The distinct morphological and petrological features of shock melt veins in the Suizhou L6 chondrite

– The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron microprobe analyses, and Raman spectroscopy, synchrotron energy‐dispersive diffraction, and transmission electron microscopy. It is found that the mel...

Full description

Saved in:
Bibliographic Details
Published inMeteoritics & planetary science Vol. 46; no. 3; pp. 459 - 469
Main Authors XIE, Xiande, SUN, Zhenya, CHEN, Ming
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.03.2011
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract – The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron microprobe analyses, and Raman spectroscopy, synchrotron energy‐dispersive diffraction, and transmission electron microscopy. It is found that the melt veins in the Suizhou meteorite morphologically are the simplest, straightest, and thinnest among all shock veins known from meteorites. At first glance, these veins look like fine fractures, but petrologically they are solid melt veins of chondritic composition and consist of fully crystalline materials of two distinct lithological assemblages, with no glassy material remaining. The Suizhou melt veins contain the most abundant high‐pressure mineral species when compared with all other veins known in chondrites. Thus, these veins in Suizhou are classified as shock veins. All rock‐forming and almost all accessory minerals in the Suizhou shock veins have been transformed to their high‐pressure polymorphs, and no fragments of the precursor minerals remain in the veins. Among the 11 high‐pressure mineral phases identified in the Suizhou veins, three are new high‐pressure minerals, namely, tuite after whitlockite, xieite, and the CF phase after chromite. On the basis of transformation of plagioclase into maskelynite, it is estimated that the Suizhou meteorite experienced shock pressures and shock temperatures up to 22 GPa and 1000 °C, respectively. Shearing and friction along shock veins raised the temperature up to 1900–2000 °C and the pressure up to 24 GPa within the veins. Hence, phase transition and crystallization of high‐pressure minerals took place only in the Suizhou shock veins. Fast cooling of the extremely thin shock veins is regarded as the main reason that up to 11 shock‐induced high‐pressure mineral phases could be preserved in these veins.
AbstractList – The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron microprobe analyses, and Raman spectroscopy, synchrotron energy‐dispersive diffraction, and transmission electron microscopy. It is found that the melt veins in the Suizhou meteorite morphologically are the simplest, straightest, and thinnest among all shock veins known from meteorites. At first glance, these veins look like fine fractures, but petrologically they are solid melt veins of chondritic composition and consist of fully crystalline materials of two distinct lithological assemblages, with no glassy material remaining. The Suizhou melt veins contain the most abundant high‐pressure mineral species when compared with all other veins known in chondrites. Thus, these veins in Suizhou are classified as shock veins. All rock‐forming and almost all accessory minerals in the Suizhou shock veins have been transformed to their high‐pressure polymorphs, and no fragments of the precursor minerals remain in the veins. Among the 11 high‐pressure mineral phases identified in the Suizhou veins, three are new high‐pressure minerals, namely, tuite after whitlockite, xieite, and the CF phase after chromite. On the basis of transformation of plagioclase into maskelynite, it is estimated that the Suizhou meteorite experienced shock pressures and shock temperatures up to 22 GPa and 1000 °C, respectively. Shearing and friction along shock veins raised the temperature up to 1900–2000 °C and the pressure up to 24 GPa within the veins. Hence, phase transition and crystallization of high‐pressure minerals took place only in the Suizhou shock veins. Fast cooling of the extremely thin shock veins is regarded as the main reason that up to 11 shock‐induced high‐pressure mineral phases could be preserved in these veins.
Abstract- The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron microprobe analyses, and Raman spectroscopy, synchrotron energy-dispersive diffraction, and transmission electron microscopy. It is found that the melt veins in the Suizhou meteorite morphologically are the simplest, straightest, and thinnest among all shock veins known from meteorites. At first glance, these veins look like fine fractures, but petrologically they are solid melt veins of chondritic composition and consist of fully crystalline materials of two distinct lithological assemblages, with no glassy material remaining. The Suizhou melt veins contain the most abundant high-pressure mineral species when compared with all other veins known in chondrites. Thus, these veins in Suizhou are classified as shock veins. All rock-forming and almost all accessory minerals in the Suizhou shock veins have been transformed to their high-pressure polymorphs, and no fragments of the precursor minerals remain in the veins. Among the 11 high-pressure mineral phases identified in the Suizhou veins, three are new high-pressure minerals, namely, tuite after whitlockite, xieite, and the CF phase after chromite. On the basis of transformation of plagioclase into maskelynite, it is estimated that the Suizhou meteorite experienced shock pressures and shock temperatures up to 22GPa and 1000°C, respectively. Shearing and friction along shock veins raised the temperature up to 1900-2000°C and the pressure up to 24GPa within the veins. Hence, phase transition and crystallization of high-pressure minerals took place only in the Suizhou shock veins. Fast cooling of the extremely thin shock veins is regarded as the main reason that up to 11 shock-induced high-pressure mineral phases could be preserved in these veins. [PUBLICATION ABSTRACT]
Abstract– The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron microprobe analyses, and Raman spectroscopy, synchrotron energy‐dispersive diffraction, and transmission electron microscopy. It is found that the melt veins in the Suizhou meteorite morphologically are the simplest, straightest, and thinnest among all shock veins known from meteorites. At first glance, these veins look like fine fractures, but petrologically they are solid melt veins of chondritic composition and consist of fully crystalline materials of two distinct lithological assemblages, with no glassy material remaining. The Suizhou melt veins contain the most abundant high‐pressure mineral species when compared with all other veins known in chondrites. Thus, these veins in Suizhou are classified as shock veins. All rock‐forming and almost all accessory minerals in the Suizhou shock veins have been transformed to their high‐pressure polymorphs, and no fragments of the precursor minerals remain in the veins. Among the 11 high‐pressure mineral phases identified in the Suizhou veins, three are new high‐pressure minerals, namely, tuite after whitlockite, xieite, and the CF phase after chromite. On the basis of transformation of plagioclase into maskelynite, it is estimated that the Suizhou meteorite experienced shock pressures and shock temperatures up to 22 GPa and 1000 °C, respectively. Shearing and friction along shock veins raised the temperature up to 1900–2000 °C and the pressure up to 24 GPa within the veins. Hence, phase transition and crystallization of high‐pressure minerals took place only in the Suizhou shock veins. Fast cooling of the extremely thin shock veins is regarded as the main reason that up to 11 shock‐induced high‐pressure mineral phases could be preserved in these veins.
