00297-7 10.1111/j.1945-5100.2008.tb01084.x 10.1126/science.168.3933.832 10.1016/j.epsl.2006.12.001 10.1360/03yd0373 10.1126/science.287.5458.1633 10.1016/0016-7037(82)90128-4 10.1016/0016-7037(82)90032-1 10.1016/0022-4596(70)90142-8 10.1038/221943a0 10.1016/0012-821X(69)90091-0 10.1016/S0012-821X(00)00317-4 10.1016/0012-821X(79)90181-X 10.1029/RG023i003p00277 10.1016/0016-7037(94)90554-1 10.1007/BF00375437 10.1016/S0016-7037(02)00833-5 10.1016/0016-7037(91)90078-J 10.1016/j.icarus.2008.12.016 10.1073/pnas.2136599100 10.1126/science.207.4426.66 10.1126/science.277.5329.1084 10.1111/j.1945-5100.2009.tb01206.x 10.1126/science.271.5255.1570 10.1016/0012-821X(85)90031-7 10.2138/am-2002-8-926 10.1007/BF02877743 10.1007/s11434-008-0407-1 10.1127/0935-1221/2003/0015-1001 10.1016/j.gca.2005.09.003 10.1016/S0016-7037(03)00175-3 10.1016/0012-821X(82)90138-8 |
ContentType | Journal Article |
Copyright | The Meteoritical Society, 2011 |
Copyright_xml | – notice: The Meteoritical Society, 2011 |
DBID | BSCLL AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.1111/j.1945-5100.2011.01168.x |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1945-5100 |
EndPage | 469 |
ExternalDocumentID | 2870632921 10_1111_j_1945_5100_2011_01168_x MAPS1168 ark_67375_WNG_VBC8W763_G |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 2WC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS EJD ESX F00 F01 F04 F5P FEDTE FRP G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LC2 LC3 LDC LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR RNP ROL RX1 SAMSI SUPJJ UB1 V8K VOH W8V W99 WBKPD WH7 WIH WIK WIN WOHZO WUPDE WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~WT AETEA AAYXX CITATION 7TG 8FD H8D KL. L7M |
ID | FETCH-LOGICAL-a5528-1256a15bae8612870217e7b1ed728dd70440b98dcf1cc265036c978301e4ba233 |
IEDL.DBID | DR2 |
ISSN | 1086-9379 |
IngestDate | Sat Aug 17 04:08:51 EDT 2024 Thu Oct 10 20:38:15 EDT 2024 Thu Sep 26 16:12:47 EDT 2024 Sat Aug 24 01:03:34 EDT 2024 Wed Oct 30 09:49:42 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a5528-1256a15bae8612870217e7b1ed728dd70440b98dcf1cc265036c978301e4ba233 |
Notes | ArticleID:MAPS1168 ark:/67375/WNG-VBC8W763-G istex:7609B60E1D4DE1C13E35AE2D0028DA3D864FE70C ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1945-5100.2011.01168.x |
PQID | 1271622721 |
PQPubID | 1016381 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1439740619 proquest_journals_1271622721 crossref_primary_10_1111_j_1945_5100_2011_01168_x wiley_primary_10_1111_j_1945_5100_2011_01168_x_MAPS1168 istex_primary_ark_67375_WNG_VBC8W763_G |
PublicationCentury | 2000 |
PublicationDate | 2011-03 March 2011 2011-03-00 20110301 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Hoboken |
PublicationTitle | Meteoritics & planetary science |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Xie X., Li Z., Wang D., Liu J., Hu R., and Chen M. 1991. The new meteorite fall of Yanzhuang-A severe shocked H6 chondrite with black molten materials. Meteoritics 26:411. Chen M., Wopenka B., and El Goresy A. 1996b. High-pressure assemblage in shock melt vein in Peace River (L6) chondrite: Compositions and pressure-temperature history. Meteoritics 31: A27. Ozawa S., Ohtani E., Miyahara M., Suzuki A., Kimura M., and Ito Y. 2009. Transformation textures, mechanisms of formation of high-pressure mineral in shock melt veins of L6 chondrites, and pressure-temperature conditions of the shock events. Meteoritics & Planetary Science 44:1771-1786. Chen M., Shu J., and Mao H. K. 2008. Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Science Bulletin 53:3341-3345. Tomioka N. and Fujino K. 1997. Natural (Mg,Fe)SiO3-ilmenite and-perovskite in the Tenham meteorite. Science 277:1084-1086. Chen M., Shu J., Mao H. K., Xie X., and Hemley R. J. 2003b. Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proceedings of the National Academy of Sciences 100:14651-14654. Kimura M., El Goresy A., Suzuki A., and Ohtani E. 1999. Heavily shocked Antarctic H-chondrites: Petrology and shock history. Antarctic Meteorites 24:67-68. Xie X., Minitti M. E., Chen M., Wang D., Mao H. K., Shu J., and Fei Y. W. 2002. Natural high-pressure polymorph of merrillite in the shock vein of the Suizhou meteorite. Geochimica et Cosmochimica Acta 66:2439-2444. Xie X., Shu J., and Chen M. 2005. Synchrotron radiation X-ray diffraction in situ study of fine-grained minerals in shock veins of Suizhou meteorite. Science in China, Series D 48:815-821. Xie X., Chen M., Wang D., and El Goresy A. 2001b. NaAlSi3O8-hollandite and other high-pressure minerals in the shock melt veins of the Suizhou L6 chondrite. Chinese Science Bulletin 46:1121-1126. Langenhorst F. and Poirier J. P. 2000. Anatomy of black veins in Zagami: Clues to the formation of high-pressure phases. Earth and Planetary Science Letters 184:37-55. Kimura M., Chen M., Yoshida Y., El Goresy A., and Ohtani E. 2003. Back-transformation of high pressures in a shock melt vein of an H-chondrite during atmospheric passage: Implications for the survival of high-pressure phases after decompression. Earth and Planetary Science Letters 217:141-150. Kimura M., Suzuki A., Kondo T., Ohtani E., and El Goresy A. 2000. The first discovery of high-pressure polymorphs, jadeite, hollandite, wadsleyite and majorite, from an H-chondrite Y-75100. Antarctic Meteorites 25:41-42. Xie Z. and Sharp T. G. 2007. Host rock solid-state transformation in a shock-induced melt vein of Tenham L6 chondrite. Earth and Planetary Science Letters 254:433-445. Chen M. and Xie X. 1993. The shock effects of olivine in the Yanzhuang chondrite. Acta Mineralogica Sinica 13:109-114. In Chinese with English abstract. Ashworth J. L. 1985. Transmission electron microscopy of L-group chondrites, 1. Natural shock effects. Earth and Planetary Science Letters 73:17-32. Reid A. F. and Ringwood A. E. 1970. The crystal chemistry of dense M3O4 polymorph: High pressure Ca2GeO4 of K2NiF4 structure type. Journal of Solid State Chemistry 1:557-565. Xie Z., Tomioka N., and Sharp T. G. 2002. Natural occurrence of Fe2SiO4-spinel in the shocked Umbarger L6 chondrite. American Mineralogist 87:1257-1260. Binns R. A., Davis R. J., and Read S. J. B. 1969. Ringwoodite, a natural (Mg,Fe)2SiO4 spinel in the Tenham meteorite. Nature 221:943-944. Chen M., Sharp T. G., El Goresy A., Wopenka B., and Xie X. 1996a. The majorite-pyrope + magnesiuwüstite assemblage: Constraints on the history of shock veins in chondrites. Science 271:1570-1573. Chen M. and Xie X. 2008. Two types of shock veins in the Sixiangkou L6 meteorite. Meteoritics & Planetary Science 43:823-828. Price G. D., Putnis A., and Agrell S. O. 1979. Electron petrography of shock-produced veins in the Tenham chondrite. Contributions to Mineralogy and Petrology 71:211-218. Semenenko V. D. and Golovko N. V. 1994. Shock-induced black veins and organic compounds in ordinary chondrites. Geochimica et Cosmochimica Acta 58:1525-1535. Rubin A. E. 1985. Impact melt products of chondritic material. Reviews of Geophysics 23:277-300. Coleman L. C. 1977. Ringwoodite and majorite in the Catherwood meteorite. Canadian Mineral 15:97-101. Gillet P., Chen M., Dubrovinsky L., and El Goresy A. 2000. Natural NaAlSi3O8-Hollandite in the Sixiangkou meteorite. Science 287:1633-1637. Kimura M., Suzuki A., Ohtani E., and El Goresy A. 2001. Raman petrology of high-pressure