Environmental and historical controls of floristic composition across the South American Dry Diagonal
Aim: The aim of this study was to test the role of environmental factors and spatially autocor related processes, such as historical fragmentation and dispersal limitation, in driving floristic variation across seasonally dry tropical forests (SDTFs) in eastern South America. Location: SDTFs extendi...
Saved in:
Published in | Journal of biogeography Vol. 42; no. 8; pp. 1566 - 1576 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.08.2015
John Wiley & Sons Ltd Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim: The aim of this study was to test the role of environmental factors and spatially autocor related processes, such as historical fragmentation and dispersal limitation, in driving floristic variation across seasonally dry tropical forests (SDTFs) in eastern South America. Location: SDTFs extending from the Caatinga phytogeographical domain of north-eastern Brazil to the Chaco phytogeographical domain of northern Argentina, an area referred to as the Dry Diagonal. Methods: We compiled a database of 282 inventories of woody vegetation in SDTFs from across the Dry Diagonal and combined this with data for 14 environmental variables. We assessed the relative contribution of spatially autocorrelated processes and environmental factors to the floristic turnover among SDTFs across the Dry Diagonal using variation partitioning methods. In addition, we used multivariate analyses to determine which environmental factors were most important in explaining the turnover. Results: We found that the environmental factors measured (temperature, precipitation and edaphic conditions) explained 21.3% of the variation in species composition, with 14.1% of this occurring independently of spatial autocorrelation.A spatially structured fraction of 4.2% could not be accounted for by the environmental factors measured. The main axis of compositional variation was significantly correlated with a north-south gradient in temperature regime.At the extreme south of the Dry Diagonal, a cold temperature regime, in which frost occurred, appeared to underlie floristic similarities between chaco woodlands and southern SDTFs. Main conclusions: Environmental variables, particularly those related to temperature regime, seem to be the most significant factors affecting variation in species composition of SDTFs. Thus historical fragmentation and isolation alone cannot explain the turnover in species composition within SDTFs, as is often assumed. Compositional and environmental heterogeneity needs to be taken into account both to understand the past distribution of SDTFs and to manage and conserve this key tropical biome. |
---|---|
AbstractList | Aim: The aim of this study was to test the role of environmental factors and spatially autocor related processes, such as historical fragmentation and dispersal limitation, in driving floristic variation across seasonally dry tropical forests (SDTFs) in eastern South America. Location: SDTFs extending from the Caatinga phytogeographical domain of north-eastern Brazil to the Chaco phytogeographical domain of northern Argentina, an area referred to as the Dry Diagonal. Methods: We compiled a database of 282 inventories of woody vegetation in SDTFs from across the Dry Diagonal and combined this with data for 14 environmental variables. We assessed the relative contribution of spatially autocorrelated processes and environmental factors to the floristic turnover among SDTFs across the Dry Diagonal using variation partitioning methods. In addition, we used multivariate analyses to determine which environmental factors were most important in explaining the turnover. Results: We found that the environmental factors measured (temperature, precipitation and edaphic conditions) explained 21.3% of the variation in species composition, with 14.1% of this occurring independently of spatial autocorrelation.A spatially structured fraction of 4.2% could not be accounted for by the environmental factors measured. The main axis of compositional variation was significantly correlated with a north-south gradient in temperature regime.At the extreme south of the Dry Diagonal, a cold temperature regime, in which frost occurred, appeared to underlie floristic similarities between chaco woodlands and southern SDTFs. Main conclusions: Environmental variables, particularly those related to temperature regime, seem to be the most significant factors affecting variation in species composition of SDTFs. Thus historical fragmentation and isolation alone cannot explain the turnover in species composition within SDTFs, as is often assumed. Compositional and environmental heterogeneity needs to be taken into account both to understand the past distribution of SDTFs and to manage and conserve this key tropical biome. Aim The aim of this study was to test the role of environmental factors and spatially autocorrelated processes, such as historical fragmentation and dispersal limitation, in driving floristic variation across seasonally dry tropical forests (SDTFs) in eastern South America. Location SDTFs extending from the Caatinga phytogeographical domain of north‐eastern Brazil to the Chaco phytogeographical domain of northern Argentina, an area referred to as the Dry Diagonal. Methods We compiled a database of 282 inventories of woody vegetation in SDTFs from across the Dry Diagonal and combined this with data for 14 environmental variables. We assessed the relative contribution of spatially autocorrelated processes and environmental factors to the floristic turnover among SDTFs across the Dry Diagonal using variation partitioning methods. In addition, we used multivariate analyses to determine which environmental factors were most important in explaining the turnover. Results We found that the environmental factors measured (temperature, precipitation and edaphic conditions) explained 21.3% of the variation in species composition, with 14.1% of this occurring independently of spatial autocorrelation. A spatially structured fraction of 4.2% could not be accounted for by the environmental factors measured. The main axis of compositional variation was significantly correlated with a north–south gradient in temperature regime. At the extreme south of the Dry Diagonal, a cold temperature regime, in which frost occurred, appeared to underlie floristic similarities between chaco woodlands and southern SDTFs. Main conclusions Environmental variables, particularly those related to temperature regime, seem to be the most significant factors affecting variation in species composition of SDTFs. Thus historical fragmentation and isolation alone cannot explain the turnover in species composition within SDTFs, as is often assumed. Compositional and environmental heterogeneity needs to be taken into account both to understand the past distribution