Abstract- The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron microprobe analyses, and Raman spectroscopy, synchrotron energy-dispersive diffraction, and transmission electron microscopy. It is found that the melt veins in the Suizhou meteorite morphologically are the simplest, straightest, and thinnest among all shock veins known from meteorites. At first glance, these veins look like fine fractures, but petrologically they are solid melt veins of chondritic composition and consist of fully crystalline materials of two distinct lithological assemblages, with no glassy material remaining. The Suizhou melt veins contain the most abundant high-pressure mineral species when compared with all other veins known in chondrites. Thus, these veins in Suizhou are classified as shock veins. All rock-forming and almost all accessory minerals in the Suizhou shock veins have been transformed to their high-pressure polymorphs, and no fragments of the precursor minerals remain in the veins. Among the 11 high-pressure mineral phases identified in the Suizhou veins, three are new high-pressure minerals, namely, tuite after whitlockite, xieite, and the CF phase after chromite. On the basis of transformation of plagioclase into maskelynite, it is estimated that the Suizhou meteorite experienced shock pressures and shock temperatures up to 22GPa and 1000 degree C, respectively. Shearing and friction along shock veins raised the temperature up to 1900-2000 degree C and the pressure up to 24GPa within the veins. Hence, phase transition and crystallization of high-pressure minerals took place only in the Suizhou shock veins. Fast cooling of the extremely thin shock veins is regarded as the main reason that up to 11 shock-induced high-pressure mineral phases could be preserved in these veins.
Author XIE, Xiande
CHEN, Ming
SUN, Zhenya
Author_xml – sequence: 1
  givenname: Xiande
  surname: XIE
  fullname: XIE, Xiande
  email: xdxie@gzb.ac.cn
  organization: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, P.O. Box 1131, Guangzhou GD 510640, China
– sequence: 2
  givenname: Zhenya
  surname: SUN
  fullname: SUN, Zhenya
  organization: Center for Materials Research and Analysis, Wuhan University of Technology, Wuhan HB 430070, China
– sequence: 3
  givenname: Ming
  surname: CHEN
  fullname: CHEN, Ming
  organization: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, P.O. Box 1131, Guangzhou GD 510640, China
BookMark eNqNkU1r3DAQhk1JoPnofxD00otdjWRL8qWQLu0msP2ApM1RaOVxrY3X2kp2sumvr9wte-ipgkHD6H0fhlfn2cngB8wyArSAdN5uCqjLKq-A0oJRgCKVUMX-RXZ2fDhJPVUir7msX2bnMW4o5RXw8ixr7jokjYujG-xItj7sOt_7H86anpihITscw3HQohmngJH4lsTO2weyxX4kj-iGSNxAxsS6ndyvzk9kJYjt_NAEN-JldtqaPuKrv_dF9u3jh7vFdb76srxZXK1yU1VM5cAqYaBaG1QCmJKUgUS5BmwkU00jaVnSda0a24K1TFSUC1tLxSlguTaM84vszYG7C_7nhHHUWxct9r0Z0E9RQ8lrWVIBdZK-_ke68VMY0nYamATBmGSQVOqgssHHGLDVu-C2JjxroHqOX2_0nLKeU9Zz_PpP_HqfrO8O1ifX4_N_-_Snq6-3c5sA-QGQPgf3R4AJD1pILit9_3mpv79fqHspuF7y35ham1E
CODEN MPSCFY
CitedBy_id crossref_primary_10_1021_acsearthspacechem_1c00157
crossref_primary_10_1186_s40623_021_01494_1
crossref_primary_10_1007_s11631_022_00585_4
crossref_primary_10_1111_maps_12902
crossref_primary_10_2478_v10118_012_0006_0
crossref_primary_10_1007_s11631_016_0093_7
crossref_primary_10_1111_maps_13426
crossref_primary_10_1111_maps_12379
crossref_primary_10_1111_maps_12577
crossref_primary_10_1111_maps_12742
crossref_primary_10_1111_maps_13009
crossref_primary_10_1016_j_rgg_2016_04_012
crossref_primary_10_2138_am_2019_6960
crossref_primary_10_1038_s43247_020_00090_7
crossref_primary_10_1111_maps_12143
crossref_primary_10_1007_s11430_014_5039_5
crossref_primary_10_1007_s11631_023_00594_x
crossref_primary_10_1038_srep42674
Cites_doi 10.1127/0935-1221/2001/0013-1177
10.1111/j.1945-5100.2004.tb00076.x
10.1016/S0012-821X(03)00585-5
10.1016/S0012-821X(01)00297-7
10.1111/j.1945-5100.2008.tb01084.x
10.1126/science.168.3933.832
10.1016/j.epsl.2006.12.001
10.1360/03yd0373
10.1126/science.287.5458.1633
10.1016/0016-7037(82)90128-4
10.1016/0016-7037(82)90032-1
10.1016/0022-4596(70)90142-8
10.1038/221943a0
10.1016/0012-821X(69)90091-0
10.1016/S0012-821X(00)00317-4
10.1016/0012-821X(79)90181-X
10.1029/RG023i003p00277
10.1016/0016-7037(94)90554-1
10.1007/BF00375437
10.1016/S0016-7037(02)00833-5
10.1016/0016-7037(91)90078-J
10.1016/j.icarus.2008.12.016
10.1073/pnas.2136599100
10.1126/science.207.4426.66
10.1126/science.277.5329.1084
10.1111/j.1945-5100.2009.tb01206.x
10.1126/science.271.5255.1570
10.1016/0012-821X(85)90031-7
10.2138/am-2002-8-926
10.1007/BF02877743
10.1007/s11434-008-0407-1
10.1127/0935-1221/2003/0015-1001
10.1016/j.gca.2005.09.003
10.1016/S0016-7037(03)00175-3
10.1016/0012-821X(82)90138-8
ContentType Journal Article
Copyright The Meteoritical Society, 2011
Copyright_xml – notice: The Meteoritical Society, 2011
DBID BSCLL
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.1111/j.1945-5100.2011.01168.x