minerals in H, L, LL, and E-chondrites. Meteoritics & Planetary Science 36(Suppl.):A99. Dodd R. T. and Jarosewich E. 1979. Incipient melting in and shock classification of L-group chondrites. Earth and Planetary Science Letters 44:335-340. Xie Z., Sharp T. G., and DeCarli P. S. 2006. High-pressure phases in a shock-induced melt vein of the Tenham L6 chondrite: Constraints on shock pressure and duration. Geochimica et Cosmochimica Acta 70:504-515. Chen M., Xie X., El Goresy A., Wopenka B., and Sharp T. G. 1998b. Cooling rates in the shock veins of chondrites: Constraints on the (Mg,Fe)2SiO4 polymorph transformations. Science in China 41:522-528. Xie X., Chen M., Dai C., El Goresy A., and Gillet P. 2001c. A comparative study of naturally and experimentally shocked chondrites. Earth and Planetary Science Letters 187:345-356. Scott E. R. D. 1982. Origin of rapidly solidified metal-troilite grains in chondrites and iron meteorites. Geochimica et Cosmochimica Acta 46:813-823. Sharp T. G., Chen M., and El Goresy A. 1996. Microstructures of high-pressure minerals in shocked chondrites: Constraintson the duration of shock events. Meteoritics & Planetary Science 31:A127. Reid A. F. and Ringwood A. E. 1969. Newly observed high pressure transformation in Mn3O4, CaAl2O4, and ZrSiO4. Earth and Planetary Science Letters 6:205-208. Chen M., Xie X., and El Goresy A. 1998a. Olivine plus pyroxene assemblages in shock veins of the Yanzhuang chondrite: Constraints on the history of H-chondrite. Neues Jahrbuck für Mineralogie 3:97-110. Stöffler D., Keil K., and Scott E. D. 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55:3845-3867. Chen M., Xie X., and El Goresy A. 2004. A shock-produced (Mg,Fe)SiO3 glass in the Suizhou meteorite. Meteoritics & Planetary Science 39:1797-1808. Nesvorny D., Vokrouhlicky D., Morbidelli A., and Bottke W. 2009. Asteroidal source of L chondrite meteorites. Icarus 200:698-701. Chen M., Shu J., Xie X., and Mao H. K. 2003a. Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochimica et Cosmochimica Acta 67:3937-3942. Wang R. and Li Z. 1990. A synthetical study of Suizhou meteorite. Wuhan, China: Publishing House of the China University of Geosciences. pp. 1-143. In Chinese with English abstract. Boctor N. Z., Bell P. M., and Mao H. K. 1982. Petrology and shock metamorphism of Pampa del Infierno chondrite. Geochimica et Cosmochimica Acta 46:1903-1911. Xie X., Minitti M. E., Chen M., Wang D., Mao H. K., Shu J., and Fei Y. W. 2003. Tuite, γ-Ca3(PO4)2, a new phosphate mineral from the Suizhou L6 chondrite. European Journal of Mineralogy 15:1001-1005. Dodd R. T., Jarosewich E., and Hill B. 1982. Petrogenesis of complex veins in the Chantonnay (L6f) chondrite. Earth and Planetary Science Letters 59:364-374. Xie X., Chen M., and Wang D. 2001a. Shock-related mineralogical features and P-T history of the Suizhou L6 chondrite. European Journal of Mineralogy 13:1177-1190. Madon M. and Poirier J. P. 1979. Dislocation in spinel and garnet high-pressure polymorphs of olivine and pyroxene: Implications for mantle rheology. Science 207:66-68. Smith J. V. and Mason B. 1970. Pyroxene-garnet transformation in Coorara meteorite. Science 168:822-823. 