Axial kinematic response of end-bearing piles to P waves

SUMMARYKinematic pile–soil interaction under vertically impinging seismic P waves is revisited through a novel continuum elastodynamic solution of the Tajimi type. The proposed model simulates the steady‐state kinematic response of a cylindrical end‐bearing pile embedded in a homogeneous viscoelasti...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical and analytical methods in geomechanics Vol. 37; no. 17; pp. 2877 - 2896
Main Authors Anoyatis, George, Di Laora, Raffaele, Mylonakis, George
Format Journal Article
LanguageEnglish
Published Chichester Blackwell Publishing Ltd 10.12.2013
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARYKinematic pile–soil interaction under vertically impinging seismic P waves is revisited through a novel continuum elastodynamic solution of the Tajimi type. The proposed model simulates the steady‐state kinematic response of a cylindrical end‐bearing pile embedded in a homogeneous viscoelastic soil stratum over a rigid base, subjected to vertically propagating harmonic compressional waves. Closed‐form solutions are obtained for the following: (i) the displacement field in the soil and along the pile; (ii) the kinematic Winkler moduli (i.e., distributed springs and dashpots) along the pile; (iii) equivalent, depth‐independent, Winkler moduli to match the motion at the pile head. The solution for displacements is expressed in terms of dimensionless transfer functions relating the motion of the pile head to the free‐field surface motion and the rock motion. It is shown that (i) a pile foundation may significantly alter (possibly amplify) the vertical seismic excitation transmitted to the base of a structure and (ii) Winkler moduli pertaining to kinematic loading differ from those for inertial loading. Simple approximate expressions for kinematic Winkler moduli are derived for use in applications. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList SUMMARY Kinematic pile-soil interaction under vertically impinging seismic P waves is revisited through a novel continuum elastodynamic solution of the Tajimi type. The proposed model simulates the steady-state kinematic response of a cylindrical end-bearing pile embedded in a homogeneous viscoelastic soil stratum over a rigid base, subjected to vertically propagating harmonic compressional waves. Closed-form solutions are obtained for the following: (i) the displacement field in the soil and along the pile; (ii) the kinematic Winkler moduli (i.e., distributed springs and dashpots) along the pile; (iii) equivalent, depth-independent, Winkler moduli to match the motion at the pile head. The solution for displacements is expressed in terms of dimensionless transfer functions relating the motion of the pile head to the free-field surface motion and the rock motion. It is shown that (i) a pile foundation may significantly alter (possibly amplify) the vertical seismic excitation transmitted to the base of a structure and (ii) Winkler moduli pertaining to kinematic loading differ from those for inertial loading. Simple approximate expressions for kinematic Winkler moduli are derived for use in applications. Copyright [copy 2013 John Wiley & Sons, Ltd.
SUMMARY Kinematic pile–soil interaction under vertically impinging seismic P waves is revisited through a novel continuum elastodynamic solution of the Tajimi type. The proposed model simulates the steady‐state kinematic response of a cylindrical end‐bearing pile embedded in a homogeneous viscoelastic soil stratum over a rigid base, subjected to vertically propagating harmonic compressional waves. Closed‐form solutions are obtained for the following: (i) the displacement field in the soil and along the pile; (ii) the kinematic Winkler moduli (i.e., distributed springs and dashpots) along the pile; (iii) equivalent, depth‐independent, Winkler moduli to match the motion at the pile head. The solution for displacements is expressed in terms of dimensionless transfer functions relating the motion of the pile head to the free‐field surface motion and the rock motion. It is shown that (i) a pile foundation may significantly alter (possibly amplify) the vertical seismic excitation transmitted to the base of a structure and (ii) Winkler moduli pertaining to kinematic loading differ from those for inertial loading. Simple approximate expressions for kinematic Winkler moduli are derived for use in applications. Copyright © 2013 John Wiley & Sons, Ltd.