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1945-5100
EndPage 469
ExternalDocumentID 2870632921
10_1111_j_1945_5100_2011_01168_x
MAPS1168
ark_67375_WNG_VBC8W763_G
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
2WC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FRP
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LC2
LC3
LDC
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
RNP
ROL
RX1
SAMSI
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WUPDE
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~WT
AETEA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-a5528-1256a15bae8612870217e7b1ed728dd70440b98dcf1cc265036c978301e4ba233
IEDL.DBID DR2
ISSN 1086-9379
IngestDate Sat Aug 17 04:08:51 EDT 2024
Thu Oct 10 20:38:15 EDT 2024
Thu Sep 26 16:12:47 EDT 2024
Sat Aug 24 01:03:34 EDT 2024
Wed Oct 30 09:49:42 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5528-1256a15bae8612870217e7b1ed728dd70440b98dcf1cc265036c978301e4ba233
Notes ArticleID:MAPS1168
ark:/67375/WNG-VBC8W763-G
istex:7609B60E1D4DE1C13E35AE2D0028DA3D864FE70C
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1945-5100.2011.01168.x
PQID 1271622721
PQPubID 1016381
PageCount 11
ParticipantIDs proquest_miscellaneous_1439740619
proquest_journals_1271622721
crossref_primary_10_1111_j_1945_5100_2011_01168_x
wiley_primary_10_1111_j_1945_5100_2011_01168_x_MAPS1168
istex_primary_ark_67375_WNG_VBC8W763_G
PublicationCentury 2000
PublicationDate 2011-03
March 2011
2011-03-00
20110301
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Hoboken
PublicationTitle Meteoritics & planetary science
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Xie X., Li Z., Wang D., Liu J., Hu R., and Chen M. 1991. The new meteorite fall of Yanzhuang-A severe shocked H6 chondrite with black molten materials. Meteoritics 26:411.
Chen M., Wopenka B., and El Goresy A. 1996b. High-pressure assemblage in shock melt vein in Peace River (L6) chondrite: Compositions and pressure-temperature history. Meteoritics 31: A27.
Ozawa S., Ohtani E., Miyahara M., Suzuki A., Kimura M., and Ito Y. 2009. Transformation textures, mechanisms of formation of high-pressure mineral in shock melt veins of L6 chondrites, and pressure-temperature conditions of the shock events. Meteoritics & Planetary Science 44:1771-1786.
Chen M., Shu J., and Mao H. K. 2008. Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Science Bulletin 53:3341-3345.
Tomioka N. and Fujino K. 1997. Natural (Mg,Fe)SiO3-ilmenite and-perovskite in the Tenham meteorite. Science 277:1084-1086.
Chen M., Shu J., Mao H. K., Xie X., and Hemley R. J. 2003b. Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proceedings of the National Academy of Sciences 100:14651-14654.
Kimura M., El Goresy A., Suzuki A., and Ohtani E. 1999. Heavily shocked Antarctic H-chondrites: Petrology and shock history. Antarctic Meteorites 24:67-68.
Xie X., Minitti M. E., Chen M., Wang D., Mao H. K., Shu J., and Fei Y. W. 2002. Natural high-pressure polymorph of merrillite in the shock vein of the Suizhou meteorite. Geochimica et Cosmochimica Acta 66:2439-2444.
Xie X., Shu J., and Chen M. 2005. Synchrotron radiation X-ray diffraction in situ study of fine-grained minerals in shock veins of Suizhou meteorite. Science in China, Series D 48:815-821.
Xie X., Chen M., Wang D., and El Goresy A. 2001b. NaAlSi3O8-hollandite and other high-pressure minerals in the shock melt veins of the Suizhou L6 chondrite. Chinese Science Bulletin 46:1121-1126.
Langenhorst F. and Poirier J. P. 2000. Anatomy of black veins in Zagami: Clues to the formation of high-pressure phases. Earth and Planetary Science Letters 184:37-55.
Kimura M., Chen M., Yoshida Y., El Goresy A., and Ohtani E. 2003. Back-transformation of high pressures in a shock melt vein of an H-chondrite during atmospheric passage: Implications for the survival of high-pressure phases after decompression. Earth and Planetary Science Letters 217:141-150.
Kimura M., Suzuki A., Kondo T., Ohtani E., and El Goresy A. 2000. The first discovery of high-pressure polymorphs, jadeite, hollandite, wadsleyite and majorite, from an H-chondrite Y-75100. Antarctic Meteorites 25:41-42.
Xie Z. and Sharp T. G. 2007. Host rock solid-state transformation in a shock-induced melt vein of Tenham L6 chondrite. Earth and Planetary Science Letters 254:433-445.
Chen M. and Xie X. 1993. The shock effects of olivine in the Yanzhuang chondrite. Acta Mineralogica Sinica 13:109-114. In Chinese with English abstract.
Ashworth J. L. 1985. Transmission electron microscopy of L-group chondrites, 1. Natural shock effects. Earth and Planetary Science Letters 73:17-32.
Reid A. F. and Ringwood A. E. 1970. The crystal chemistry of dense M3O4 polymorph: High pressure Ca2GeO4 of K2NiF4 structure type. Journal of Solid State Chemistry 1:557-565.
Xie Z., Tomioka N., and Sharp T. G. 2002. Natural occurrence of Fe2SiO4-spinel in the shocked Umbarger L6 chondrite. American Mineralogist 87:1257-1260.