2006; 70 2009; 44 1982; 59 1996b; 31 1970; 168 1991; 55 1997; 277 2003; 15 1970; 1 1985; 23 1979; 71 1996; 31 1978 1977 2003b; 100 1990 2004; 39 2007; 254 2002; 87 1969; 6 2009; 200 2001c; 187 2000; 287 1998a; 3 1996a; 271 2003a; 67 2003; 217 2000; 25 1979; 207 1999; 24 1997 1995 2001b; 46 2008; 53 2005; 48 1969; 221 1982; 46 1993; 13 1991; 26 1977; 15 2002; 66 1998b; 41 2000; 184 1994; 58 1985; 73 2008; 43 2001a; 13 1979; 44 2001; 36 1998; 140 e_1_2_8_28_1 Coleman L. C. (e_1_2_8_16_1) 1977; 15 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_7_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 Chen M. (e_1_2_8_5_1) 1993; 13 e_1_2_8_15_1 Xie X. (e_1_2_8_43_1) 1991; 26 Chen M. (e_1_2_8_10_1) 1998; 3 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 Chen M. (e_1_2_8_9_1) 1996; 31 Kimura M. (e_1_2_8_22_1) 2000; 25 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Kimura M. (e_1_2_8_21_1) 1999; 24 Sharp T. G. (e_1_2_8_35_1) 1996; 31 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 Kieffer S. W. (e_1_2_8_20_1) 1977 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 Spray J. G. (e_1_2_8_38_1) 1998 e_1_2_8_14_1 e_1_2_8_37_1 Xie X. (e_1_2_8_45_1) 2001; 46 Kimura M. (e_1_2_8_23_1) 2001; 36 Wang R. (e_1_2_8_42_1) 1990 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 200 start-page: 698 year: 2009 end-page: 701 article-title: Asteroidal source of L chondrite meteorites publication-title: Icarus – volume: 187 start-page: 345 year: 2001c end-page: 356 article-title: A comparative study of naturally and experimentally shocked chondrites publication-title: Earth and Planetary Science Letters – volume: 25 start-page: 41 year: 2000 end-page: 42 article-title: The first discovery of high‐pressure polymorphs, jadeite, hollandite, wadsleyite and majorite, from an H‐chondrite Y‐75100 publication-title: Antarctic Meteorites – start-page: 1283 year: 1997 end-page: 1284 – volume: 184 start-page: 37 year: 2000 end-page: 55 article-title: Anatomy of black veins in Zagami: Clues to the formation of high‐pressure phases publication-title: Earth and Planetary Science Letters – volume: 287 start-page: 1633 year: 2000 end-page: 1637 article-title: Natural NaAlSi O —Hollandite in the Sixiangkou meteorite publication-title: Science – volume: 100 start-page: 14651 year: 2003b end-page: 14654 article-title: Natural occurrence and synthesis of two new postspinel polymorphs of chromite publication-title: Proceedings of the National Academy of Sciences – volume: 67 start-page: 3937 year: 2003a end-page: 3942 article-title: Natural CaTi O ‐structured FeCr O polymorph in the Suizhou meteorite and its significance in mantle mineralogy publication-title: Geochimica et Cosmochimica Acta – volume: 140 start-page: 195 year: 1998 end-page: 204 – volume: 31 start-page: A127 year: 1996 article-title: Microstructures of high‐pressure minerals in shocked chondrites: Constraintson the duration of shock events publication-title: Meteoritics & Planetary Science – volume: 53 start-page: 3341 year: 2008 end-page: 3345 article-title: Xieite, a new mineral of high‐pressure FeCr O polymorph publication-title: Chinese Science Bulletin – volume: 3 start-page: 97 year: 1998a end-page: 110 article-title: Olivine plus pyroxene assemblages in shock veins of the Yanzhuang chondrite: Constraints on the history of H‐chondrite publication-title: Neues Jahrbuck für Mineralogie – volume: 59 start-page: 364 year: 1982 end-page: 374 article-title: Petrogenesis of complex veins in the Chantonnay (L6f) chondrite publication-title: Earth and Planetary Science Letters – volume: 58 start-page: 1525 year: 1994 end-page: 1535 article-title: Shock‐induced black veins and organic compounds in ordinary chondrites publication-title: Geochimica et Cosmochimica Acta – volume: 73 start-page: 17 year: 1985 end-page: 32 article-title: Transmission electron microscopy of L‐group chondrites, 1. Natural shock effects publication-title: Earth and Planetary Science Letters – volume: 39 start-page: 1797 year: 2004 end-page: 1808 article-title: A shock‐produced (Mg,Fe)SiO glass in the Suizhou meteorite publication-title: Meteoritics & Planetary Science – volume: 