of SDTFs and to manage and conserve this key tropical biome. AIM: The aim of this study was to test the role of environmental factors and spatially autocorrelated processes, such as historical fragmentation and dispersal limitation, in driving floristic variation across seasonally dry tropical forests (SDTFs) in eastern South America. LOCATION: SDTFs extending from the Caatinga phytogeographical domain of north‐eastern Brazil to the Chaco phytogeographical domain of northern Argentina, an area referred to as the Dry Diagonal. METHODS: We compiled a database of 282 inventories of woody vegetation in SDTFs from across the Dry Diagonal and combined this with data for 14 environmental variables. We assessed the relative contribution of spatially autocorrelated processes and environmental factors to the floristic turnover among SDTFs across the Dry Diagonal using variation partitioning methods. In addition, we used multivariate analyses to determine which environmental factors were most important in explaining the turnover. RESULTS: We found that the environmental factors measured (temperature, precipitation and edaphic conditions) explained 21.3% of the variation in species composition, with 14.1% of this occurring independently of spatial autocorrelation. A spatially structured fraction of 4.2% could not be accounted for by the environmental factors measured. The main axis of compositional variation was significantly correlated with a north–south gradient in temperature regime. At the extreme south of the Dry Diagonal, a cold temperature regime, in which frost occurred, appeared to underlie floristic similarities between chaco woodlands and southern SDTFs. MAIN CONCLUSIONS: Environmental variables, particularly those related to temperature regime, seem to be the most significant factors affecting variation in species composition of SDTFs. Thus historical fragmentation and isolation alone cannot explain the turnover in species composition within SDTFs, as is often assumed. Compositional and environmental heterogeneity needs to be taken into account both to understand the past distribution of SDTFs and to manage and conserve this key tropical biome. |
Author | Oliveira Filho, Ary T. Neves, Danilo M. Bueno, Marcelo L. Dexter, Kyle G. Pennington, R. Toby |
Author_xml | – sequence: 1 givenname: Danilo M. surname: Neves fullname: Neves, Danilo M. email: Correspondence: Danilo M. Neves, Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, Midlothian EH3 5LR, UK., danilormn@gmail.com organization: Royal Botanic Garden Edinburgh, EH3 5LR, Edinburgh, Midlothian, UK – sequence: 2 givenname: Kyle G. surname: Dexter fullname: Dexter, Kyle G. organization: Royal Botanic Garden Edinburgh, EH3 5LR, Edinburgh, Midlothian, UK – sequence: 3 givenname: R. Toby surname: Pennington fullname: Pennington, R. Toby organization: Royal Botanic Garden Edinburgh, Midlothian, EH3 5LR, Edinburgh, UK – sequence: 4 givenname: Marcelo L. surname: Bueno fullname: Bueno, Marcelo L. organization: Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Minas Gerais - UFMG, Campus Pampulha, MG, 31270-090, Belo Horizonte, Brazil – sequence: 5 givenname: Ary T. surname: Oliveira Filho fullname: Oliveira Filho, Ary T. organization: Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Minas Gerais - UFMG, Campus Pampulha, MG, 31270-090, Belo Horizonte, Brazil |
BookMark | eNp1kU9vVCEUxYmpidPqwg9gQuJGF6-9wHswLDudtrZpdOGfLgnvCQ4jD0Zg1Pn28jq1i0bZEM79nRvOvYfoIMRgEHpJ4JjUc7Lu3TGhHZVP0Iww3jWUS3mAZsCga4AKeIYOc14DgOxYO0PmPPx0KYbRhKI91uErXrlcYnJDfQ4xlBR9xtFi66uYixuqOm5idsXFgPWQYs64rAz-GLdlhU9HM3kDXqYdXjr9LQbtn6OnVvtsXtzfR-jzxfmns3fNzYfLq7PTm0Z3rZQN703XM0KtEERIDXaQRMwpcNoza40R0GnWCmBVFj2nc6KFkZJCD7yF3rIj9Gbfd5Pij63JRY0uD8Z7HUzcZkUEAUq6uZxX9PUjdB23qf61UlxyaCkIXqmTPXUXMxmrBlf0lLwk7bwioKaxqzp2dTf26nj7yLFJbtRp90_2vvsv583u_6C6Xlz9dbzaO9bTjh4cbQs1l5hSNft63ZT5_VDX6bvigolO3b6_VIsvt9ewuBBqyf4A6MWr2Q |
CODEN | JBIODN |
CitedBy_id | crossref_primary_10_1111_btp_12932 crossref_primary_10_1016_j_flora_2024_152520 crossref_primary_10_1590_1677_941x_abb_2023_0010 crossref_primary_10_1007_s40415_016_0281_z crossref_primary_10_1111_geb_12749 crossref_primary_10_1088_1748_9326_aa5968 crossref_primary_10_1111_ecog_04564 crossref_primary_10_1111_jvs_12541 crossref_primary_10_1016_j_catena_2024_108107 crossref_primary_10_1016_j_foreco_2020_118348 crossref_primary_10_1155_2018_3958327 crossref_primary_10_3389_fevo_2018_00104 crossref_primary_10_3389_fpls_2022_928577 crossref_primary_10_1007_s10531_019_01923_4 crossref_primary_10_1016_j_ppees_2018_07_002 crossref_primary_10_1111_jbi_14791 crossref_primary_10_1073_pnas_1613655114 crossref_primary_10_1093_jpe_rty017 crossref_primary_10_1111_gcb_16386 crossref_primary_10_1590_2175_7860201869445 crossref_primary_10_1007_s10841_016_9930_6 crossref_primary_10_3389_fevo_2021_668281 crossref_primary_10_1111_1365_2745_12969 crossref_primary_10_1093_botlinnean_boab016 crossref_primary_10_1016_j_pld_2022_09_006 crossref_primary_10_1016_j_scitotenv_2019_06_023 crossref_primary_10_1371_journal_pone_0196130 crossref_primary_10_1007_s11258_017_0759_1 crossref_primary_10_15446_abc_v29n2_103070 crossref_primary_10_1016_j_scitotenv_2023_166802 crossref_primary_10_1111_jbi_13013 crossref_primary_10_1007_s40415_021_00739_3 crossref_primary_10_1590_1678_4685_gmb_2023_0331 crossref_primary_10_1007_s40415_016_0346_z crossref_primary_10_1007_s11252_021_01189_1 crossref_primary_10_3389_fevo_2022_866905 crossref_primary_10_5902_2236499447918 crossref_primary_10_1016_j_ecolind_2024_112744 crossref_primary_10_1016_j_envpol_2018_08_001 crossref_primary_10_1093_jpe_rtab027 crossref_primary_10_1038_s41598_024_52379_8 crossref_primary_10_3906_bot_1904_12 crossref_primary_10_1111_mec_17431 crossref_primary_10_1016_j_foreco_2019_04_007 crossref_primary_10_1590_0102_33062021abb0346 crossref_primary_10_1111_1365_2745_13406 crossref_primary_10_1590_0102_33062019abb0057 crossref_primary_10_1080_17550874_2021_2002455 crossref_primary_10_1098_rstb_2015_0165 crossref_primary_10_1002_edn3_78 crossref_primary_10_1590_1676_0611_bn_2021_1306 crossref_primary_10_1590_0102_33062020abb0064 crossref_primary_10_1111_btp_12715 crossref_primary_10_3897_neobiota_67_59193 crossref_primary_10_1111_ddi_12581 crossref_primary_10_1088_1748_9326_aaad74 crossref_primary_10_1007_s12229_016_9164_z crossref_primary_10_2989_20702620_2022_2105178 crossref_primary_10_1590_1519_6984_02016 crossref_primary_10_1007_s11676_021_01342_8 crossref_primary_10_1111_nph_19093 crossref_primary_10_1590_0001_3765202220211019 crossref_primary_10_1088_1748_9326_ab3d7b crossref_primary_10_7717_peerj_9777 crossref_primary_10_1007_s12224_024_09451_y crossref_primary_10_1071_BT16188 crossref_primary_10_1111_jbi_13198 crossref_primary_10_1016_j_jaridenv_2021_104537 crossref_primary_10_1126_science_aaf5080 crossref_primary_10_1590_2175_7860202273071 crossref_primary_10_1093_jpe_rtac099 crossref_primary_10_1093_jpe_rtz059 crossref_primary_10_1016_j_flora_2017_03_011 crossref_primary_10_1016_j_ympev_2019_106569 crossref_primary_10_1007_s10531_019_01910_9 crossref_primary_10_1007_s10841_017_0024_x |