Binns R. A., Davis R. J., and Read S. J. B. 1969. Ringwoodite, a natural (Mg,Fe)2SiO4 spinel in the Tenham meteorite. Nature 221:943-944.
Chen M., Sharp T. G., El Goresy A., Wopenka B., and Xie X. 1996a. The majorite-pyrope + magnesiuwüstite assemblage: Constraints on the history of shock veins in chondrites. Science 271:1570-1573.
Chen M. and Xie X. 2008. Two types of shock veins in the Sixiangkou L6 meteorite. Meteoritics & Planetary Science 43:823-828.
Price G. D., Putnis A., and Agrell S. O. 1979. Electron petrography of shock-produced veins in the Tenham chondrite. Contributions to Mineralogy and Petrology 71:211-218.
Semenenko V. D. and Golovko N. V. 1994. Shock-induced black veins and organic compounds in ordinary chondrites. Geochimica et Cosmochimica Acta 58:1525-1535.
Rubin A. E. 1985. Impact melt products of chondritic material. Reviews of Geophysics 23:277-300.
Coleman L. C. 1977. Ringwoodite and majorite in the Catherwood meteorite. Canadian Mineral 15:97-101.
Gillet P., Chen M., Dubrovinsky L., and El Goresy A. 2000. Natural NaAlSi3O8-Hollandite in the Sixiangkou meteorite. Science 287:1633-1637.
Kimura M., Suzuki A., Ohtani E., and El Goresy A. 2001. Raman petrology of high-pressure minerals in H, L, LL, and E-chondrites. Meteoritics & Planetary Science 36(Suppl.):A99.
Dodd R. T. and Jarosewich E. 1979. Incipient melting in and shock classification of L-group chondrites. Earth and Planetary Science Letters 44:335-340.
Xie Z., Sharp T. G., and DeCarli P. S. 2006. High-pressure phases in a shock-induced melt vein of the Tenham L6 chondrite: Constraints on shock pressure and duration. Geochimica et Cosmochimica Acta 70:504-515.
Chen M., Xie X., El Goresy A., Wopenka B., and Sharp T. G. 1998b. Cooling rates in the shock veins of chondrites: Constraints on the (Mg,Fe)2SiO4 polymorph transformations. Science in China 41:522-528.
Xie X., Chen M., Dai C., El Goresy A., and Gillet P. 2001c. A comparative study of naturally and experimentally shocked chondrites. Earth and Planetary Science Letters 187:345-356.
Scott E. R. D. 1982. Origin of rapidly solidified metal-troilite grains in chondrites and iron meteorites. Geochimica et Cosmochimica Acta 46:813-823.
Sharp T. G., Chen M., and El Goresy A. 1996. Microstructures of high-pressure minerals in shocked chondrites: Constraintson the duration of shock events. Meteoritics & Planetary Science 31:A127.
Reid A. F. and Ringwood A. E. 1969. Newly observed high pressure transformation in Mn3O4, CaAl2O4, and ZrSiO4. Earth and Planetary Science Letters 6:205-208.
Chen M., Xie X., and El Goresy A. 1998a. Olivine plus pyroxene assemblages in shock veins of the Yanzhuang chondrite: Constraints on the history of H-chondrite. Neues Jahrbuck für Mineralogie 3:97-110.
Stöffler D., Keil K., and Scott E. D. 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55:3845-3867.
Chen M., Xie X., and El Goresy A. 2004. A shock-produced (Mg,Fe)SiO3 glass in the Suizhou meteorite. Meteoritics & Planetary Science 39:1797-1808.
Nesvorny D., Vokrouhlicky D., Morbidelli A., and Bottke W. 2009. Asteroidal source of L chondrite meteorites. Icarus 200:698-701.
Chen M., Shu J., Xie X., and Mao H. K. 2003a. Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochimica et Cosmochimica Acta 67:3937-3942.
Wang R. and Li Z. 1990. A synthetical study of Suizhou meteorite. Wuhan, China: Publishing House of the China University of Geosciences. pp. 1-143. In Chinese with English abstract.
Boctor N. Z., Bell P. M., and Mao H. K. 1982. Petrology and shock metamorphism of Pampa del Infierno chondrite. Geochimica et Cosmochimica Acta 46:1903-1911.
Xie X., Minitti M. E., Chen M., Wang D., Mao H. K., Shu J., and Fei Y. W. 2003. Tuite, γ-Ca3(PO4)2, a new phosphate mineral from the Suizhou L6 chondrite. European Journal of Mineralogy 15:1001-1005.
Dodd R. T., Jarosewich E., and Hill B. 1982. Petrogenesis of complex veins in the Chantonnay (L6f) chondrite. Earth and Planetary Science Letters 59:364-374.
Xie X., Chen M., and Wang D. 2001a. Shock-related mineralogical features and P-T history of the Suizhou L6 chondrite. European Journal of Mineralogy 13:1177-1190.
Madon M. and Poirier J. P. 1979. Dislocation in spinel and garnet high-pressure polymorphs of olivine and pyroxene: Implications for mantle rheology. Science 207:66-68.
Smith J. V. and Mason B. 1970. Pyroxene-garnet transformation in Coorara meteorite. Science 168:822-823.