46 start-page: 1121 year: 2001b end-page: 1126 article-title: NaAlSi O ‐hollandite and other high‐pressure minerals in the shock melt veins of the Suizhou L6 chondrite publication-title: Chinese Science Bulletin – volume: 24 start-page: 67 year: 1999 end-page: 68 article-title: Heavily shocked Antarctic H‐chondrites: Petrology and shock history publication-title: Antarctic Meteorites – volume: 70 start-page: 504 year: 2006 end-page: 515 article-title: High‐pressure phases in a shock‐induced melt vein of the Tenham L6 chondrite: Constraints on shock pressure and duration publication-title: Geochimica et Cosmochimica Acta – volume: 36 start-page: A99 issue: Suppl. year: 2001 article-title: Raman petrology of high‐pressure minerals in H, L, LL, and E‐chondrites publication-title: Meteoritics & Planetary Science – volume: 168 start-page: 822 year: 1970 end-page: 823 article-title: Pyroxene‐garnet transformation in Coorara meteorite publication-title: Science – volume: 26 start-page: 411 year: 1991 article-title: The new meteorite fall of Yanzhuang—A severe shocked H6 chondrite with black molten materials publication-title: Meteoritics – volume: 66 start-page: 2439 year: 2002 end-page: 2444 article-title: Natural high‐pressure polymorph of merrillite in the shock vein of the Suizhou meteorite publication-title: Geochimica et Cosmochimica Acta – volume: 15 start-page: 97 year: 1977 end-page: 101 article-title: Ringwoodite and majorite in the Catherwood meteorite publication-title: Canadian Mineral – volume: 217 start-page: 141 year: 2003 end-page: 150 article-title: Back‐transformation of high pressures in a shock melt vein of an H‐chondrite during atmospheric passage: Implications for the survival of high‐pressure phases after decompression publication-title: Earth and Planetary Science Letters – volume: 23 start-page: 277 year: 1985 end-page: 300 article-title: Impact melt products of chondritic material publication-title: Reviews of Geophysics – volume: 55 start-page: 3845 year: 1991 end-page: 3867 article-title: Shock metamorphism of ordinary chondrites publication-title: Geochimica et Cosmochimica Acta – volume: 46 start-page: 813 year: 1982 end-page: 823 article-title: Origin of rapidly solidified metal‐troilite grains in chondrites and iron meteorites publication-title: Geochimica et Cosmochimica Acta – start-page: 1 year: 1990 end-page: 143 – volume: 41 start-page: 522 year: 1998b end-page: 528 article-title: Cooling rates in the shock veins of chondrites: Constraints on the (Mg,Fe) SiO polymorph transformations publication-title: Science in China – volume: 71 start-page: 211 year: 1979 end-page: 218 article-title: Electron petrography of shock‐produced veins in the Tenham chondrite publication-title: Contributions to Mineralogy and Petrology – volume: 31 year: 1996b article-title: High‐pressure assemblage in shock melt vein in Peace River (L6) chondrite: Compositions and pressure‐temperature history publication-title: Meteoritics – volume: 254 start-page: 433 year: 2007 end-page: 445 article-title: Host rock solid‐state transformation in a shock‐induced melt vein of Tenham L6 chondrite publication-title: Earth and Planetary Science Letters – volume: 1 start-page: 557 year: 1970 end-page: 565 article-title: The crystal chemistry of dense M O polymorph: High pressure Ca GeO of K NiF structure type publication-title: Journal of Solid State Chemistry – volume: 87 start-page: 1257 year: 2002 end-page: 1260 article-title: Natural occurrence of Fe SiO ‐spinel in the shocked Umbarger L6 chondrite publication-title: American Mineralogist – volume: 277 start-page: 1084 year: 1997 end-page: 1086 article-title: Natural (Mg,Fe)SiO ‐ilmenite and‐perovskite in the Tenham meteorite publication-title: Science – volume: 6 start-page: 205 year: 1969 end-page: 208 article-title: Newly observed high pressure transformation in Mn O , CaAl O , and ZrSiO publication-title: Earth and Planetary Science Letters – volume: 15 start-page: 1001 year: 2003 end-page: 1005 article-title: Tuite, γ‐Ca (PO4) , a new phosphate mineral from the Suizhou L6 chondrite publication-title: European Journal of Mineralogy – start-page: 237 year: 1995 end-page: 238 – start-page: 1101 year: 1978 end-page: 1103 – volume: 44 start-page: 1771 year: 2009 end-page: 1786 article-title: Transformation textures, mechanisms of formation of high‐pressure mineral in shock melt veins of L6 chondrites, and pressure‐temperature conditions of the shock events publication-title: Meteoritics & Planetary Science – volume: 221 start-page: 943 year: 1969 end-page: 944 article-title: Ringwoodite, a natural (Mg,Fe) SiO spinel in the Tenham meteorite publication-title: Nature – volume: 271 start-page: 1570 year: 1996a end-page: 1573 article-title: The majorite‐pyrope + magnesiuwüstite assemblage: Constraints on the history of shock veins in chondrites publication-title: Science – volume: 207 start-page: 66 year: 1979 end-page: 68 article-title: Dislocation in spinel and garnet high‐pressure polymorphs of olivine and pyroxene: Implications for mantle rheology publication-title: Science – start-page: 751 year: 1977 end-page: 769 – volume: 46 start-page: 1903 year: 1982 end-page: 1911 article-title: Petrology and shock metamorphism of Pampa del Infierno chondrite publication-title: Geochimica et Cosmochimica Acta – volume: 43 start-page: 823 year: 2008 end-page: 828 article-title: Two types of shock veins in the Sixiangkou L6 meteorite publication-title: Meteoritics & Planetary Science – volume: 13 start-page: 1177 year: 2001a end-page: 1190 article-title: Shock‐related mineralogical features and P‐T history of the Suizhou L6 chondrite publication-title: European Journal of Mineralogy – volume: 48 start-page: 815 year: 2005 end-page: 821 article-title: Synchrotron radiation X‐ray diffraction in situ study of fine‐grained minerals in shock veins of Suizhou meteorite publication-title: Science in China, Series D – volume: 13 start-page: 109 year: 1993 end-page: 114 article-title: The shock effects of olivine in the Yanzhuang chondrite publication-title: Acta Mineralogica Sinica – volume: 44 start-page: 335 year: 1979 end-page: 340 article-title: Incipient melting in and shock classification of L‐group chondrites publication-title: Earth and Planetary Science Letters – ident: e_1_2_8_44_1 doi: 10.1127/0935-1221/2001/0013-1177 – ident: e_1_2_8_14_1 doi: 10.1111/j.1945-5100.2004.tb00076.x – ident: e_1_2_8_24_1 doi: 10.1016/S0012-821X(03)00585-5 – ident: e_1_2_8_46_1 doi: 10.1016/S0012-821X(01)00297-7 – ident: e_1_2_8_6_1 doi: 10.1111/j.1945-5100.2008.tb01084.x – ident: e_1_2_8_37_1 doi: 10.1126/science.168.3933.832 – ident: e_1_2_8_52_1 doi: 10.1016/j.epsl.2006.12.001 – ident: e_1_2_8_50_1 doi: 10.1360/03yd0373 – ident: e_1_2_8_19_1 doi: 10.1126/science.287.5458.1633 – start-page: 1 volume-title: A synthetical study of Suizhou meteorite year: 1990 ident: e_1_2_8_42_1 contributor: fullname: Wang R. – ident: e_1_2_8_36_1 – ident: e_1_2_8_4_1 doi: 10.1016/0016-7037(82)90128-4 – ident: e_1_2_8_33_1 doi: 10.1016/0016-7037(82)90032-1 – start-page: 195 volume-title: Meteorites: Flux with time and impact effects year: 1998 ident: e_1_2_8_38_1 contributor: fullname: Spray J. G. – ident: e_1_2_8_31_1 doi: 10.1016/0022-4596(70)90142-8 – volume: 31 start-page: A127 year: 1996 ident: e_1_2_8_35_1 article-title: Microstructures of high‐pressure minerals in shocked chondrites: Constraintson the duration of shock events publication-title: Meteoritics & Planetary Science contributor: fullname: Sharp T. G. – volume: 46 start-page: 1121 year: 2001 ident: e_1_2_8_45_1 article-title: NaAlSi3O8‐hollandite and other high‐pressure minerals in the shock melt veins of the Suizhou L6 chondrite publication-title: Chinese Science Bulletin contributor: fullname: Xie X. – ident: e_1_2_8_3_1 doi: 10.1038/221943a0 – volume: 15 start-page: 97 year: 1977 ident: e_1_2_8_16_1 article-title: Ringwoodite and majorite in the Catherwood meteorite publication-title: Canadian Mineral contributor: fullname: Coleman L. C. – ident: e_1_2_8_30_1 doi: 10.1016/0012-821X(69)90091-0 – volume: 13 start-page: 109 year: 1993 ident: e_1_2_8_5_1 article-title: The shock effects of olivine in the Yanzhuang chondrite publication-title: Acta Mineralogica Sinica contributor: fullname: Chen M. – ident: e_1_2_8_25_1 doi: 10.1016/S0012-821X(00)00317-4 – ident: e_1_2_8_17_1 doi: 10.1016/0012-821X(79)90181-X – ident: e_1_2_8_32_1 doi: 10.1029/RG023i003p00277 – ident: e_1_2_8_34_1 doi: 10.1016/0016-7037(94)90554-1 – ident: e_1_2_8_29_1 doi: 10.1007/BF00375437 – ident: e_1_2_8_47_1 doi: 10.1016/S0016-7037(02)00833-5 – start-page: 751 volume-title: Impact and explosion cratering year: 1977 ident: e_1_2_8_20_1 contributor: fullname: Kieffer S. W. – ident: e_1_2_8_40_1 doi: 10.1016/0016-7037(91)90078-J – volume: 31 year: 1996 ident: e_1_2_8_9_1 article-title: High‐pressure assemblage in shock melt vein in Peace River (L6) chondrite: Compositions and pressure‐temperature history publication-title: Meteoritics contributor: fullname: Chen M. – volume: 25 start-page: 41 year: 2000 ident: e_1_2_8_22_1 article-title: The first discovery of high‐pressure polymorphs, jadeite, hollandite, wadsleyite and majorite, from an H‐chondrite Y‐75100 publication-title: Antarctic Meteorites contributor: fullname: Kimura M. – ident: e_1_2_8_27_1 doi: 10.1016/j.icarus.2008.12.016 – ident: e_1_2_8_13_1 doi: 10.1073/pnas.2136599100 – volume: 24 start-page: 67 year: 1999 ident: e_1_2_8_21_1 article-title: Heavily shocked Antarctic H‐chondrites: Petrology and shock history publication-title: Antarctic Meteorites contributor: fullname: Kimura M. – ident: e_1_2_8_26_1 doi: 10.1126/science.207.4426.66 – ident: e_1_2_8_41_1 doi: 10.1126/science.277.5329.1084 – ident: e_1_2_8_39_1 – ident: e_1_2_8_28_1 doi: 10.1111/j.1945-5100.2009.tb01206.x – ident: e_1_2_8_8_1 doi: 10.1126/science.271.5255.1570 – ident: e_1_2_8_2_1 doi: 10.1016/0012-821X(85)90031-7 – ident: e_1_2_8_48_1 doi: 10.2138/am-2002-8-926 – ident: e_1_2_8_7_1 – ident: e_1_2_8_11_1 doi: 10.1007/BF02877743 – volume: 26 start-page: 411 year: 1991 ident: e_1_2_8_43_1 article-title: The new meteorite fall of Yanzhuang—A severe shocked H6 chondrite with black molten materials publication-title: Meteoritics contributor: fullname: Xie X. – ident: e_1_2_8_15_1 doi: 10.1007/s11434-008-0407-1 – ident: e_1_2_8_49_1 doi: 10.1127/0935-1221/2003/0015-1001 – volume: 3 start-page: 97 year: 1998 ident: e_1_2_8_10_1 article-title: Olivine plus pyroxene assemblages in shock veins of the Yanzhuang chondrite: Constraints on the history of H‐chondrite publication-title: Neues Jahrbuck für Mineralogie contributor: fullname: Chen M. – volume: 36 start-page: A99 year: 2001 ident: e_1_2_8_23_1 article-title: Raman petrology of high‐pressure minerals in H, L, LL, and E‐chondrites publication-title: Meteoritics & Planetary Science contributor: fullname: Kimura M. – ident: e_1_2_8_51_1 doi: 10.1016/j.gca.2005.09.003 – ident: e_1_2_8_12_1 doi: 10.1016/S0016-7037(03)00175-3 – ident: e_1_2_8_18_1 doi: 10.1016/0012-821X(82)90138-8 |