SUMMARY Kinematic pile-soil interaction under vertically impinging seismic P waves is revisited through a novel continuum elastodynamic solution of the Tajimi type. The proposed model simulates the steady-state kinematic response of a cylindrical end-bearing pile embedded in a homogeneous viscoelastic soil stratum over a rigid base, subjected to vertically propagating harmonic compressional waves. Closed-form solutions are obtained for the following: (i) the displacement field in the soil and along the pile; (ii) the kinematic Winkler moduli (i.e., distributed springs and dashpots) along the pile; (iii) equivalent, depth-independent, Winkler moduli to match the motion at the pile head. The solution for displacements is expressed in terms of dimensionless transfer functions relating the motion of the pile head to the free-field surface motion and the rock motion. It is shown that (i) a pile foundation may significantly alter (possibly amplify) the vertical seismic excitation transmitted to the base of a structure and (ii) Winkler moduli pertaining to kinematic loading differ from those for inertial loading. Simple approximate expressions for kinematic Winkler moduli are derived for use in applications. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
SUMMARYKinematic pile–soil interaction under vertically impinging seismic P waves is revisited through a novel continuum elastodynamic solution of the Tajimi type. The proposed model simulates the steady‐state kinematic response of a cylindrical end‐bearing pile embedded in a homogeneous viscoelastic soil stratum over a rigid base, subjected to vertically propagating harmonic compressional waves. Closed‐form solutions are obtained for the following: (i) the displacement field in the soil and along the pile; (ii) the kinematic Winkler moduli (i.e., distributed springs and dashpots) along the pile; (iii) equivalent, depth‐independent, Winkler moduli to match the motion at the pile head. The solution for displacements is expressed in terms of dimensionless transfer functions relating the motion of the pile head to the free‐field surface motion and the rock motion. It is shown that (i) a pile foundation may significantly alter (possibly amplify) the vertical seismic excitation transmitted to the base of a structure and (ii) Winkler moduli pertaining to kinematic loading differ from those for inertial loading. Simple approximate expressions for kinematic Winkler moduli are derived for use in applications. Copyright © 2013 John Wiley & Sons, Ltd.
Author Di Laora, Raffaele
Anoyatis, George
Mylonakis, George
Author_xml – sequence: 1
  givenname: George
  surname: Anoyatis
  fullname: Anoyatis, George
  organization: Department of Civil Engineering, University of Patras, Rio-26500, Greece
– sequence: 2
  givenname: Raffaele
  surname: Di Laora
  fullname: Di Laora, Raffaele
  organization: Department of Civil Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (CE), Italy
– sequence: 3
  givenname: George
  surname: Mylonakis
  fullname: Mylonakis, George
  email: Correspondence to: George Mylonakis, Geotechnical Laboratory, Department of Civil Engineering, University of Patras, Rio-26500, Greece., mylo@upatras.gr
  organization: Department of Civil Engineering, University of Patras, Rio-26500, Greece