2006; 70
2009; 44
1982; 59
1996b; 31
1970; 168
1991; 55
1997; 277
2003; 15
1970; 1
1985; 23
1979; 71
1996; 31
1978
1977
2003b; 100
1990
2004; 39
2007; 254
2002; 87
1969; 6
2009; 200
2001c; 187
2000; 287
1998a; 3
1996a; 271
2003a; 67
2003; 217
2000; 25
1979; 207
1999; 24
1997
1995
2001b; 46
2008; 53
2005; 48
1969; 221
1982; 46
1993; 13
1991; 26
1977; 15
2002; 66
1998b; 41
2000; 184
1994; 58
1985; 73
2008; 43
2001a; 13
1979; 44
2001; 36
1998; 140
e_1_2_8_28_1
Coleman L. C. (e_1_2_8_16_1) 1977; 15
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_7_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
Chen M. (e_1_2_8_5_1) 1993; 13
e_1_2_8_15_1
Xie X. (e_1_2_8_43_1) 1991; 26
Chen M. (e_1_2_8_10_1) 1998; 3
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
Chen M. (e_1_2_8_9_1) 1996; 31
Kimura M. (e_1_2_8_22_1) 2000; 25
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Kimura M. (e_1_2_8_21_1) 1999; 24
Sharp T. G. (e_1_2_8_35_1) 1996; 31
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Kieffer S. W. (e_1_2_8_20_1) 1977
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
Spray J. G. (e_1_2_8_38_1) 1998
e_1_2_8_14_1
e_1_2_8_37_1
Xie X. (e_1_2_8_45_1) 2001; 46
Kimura M. (e_1_2_8_23_1) 2001; 36
Wang R. (e_1_2_8_42_1) 1990
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 200
  start-page: 698
  year: 2009
  end-page: 701
  article-title: Asteroidal source of L chondrite meteorites
  publication-title: Icarus
– volume: 187
  start-page: 345
  year: 2001c
  end-page: 356
  article-title: A comparative study of naturally and experimentally shocked chondrites
  publication-title: Earth and Planetary Science Letters
– volume: 25
  start-page: 41
  year: 2000
  end-page: 42
  article-title: The first discovery of high‐pressure polymorphs, jadeite, hollandite, wadsleyite and majorite, from an H‐chondrite Y‐75100
  publication-title: Antarctic Meteorites
– start-page: 1283
  year: 1997
  end-page: 1284
– volume: 184
  start-page: 37
  year: 2000
  end-page: 55
  article-title: Anatomy of black veins in Zagami: Clues to the formation of high‐pressure phases
  publication-title: Earth and Planetary Science Letters
– volume: 287
  start-page: 1633
  year: 2000
  end-page: 1637
  article-title: Natural NaAlSi O —Hollandite in the Sixiangkou meteorite
  publication-title: Science
– volume: 100
  start-page: 14651
  year: 2003b
  end-page: 14654
  article-title: Natural occurrence and synthesis of two new postspinel polymorphs of chromite
  publication-title: Proceedings of the National Academy of Sciences
– volume: 67
  start-page: 3937
  year: 2003a
  end-page: 3942
  article-title: Natural CaTi O ‐structured FeCr O polymorph in the Suizhou meteorite and its significance in mantle mineralogy
  publication-title: Geochimica et Cosmochimica Acta
– volume: 140
  start-page: 195
  year: 1998
  end-page: 204
– volume: 31
  start-page: A127
  year: 1996
  article-title: Microstructures of high‐pressure minerals in shocked chondrites: Constraintson the duration of shock events
  publication-title: Meteoritics & Planetary Science
– volume: 53
  start-page: 3341
  year: 2008
  end-page: 3345
  article-title: Xieite, a new mineral of high‐pressure FeCr O polymorph
  publication-title: Chinese Science Bulletin
– volume: 3
  start-page: 97
  year: 1998a
  end-page: 110
  article-title: Olivine plus pyroxene assemblages in shock veins of the Yanzhuang chondrite: Constraints on the history of H‐chondrite
  publication-title: Neues Jahrbuck für Mineralogie
– volume: 59
  start-page: 364
  year: 1982
  end-page: 374
  article-title: Petrogenesis of complex veins in the Chantonnay (L6f) chondrite
  publication-title: Earth and Planetary Science Letters
– volume: 58
  start-page: 1525
  year: 1994
  end-page: 1535
  article-title: Shock‐induced black veins and organic compounds in ordinary chondrites
  publication-title: Geochimica et Cosmochimica Acta
– volume: 73
  start-page: 17
  year: 1985
  end-page: 32
  article-title: Transmission electron microscopy of L‐group chondrites, 1. Natural shock effects
  publication-title: Earth and Planetary Science Letters
– volume: 39
  start-page: 1797
  year: 2004
  end-page: 1808
  article-title: A shock‐produced (Mg,Fe)SiO glass in the Suizhou meteorite
  publication-title: Meteoritics & Planetary Science
– volume: 46
  start-page: 1121
  year: 2001b
  end-page: 1126
  article-title: NaAlSi O ‐hollandite and other high‐pressure minerals in the shock melt veins of the Suizhou L6 chondrite
  publication-title: Chinese Science Bulletin
– volume: 24
  start-page: 67
  year: 1999
  end-page: 68
  article-title: Heavily shocked Antarctic H‐chondrites: Petrology and shock history
  publication-title: Antarctic Meteorites
– volume: 70
  start-page: 504
  year: 2006
  end-page: 515
  article-title: High‐pressure phases in a shock‐induced melt vein of the Tenham L6 chondrite: Constraints on shock pressure and duration
  publication-title: Geochimica et Cosmochimica Acta
– volume: 36
  start-page: A99
  issue: Suppl.
  year: 2001
  article-title: Raman petrology of high‐pressure minerals in H, L, LL, and E‐chondrites
  publication-title: Meteoritics & Planetary Science
– volume: 168
  start-page: 822
  year: 1970
  end-page: 823
  article-title: Pyroxene‐garnet transformation in Coorara meteorite
  publication-title: Science
– volume: 26
  start-page: 411
  year: 1991
  article-title: The new meteorite fall of Yanzhuang—A severe shocked H6 chondrite with black molten materials
  publication-title: Meteoritics
– volume: 66
  start-page: 2439
  year: 2002
  end-page: 2444
  article-title: Natural high‐pressure polymorph of merrillite in the shock vein of the Suizhou meteorite
  publication-title: Geochimica et Cosmochimica Acta
– volume: 15
  start-page: 97
  year: 1977
  end-page: 101
  article-title: Ringwoodite and majorite in the Catherwood meteorite
  publication-title: Canadian Mineral
– volume: 217
  start-page: 141
  year: 2003
  end-page: 150
  article-title: Back‐transformation of high pressures in a shock melt vein of an H‐chondrite during atmospheric passage: Implications for the survival of high‐pressure phases after decompression
  publication-title: Earth and Planetary Science Letters
– volume: 23
  start-page: 277
  year: 1985
  end-page: 300
  article-title: Impact melt products of chondritic material
  publication-title: Reviews of Geophysics
– volume: 55
  start-page: 3845
  year: 1991
  end-page: 3867
  article-title: Shock metamorphism of ordinary chondrites
  publication-title: Geochimica et Cosmochimica Acta
– volume: 46
  start-page: 813
  year: 1982
  end-page: 823
  article-title: Origin of rapidly solidified metal‐troilite grains in chondrites and iron meteorites
  publication-title: Geochimica et Cosmochimica Acta
– start-page: 1
  year: 1990
  end-page: 143
– volume: 41
  start-page: 522
  year: 1998b
  end-page: 528
  article-title: Cooling rates in the shock veins of chondrites: Constraints on the (Mg,Fe) SiO polymorph transformations
  publication-title: Science in China
– volume: 71
  start-page: 211
  year: 1979
  end-page: 218
  article-title: Electron petrography of shock‐produced veins in the Tenham chondrite
  publication-title: Contributions to Mineralogy and Petrology
– volume: 31
  year: 1996b
  article-title: High‐pressure assemblage in shock melt vein in Peace River (L6) chondrite: Compositions and pressure‐temperature history
  publication-title: Meteoritics
– volume: 254
  start-page: 433
  year: 2007
  end-page: 445
  article-title: Host rock solid‐state transformation in a shock‐induced melt vein of Tenham L6 chondrite
  publication-title: Earth and Planetary Science Letters
– volume: 1
  start-page: 557
  year: 1970
  end-page: 565
  article-title: The crystal chemistry of dense M O polymorph: High pressure Ca GeO of K NiF structure type
  publication-title: Journal of Solid State Chemistry
– volume: 87
  start-page: 1257
  year: 2002
  end-page: 1260
  article-title: Natural occurrence of Fe SiO ‐spinel in the shocked Umbarger L6 chondrite
  publication-title: American Mineralogist
– volume: 277
  start-page: 1084
  year: 1997
  end-page: 1086
  article-title: Natural (Mg,Fe)SiO ‐ilmenite and‐perovskite in the Tenham meteorite
  publication-title: Science
– volume: 6
  start-page: 205
  year: 1969
  end-page: 208
  article-title: Newly observed high pressure transformation in Mn O , CaAl O , and ZrSiO
  publication-title: Earth and Planetary Science Letters
– volume: 15
  start-page: 1001
  year: 2003
  end-page: 1005
  article-title: Tuite, γ‐Ca (PO4) , a new phosphate mineral from the Suizhou L6 chondrite
  publication-title: European Journal of Mineralogy
– start-page: 237
  year: 1995
  end-page: 238
– start-page: 1101
  year: 1978
  end-page: 1103
– volume: 44
  start-page: 1771
  year: 2009
  end-page: 1786
  article-title: Transformation textures, mechanisms of formation of high‐pressure mineral in shock melt veins of L6 chondrites, and pressure‐temperature conditions of the shock events
  publication-title: Meteoritics & Planetary Science
– volume: 221
  start-page: 943
  year: 1969
  end-page: 944
  article-title: Ringwoodite, a natural (Mg,Fe) SiO spinel in the Tenham meteorite
  publication-title: Nature
– volume: 271
  start-page: 1570
  year: 1996a
  end-page: 1573
  article-title: The majorite‐pyrope + magnesiuwüstite assemblage: Constraints on the history of shock veins in chondrites
  publication-title: Science
– volume: 207
  start-page: 66
  year: 1979
  end-page: 68
  article-title: Dislocation in spinel and garnet high‐pressure polymorphs of olivine and pyroxene: Implications for mantle rheology
  publication-title: Science
– start-page: 751
  year: 1977
  end-page: 769
– volume: 46
  start-page: 1903
  year: 1982
  end-page: 1911
  article-title: Petrology and shock metamorphism of Pampa del Infierno chondrite
  publication-title: Geochimica et Cosmochimica Acta
– volume: 43
  start-page: 823
  year: 2008
  end-page: 828
  article-title: Two types of shock veins in the Sixiangkou L6 meteorite
  publication-title: Meteoritics & Planetary Science
– volume: 13
  start-page: 1177
  year: 2001a
  end-page: 1190
  article-title: Shock‐related mineralogical features and P‐T history of the Suizhou L6 chondrite
  publication-title: European Journal of Mineralogy
– volume: 48
  start-page: 815
  year: 2005
  end-page: 821
  article-title: Synchrotron radiation X‐ray diffraction in situ study of fine‐grained minerals in shock veins of Suizhou meteorite
  publication-title: Science in China, Series D
– volume: 13
  start-page: 109
  year: 1993
  end-page: 114
  article-title: The shock effects of olivine in the Yanzhuang chondrite
  publication-title: Acta Mineralogica Sinica
– volume: 44
  start-page: 335
  year: 1979
  end-page: 340
  article-title: Incipient melting in and shock classification of L‐group chondrites
  publication-title: Earth and Planetary Science Letters
– ident: e_1_2_8_44_1
  doi: 10.1127/0935-1221/2001/0013-1177
– ident: e_1_2_8_14_1
  doi: 10.1111/j.1945-5100.2004.tb00076.x
– ident: e_1_2_8_24_1
  doi: 10.1016/S0012-821X(03)00585-5
– ident: e_1_2_8_46_1
  doi: 10.1016/S0012-821X(01)00297-7
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1945-5100.2008.tb01084.x
– ident: e_1_2_8_37_1
  doi: 10.1126/science.168.3933.832
– ident: e_1_2_8_52_1
  doi: 10.1016/j.epsl.2006.12.001
– ident: e_1_2_8_50_1
  doi: 10.1360/03yd0373
– ident: e_1_2_8_19_1
  doi: 10.1126/science.287.5458.1633
– start-page: 1
  volume-title: A synthetical study of Suizhou meteorite
  year: 1990
  ident: e_1_2_8_42_1
  contributor:
    fullname: Wang R.
– ident: e_1_2_8_36_1
– ident: e_1_2_8_4_1
  doi: 10.1016/0016-7037(82)90128-4
– ident: e_1_2_8_33_1
  doi: 10.1016/0016-7037(82)90032-1
– start-page: 195
  volume-title: Meteorites: Flux with time and impact effects
  year: 1998
  ident: e_1_2_8_38_1
  contributor:
    fullname: Spray J. G.
– ident: e_1_2_8_31_1
  doi: 10.1016/0022-4596(70)90142-8
– volume: 31
  start-page: A127
  year: 1996
  ident: e_1_2_8_35_1
  article-title: Microstructures of high‐pressure minerals in shocked chondrites: Constraintson the duration of shock events
  publication-title: Meteoritics & Planetary Science
  contributor:
    fullname: Sharp T. G.
– volume: 46
  start-page: 1121
  year: 2001
  ident: e_1_2_8_45_1
  article-title: NaAlSi3O8‐hollandite and other high‐pressure minerals in the shock melt veins of the Suizhou L6 chondrite
  publication-title: Chinese Science Bulletin
  contributor:
    fullname: Xie X.
– ident: e_1_2_8_3_1
  doi: 10.1038/221943a0
– volume: 15
  start-page: 97
  year: 1977
  ident: e_1_2_8_16_1
  article-title: Ringwoodite and majorite in the Catherwood meteorite
  publication-title: Canadian Mineral
  contributor:
    fullname: Coleman L. C.
– ident: e_1_2_8_30_1
  doi: 10.1016/0012-821X(69)90091-0
– volume: 13
  start-page: 109
  year: 1993
  ident: e_1_2_8_5_1
  article-title: The shock effects of olivine in the Yanzhuang chondrite
  publication-title: Acta Mineralogica Sinica
  contributor:
    fullname: Chen M.
– ident: e_1_2_8_25_1
  doi: 10.1016/S0012-821X(00)00317-4
– ident: e_1_2_8_17_1
  doi: 10.1016/0012-821X(79)90181-X
– ident: e_1_2_8_32_1
  doi: 10.1029/RG023i003p00277
– ident: e_1_2_8_34_1
  doi: 10.1016/0016-7037(94)90554-1
– ident: e_1_2_8_29_1
  doi: 10.1007/BF00375437
– ident: e_1_2_8_47_1
  doi: 10.1016/S0016-7037(02)00833-5
– start-page: 751
  volume-title: Impact and explosion cratering
  year: 1977
  ident: e_1_2_8_20_1
  contributor:
    fullname: Kieffer S. W.
– ident: e_1_2_8_40_1
  doi: 10.1016/0016-7037(91)90078-J
– volume: 31
  year: 1996
  ident: e_1_2_8_9_1
  article-title: High‐pressure assemblage in shock melt vein in Peace River (L6) chondrite: Compositions and pressure‐temperature history
  publication-title: Meteoritics
  contributor:
    fullname: Chen M.
– volume: 25
  start-page: 41
  year: 2000
  ident: e_1_2_8_22_1
  article-title: The first discovery of high‐pressure polymorphs, jadeite, hollandite, wadsleyite and majorite, from an H‐chondrite Y‐75100
  publication-title: Antarctic Meteorites
  contributor:
    fullname: Kimura M.
– ident: e_1_2_8_27_1
  doi: 10.1016/j.icarus.2008.12.016
– ident: e_1_2_8_13_1
  doi: 10.1073/pnas.2136599100
– volume: 24
  start-page: 67
  year: 1999
  ident: e_1_2_8_21_1
  article-title: Heavily shocked Antarctic H‐chondrites: Petrology and shock history
  publication-title: Antarctic Meteorites
  contributor:
    fullname: Kimura M.
– ident: e_1_2_8_26_1
  doi: 10.1126/science.207.4426.66
– ident: e_1_2_8_41_1
  doi: 10.1126/science.277.5329.1084
– ident: e_1_2_8_39_1
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1945-5100.2009.tb01206.x
– ident: e_1_2_8_8_1
  doi: 10.1126/science.271.5255.1570
– ident: e_1_2_8_2_1
  doi: 10.1016/0012-821X(85)90031-7
– ident: e_1_2_8_48_1
  doi: 10.2138/am-2002-8-926
– ident: e_1_2_8_7_1
– ident: e_1_2_8_11_1
  doi: 10.1007/BF02877743
– volume: 26
  start-page: 411
  year: 1991
  ident: e_1_2_8_43_1
  article-title: The new meteorite fall of Yanzhuang—A severe shocked H6 chondrite with black molten materials
  publication-title: Meteoritics
  contributor:
    fullname: Xie X.
– ident: e_1_2_8_15_1
  doi: 10.1007/s11434-008-0407-1
– ident: e_1_2_8_49_1
  doi: 10.1127/0935-1221/2003/0015-1001
– volume: 3
  start-page: 97
  year: 1998
  ident: e_1_2_8_10_1
  article-title: Olivine plus pyroxene assemblages in shock veins of the Yanzhuang chondrite: Constraints on the history of H‐chondrite
  publication-title: Neues Jahrbuck für Mineralogie
  contributor:
    fullname: Chen M.
– volume: 36
  start-page: A99
  year: 2001
  ident: e_1_2_8_23_1
  article-title: Raman petrology of high‐pressure minerals in H, L, LL, and E‐chondrites
  publication-title: Meteoritics & Planetary Science
  contributor:
    fullname: Kimura M.
– ident: e_1_2_8_51_1
  doi: 10.1016/j.gca.2005.09.003
– ident: e_1_2_8_12_1
  doi: 10.1016/S0016-7037(03)00175-3
– ident: e_1_2_8_18_1
  doi: 10.1016/0012-821X(82)90138-8
SSID ssj0035134
Score 2.1034064
Snippet – The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron...
Abstract– The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron...
Abstract- The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 459
SubjectTerms Chondrites
Melts
Meteorites
Minerals
Phases
Plagioclase
Scanning electron microscopy
Veins
Title The distinct morphological and petrological features of shock melt veins in the Suizhou L6 chondrite
URI https://api.istex.fr/ark:/67375/WNG-VBC8W763-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1945-5100.2011.01168.x
https://www.proquest.com/docview/1271622721
https://search.proquest.com/docview/1439740619
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXDhjRooyEiot6zivJwcl0JbIVohSmlvlp_qalkHbRJU-uuZcbJRF3FAiFuUxFE8z2_G4zEhb3KbsdQkRZw6DQEKdyaumNOg8TyVeeYSFXbInZyWx-f5h8vicqx_wr0wQ3-IKeGGmhHsNSq4VO22ktd5EYNMJWMnTsbKaoZ4kmUcq7vefZ46SWXFuMAMCD4Gj1xvF_X88UNbnuouEv16C4beBrPBGx0-IMvNPIYilOWs79RM3_zW4vH_TPQhuT-CVjofpOwRuWP9Y7I7bzGN3qx-0n0arocsSfuEGBA-atB6eN3RVQO83NhYKr2hgNTX0w1nQ2_RljaOtldgnunKfuvoD7vwLV14CgiVnvWLm6umpx9LCubamzUA5afk_PD9l4PjeDzOIZZFkUKsCuhKskJJWwGsAjsB0ZDlilnD08oYjodfq7oy2jGtU0COWakxMZUwmyuZZtkzsuMbb3cJLStdWQnuPclMzmtVQ-CqFUROzuWlNHlE2IZ14vvQtUPcinaAnALJKZCcIpBTXEdkP_B4GiDXS6x644W4OD0SX98eVBdgjMVRRPY2QiBGhW8FS7EVVwrxdEReT49BVXH9RXrb9PAOgj8EUHVEeOD4X_-cOJl_OsPL5_888gW5N-TDsX5uj-x0696-BEDVqVdBVX4BqZ4Qmg
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe4ALlJcaKGAk1FtWcd45LoV2gd0Voi3tzfIr6qpdB22SqvTXM-Nkoy7igBC3KImjeMbfzDdje0zIu9hELNRB4oelggAlK7Wfs1IB4rNQxFEZSLdDbjZPJ6fx5_PkvD8OCPfCdPUhhoQbIsPZawQ4JqQ3UV7EiQ-DKuhLcTKW5iMglNuA_ghR-uHbUEsqSvopZuDwPvjkYnNZzx-_tOGrtlHsNxtE9C6ddf7o8BG5WvekW4ZyOWobOVK3vxV5_E9d3SEPe95Kx91Ae0zuGfuE7I5rzKRXy590n7rrLlFSPyUaxh_VaECsauiyAnWuzSwVVlMg66vhRmlcedGaViWtL8BC06W5aui1WdiaLiwFkkqP28XtRdXSaUrBYlu9Aq78jJwefjw5mPj9iQ6-SJIQwlUgWIIlUpgcmBWYCgiITCaZ0VmYa53h-deyyLUqmVIhkMcoVZibCpiJpQij6DnZspU1u4SmucqNAA8fRDrOCllA7KokBE9lGadCxx5ha93xH13hDn4n4AFxchQnR3FyJ05-45F9p-ShgVhd4sK3LOFn8yP-_f1Bfgb2mB95ZG89CniP-ZqzEKtxhRBSe-Tt8BjQilMwwpqqhXeQ_yGHKjySOZX_9c_x2fjrMV6--OeWb8j9yclsyqef5l9ekgddehyX0-2RrWbVmlfArxr52uHmF7jzFLM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKyEuvFEDLTUS6i2rOHFex6WwLdCuKkppb5af6mpZp9okqPTXd-xkoy7qASFuURJH8Ty_GY_HCL2nOiGxitIwNhIClNyosCBGgsbnMaeJiYTfIXc8zQ7P6JeL9KKvf3J7Ybr-EEPCzWmGt9dOwa-UWVfykqYhyFTUd-IkJCtGgCc3aQaS6wDSt6GVVJL2K8wA4UNwyeV6Vc-9X1pzVZuO6tdrOPQumvXuaPIEzVcT6apQ5qO2ESN580ePx_8z06focY9a8bgTs2fogbbP0da4dnn0avEb72F_3aVJ6hdIgfRh5cyHlQ1eVMDMlZHF3CoMUH053DDaNxetcWVwfQn2GS_0zwb_0jNb45nFAFHxaTu7uaxafJRhsNdWLQEpv0Rnk0_f9w_D_jyHkKdpDMEqwCtOUsF1AbgKDAWEQzoXRKs8LpTK3enXoiyUNETKGKBjkkmXmYqIpoLHSfIKbdjK6i2Es0IWmoN_jxJF81KUELlKAaGTMTTjigaIrFjHrrq2HexOuAPkZI6czJGTeXKy6wDteR4PA_hy7sre8pSdTw_Yjw_7xTlYY3YQoO2VELBe42tGYteLK4aAOkDvhsegq24BhltdtfCOQ38OQZUByj3H__rn2PH45NRdvv7nkbvo4cnHCTv6PP36Bj3qcuOulm4bbTTLVu8AuGrEW681t1dGE2I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+distinct+morphological+and+petrological+features+of+shock+melt+veins+in+the+Suizhou+L6+chondrite&rft.jtitle=Meteoritics+%26+planetary+science&rft.au=XIE%2C+Xiande&rft.au=SUN%2C+Zhenya&rft.au=CHEN%2C+Ming&rft.date=2011-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1086-9379&rft.eissn=1945-5100&rft.volume=46&rft.issue=3&rft.spage=459&rft.epage=469&rft_id=info:doi/10.1111%2Fj.1945-5100.2011.01168.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VBC8W763_G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1086-9379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1086-9379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1086-9379&client=summon