SSID | ssj0035134 |
Score | 2.1034064 |
Snippet | – The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron... Abstract– The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron... Abstract- The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 459 |
SubjectTerms | Chondrites Melts Meteorites Minerals Phases Plagioclase Scanning electron microscopy Veins |
Title | The distinct morphological and petrological features of shock melt veins in the Suizhou L6 chondrite |
URI | https://api.istex.fr/ark:/67375/WNG-VBC8W763-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1945-5100.2011.01168.x https://www.proquest.com/docview/1271622721 https://search.proquest.com/docview/1439740619 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXDhjRooyEiot6zivJwcl0JbIVohSmlvlp_qalkHbRJU-uuZcbJRF3FAiFuUxFE8z2_G4zEhb3KbsdQkRZw6DQEKdyaumNOg8TyVeeYSFXbInZyWx-f5h8vicqx_wr0wQ3-IKeGGmhHsNSq4VO22ktd5EYNMJWMnTsbKaoZ4kmUcq7vefZ46SWXFuMAMCD4Gj1xvF_X88UNbnuouEv16C4beBrPBGx0-IMvNPIYilOWs79RM3_zW4vH_TPQhuT-CVjofpOwRuWP9Y7I7bzGN3qx-0n0arocsSfuEGBA-atB6eN3RVQO83NhYKr2hgNTX0w1nQ2_RljaOtldgnunKfuvoD7vwLV14CgiVnvWLm6umpx9LCubamzUA5afk_PD9l4PjeDzOIZZFkUKsCuhKskJJWwGsAjsB0ZDlilnD08oYjodfq7oy2jGtU0COWakxMZUwmyuZZtkzsuMbb3cJLStdWQnuPclMzmtVQ-CqFUROzuWlNHlE2IZ14vvQtUPcinaAnALJKZCcIpBTXEdkP_B4GiDXS6x644W4OD0SX98eVBdgjMVRRPY2QiBGhW8FS7EVVwrxdEReT49BVXH9RXrb9PAOgj8EUHVEeOD4X_-cOJl_OsPL5_888gW5N-TDsX5uj-x0696-BEDVqVdBVX4BqZ4Qmg |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe4ALlJcaKGAk1FtWcd45LoV2gd0Voi3tzfIr6qpdB22SqvTXM-Nkoy7igBC3KImjeMbfzDdje0zIu9hELNRB4oelggAlK7Wfs1IB4rNQxFEZSLdDbjZPJ6fx5_PkvD8OCPfCdPUhhoQbIsPZawQ4JqQ3UV7EiQ-DKuhLcTKW5iMglNuA_ghR-uHbUEsqSvopZuDwPvjkYnNZzx-_tOGrtlHsNxtE9C6ddf7o8BG5WvekW4ZyOWobOVK3vxV5_E9d3SEPe95Kx91Ae0zuGfuE7I5rzKRXy590n7rrLlFSPyUaxh_VaECsauiyAnWuzSwVVlMg66vhRmlcedGaViWtL8BC06W5aui1WdiaLiwFkkqP28XtRdXSaUrBYlu9Aq78jJwefjw5mPj9iQ6-SJIQwlUgWIIlUpgcmBWYCgiITCaZ0VmYa53h-deyyLUqmVIhkMcoVZibCpiJpQij6DnZspU1u4SmucqNAA8fRDrOCllA7KokBE9lGadCxx5ha93xH13hDn4n4AFxchQnR3FyJ05-45F9p-ShgVhd4sK3LOFn8yP-_f1Bfgb2mB95ZG89CniP-ZqzEKtxhRBSe-Tt8BjQilMwwpqqhXeQ_yGHKjySOZX_9c_x2fjrMV6--OeWb8j9yclsyqef5l9ekgddehyX0-2RrWbVmlfArxr52uHmF7jzFLM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKyEuvFEDLTUS6i2rOHFex6WwLdCuKkppb5af6mpZp9okqPTXd-xkoy7qASFuURJH8Ty_GY_HCL2nOiGxitIwNhIClNyosCBGgsbnMaeJiYTfIXc8zQ7P6JeL9KKvf3J7Ybr-EEPCzWmGt9dOwa-UWVfykqYhyFTUd-IkJCtGgCc3aQaS6wDSt6GVVJL2K8wA4UNwyeV6Vc-9X1pzVZuO6tdrOPQumvXuaPIEzVcT6apQ5qO2ESN580ePx_8z06focY9a8bgTs2fogbbP0da4dnn0avEb72F_3aVJ6hdIgfRh5cyHlQ1eVMDMlZHF3CoMUH053DDaNxetcWVwfQn2GS_0zwb_0jNb45nFAFHxaTu7uaxafJRhsNdWLQEpv0Rnk0_f9w_D_jyHkKdpDMEqwCtOUsF1AbgKDAWEQzoXRKs8LpTK3enXoiyUNETKGKBjkkmXmYqIpoLHSfIKbdjK6i2Es0IWmoN_jxJF81KUELlKAaGTMTTjigaIrFjHrrq2HexOuAPkZI6czJGTeXKy6wDteR4PA_hy7sre8pSdTw_Yjw_7xTlYY3YQoO2VELBe42tGYteLK4aAOkDvhsegq24BhltdtfCOQ38OQZUByj3H__rn2PH45NRdvv7nkbvo4cnHCTv6PP36Bj3qcuOulm4bbTTLVu8AuGrEW681t1dGE2I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+distinct+morphological+and+petrological+features+of+shock+melt+veins+in+the+Suizhou+L6+chondrite&rft.jtitle=Meteoritics+%26+planetary+science&rft.au=XIE%2C+Xiande&rft.au=SUN%2C+Zhenya&rft.au=CHEN%2C+Ming&rft.date=2011-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1086-9379&rft.eissn=1945-5100&rft.volume=46&rft.issue=3&rft.spage=459&rft.epage=469&rft_id=info:doi/10.1111%2Fj.1945-5100.2011.01168.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VBC8W763_G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1086-9379&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1086-9379&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1086-9379&client=summon |