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27915460$$DView record in Pascal Francis
BookMark eNqFkNFKwzAUQIMoOKfgJxRE8KXzpmmS9nEM3YQxRSY-hrsslbguncmm7u_NWBERxBAI3BwO3HNCDl3jDCHnFHoUILt2-NLLqBAHpEOhFGlZcHZIOsAES0sQ9JichPAKADz-dkjR_7RYJwvrzBLXVifehFXjgkmaKjFuns4MeutekpWtTUjWTfKQfOC7CafkqMI6mLP27ZKn25vpYJSO74d3g_44Rc5BpBygKNkMhMjmNNO8oCUrZqVkWhst54wDSjmLc0SBTHAt84Jm5TzX8fJKsy652ntXvnnbmLBWSxu0qWt0ptkERWWeS0p5XPNfNJc8HpnLiF78Ql-bjXdxkUhxATQW_CHUvgnBm0qtvF2i3yoKaldbxdpqVzuil60Qg8a68ui0Dd98JkvKcwGRS_fcR-y5_dOnJv1h6215G9bm85tHv1BCMsnV82SoJiN4nE7Zs8rZF-65mpU
CODEN IJNGDZ
CitedBy_id crossref_primary_10_1016_j_compgeo_2020_103956
crossref_primary_10_1061__ASCE_EM_1943_7889_0001724
crossref_primary_10_1007_s11440_023_01942_0
crossref_primary_10_1002_nag_3374
crossref_primary_10_3390_en15249432
crossref_primary_10_1016_j_compgeo_2023_105573
crossref_primary_10_1016_j_apm_2023_04_022
crossref_primary_10_1016_j_scitotenv_2019_134528
crossref_primary_10_1142_S1793431124500064
crossref_primary_10_1002_nag_2886
crossref_primary_10_1007_s11440_022_01517_5
crossref_primary_10_1016_j_soildyn_2022_107488
crossref_primary_10_1016_j_tust_2021_104318
crossref_primary_10_1002_nag_3434
crossref_primary_10_1016_j_sandf_2018_09_013
crossref_primary_10_1007_s11803_023_2183_y
crossref_primary_10_1016_j_jsv_2023_118057
crossref_primary_10_3208_jgssp_v10_OS_44_05
crossref_primary_10_1002_eqe_3968
crossref_primary_10_1016_j_soildyn_2021_107126
crossref_primary_10_1016_j_soildyn_2022_107645
crossref_primary_10_1139_cgj_2023_0294
crossref_primary_10_1016_j_apm_2022_01_031
crossref_primary_10_1016_j_soildyn_2022_107547
crossref_primary_10_1007_s11440_020_01050_3
crossref_primary_10_1007_s11440_023_01931_3
crossref_primary_10_1016_j_oceaneng_2023_114040
crossref_primary_10_1016_j_compgeo_2022_105144
crossref_primary_10_1016_j_compgeo_2019_103368
crossref_primary_10_1016_j_compgeo_2023_105481
crossref_primary_10_1016_j_compgeo_2022_105042
crossref_primary_10_1142_S1793431115500049
crossref_primary_10_3390_app12073468
crossref_primary_10_1016_j_oceaneng_2020_108120
crossref_primary_10_1002_eqe_2377
crossref_primary_10_1016_j_compgeo_2023_105424
Cites_doi 10.1139/t74-059
10.1002/(SICI)1096-9845(199610)25:10<1109::AID-EQE604>3.0.CO;2-0
10.1002/eqe.520
10.1002/1096-9845(200012)29:12<1815::AID-EQE993>3.0.CO;2-Z
10.1002/eqe.2201
10.1061/(ASCE)1090-0241(2002)128:10(860)
10.1002/eqe.4290040308
10.1061/(ASCE)0733-9410(1984)110:1(20)
10.1680/geot.2001.51.5.455
10.1002/eqe.381
10.1139/T09-004
10.1002/eqe.996
http://dx.doi.org/10.1016/j.soildyn.2012.06.020
10.1680/geot.11.P.052
10.3208/sandf.41.3_31
10.1061/(ASCE)0733-9445(1985)111:12(2625)
10.1016/j.soildyn.2012.09.011
10.1016/0267-7261(94)00055-7
10.1061/(ASCE)1090-0241(2005)131:10(1243)
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
7SC
7UA
8FD
C1K
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/nag.2166
DatabaseName Istex
Pascal-Francis
CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Civil Engineering Abstracts

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1096-9853
EndPage 2896
ExternalDocumentID 3125710611
10_1002_nag_2166
27915460
NAG2166
ark_67375_WNG_NH0RTT3W_4
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABHUG
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AITYG
HGLYW
OIG
08R
31~
41~
6XO
8W4
AAPBV
AAYOK
ABEML
ABFLS
ABTAH
ACSCC
AFZJQ
AI.