Cites_doi | 10.1017/CBO9780511753398.007 10.1201/9781420004496-7 10.4236/ajps.2013.44098 10.2307/2399937 10.1016/j.yqres.2003.12.004 10.5822/978-1-61091-021-7 10.5822/978-1-61091-021-7_2 10.1007/s00334-013-0395-1 10.1007/978-3-642-96859-4 10.1023/A:1020876316013 10.1201/9781420004496.ch6 10.2307/1938672 10.1890/11-1183.1 10.1111/j.1365-2699.2008.01931.x 10.1111/jbi.12005 10.5822/978-1-61091-021-7_1 10.1111/mec.12071 10.1126/science.165.3889.131 10.1006/qres.1997.1932 10.1017/CBO9780511753398.001 10.1046/j.1365-2699.2000.00397.x 10.1111/j.1466-8238.2010.00596.x 10.1002/joc.1276 10.1111/j.1365-2699.2004.01125.x 10.1007/s10531-008-9375-7 10.1038/nature05134 10.1017/CBO9780511753398 10.1017/CBO9780511806384 10.1201/9781420004496-1 10.1890/07-1880.1 10.1890/13-2228.1 10.1890/11-2028.1 10.1111/j.1558-5646.2012.01682.x 10.1146/annurev.ecolsys.110308.120327 10.1016/j.palaeo.2011.05.012 10.1023/A:1009841519580 10.1017/CBO9780511615146 10.1214/009053604000000823 10.1007/978-1-4419-7976-6 10.1002/ece3.91 10.1111/j.1365-2699.2007.01773.x 10.1186/1472-6785-11-27 10.1201/9781420004496.ch13 10.1111/j.1365-2699.2012.02715.x 10.1016/j.agee.2008.01.014 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons Ltd. 2015 John Wiley & Sons Ltd Copyright © 2015 John Wiley & Sons Ltd |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons Ltd. – notice: 2015 John Wiley & Sons Ltd – notice: Copyright © 2015 John Wiley & Sons Ltd |
DBID | BSCLL AAYXX CITATION 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/jbi.12529 |
DatabaseName | Istex CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Biology Ecology |
EISSN | 1365-2699 |
EndPage | 1576 |
ExternalDocumentID | 3742566841 10_1111_jbi_12529 JBI12529 44002178 ark_67375_WNG_BVWJ0BF7_D |
Genre | article |
GeographicLocations | Brazil Argentina |
GeographicLocations_xml | – name: Argentina – name: Brazil |
GrantInformation_xml | – fundername: CAPES funderid: BEX 2415/11‐9 – fundername: Conselho Nacional de Pesquisa Científica–Brazil – fundername: NSF International Research Fellowship funderid: OISE‐1103573 – fundername: National Environmental Research Council funderid: NE/I028122/1 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AI. AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD EQZMY ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ H~9 IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SAMSI SUPJJ TN5 UB1 VH1 VOH VQP W8V W99 WBKPD WIH WIK WMRSR WOHZO WQJ WRC WSUWO WXSBR XG1 YQT ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX AGHNM CITATION 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-a5499-6be5b312f77179a0fc91782062b3ffee705a347039177b6281a7e9920b0640bf3 |
IEDL.DBID | DR2 |
ISSN | 0305-0270 |
IngestDate | Fri Jul 11 18:25:57 EDT 2025 Sun Jul 13 04:55:42 EDT 2025 Tue Jul 01 01:14:10 EDT 2025 Thu Apr 24 23:09:28 EDT 2025 Wed Jan 22 16:49:19 EST 2025 Thu Jul 03 22:31:13 EDT 2025 Wed Oct 30 10:06:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a5499-6be5b312f77179a0fc91782062b3ffee705a347039177b6281a7e9920b0640bf3 |
Notes | ArticleID:JBI12529 istex:D9F6364CACC4B21E19191C41BC25F34F7131179A CAPES - No. BEX 2415/11-9 National Environmental Research Council - No. NE/I028122/1 Conselho Nacional de Pesquisa Científica-Brazil NSF International Research Fellowship - No. OISE-1103573 ark:/67375/WNG-BVWJ0BF7-D ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1696042076 |
PQPubID | 1086398 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1710215898 proquest_journals_1696042076 crossref_citationtrail_10_1111_jbi_12529 crossref_primary_10_1111_jbi_12529 wiley_primary_10_1111_jbi_12529_JBI12529 jstor_primary_44002178 istex_primary_ark_67375_WNG_BVWJ0BF7_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2015 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: August 2015 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Journal of biogeography |
PublicationTitleAlternate | J. Biogeogr |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd – name: Wiley Subscription Services, Inc |
References | Soininen, J. (2014) A quantitative analysis of species sorting across organisms and ecosystems. Ecology, 95, 3284-3292. Bullock, S.H., Mooney, H.A. & Medina, E. (1995) Seasonally dry tropical forests. Cambridge University Press, Cambridge, UK. Zomer, R.J., Bossio, D.A., Trabucco, A., Yuanjie, L., Gupta, D.C. & Singh, V.P. (2007) Trees and water: smallholder agroforestry on irrigated lands in northern India. IWMI Research Report 122. International Water Management Institute, Colombo, Sri Lanka. Prado, D.E. (1993a) What is the Gran Chaco vegetation in South America? I. A review. Contribution to the study of flora and vegetation of the Chaco. V. Candollea, 48, 145-172. Santos, R.M., Oliveira-Filho, A.T., Eisenlohr, P.V., Queiroz, L.P., Cardoso, D.B.O.S. & Rodal, M.J.N. (2012) Identity and relationships of the arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and central Brazil. Ecology and Evolution, 2, 409-428. Burbridge, R.E., Mayle, F.E. & Killeen, T.J. (2004) Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quaternary Research, 61, 215-230. McCune, B. & Grace, J.B. (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, OR. Werneck, F.P., Nogueira, C., Colli, G.R., Sites, J.W., Jr & Costa, G.C. (2012a) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. Journal of Biogeography, 39, 1695-1706. Legendre, P., Borcard, D. & Roberts, D.W. (2012) Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology, 93, 1234-1240. Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I. & He, F. (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674. Lepš, J. & Šmilauer, J.P. (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, UK. Sarkinen, T., Iganci, J.R.V., Linares-Palomino, R., Simon, M.F. & Prado, D.E. (2011) Forgotten forests: issues and prospects in biome mapping using seasonally dry tropical forests as a case study. BMC Ecology, 11, 27. Zomer, R.J., Trabucco, A., Bossio, D.A., van Straaten, O. & Verchot, L.V. (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture Ecosystems and Environment, 126, 67-80. ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J., Prevost, M., Spichiger, R., Castellanos, H., von Hildebrand, P. & Vasquez, R. (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature, 443, 444-447. Pennington, R.T., Lavin, M. & Oliveira-Filho, A.T. (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annual Review of Ecology, Evolution, and Systematics, 40, 437-457. Titeux, N., Dufrene, M., Jacob, J.P., Paquay, M. & Defourny, P. (2004) Multivariate analysis of a fine-scale breeding bird atlas using a geographical information system and canonical correspondence analysis: environmental and spatial effects. Journal of Biogeography, 31, 1841-1856. Jones, P. & Harris, I. (2008) CRU Time Series (TS): high resolution gridded datasets. NCAS British Atmospheric Data Centre, London. Pennington, R.T., Prado, D.E. & Pendry, C.A. (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography, 27, 261-273. Whitney, B.S., Mayle, F.E., Punyasena, S.W., Fitzpatrick, K.A., Burn, M.J., Guillen, R., Chavez, E., Mann, D., Pennington, R.T. & Metcalfe, S.E. (2011) A 45 kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 307, 177-192. Punyasena, S.W., Eshel, G. & McElwain, J.C. (2008) The influence of climate on the spatial patterning of Neotropical plant families. Journal of Biogeography, 35, 117-130. Shimodaira, H. (2004) Approximately unbiased tests of regions using multistep multiscale bootstrap resampling. Annals of Statistics, 32, 2616-2641. ter Braak, C.J.F. (1986) Canonical correspondence analysis: a new eigen vector technique for multivariate direct gradient analysis. Ecology, 67, 1167-1179. Collevatti, R.G., Lima-Ribeiro, M.S., Diniz-Filho, J.A.F., Oliveira, G., Dobrovolski, R. & Terribile, L.C. (2013a) Stability of Brazilian seasonally dry forests under climate change: inferences for long-term conservation. American Journal of Plant Sciences, 4, 792-805. CGIAR-CSI (2006) NASA Shuttle Radar Topographic Mission (SRTM) (data set available as 3 arc-second DEMs). Available at: http://srtm.csi.cgiar.org/. Guisan, A., Weiss, S.B. & Weiss, A.D. (1999) GLM versus CCA spatial modeling of plant species distribution. Plant Ecology, 143, 107-122. IBGE (1993) Mapa de vegetação do Brasil. Fundacao Instituto Brasileiro de Geografia e Estatistica, Rio de Janeiro, Brazil. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. Castillo-Campos, G., Halffter, G. & Moreno, C.E. (2008) Primary and secondary vegetation patches as contributors to floristic diversity in a tropical deciduous forest landscape. Biodiversity and Conservation, 17, 1701-1714. Oliveira-Filho, A.T., Budke, J.C., Jarenkow, J.A., Eisenlohr, P.V. & Neves, D.M. (2013) Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. Journal of Plant Ecology, 6, 1-23. Haffer, J. (1969) Speciation in Amazonian forest birds. Science, 165, 131-137. Hubbell, S.P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ. Quinn, G.P. & Keough, M.J. (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, UK. Prado, D.E. (1993b) What is the Gran Chaco vegetation in South America? II. A redefinition. Contribution to the study of flora and vegetation of the Chaco. VII. Candollea, 48, 615-629. Dirzo, R., Young, H.S., Mooney, H.A. & Ceballos, G. (2011) Seasonally dry tropical forests. Island Press, Washington, DC. Suzuki, R. & Shimodaira, H. (2011) pvclust: hierarchical clustering with P-values via multiscale bootstrap resampling. R package version 1.2-2. Available at: http://CRAN.Rproject.org/package=pvclust. Walter, H. (1985) Vegetation of the earth and ecological systems of the geo-biosphere, 3rd edn. Springer-Verlag, Berlin. Prado, D.E. & Gibbs, P.E. (1993) Patterns of species distribution in the dry seasonal forests of South America. Annals of the Missouri Botanical Garden, 80, 902-927. Werneck, F.P., Costa, G.C., Colli, G.R., Prado, D.E. & Sites, J.W., Jr (2011) Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidence. Global Ecology and Biogeography, 20, 272-288. EMBRAPA & IBGE (2003) Mapa de solos do Brasil (escala 1:5.000.000). Centro nacional de pesquisas de solos da Empresa Brasileira de Pesquisa Agropecuaria and Instituto Brasileiro de Geografia e Estatistica, Brasilia, Brazil. Dray, S., Pelissier, R., Couteron, P., Fortin, M.-J., Legendre, P., Peres-Neto, P.R., Bellier, E., Bivand, R., Blanchet, F.G., de Caceres, M., Dufour, A.-B., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J., Thioulouse, J. & Wagner, H.H. (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82, 257-275. Gillespie, T.W., Grijalva, A. & Farris, C.N. (2000) Diversity, composition, and structure of tropical dry forests in Central America. Polish Journal of Ecology, 147, 37-47. Vetaas, O.R. & Ferrer-Castán, D. (2008) Patterns of woody plant species richness in the Iberian Peninsula: environmental range and spatial scale. Journal of Biogeography, 35, 1863-1878. Dray, S. (2010) spacemakeR: spatial modelling. R package version 473 0.0-5/r101. Available at: http://R-Forge.R-project.org/projects/sedar/. Ratter, J.A., Pott, A., Pott, V.J., da Cunha, C.N. & Haridasan, M. (1988) Observations on woody vegetation types in the Pantanal and at Corumba, Brazil. Notes of the Royal Botanical Garden Edinburgh, 45, 503-525. Behling, H. & Lichte, M. (1997) Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quaternary Research, 48, 348-358. Collevatti, R.G., Terribile, L.C., Lima-Ribeiro, M.S., Nabout, J.C., Oliveira, G., Rangel, T.F., Rabelo, S.G. & Diniz-Filho, J.A.F. (2012) A coupled phylogeographic and species distribution modeling approach recovers the demographic history of a Neotropical seasonally dry forest tree species. Molecular Ecology, 21, 5845-5863. Trejo, I. & Dirzo, R. (2002) Floristic diversity of Mexican seasonally dry tropical forests. Biodiversity and Conservation, 11, 2063-2084. Borcard, D., Gillet, F. & Legendre, P. (2011) Numerical ecology with R. Springer, New York. R Core Team (2015) R: a language and environment for statistical computing. Version 3.1.0. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org/. Werneck, F.P., Gamble, T., Colli, G.R., Rodrigues, M.T. & Sites, J.W., Jr (2012b) Deep diversification and long term persistence in the South American 'dry diagonal': integrating continent-wide phylogeography and distribution modeling of geckos. Evolution, 66, 3014-3034. Collevatti, R.G., Terribile, L.C., Oliveira, G., Lima-Ribeiro, M.S., Nabout, J.C., Rangel, T.F. & Diniz-Filho, J.A.F. (2013b) Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. Journal of Biogeography, 40, 345-358. Whitney, B.S., Mayle, F.E., Burn, M.J., Guillen, R., Chavez, E. & Pennington, R.T. (2013) Sensitivity of Bolivian seasonally-dry tropical forest to precipitation and tem 2004; 61 2009; 40 2013; 23 1997; 48 2002; 11 1993a; 48 2011; 11 2008; 35 2013; 6 1969; 165 2005; 25 2004; 32 2004; 31 2012a; 39 2001 2013b; 40 2009; 90 2011; 20 1988; 45 1985 1993; 80 1982 2014; 95 2012; 21 2006; 443 2012; 82 2000; 27 2012 2011 2010 2008; 17 1954 2013a; 4 2009 1999; 143 2008 2012b; 66 2007 1995 2006 1993 2008; 126 2003 2002 2012; 93 2012; 2 2011; 307 2000; 147 1986; 67 1993b; 48 1963 2015 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Gillespie T.W. (e_1_2_6_22_1) 2000; 147 EMBRAPA & IBGE (e_1_2_6_19_1) 2003 IBGE (e_1_2_6_27_1) 1993 e_1_2_6_13_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 Prado D.E. (e_1_2_6_44_1) 1993; 48 e_1_2_6_41_1 Andrade‐Lima D. (e_1_2_6_3_1) 1982 CGIAR‐CSI (e_1_2_6_12_1) 2006 Vanzolini P.E. (e_1_2_6_60_1) 1963 Dray S. (e_1_2_6_17_1) 2010 Prado D.E. (e_1_2_6_45_1) 1993; 48 e_1_2_6_9_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_66_1 e_1_2_6_47_1 