FEDTE
GBZZK
HF~
HVGLF
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
VH1
ZY4
AAYXX
CITATION
7SC
7UA
8FD
C1K
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-a5506-500893b0662d12c581938b973ccec7d350a77bc58aa6a365c748129d4cd4c5fc3
IEDL.DBID DR2
ISSN 0363-9061
IngestDate Fri Aug 16 06:24:58 EDT 2024
Fri Aug 16 05:56:27 EDT 2024
Thu Oct 10 19:02:09 EDT 2024
Fri Aug 23 01:03:01 EDT 2024
Fri Nov 25 06:02:58 EST 2022
Sat Aug 24 00:59:04 EDT 2024
Wed Jan 17 05:00:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Static characteristic
Dynamic response
End bearing pile
Winkler
Dynamic characteristic
Wave effect
soil―structure interaction
Seismic wave
analytical solution
kinematic interaction
vertical excitation
Kinematics
Analytical method
P wave
Structure soil interaction
piles
Axial load
Comparative study
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5506-500893b0662d12c581938b973ccec7d350a77bc58aa6a365c748129d4cd4c5fc3
Notes istex:68B048FC1BDE66E67E240EEB5CF26A1B72E47565
ark:/67375/WNG-NH0RTT3W-4
ArticleID:NAG2166
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://lirias.kuleuven.be/bitstream/123456789/668659/2/Anoyatis%20et%20al%202013.pdf
PQID 1456011665
PQPubID 996377
PageCount 20
ParticipantIDs proquest_miscellaneous_1744711585
proquest_miscellaneous_1475555747
proquest_journals_1456011665
crossref_primary_10_1002_nag_2166
pascalfrancis_primary_27915460
wiley_primary_10_1002_nag_2166_NAG2166
istex_primary_ark_67375_WNG_NH0RTT3W_4
PublicationCentury 2000
PublicationDate 10 December 2013
PublicationDateYYYYMMDD 2013-12-10
PublicationDate_xml – month: 12
  year: 2013
  text: 10 December 2013
  day: 10
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
– name: Bognor Regis
PublicationTitle International journal for numerical and analytical methods in geomechanics
PublicationTitleAlternate Int. J. Numer. Anal. Meth. Geomech
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Mylonakis G. Winkler modulus for axially-loaded piles. Géotechnique 2001; 51(5):455-461.
Wolf JP. Dynamic Soil-Structure Interaction. Prentice-Hall: NJ, 1985.
Younan A, Veletsos A. Dynamic response of flexible retaining walls. Earthquake Engineering & Structural Dynamics 2000; 29(12):1815-1844.
Ji F, Pak RYS. Scattering of vertically incident P waves by an embedded pile. Soil Dynamics & Earthquake Engineering 1996; 15:211-222.
Anoyatis G, Mylonakis G. Dynamic Winkler modulus for axially loaded piles. Géotechnique 2012; 62(6):521-536.
Hetenyi M. Beams on Elastic Foundations. The University of Michigan Press: Ann Arbor, 1946.
de Sanctis L, Maiorano RMS, Aversa S. A method for assessing kinematic bending moments at the pile head. Earthquake Engineering & Structural Dynamics 2010; 39(10):1133-1154.
Nogami T, Novak M. Soil-pile interaction in vertical vibration. Earthquake Engineering & Structural Dynamics 1976; 4(3):277-293.
Kramer SL. Geotechnical Earthquake Engineering. Prentice-Hall: NY, 1996.
Veletsos A, Ventura C. Dynamic analysis of structures by the DFT method. Journal of Structural Engineering, ASCE 1985; 111(12):2625-2642.
Maiorano RMS, de Sanctis L, Aversa S, Mandolini A. Kinematic response analysis of piled foundations under seismic excitation. Canadian Geotechnical Journal 2009; 46(5):571-584.
Mylonakis G, Gazetas G. Kinematic pile response to vertical P-wave seismic excitation. Journal of Geotechnical and Geoenvironmental Engineering (ASCE) 2002; 128(10):860-867.
Baranov VA. On the calculation of an embedded foundation. Vorposy Dinamiki i Prognostic (Polytechnical Institute of Riga, Latvia) 1967; 14:195-209. (in Russian).
Mylonakis G. Elastodynamic model for large-diameter end-bearing shafts. Soils and Foundations 2001; 41(3):31-44.
Nakamura N. A practical method to transform frequency dependent impedance to time domain. Earthquake Engineering & Structural Dynamics 2006; 35(2):217-231.
Graff KF. Wave Motions in Elastic Solids. Oxford University Press: Oxford, 1975.
Novak M. Dynamic stiffness and damping of piles. Canadian Geotechnical Journal 1974; 11(4):574-598.
Prieto F, Lourenco PB, Oliveira CS. Impulsive Dirac-delta forces in the rocking motion. Earthquake Engineering & Structural Dynamics 2004; 33(7):839-857.
Scott RF. Foundation Analysis. Prentice-Hall: Englewood Cliffs, NJ, 1981.
Saitoh M. Fixed-head pile bending by kinematic interaction and criteria for its minimization at optimal pile radius. Journal of Geotechnical and Geoenvironmental Engineering (ASCE) 2005; 131(10):1243-1251.
Di Laora R, Mylonakis G, Mandolini A. Pile-head kinematic bending in layered soil. Earthquake Engineering & Structural Dynamics 2012. DOI: 10.1002/eqe.2201.
Anoyatis G, Di Laora R, Mandolini A, Mylonakis G. Kinematic response of single piles for different boundary conditions: analytical solutions and normalization schemes. Soil Dynamics & Earthquake Engineering 2013; 44:183-195.
Di Laora R, Mandolini A, Mylonakis G. Insight on kinematic bending of flexible piles in layered soil. Soil Dynamics & Earthquake Engineering 2012; 43:309-322. http://dx.doi.org/10.1016/j.soildyn.2012.06.020.
Papazoglou AJ, Elnashai AS. Analytical and field evidence of the damaging effect of vertical earthquake ground motion. Earthquake Engineering & Structural Dynamics 1998; 25(10):1109-1137.
Gazetas G, Dobry R. Horizontal response of piles in layered soils. Journal of Geotechnical Engineering 1984; 110(1):20-40.
2009; 46
2000; 29
1974; 11
2005; 131
2012
2013; 44
2011
2006; 35
2010; 39
2009
1975
1996
2005
1996; 15
2001; 41
1998; 25
1976; 4
1977
2004; 33
1984; 110
2002; 128
1985
1984
1998; 2
1982
1967; 14
1981
1980
2012; 43
1969
2001; 51
1946
2012; 62
1985; 111
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_20_1
Wolf JP (e_1_2_10_2_1) 1985
Kramer SL (e_1_2_10_29_1) 1996
Baranov VA (e_1_2_10_21_1) 1967; 14
Roesset JM (e_1_2_10_28_1) 1977
Sanctis L (e_1_2_10_6_1) 2010; 39
Gazetas G (e_1_2_10_3_1) 1998
e_1_2_10_4_1
e_1_2_10_18_1
Graff KF (e_1_2_10_23_1) 1975
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Hetenyi M (e_1_2_10_15_1) 1946
Scott RF (e_1_2_10_16_1) 1981
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – year: 1985
– year: 2011
– volume: 29
  start-page: 1815
  issue: 12
  year: 2000
  end-page: 1844
  article-title: Dynamic response of flexible retaining walls
  publication-title: Earthquake Engineering & Structural Dynamics
– year: 2009
– volume: 62
  start-page: 521
  issue: 6
  year: 2012
  end-page: 536
  article-title: Dynamic Winkler modulus for axially loaded piles
  publication-title: Géotechnique
– volume: 44
  start-page: 183
  year: 2013
  end-page: 195
  article-title: Kinematic response of single piles for different boundary conditions: analytical solutions and normalization schemes
  publication-title: Soil Dynamics & Earthquake Engineering
– year: 1981
– year: 2005
– year: 2012
  article-title: Pile‐head kinematic bending in layered soil
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 111
  start-page: 2625
  issue: 12
  year: 1985
  end-page: 2642
  article-title: Dynamic analysis of structures by the DFT method
  publication-title: Journal of Structural Engineering, ASCE
– volume: 35
  start-page: 217
  issue: 2
  year: 2006
  end-page: 231
  article-title: A practical method to transform frequency dependent impedance to time domain
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 39
  start-page: 1133
  issue: 10
  year: 2010
  end-page: 1154
  article-title: A method for assessing kinematic bending moments at the pile head
  publication-title: Earthquake Engineering & Structural Dynamics
– year: 1996
– year: 1975
– year: 1946
– year: 1977
– start-page: 53
  year: 1969
  end-page: 69
– volume: 4
  start-page: 277
  issue: 3
  year: 1976
  end-page: 293
  article-title: Soil–pile interaction in vertical vibration
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 110
  start-page: 20
  issue: 1
  year: 1984
  end-page: 40
  article-title: Horizontal response of piles in layered soils
  publication-title: Journal of Geotechnical Engineering
– volume: 128
  start-page: 860
  issue: 10
  year: 2002
  end-page: 867
  article-title: Kinematic pile response to vertical ‐wave seismic excitation
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
– volume: 131
  start-page: 1243
  issue: 10
  year: 2005
  end-page: 1251
  article-title: Fixed‐head pile bending by kinematic interaction and criteria for its minimization at optimal pile radius
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
– year: 2012
– volume: 41
  start-page: 31
  issue: 3
  year: 2001
  end-page: 44
  article-title: Elastodynamic model for large‐diameter end‐bearing shafts
  publication-title: Soils and Foundations
– volume: 15
  start-page: 211
  year: 1996
  end-page: 222
  article-title: Scattering of vertically incident waves by an embedded pile
  publication-title: Soil Dynamics & Earthquake Engineering
– volume: 14
  start-page: 195
  year: 1967
  end-page: 209
  article-title: On the calculation of an embedded foundation
  publication-title: Vorposy Dinamiki i Prognostic
– volume: 51
  start-page: 455
  issue: 5
  year: 2001
  end-page: 461
  article-title: Winkler modulus for axially‐loaded piles
  publication-title: Géotechnique
– year: 1984
– year: 1982
– volume: 33
  start-page: 839
  issue: 7
  year: 2004
  end-page: 857
  article-title: Impulsive Dirac‐delta forces in the rocking motion
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 11
  start-page: 574
  issue: 4
  year: 1974
  end-page: 598
  article-title: Dynamic stiffness and damping of piles
  publication-title: Canadian Geotechnical Journal
– volume: 43
  start-page: 309
  year: 2012
  end-page: 322
  article-title: Insight on kinematic bending of flexible piles in layered soil
  publication-title: Soil Dynamics & Earthquake Engineering
– volume: 46
  start-page: 571
  issue: 5
  year: 2009
  end-page: 584
  article-title: Kinematic response analysis of piled foundations under seismic excitation
  publication-title: Canadian Geotechnical Journal
– volume: 2
  start-page: 1119
  year: 1998
  end-page: 1174
– volume: 25
  start-page: 1109
  issue: 10
  year: 1998
  end-page: 1137
  article-title: Analytical and field evidence of the damaging effect of vertical earthquake ground motion
  publication-title: Earthquake Engineering & Structural Dynamics
– start-page: 1
  year: 1980
  end-page: 30
– ident: e_1_2_10_22_1
  doi: 10.1139/t74-059
– ident: e_1_2_10_5_1
– ident: e_1_2_10_14_1
  doi: 10.1002/(SICI)1096-9845(199610)25:10<1109::AID-EQE604>3.0.CO;2-0
– ident: e_1_2_10_30_1
– ident: e_1_2_10_36_1
  doi: 10.1002/eqe.520
– ident: e_1_2_10_10_1
– volume-title: Dynamic Soil–Structure Interaction
  year: 1985
  ident: e_1_2_10_2_1
  contributor:
    fullname: Wolf JP
– ident: e_1_2_10_27_1
  doi: 10.1002/1096-9845(200012)29:12<1815::AID-EQE993>3.0.CO;2-Z
– start-page: 1119