e_1_2_6_52_1 R Core Team (e_1_2_6_50_1) 2015 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 Oliveira‐Filho A.T. (e_1_2_6_39_1) 2006 Ratter J.A. (e_1_2_6_51_1) 1988; 45 Linares‐Palomino R. (e_1_2_6_33_1) 2006 Oliveira‐Filho A.T. (e_1_2_6_40_1) 2013; 6 e_1_2_6_14_1 e_1_2_6_35_1 Zomer R.J. (e_1_2_6_68_1) 2007 McCune B. (e_1_2_6_36_1) 2002 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 Jones P. (e_1_2_6_28_1) 2008 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 Hubbell S.P. (e_1_2_6_26_1) 2001 e_1_2_6_25_1 e_1_2_6_48_1 Suzuki R. (e_1_2_6_57_1) 2011 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_67_1 Bivand R. (e_1_2_6_5_1) 2012 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – reference: Dray, S. (2010) spacemakeR: spatial modelling. R package version 473 0.0-5/r101. Available at: http://R-Forge.R-project.org/projects/sedar/. – reference: Oliveira-Filho, A.T., Budke, J.C., Jarenkow, J.A., Eisenlohr, P.V. & Neves, D.M. (2013) Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. Journal of Plant Ecology, 6, 1-23. – reference: Pennington, R.T., Lavin, M. & Oliveira-Filho, A.T. (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annual Review of Ecology, Evolution, and Systematics, 40, 437-457. – reference: Suzuki, R. & Shimodaira, H. (2011) pvclust: hierarchical clustering with P-values via multiscale bootstrap resampling. R package version 1.2-2. Available at: http://CRAN.Rproject.org/package=pvclust. – reference: Werneck, F.P., Nogueira, C., Colli, G.R., Sites, J.W., Jr & Costa, G.C. (2012a) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. Journal of Biogeography, 39, 1695-1706. – reference: Prado, D.E. & Gibbs, P.E. (1993) Patterns of species distribution in the dry seasonal forests of South America. Annals of the Missouri Botanical Garden, 80, 902-927. – reference: Haffer, J. (1969) Speciation in Amazonian forest birds. Science, 165, 131-137. – reference: Prado, D.E. (1993a) What is the Gran Chaco vegetation in South America? I. A review. Contribution to the study of flora and vegetation of the Chaco. V. Candollea, 48, 145-172. – reference: Ratter, J.A., Pott, A., Pott, V.J., da Cunha, C.N. & Haridasan, M. (1988) Observations on woody vegetation types in the Pantanal and at Corumba, Brazil. Notes of the Royal Botanical Garden Edinburgh, 45, 503-525. – reference: Walter, H. (1985) Vegetation of the earth and ecological systems of the geo-biosphere, 3rd edn. Springer-Verlag, Berlin. – reference: R Core Team (2015) R: a language and environment for statistical computing. Version 3.1.0. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org/. – reference: Vetaas, O.R. & Ferrer-Castán, D. (2008) Patterns of woody plant species richness in the Iberian Peninsula: environmental range and spatial scale. Journal of Biogeography, 35, 1863-1878. – reference: Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I. & He, F. (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674. – reference: Shimodaira, H. (2004) Approximately unbiased tests of regions using multistep multiscale bootstrap resampling. Annals of Statistics, 32, 2616-2641. – reference: Whitney, B.S., Mayle, F.E., Burn, M.J., Guillen, R., Chavez, E. & Pennington, R.T. (2013) Sensitivity of Bolivian seasonally-dry tropical forest to precipitation and temperature changes over glacial-interglacial timescales. Vegetation History and Archaeobotany, 23, 1-14. – reference: McCune, B. & Grace, J.B. (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, OR. – reference: Punyasena, S.W., Eshel, G. & McElwain, J.C. (2008) The influence of climate on the spatial patterning of Neotropical plant families. Journal of Biogeography, 35, 117-130. – reference: Jones, P. & Harris, I. (2008) CRU Time Series (TS): high resolution gridded datasets. NCAS British Atmospheric Data Centre, London. – reference: Prado, D.E. (1993b) What is the Gran Chaco vegetation in South America? II. A redefinition. Contribution to the study of flora and vegetation of the Chaco. VII. Candollea, 48, 615-629. – reference: Quinn, G.P. & Keough, M.J. (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, UK. – reference: Dray, S., Pelissier, R., Couteron, P., Fortin, M.-J., Legendre, P., Peres-Neto, P.R., Bellier, E., Bivand, R., Blanchet, F.G., de Caceres, M., Dufour, A.-B., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J., Thioulouse, J. & Wagner, H.H. (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82, 257-275. – reference: CGIAR-CSI (2006) NASA Shuttle Radar Topographic Mission (SRTM) (data set available as 3 arc-second DEMs). Available at: http://srtm.csi.cgiar.org/. – reference: Gillespie, T.W., Grijalva, A. & Farris, C.N. (2000) Diversity, composition, and structure of tropical dry forests in Central America. Polish Journal of Ecology, 147, 37-47. – reference: Zomer, R.J., Bossio, D.A., Trabucco, A., Yuanjie, L., Gupta, D.C. & Singh, V.P. (2007) Trees and water: smallholder agroforestry on irrigated lands in northern India. IWMI Research Report 122. International Water Management Institute, Colombo, Sri Lanka. – reference: ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J., Prevost, M., Spichiger, R., Castellanos, H., von Hildebrand, P. & Vasquez, R. (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature, 443, 444-447. – reference: Legendre, P., Borcard, D. & Roberts, D.W. (2012) Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology, 93, 1234-1240. – reference: Santos, R.M., Oliveira-Filho, A.T., Eisenlohr, P.V., Queiroz, L.P., Cardoso, D.B.O.S. & Rodal, M.J.N. (2012) Identity and relationships of the arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and central Brazil. Ecology and Evolution, 2, 409-428. – reference: Castillo-Campos, G., Halffter, G. & Moreno, C.E. (2008) Primary and secondary vegetation patches as contributors to floristic diversity in a tropical deciduous forest landscape. Biodiversity and Conservation, 17, 1701-1714. – reference: Pennington, R.T., Prado, D.E. & Pendry, C.A. (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography, 27, 261-273. – reference: Behling, H. & Lichte, M. (1997) Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quaternary Research, 48, 348-358. – reference: Sarkinen, T., Iganci, J.R.V., Linares-Palomino, R., Simon, M.F. & Prado, D.E. (2011) Forgotten forests: issues and prospects in biome mapping using seasonally dry tropical forests as a case study. BMC Ecology, 11, 27. – reference: Collevatti, R.G., Terribile, L.C., Lima-Ribeiro, M.S., Nabout, J.C., Oliveira, G., Rangel, T.F., Rabelo, S.G. & Diniz-Filho, J.A.F. (2012) A coupled phylogeographic and species distribution modeling approach recovers the demographic history of a Neotropical seasonally dry forest tree species. Molecular Ecology, 21, 5845-5863. – reference: Dirzo, R., Young, H.S., Mooney, H.A. & Ceballos, G. (2011) Seasonally dry tropical forests. Island Press, Washington, DC. – reference: IBGE (1993) Mapa de vegetação do Brasil. Fundacao Instituto Brasileiro de Geografia e Estatistica, Rio de Janeiro, Brazil. – reference: Hubbell, S.P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ. – reference: Werneck, F.P., Gamble, T., Colli, G.R., Rodrigues, M.T. & Sites, J.W., Jr (2012b) Deep diversification and long term persistence in the South American 'dry diagonal': integrating continent-wide phylogeography and distribution modeling of geckos. Evolution, 66, 3014-3034. – reference: Whitney, B.S., Mayle, F.E., Punyasena, S.W., Fitzpatrick, K.A., Burn, M.J., Guillen, R., Chavez, E., Mann, D., Pennington, R.T. & Metcalfe, S.E. (2011) A 45 kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 307, 177-192. – reference: Bullock, S.H., Mooney, H.A. & Medina, E. (1995) Seasonally dry tropical forests. Cambridge University Press, Cambridge, UK. – reference: Bivand, R. (2012) spdep: spatial dependence. Weighting schemes, statistics and models. R package version 0.5-51/r458. Available at: http://R-Forge.R-project.org/projects/spdep/. – reference: Guisan, A., Weiss, S.B. & Weiss, A.D. (1999) GLM versus CCA spatial modeling of plant species distribution. Plant Ecology, 143, 107-122. – reference: Lepš, J. & Šmilauer, J.P. (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, UK. – reference: Soininen, J. (2014) A quantitative analysis of species sorting across organisms and ecosystems. Ecology, 95, 3284-3292. – reference: ter Braak, C.J.F. (1986) Canonical correspondence analysis: a new eigen vector technique for multivariate direct gradient analysis. Ecology, 67, 1167-1179. – reference: Werneck, F.P., Costa, G.C., Colli, G.R., Prado, D.E. & Sites, J.W., Jr (2011) Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidence. Global Ecology and Biogeography, 20, 272-288. – reference: Collevatti, R.G., Lima-Ribeiro, M.S., Diniz-Filho, J.A.F., Oliveira, G., Dobrovolski, R. & Terribile, L.C. (2013a) Stability of Brazilian seasonally dry forests under climate change: inferences for long-term conservation. American Journal of Plant Sciences, 4, 792-805. – reference: Zomer, R.J., Trabucco, A., Bossio, D.A., van Straaten, O. & Verchot, L.V. (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture Ecosystems and Environment, 126, 67-80. – reference: Burbridge, R.E., Mayle, F.E. & Killeen, T.J. (2004) Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quaternary Research, 61, 215-230. – reference: Titeux, N., Dufrene, M., Jacob, J.P., Paquay, M. & Defourny, P. (2004) Multivariate analysis of a fine-scale breeding bird atlas using a geographical information system and canonical correspondence analysis: environmental and spatial effects. Journal of Biogeography, 31, 1841-1856. – reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. – reference: Collevatti, R.G., Terribile, L.C., Oliveira, G., Lima-Ribeiro, M.S., Nabout, J.C., Rangel, T.F. & Diniz-Filho, J.A.F. (2013b) Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. Journal of Biogeography, 40, 345-358. – reference: EMBRAPA & IBGE (2003) Mapa de solos do Brasil (escala 1:5.000.000). Centro nacional de pesquisas de solos da Empresa Brasileira de Pesquisa Agropecuaria and Instituto Brasileiro de Geografia e Estatistica, Brasilia, Brazil. – reference: Trejo, I. & Dirzo, R. (2002) Floristic diversity of Mexican seasonally dry tropical forests. Biodiversity and Conservation, 11, 2063-2084. – reference: Borcard, D., Gillet, F. & Legendre, P. (2011) Numerical ecology with R. Springer, New York. – year: 2011 – year: 1985 – year: 2009 – volume: 143 start-page: 107 year: 1999 end-page: 122 article-title: GLM versus CCA spatial modeling of plant species distribution publication-title: Plant Ecology – start-page: 245 year: 1982 end-page: 251 – start-page: 3 year: 2011 end-page: 21 – start-page: 305 year: 1963 end-page: 321 – volume: 48 start-page: 348 year: 1997 end-page: 358 article-title: Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil publication-title: Quaternary Research – volume: 40 start-page: 345 year: 2013b end-page: 358 article-title: Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests publication-title: Journal of Biogeography – year: 2001 – volume: 82 start-page: 257 year: 2012 end-page: 275 article-title: Community ecology in the age of multivariate multiscale spatial analysis publication-title: Ecological Monographs – volume: 2 start-page: 409 year: 2012 end-page: 428 article-title: Identity and relationships of the arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north‐eastern and central Brazil publication-title: Ecology and Evolution – volume: 11 start-page: 2063 year: 2002 end-page: 2084 article-title: Floristic diversity of Mexican seasonally dry tropical forests publication-title: Biodiversity and Conservation – start-page: 146 year: 1995 end-page: 194 – start-page: 249 year: 2006 end-page: 272 – volume: 307 start-page: 177 year: 2011 end-page: 192 article-title: A 45 kyr palaeoclimate record from the lowland interior of tropical South America publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – volume: 39 start-page: 1695 year: 2012a end-page: 1706 article-title: Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot publication-title: Journal of Biogeography – volume: 17 start-page: 1701 year: 2008 end-page: 1714 article-title: Primary and secondary vegetation patches as contributors to floristic diversity in a tropical deciduous forest landscape publication-title: Biodiversity and Conservation – volume: 61 start-page: 215 year: 2004 end-page: 230 article-title: Fifty‐thousand‐year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon publication-title: Quaternary Research – volume: 21 start-page: 5845 year: 2012 end-page: 5863 article-title: A coupled phylogeographic and species distribution modeling approach recovers the demographic history of a Neotropical seasonally dry forest tree species publication-title: Molecular Ecology – volume: 45 start-page: 503 year: 1988 end-page: 525 article-title: Observations on woody vegetation types in the Pantanal and at Corumba, Brazil publication-title: Notes of the Royal Botanical Garden Edinburgh – volume: 48 start-page: 145 year: 1993a end-page: 172 article-title: What is the Gran Chaco vegetation in South America? I. A review. Contribution to the study of flora and vegetation of the Chaco. V publication-title: Candollea – year: 2008 – volume: 48 start-page: 615 year: 1993b end-page: 629 article-title: What is the Gran Chaco vegetation in South America? II. A redefinition. Contribution to the study of flora and vegetation of the Chaco. VII publication-title: Candollea – volume: 95 start-page: 3284 year: 2014 end-page: 3292 article-title: A quantitative analysis of species sorting across organisms and ecosystems publication-title: Ecology – start-page: 315 year: 2006 end-page: 342 – year: 1993 – year: 2015 – volume: 4 start-page: 792 year: 2013a end-page: 805 article-title: Stability of Brazilian seasonally dry