  volume-title: Geotechnical Earthquake Engineering and Soil Dynamics III
  year: 1998
  ident: e_1_2_10_3_1
  contributor:
    fullname: Gazetas G
– volume-title: Geotechnical Earthquake Engineering
  year: 1996
  ident: e_1_2_10_29_1
  contributor:
    fullname: Kramer SL
– ident: e_1_2_10_38_1
– ident: e_1_2_10_7_1
  doi: 10.1002/eqe.2201
– ident: e_1_2_10_13_1
  doi: 10.1061/(ASCE)1090-0241(2002)128:10(860)
– ident: e_1_2_10_18_1
  doi: 10.1002/eqe.4290040308
– volume-title: Numerical Methods in Geotechnical Engineering
  year: 1977
  ident: e_1_2_10_28_1
  contributor:
    fullname: Roesset JM
– ident: e_1_2_10_32_1
  doi: 10.1061/(ASCE)0733-9410(1984)110:1(20)
– ident: e_1_2_10_24_1
  doi: 10.1680/geot.2001.51.5.455
– ident: e_1_2_10_26_1
– ident: e_1_2_10_34_1
  doi: 10.1002/eqe.381
– ident: e_1_2_10_4_1
  doi: 10.1139/T09-004
– volume: 39
  start-page: 1133
  issue: 10
  year: 2010
  ident: e_1_2_10_6_1
  article-title: A method for assessing kinematic bending moments at the pile head
  publication-title: Earthquake Engineering & Structural Dynamics
  doi: 10.1002/eqe.996
  contributor:
    fullname: Sanctis L
– ident: e_1_2_10_9_1
– ident: e_1_2_10_31_1
– ident: e_1_2_10_8_1
  doi: http://dx.doi.org/10.1016/j.soildyn.2012.06.020
– volume-title: Wave Motions in Elastic Solids
  year: 1975
  ident: e_1_2_10_23_1
  contributor:
    fullname: Graff KF
– volume-title: Beams on Elastic Foundations
  year: 1946
  ident: e_1_2_10_15_1
  contributor:
    fullname: Hetenyi M
– ident: e_1_2_10_20_1
  doi: 10.1680/geot.11.P.052
– volume-title: Foundation Analysis
  year: 1981
  ident: e_1_2_10_16_1
  contributor:
    fullname: Scott RF
– volume: 14
  start-page: 195
  year: 1967
  ident: e_1_2_10_21_1
  article-title: On the calculation of an embedded foundation
  publication-title: Vorposy Dinamiki i Prognostic
  contributor:
    fullname: Baranov VA
– ident: e_1_2_10_25_1
– ident: e_1_2_10_37_1
  doi: 10.3208/sandf.41.3_31
– ident: e_1_2_10_17_1
– ident: e_1_2_10_35_1
  doi: 10.1061/(ASCE)0733-9445(1985)111:12(2625)
– ident: e_1_2_10_33_1
  doi: 10.1016/j.soildyn.2012.09.011
– ident: e_1_2_10_12_1
  doi: 10.1016/0267-7261(94)00055-7
– ident: e_1_2_10_19_1
  doi: 10.1061/(ASCE)1090-0241(2005)131:10(1243)
– ident: e_1_2_10_11_1
SSID ssj0005096
Score 2.2716746
Snippet SUMMARYKinematic pile–soil interaction under vertically impinging seismic P waves is revisited through a novel continuum elastodynamic solution of the Tajimi...
SUMMARY Kinematic pile–soil interaction under vertically impinging seismic P waves is revisited through a novel continuum elastodynamic solution of the Tajimi...
SUMMARY Kinematic pile-soil interaction under vertically impinging seismic P waves is revisited through a novel continuum elastodynamic solution of the Tajimi...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 2877
SubjectTerms analytical solution
Applied sciences
Buildings. Public works
Displacement
Exact sciences and technology
Geotechnics
kinematic interaction
Kinematics
Mathematical analysis
Mathematical models
P waves
Piles
Rock
Soil (material)
soil-structure interaction
Stresses. Safety
Structural analysis. Stresses
Structure-soil interaction
vertical excitation
Winkler
Title Axial kinematic response of end-bearing piles to P waves
URI https://api.istex.fr/ark:/67375/WNG-NH0RTT3W-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnag.2166
https://www.proquest.com/docview/1456011665
https://search.proquest.com/docview/1475555747
https://search.proquest.com/docview/1744711585
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBYlfeketrbbWLYsqFD25sSWLCnuWyhLQqGhlJQW9iAkWd5DwAlxsoU97SfsN-6X7M6O06TQMWYMBvmE5Dud75N1_kTIucxC5rljgc98HCAiCHo8kzCWwwQinghdud3b9ViO7uKrB_GwyarEf2EqfojtBzf0jPJ9jQ5ubNHdIQ01Xzssksi2jTx6iIduH5mjkNWkXqaERqOadzZk3briXiQ6RKWuMTPSFKCcrNrVYg927oLXMvoMXpEvdb-rpJNpZ7W0HffjCaXj_z3YMXm5AaW0X42iE3Lg81PyYoeq8DW56K9hpNIplJQkr3RRJdd6Osuoz9PfP39ZcBqQpXNotaDLGb2h3803X7whd4PPk8tRsNl3ITBgHBkIwAUJt8gNn0bMCQANvGcTxZ3zTqVchEYpC-XGSMOlcCoGmJCksYNTZI6_JY18lvt3hLLUOJ_0UqibxQLsb7nxhkc8tRKgmW2Ss9oGel7Ra-iKSJlp0INGPTTJp9I4WwGzmGI6mhL6fjzU41F4O5nwex03SXvPetsKTCWAFGXYJK3anHrjqgXMfXBSCu0I6Mz2NjgZrpyY3M9WKKMEHDD1-ouMiiHQRzD9gg6X9n32ifS4P8Tr-38V_ECOGG7DETEImy3SWC5W_iOAoaVtl8P-DxtZA-Y
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOEAPpdBW3UKpKyFuWRI7tjdwWtHClkKE0CI4VLJsx-lhpSzaR4s48RP4jfwSxslmu4vUqmoUKZIzlh_jyXy2J58BdkQeUscsDVzu4sAjgqDFcoFjOUzQ4_HQlse9naWicxmfXPPrBTio_4Wp-CGmC27eMsrvtTdwvyC9N8Maqn80aSTEIiyjtXNvlZ8vfnNHeV6TeqMSi41q5tmQ7tU553zRsu_WWx8bqYfYPXl1rsUc8JyFr6X_OVqD73XNq7CTXnM8Mk1794zU8T-b9gpeTnApaVcDaR0WXLEBL2bYCl_DfvsWByvpYUrJ80oGVXytI_2cuCJ7vH8waDcoS26w2CEZ9ck5-aV_uuEbuDz60j3sBJOjFwKN-hEBR2iQMOPp4bOIWo64gbVMIpm1zsqM8VBLaTBda6GZ4FbGiBSSLLZ489yyt7BU9Av3DgjNtHVJK8O8ecxxCBimnWYRy4xAdGYa8KlWgrqpGDZUxaVMFfaD8v3QgN1SO1MBPej5iDTJ1VV6rNJOeNHtsisVN2B7Tn3TDFQmCBZF2ICtWp9qYq1DnP74eSmWw7Ey09doZ37zRBeuP_YykuOFs6-_yMgYfX2EMzCscKngP7ZIpe1j_3z_r4IfYaXTPTtVp1_Tb5uwSv2pHBFFL7oFS6PB2H1AbDQy26UNPAFcowgG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swED9tICF4GPsryhgYaeItJbFju9lbNShlGxFCRSDtwbIdZw-V0qp_GOKJj7DPuE_COWlKO2kTWhQpknOWHZ8v97v48jPAR5GH1DFLA5e7OPCIIGixXOBcDhP0eDy05XZvZ6noXsZfrvn1LKvS_wtT8UPMP7h5yyjf197Ah1l-uEAaqn80aSTEc1iNBaM-8Dq6eKSO8rQm9TolthrVxLMhPaxrLrmiVT-qtz41Uo9xdPJqW4sl3LmIXkv309mE73XHq6yTfnM6MU179wen4_892Ut4MUOlpF1No1fwzBWvYWOBq_ANfGrf4lQlfSwpWV7JqMqudWSQE1dkv-9_GbQalCVDbHVMJgNyTn7qGzd-C5ed497nbjDbeCHQqB0RcAQGCTOeHD6LqOWIGljLJJJZ66zMGA-1lAbLtRaaCW5ljDghyWKLJ88tewcrxaBwW0Bopq1LWhnWzWOOE8Aw7TSLWGYEYjPTgP1aB2pY8WuoikmZKhwH5cehAQelcuYCetT3-WiSq6v0RKXd8KLXY1cqbsDukvbmFahMECqKsAE7tTrVzFbHGPz4qBTb4diZ-W20Mr90ogs3mHoZyfHA2OsfMjJGTx9h_IUdLvX71ydSafvEX7efKrgHa-dHHfXtNP36Htap35IjouhCd2BlMpq6DwiMJma3tIAHQtAGtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Axial+kinematic+response+of+end-bearing+piles+to+P+waves&rft.jtitle=International+journal+for+numerical+and+analytical+methods+in+geomechanics&rft.au=ANOYATIS%2C+George&rft.au=DI+LAORA%2C+Raffaele&rft.au=MYLONAKIS%2C+George&rft.date=2013-12-10&rft.pub=Wiley&rft.issn=0363-9061&rft.eissn=1096-9853&rft.volume=37&rft.issue=17&rft.spage=2877&rft.epage=2896&rft_id=info:doi/10.1002%2Fnag.2166&rft.externalDBID=n%2Fa&rft.externalDocID=27915460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-9061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-9061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-9061&client=summon