forests under climate change: inferences for long‐term conservation publication-title: American Journal of Plant Sciences – start-page: 159 year: 2006 end-page: 192 – volume: 31 start-page: 1841 year: 2004 end-page: 1856 article-title: Multivariate analysis of a fine‐scale breeding bird atlas using a geographical information system and canonical correspondence analysis: environmental and spatial effects publication-title: Journal of Biogeography – year: 2007 – year: 2003 – volume: 11 start-page: 27 year: 2011 article-title: Forgotten forests: issues and prospects in biome mapping using seasonally dry tropical forests as a case study publication-title: BMC Ecology – volume: 93 start-page: 1234 year: 2012 end-page: 1240 article-title: Variation partitioning involving orthogonal spatial eigenfunction submodels publication-title: Ecology – volume: 35 start-page: 117 year: 2008 end-page: 130 article-title: The influence of climate on the spatial patterning of Neotropical plant families publication-title: Journal of Biogeography – year: 1954 – volume: 35 start-page: 1863 year: 2008 end-page: 1878 article-title: Patterns of woody plant species richness in the Iberian Peninsula: environmental range and spatial scale publication-title: Journal of Biogeography – volume: 147 start-page: 37 year: 2000 end-page: 47 article-title: Diversity, composition, and structure of tropical dry forests in Central America publication-title: Polish Journal of Ecology – year: 2010 – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – start-page: 1 year: 2006 end-page: 29 – start-page: 121 year: 2006 end-page: 157 – year: 2012 – volume: 32 start-page: 2616 year: 2004 end-page: 2641 article-title: Approximately unbiased tests of regions using multistep multiscale bootstrap resampling publication-title: Annals of Statistics – volume: 23 start-page: 1 year: 2013 end-page: 14 article-title: Sensitivity of Bolivian seasonally‐dry tropical forest to precipitation and temperature changes over glacial–interglacial timescales publication-title: Vegetation History and Archaeobotany – start-page: 1 year: 1995 end-page: 8 – volume: 67 start-page: 1167 year: 1986 end-page: 1179 article-title: Canonical correspondence analysis: a new eigen vector technique for multivariate direct gradient analysis publication-title: Ecology – volume: 126 start-page: 67 year: 2008 end-page: 80 article-title: Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation publication-title: Agriculture Ecosystems and Environment – volume: 80 start-page: 902 year: 1993 end-page: 927 article-title: Patterns of species distribution in the dry seasonal forests of South America publication-title: Annals of the Missouri Botanical Garden – volume: 443 start-page: 444 year: 2006 end-page: 447 article-title: Continental‐scale patterns of canopy tree composition and function across Amazonia publication-title: Nature – volume: 165 start-page: 131 year: 1969 end-page: 137 article-title: Speciation in Amazonian forest birds publication-title: Science – year: 2002 – year: 2006 – volume: 66 start-page: 3014 year: 2012b end-page: 3034 article-title: Deep diversification and long term persistence in the South American ‘dry diagonal’: integrating continent‐wide phylogeography and distribution modeling of geckos publication-title: Evolution – year: 1995 – volume: 20 start-page: 272 year: 2011 end-page: 288 article-title: Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidence publication-title: Global Ecology and Biogeography – volume: 90 start-page: 663 year: 2009 end-page: 674 article-title: Partitioning beta diversity in a subtropical broad‐leaved forest of China publication-title: Ecology – volume: 40 start-page: 437 year: 2009 end-page: 457 article-title: Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 6 start-page: 1 year: 2013 end-page: 23 article-title: Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests publication-title: Journal of Plant Ecology – volume: 27 start-page: 261 year: 2000 end-page: 273 article-title: Neotropical seasonally dry forests and Quaternary vegetation changes publication-title: Journal of Biogeography – start-page: 23 year: 2011 end-page: 44 – ident: e_1_2_6_21_1 doi: 10.1017/CBO9780511753398.007 – start-page: 159 volume-title: Neotropical savannas and seasonally dry forests: plant diversity, biogeography and conservation year: 2006 ident: e_1_2_6_39_1 doi: 10.1201/9781420004496-7 – volume-title: Trees and water: smallholder agroforestry on irrigated lands in northern India year: 2007 ident: e_1_2_6_68_1 – volume-title: pvclust: hierarchical clustering with P‐values via multiscale bootstrap resampling year: 2011 ident: e_1_2_6_57_1 – ident: e_1_2_6_14_1 doi: 10.4236/ajps.2013.44098 – ident: e_1_2_6_46_1 doi: 10.2307/2399937 – ident: e_1_2_6_9_1 doi: 10.1016/j.yqres.2003.12.004 – ident: e_1_2_6_16_1 doi: 10.5822/978-1-61091-021-7 – ident: e_1_2_6_10_1 doi: 10.5822/978-1-61091-021-7_2 – volume-title: R: a language and environment for statistical computing year: 2015 ident: e_1_2_6_50_1 – ident: e_1_2_6_67_1 doi: 10.1007/s00334-013-0395-1 – ident: e_1_2_6_62_1 doi: 10.1007/978-3-642-96859-4 – start-page: 249 volume-title: Neotropical savannas and seasonally dry forests: plant biodiversity, biogeography and conservation year: 2006 ident: e_1_2_6_33_1 – start-page: 245 volume-title: Biological diversification in the tropics year: 1982 ident: e_1_2_6_3_1 – ident: e_1_2_6_59_1 doi: 10.1023/A:1020876316013 – volume: 48 start-page: 145 year: 1993 ident: e_1_2_6_44_1 article-title: What is the Gran Chaco vegetation in South America? I. A review. Contribution to the study of flora and vegetation of the Chaco. V publication-title: Candollea – ident: e_1_2_6_48_1 doi: 10.1201/9781420004496.ch6 – volume-title: Mapa de solos do Brasil (escala 1:5.000.000) year: 2003 ident: e_1_2_6_19_1 – volume: 45 start-page: 503 year: 1988 ident: e_1_2_6_51_1 article-title: Observations on woody vegetation types in the Pantanal and at Corumba, Brazil publication-title: Notes of the Royal Botanical Garden Edinburgh – ident: e_1_2_6_7_1 doi: 10.2307/1938672 – ident: e_1_2_6_18_1 doi: 10.1890/11-1183.1 – volume-title: The unified neutral theory of biodiversity and biogeography year: 2001 ident: e_1_2_6_26_1 – ident: e_1_2_6_61_1 doi: 10.1111/j.1365-2699.2008.01931.x – ident: e_1_2_6_15_1 doi: 10.1111/jbi.12005 – ident: e_1_2_6_34_1 doi: 10.5822/978-1-61091-021-7_1 – volume: 147 start-page: 37 year: 2000 ident: e_1_2_6_22_1 article-title: Diversity, composition, and structure of tropical dry forests in Central America publication-title: Polish Journal of Ecology – ident: e_1_2_6_13_1 doi: 10.1111/mec.12071 – ident: e_1_2_6_20_1 – ident: e_1_2_6_24_1 doi: 10.1126/science.165.3889.131 – volume-title: NASA Shuttle Radar Topographic Mission (SRTM) (data set available as 3 arc‐second DEMs) year: 2006 ident: e_1_2_6_12_1 – ident: e_1_2_6_4_1 doi: 10.1006/qres.1997.1932 – volume-title: spdep: spatial dependence. Weighting schemes, statistics and models year: 2012 ident: e_1_2_6_5_1 – ident: e_1_2_6_37_1 doi: 10.1017/CBO9780511753398.001 – ident: e_1_2_6_41_1 doi: 10.1046/j.1365-2699.2000.00397.x – ident: e_1_2_6_63_1 doi: 10.1111/j.1466-8238.2010.00596.x – ident: e_1_2_6_25_1 doi: 10.1002/joc.1276 – ident: e_1_2_6_58_1 doi: 10.1111/j.1365-2699.2004.01125.x – ident: e_1_2_6_11_1 doi: 10.1007/s10531-008-9375-7 – ident: e_1_2_6_56_1 doi: 10.1038/nature05134 – volume-title: CRU Time Series (TS): high resolution gridded datasets year: 2008 ident: e_1_2_6_28_1 – ident: e_1_2_6_8_1 doi: 10.1017/CBO9780511753398 – ident: e_1_2_6_49_1 doi: 10.1017/CBO9780511806384 – ident: e_1_2_6_42_1 doi: 10.1201/9781420004496-1 – ident: e_1_2_6_29_1 doi: 10.1890/07-1880.1 – ident: e_1_2_6_55_1 doi: 10.1890/13-2228.1 – ident: e_1_2_6_30_1 doi: 10.1890/11-2028.1 – ident: e_1_2_6_65_1 doi: 10.1111/j.1558-5646.2012.01682.x – ident: e_1_2_6_2_1 – volume-title: spacemakeR: spatial modelling. R package version 473 0.0–5/r101 year: 2010 ident: e_1_2_6_17_1 – volume: 6 start-page: 1 year: 2013 ident: e_1_2_6_40_1 article-title: Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests publication-title: Journal of Plant Ecology – ident: e_1_2_6_43_1 doi: 10.1146/annurev.ecolsys.110308.120327 – start-page: 305 volume-title: Simpósio sobre o Cerrado year: 1963 ident: e_1_2_6_60_1 – ident: e_1_2_6_66_1 doi: 10.1016/j.palaeo.2011.05.012 – ident: e_1_2_6_23_1 doi: 10.1023/A:1009841519580 – ident: e_1_2_6_31_1 doi: 10.1017/CBO9780511615146 – ident: e_1_2_6_54_1 doi: 10.1214/009053604000000823 – volume: 48 start-page: 615 year: 1993 ident: e_1_2_6_45_1 article-title: What is the Gran Chaco vegetation in South America? II. A redefinition. Contribution to the study of flora and vegetation of the Chaco. VII publication-title: Candollea – ident: e_1_2_6_32_1 – volume-title: Mapa de vegetação do Brasil year: 1993 ident: e_1_2_6_27_1 – ident: e_1_2_6_6_1 doi: 10.1007/978-1-4419-7976-6 – ident: e_1_2_6_38_1 – ident: e_1_2_6_52_1 doi: 10.1002/ece3.91 – ident: e_1_2_6_47_1 doi: 10.1111/j.1365-2699.2007.01773.x – ident: e_1_2_6_53_1 doi: 10.1186/1472-6785-11-27 – volume-title: Analysis of ecological communities year: 2002 ident: e_1_2_6_36_1 – ident: e_1_2_6_35_1 doi: 10.1201/9781420004496.ch13 – ident: e_1_2_6_64_1 doi: 10.1111/j.1365-2699.2012.02715.x – ident: e_1_2_6_69_1 doi: 10.1016/j.agee.2008.01.014 |
SSID | ssj0009534 |
Score | 2.4346514 |
Snippet | Aim: The aim of this study was to test the role of environmental factors and spatially autocor related processes, such as historical fragmentation and... Aim The aim of this study was to test the role of environmental factors and spatially autocorrelated processes, such as historical fragmentation and dispersal... Aim The aim of this study was to test the role of environmental factors and spatially autocorrelated processes, such as historical fragmentation and dispersal... AIM: The aim of this study was to test the role of environmental factors and spatially autocorrelated processes, such as historical fragmentation and dispersal... |
SourceID | proquest crossref wiley jstor istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1566 |
SubjectTerms | Argentina autocorrelation botanical composition Brazil caatinga woodlands chaco woodlands cold Community variation in space and time Correlation analysis Dry forests ecosystems edaphic factors Environmental factors environmental niche frost Heterogeneity interspecific variation inventories multivariate analysis phytogeography Pleistocene Arc Hypothesis seasonally dry tropical forests Species composition species turnover temperature Tropical forests variation partitioning Woodlands Woody plants |
Title | Environmental and historical controls of floristic composition across the South American Dry Diagonal |
URI | https://api.istex.fr/ark:/67375/WNG-BVWJ0BF7-D/fulltext.pdf https://www.jstor.org/stable/44002178 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.12529 https://www.proquest.com/docview/1696042076 https://www.proquest.com/docview/1710215898 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD6IUuqLrVZxrC2pSPFllrkmM_Sp292tLuiD1MuDEJLZRBdlVvYCrr_enExmuhYF6VtgToZMkpN8Z_LlOwD7cSoDqlhiRoBRP2FM-LmKE19IndJBoAbCKjEdn9DDs6R_mV4uwY_6LkylD9H8cEPPsOs1OriQk0Unl8OW2Z0jvLyHXC0ERKfRguBuXElHITktYoFTFbIsnrrms71oBbv1oaYlPgOci7DV7ju9D3BVt7iim9y2ZlPZKh7_EXP8z0_6CGsOj5Kf1QRahyVVbsC7KkPl3JS6hSu9d-nSb-afQHX_Xo8zlUU5IDeN3Ahx7PcJGWmikeCHUtAEueuOIEaE7Q9isCexKfxIfW5EOuM56QzFNcYHm3DW6_75dei7fA2-wCjTp1KlMg4jzUyMmItAFyYWRH34SMZaK8WCVMQJQ016xiSNslAwledRIPE4Uep4C5bLUam2gcThwMRuItQ0Y4kOi8ysHUWoMMMpzUWmPTioR44XTswcc2rc8SaokUNu-9KDvcb0vlLweMnoux3-xkKMb5HyxlJ-cfKbt88v-kG7x3jHgy07PxrDJLFhXebBbj1huFsGJjykqH2DbuDBt-axcWA8lRGlGs2MDWK8MM1y84oDOztebybvt49sYeftpp9h1YC8tCIt7sLydDxTXwyQmsqv1mOeAClcFbQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVqhcKK-KQAGDAPWSVd5ODj2wZJfdbbsH1NLeXDtr01VRFu1DsP1N_Sv8JzyOE7YIJC49cLOUiZV4ZuwZ-_M3AK_DWHiJpJHWAE3ciFLuZjKMXC5UnIw8OeKGielwmPSOo8FpfLoGV_VdmIofotlwQ88w8zU6OG5Ir3q5GLf08hxkFlK5L5ffdMI22-vnWrtvgqDbOXrfc21NAZdjJuQmQsYi9ANFdR6TcU8VOl9BDvNAhEpJSb2YhxFF3nRKRRKkPqcyywJP4JGXUKHu9xZsYAVxZOrPPwYrFL9hRVaFcLiAepbHyOCG6k-9tvptoCK_10DIayHuaqBsVrruFvyox6gCuFy0FnPRKi5_o4_8XwbxHty1ITd5V_nIfViT5QO4XRXhXOpWp7CtTVsR_nz5EGTn1w1A_TIvR-S8YVQhFuA_IxNFFGIYke2aIDzfYuAINwogOrwmpkohqY_GSD5dknzMP2MK9AiOb-TPt2G9nJTyMZDQH-n0lPsqSWmk_CLV02PhSyzimmQ8VQ7s1qbCCsvXjmVDvrAmbxNjZnTnwKtG9GtFUvInobfG3hoJPr1AVB-N2cnwA2t_Ohl47S5luQPbxiAbwSgymWvqwE5toczOdDPmJ0jvg57uwMvmsZ6j8OCJl3Ky0DIYxvpxmukudo05_v0z2aDdN40n_y76AjZ7R4cH7KA_3H8Kd3RMG1cYzR1Yn08X8pmOG-fiuXFXAmc3bdo_AWR5cDw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVjwuvCsCBQwC1EtWedrJgQNLduluYYUQpb0ZO7Hpqmi32odg-Uv8FX4UHscJWwQSlx64WcrEcjwz9kz8-RuAJ3EqA6pYYjTAqJ8wJvxcxYkvpE5pFahKWCamNyO6d5AMj9KjDfje3IWp-SHaH27oGXa9Rgc_rfS6k8txx-zOUe4Qlftq9cXka_Png8Io92kU9XvvX-75rqSALzAR8qlUqYzDSDOTxuQi0KVJV5DCPJKx1kqxIBVxwpA2nTFJoywUTOV5FEg88ZI6Nv1egK2EBjnWiSjeRWsMv3HNVYVouIgFjsbIwoaaoZ7Z_LZQj18bHOSZCHc9TrYbXf8a_GimqMa3nHSWC9kpv_3GHvmfzOF1uOoCbvKi9pAbsKEmN-FiXYJzZVq90rUuu3rwx6tboHq_7v-Zl8WkIsctnwpx8P45mWqiEcGIXNcEwfkOAUeEnX9igmtiaxSS5mCMFLMVKcbiEyZAt-HgXL58GzYn04m6AyQOK5OcilDTjCU6LDOzOJahwhKuNBeZ9mC3sRReOrZ2LBrymbdZmxxzqzsPHreipzVFyZ-EnllzayXE7AQxfSzlh6NXvPvhcBh0-4wXHmxbe2wFk8TmrZkHO42BcrfOzXlIkdwH_dyDR-1js0LhsZOYqOnSyGAQG6ZZbrrYtdb492HyYXdgG3f_XfQhXHpb9PnrwWj_HlwxAW1aAzR3YHMxW6r7JmhcyAfWWQl8PG_L_gl9zW7r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+and+historical+controls+of+floristic+composition+across+the+South+American+Dry+Diagonal&rft.jtitle=Journal+of+biogeography&rft.au=Neves%2C+Danilo+M&rft.au=Dexter%2C+Kyle+G&rft.au=Pennington%2C+R+Toby&rft.au=Bueno%2C+Marcelo+L&rft.date=2015-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=42&rft.issue=8&rft.spage=1566&rft_id=info:doi/10.1111%2Fjbi.12529&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3742566841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon |