Water availability and land subsidence in the Central Valley, California, USA

The Central Valley in California (USA) covers about 52,000 km 2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water...

Full description

Saved in:
Bibliographic Details
Published inHydrogeology journal Vol. 24; no. 3; pp. 675 - 684
Main Authors Faunt, Claudia C., Sneed, Michelle, Traum, Jon, Brandt, Justin T.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Central Valley in California (USA) covers about 52,000 km 2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.
AbstractList Issue Title: Land Subsidence Processes The Central Valley in California (USA) covers about 52,000 km^sup 2^ and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.
The Central Valley in California (USA) covers about 52,000 km² and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.
The Central Valley in California (USA) covers about 52,000 km super(2) and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.Original Abstract: La Vallee Centrale de Californie (Etats-Unis d'Amerique) couvre environ 52,000 km super(2) et constitue l'une des regions agricoles les plus productives du monde. Cette agriculture depend fortement d'apports d'eaux de surface canalisees et de pompages d'eaux souterraines, pour repondre a la demande en eau d'irrigation. Parce que la vallee est semi-aride et que la ressource en eau de surface est tres variable, l'agriculture depend beaucoup des eaux souterraines locales. Dans les deux-tiers sud de la vallee, la Vallee de San Joaquin, les prelevements d'eaux souterraines historiques et recents ont provoque des rabattements importants et etendus, ainsi qu'une compaction du systeme aquifere et une subsidence des terrains. Au cours des periodes de secheresse recentes (2007-2009 et 2012 jusqu'a maintenant), les prelevements d'eaux souterraines ont augmente en raison d'une reduction de la ressource en eaux de surface et de changements dans l'occupation des sols. La baisse des niveaux piezometriques, approchant ou depassant les niveaux historiques bas, ont engendre une acceleration et un accroissement de la compaction et de la subsidence, qui sont probablement irreversibles. La subsidence a provoque des problemes operationnels, de maintenance et de conception pour l'adduction d'eau et pour les canaux, dans la Vallee de San Joaquin. La prevision des effets d'une poursuite de la subsidence dans la region est importante pour les agences de l'eau. Tandis que l'occupation des sols, la recharge des aquiferes, et la ressource en eaux de surface continuent a evoluer, le suivi du niveau des eaux souterraines a long-terme, la surveillance de la subsidence et la modelisation sont cruciaux pour comprendre les dynamiques des usages historiques et a venir des eaux souterraines resultant de la baisse conjointe des niveaux d'eau et des stocks d'eaux souterraines, ainsi que la subsidence associee. Les outils de modelisation, tel que le modele hydrologique de la Vallee Centrale, peuvent etre utilises dans l'evaluation des strategies de gestion pour attenuer les impacts negatifs dus a la subsidence, en optimisant la ressource en eau disponible. Cette connaissance sera cruciale pour une mise en oeuvre reussie de la legislation recente qui a pour objectif une utilisation durable des eaux souterraines.
The Central Valley in California (USA) covers about 52,000 km 2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.
Author Sneed, Michelle
Traum, Jon
Brandt, Justin T.
Faunt, Claudia C.
Author_xml – sequence: 1
  givenname: Claudia C.
  surname: Faunt
  fullname: Faunt, Claudia C.
  email: ccfaunt@usgs.gov
  organization: U.S. Geological Survey, California Water Science Center
– sequence: 2
  givenname: Michelle
  surname: Sneed
  fullname: Sneed, Michelle
  organization: U.S. Geological Survey, California Water Science Center
– sequence: 3
  givenname: Jon
  surname: Traum
  fullname: Traum, Jon
  organization: U.S. Geological Survey, California Water Science Center
– sequence: 4
  givenname: Justin T.
  surname: Brandt
  fullname: Brandt, Justin T.
  organization: U.S. Geological Survey, California Water Science Center
BookMark eNqNkU1PHSEUhonRxK_-gO5IuunCsTB8HFiam7aa2HShtktyhmEsBhkLc43333fG24Ux6cfmQMjzcA68h2Q3jzkQ8pazU84YfKhzlaxhXDVcCNs87ZADLoVaTmD3ec-bloPcJ4e13rGZ5iAOyJfvOIVC8RFjwi6mOG0o5p6mpdR1V2Mfsg80Zjr9CHQV8lQw0W-YUtic0BWmOIwlRzyhN1dnx2RvwFTDm9_rEbn59PF6dd5cfv18sTq7bFBJmJrWDkoEo20LyivotQ5cCaNQeOgEIhiDwgTWybZn1nv0WisrB2Y5H7peiSPyfnvvQxl_rkOd3H2sPqR56jCuq-NGaiHBsv9BmeGcA8C_UTBgjdZ6Qd-9Qu_GdcnzmxdKWNGCZDPFt5QvY60lDO6hxHssG8eZW2Jz29jcHJJbYnNPswOvHB8nnOK4fHxMfzXbrVnnLvk2lBcz_VH6BUVMq1s
CitedBy_id crossref_primary_10_1029_2021WR031635
crossref_primary_10_1029_2020WR027756
crossref_primary_10_1007_s12665_023_11211_8
crossref_primary_10_1016_j_scitotenv_2024_177784
crossref_primary_10_1088_1748_9326_11_3_035013
crossref_primary_10_3390_rs16203789
crossref_primary_10_1002_hyp_14308
crossref_primary_10_1007_s10040_023_02705_7
crossref_primary_10_1146_annurev_resource_101620_081102
crossref_primary_10_1016_j_agwat_2021_107031
crossref_primary_10_3390_geosciences9100436
crossref_primary_10_1007_s10661_024_13453_w
crossref_primary_10_1007_s11356_022_25099_7
crossref_primary_10_1126_sciadv_abf3503
crossref_primary_10_3390_w16172442
crossref_primary_10_3390_rs15020449
crossref_primary_10_1080_22797254_2019_1663710
crossref_primary_10_1111_ddi_13264
crossref_primary_10_1007_s40899_018_0283_z
crossref_primary_10_1029_2020EA001345
crossref_primary_10_1109_JSTARS_2022_3204223
crossref_primary_10_1016_j_ejrh_2023_101442
crossref_primary_10_1126_science_aaz9600
crossref_primary_10_1007_s12524_024_02102_x
crossref_primary_10_3389_fsufs_2020_00138
crossref_primary_10_1016_j_watres_2017_11_038
crossref_primary_10_1029_2021JB023135
crossref_primary_10_1029_2021JG006395
crossref_primary_10_3390_ijerph17155285
crossref_primary_10_1126_sciadv_aar8144
crossref_primary_10_1029_2018WR023884
crossref_primary_10_1016_j_scitotenv_2020_143429
crossref_primary_10_1002_2016WR019861
crossref_primary_10_3390_rs11151782
crossref_primary_10_3390_land13030322
crossref_primary_10_3389_fsufs_2021_650727
crossref_primary_10_1029_2022JD038109
crossref_primary_10_3390_atmos15010122
crossref_primary_10_1007_s10040_022_02583_5
crossref_primary_10_3390_rs15010068
crossref_primary_10_1016_j_heliyon_2024_e29415
crossref_primary_10_1029_2018WR024069
crossref_primary_10_3390_su12197871
crossref_primary_10_1029_2018JB017201
crossref_primary_10_1029_2019GL084418
crossref_primary_10_3390_resources7010007
crossref_primary_10_3390_w12010219
crossref_primary_10_1016_j_rse_2024_114464
crossref_primary_10_1016_j_wasec_2020_100070
crossref_primary_10_1038_s41598_019_52371_7
crossref_primary_10_1080_20555563_2019_1625259
crossref_primary_10_1088_1748_9326_ac46e8
crossref_primary_10_3934_geosci_2022007
crossref_primary_10_1002_2017JB014424
crossref_primary_10_3390_rs15082100
crossref_primary_10_1007_s10712_020_09604_6
crossref_primary_10_1029_2020WR027556
crossref_primary_10_1029_2021JB022373
crossref_primary_10_1111_gwat_12578
crossref_primary_10_1111_psj_12524
crossref_primary_10_1002_2017JB015084
crossref_primary_10_1007_s10040_020_02142_w
crossref_primary_10_3390_w12113190
crossref_primary_10_1126_sciadv_adh2992
crossref_primary_10_3390_su8121318
crossref_primary_10_1007_s10040_021_02386_0
crossref_primary_10_1088_1748_9326_abb55c
crossref_primary_10_1007_s12145_021_00688_1
crossref_primary_10_1080_1747423X_2021_2018061
crossref_primary_10_1016_j_jenvman_2024_122256
crossref_primary_10_1029_2019JB018490
crossref_primary_10_1007_s00442_019_04457_2
crossref_primary_10_1021_acs_est_6b01914
crossref_primary_10_1029_2020WR028876
crossref_primary_10_1016_j_cageo_2021_104945
crossref_primary_10_1016_j_jhydrol_2017_07_056
crossref_primary_10_1088_1748_9326_abcfe1
crossref_primary_10_3390_w9060420
crossref_primary_10_1002_hyp_14757
crossref_primary_10_1007_s00271_022_00799_7
crossref_primary_10_1007_s12518_024_00572_9
crossref_primary_10_1109_TGRS_2023_3305863
crossref_primary_10_1002_wat2_1687
crossref_primary_10_1016_j_agwat_2024_109284
crossref_primary_10_1016_j_cma_2022_115266
crossref_primary_10_1061__ASCE_WR_1943_5452_0001486
crossref_primary_10_1029_2022GL099583
crossref_primary_10_1007_s12517_021_06917_7
crossref_primary_10_1088_1748_9326_ab88fb
crossref_primary_10_24232_jmd_434142
crossref_primary_10_1016_j_earscirev_2021_103689
crossref_primary_10_1007_s11069_024_06991_6
crossref_primary_10_1007_s44195_025_00087_9
crossref_primary_10_1002_ecs2_4258
crossref_primary_10_1155_2020_8855839
crossref_primary_10_1029_2021EF002014
crossref_primary_10_1016_j_gsd_2023_100955
crossref_primary_10_1016_j_jafrearsci_2024_105362
crossref_primary_10_1038_s41893_019_0335_x
crossref_primary_10_1088_1748_9326_ac7df4
crossref_primary_10_1038_s41598_022_07650_1
crossref_primary_10_1097_MNH_0000000000000938
crossref_primary_10_1029_2019EF001339
crossref_primary_10_1007_s12665_024_11819_4
crossref_primary_10_1016_j_jhydrol_2023_130217
crossref_primary_10_1029_2021WR031390
crossref_primary_10_1021_acs_est_2c08548
crossref_primary_10_1088_1755_1315_1121_1_012006
crossref_primary_10_3390_rs10071146
crossref_primary_10_1038_s43247_024_01778_w
crossref_primary_10_1088_1748_9326_ad5855
crossref_primary_10_1016_j_eiar_2019_106352
crossref_primary_10_1029_2022WR034129
crossref_primary_10_1029_2018WR022852
crossref_primary_10_3390_rs16152829
crossref_primary_10_3390_land10090971
crossref_primary_10_1016_j_jhydrol_2017_02_034
crossref_primary_10_1038_s41467_022_35582_x
crossref_primary_10_1016_j_ejrh_2021_100879
crossref_primary_10_1525_elementa_2022_00043
crossref_primary_10_1016_j_scitotenv_2021_144992
crossref_primary_10_1016_j_jenvman_2021_114032
crossref_primary_10_1016_j_asr_2022_08_003
crossref_primary_10_1088_1748_9326_aca344
crossref_primary_10_1016_j_jhydrol_2024_132194
crossref_primary_10_3390_rs15040908
crossref_primary_10_1016_j_jhydrol_2017_02_040
crossref_primary_10_1016_j_mex_2023_102134
crossref_primary_10_1080_19475705_2022_2141139
crossref_primary_10_1016_j_envsci_2018_08_002
crossref_primary_10_1515_geo_2020_0258
crossref_primary_10_3390_app122312464
crossref_primary_10_1016_j_jenvman_2017_05_058
crossref_primary_10_1016_j_jhydrol_2022_128818
crossref_primary_10_1007_s12040_019_1173_y
crossref_primary_10_1038_s41561_021_00819_9
crossref_primary_10_1002_2017GL076005
crossref_primary_10_1016_j_ejrh_2023_101636
crossref_primary_10_1080_10106049_2022_2086631
crossref_primary_10_1029_2021GL094398
crossref_primary_10_1016_j_scitotenv_2022_161138
crossref_primary_10_1029_2022WR033858
crossref_primary_10_2166_hydro_2020_247
crossref_primary_10_1007_s10040_018_1863_6
crossref_primary_10_1007_s11356_022_24788_7
crossref_primary_10_1029_2019WR027026
crossref_primary_10_1093_gji_ggae009
crossref_primary_10_1080_02508060_2018_1516092
crossref_primary_10_1029_2018JB016083
crossref_primary_10_1029_2021EF002456
crossref_primary_10_1080_07900627_2021_1874889
crossref_primary_10_1016_j_envsoft_2018_07_011
crossref_primary_10_1016_j_jhydrol_2022_128156
crossref_primary_10_1016_j_scitotenv_2019_03_496
crossref_primary_10_1038_s41586_018_0123_1
crossref_primary_10_1016_j_agrformet_2022_108898
crossref_primary_10_1016_j_scitotenv_2020_138595
crossref_primary_10_1007_s12040_019_1096_7
crossref_primary_10_3390_w16081189
crossref_primary_10_1002_hyp_11468
crossref_primary_10_1029_2019WR026621
crossref_primary_10_3390_w12072051
crossref_primary_10_1038_s41598_024_84865_4
crossref_primary_10_1016_j_jmps_2022_104912
crossref_primary_10_1007_s12145_023_01143_z
crossref_primary_10_1016_j_scitotenv_2020_143579
crossref_primary_10_3389_fsufs_2021_564900
crossref_primary_10_3390_su141811397
crossref_primary_10_3390_rs10060889
crossref_primary_10_1029_2021WR030352
crossref_primary_10_3390_math13020203
crossref_primary_10_3390_en12132567
crossref_primary_10_1038_s43017_022_00329_1
crossref_primary_10_1061__ASCE_WR_1943_5452_0001530
crossref_primary_10_1088_1748_9326_ab8e8c
crossref_primary_10_1029_2023JB026759
crossref_primary_10_1088_1748_9326_ac16ff
crossref_primary_10_1029_2017WR022250
crossref_primary_10_1016_j_rse_2020_112063
crossref_primary_10_3389_feart_2018_00149
crossref_primary_10_1007_s12665_018_7386_6
crossref_primary_10_1021_acsestwater_2c00214
crossref_primary_10_1088_1748_9326_aa7b1b
crossref_primary_10_1016_j_ejrh_2024_101674
crossref_primary_10_1029_2017WR022133
crossref_primary_10_1029_2019JB017354
crossref_primary_10_1002_vzj2_20128
crossref_primary_10_1016_j_eiar_2020_106479
crossref_primary_10_1111_gwat_12996
crossref_primary_10_1007_s10661_024_12309_7
crossref_primary_10_1680_jfoen_21_00013
crossref_primary_10_3390_w17030439
crossref_primary_10_4236_ars_2017_62010
crossref_primary_10_1016_j_jhydrol_2020_125163
crossref_primary_10_1029_2020WR028451
crossref_primary_10_1007_s10040_019_02060_6
crossref_primary_10_1029_2022WR032219
crossref_primary_10_3389_fpls_2020_00290
crossref_primary_10_1080_01431161_2023_2283902
crossref_primary_10_1016_j_jhydrol_2020_125720
crossref_primary_10_1016_j_ejrh_2021_100808
Cites_doi 10.1007/s10040-011-0775-5
10.3133/pp1401D
10.3133/pp437H
10.3133/cir1182
10.3133/sir20135142
10.1144/GSL.SP.2005.251.01.12
10.3133/pp1766
10.3133/pp1401A
ContentType Journal Article
Copyright The Author(s) 2015
Springer-Verlag Berlin Heidelberg 2016
Copyright_xml – notice: The Author(s) 2015
– notice: Springer-Verlag Berlin Heidelberg 2016
DBID C6C
AAYXX
CITATION
3V.
7QH
7ST
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M2P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s10040-015-1339-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Technology Research Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Freely Accessible)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Agriculture
DocumentTitle_FL Ressource en eau et subsidence dans la Vallée Centrale, Californie, Etats-Unis d’Amérique
EISSN 1435-0157
EndPage 684
ExternalDocumentID 4033729221
10_1007_s10040_015_1339_x
Genre Feature
GeographicLocations United States--US
California
INE, USA, California
USA, California, Central Valley
USA, California, San Joaquin Valley
Central Valley of California
GeographicLocations_xml – name: United States--US
– name: California
– name: INE, USA, California
– name: USA, California, San Joaquin Valley
– name: USA, California, Central Valley
– name: Central Valley of California
GroupedDBID -5A
-5G
-5~
-BR
-DZ
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29I
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67M
67Z
6NX
78A
7XC
88I
8CJ
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPPZ
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1J
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z85
Z86
ZMTXR
ZY4
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7QH
7ST
7TG
7UA
7XB
8FD
8FK
ABRTQ
C1K
F1W
FR3
H96
KL.
KR7
L.G
PKEHL
PQEST
PQGLB
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-a547t-29f53e869275c57d66e15385a3c7b3aa788a38e0b42d09ccac66594f0911fbd53
IEDL.DBID C6C
ISSN 1431-2174
IngestDate Fri Jul 11 05:54:23 EDT 2025
Fri Jul 11 01:27:34 EDT 2025
Fri Jul 11 08:34:55 EDT 2025
Fri Jul 25 19:01:42 EDT 2025
Tue Jul 01 00:57:55 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Fri Feb 21 02:33:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Groundwater/surface-water relations
USA
Subsidence
Geohazards
Compaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a547t-29f53e869275c57d66e15385a3c7b3aa788a38e0b42d09ccac66594f0911fbd53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1007/s10040-015-1339-x
PQID 1783932740
PQPubID 55405
PageCount 10
ParticipantIDs proquest_miscellaneous_1846347905
proquest_miscellaneous_1808111777
proquest_miscellaneous_1787986667
proquest_journals_1783932740
crossref_primary_10_1007_s10040_015_1339_x
crossref_citationtrail_10_1007_s10040_015_1339_x
springer_journals_10_1007_s10040_015_1339_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Official Journal of the International Association of Hydrogeologists
PublicationTitle Hydrogeology journal
PublicationTitleAbbrev Hydrogeol J
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Farr TG, Jones C, Liu Z (2015) Progress report: subsidence in the Central Valley, California. http://water.ca.gov/groundwater/docs/NASA_REPORT.pdf. Accessed 14 September 2015
Galloway DL, Riley FS (1999) San Joaquin Valley, California: largest human alteration of the Earth’s surface. In: Galloway DL, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States. US Geol Surv Circ 1182:23–34,. http://pubs.usgs.gov/circ/circ1182/. Accessed 14 September 2015
Ingebritsen SE, Ikehara ME (1999) Sacramento-San Joaquin Delta: the sinking heart of the state. In: Galloway DL, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States. US Geol Surv Circ 1182, pp 83–94. http://pubs.usgs.gov/circ/circ1182/. Accessed 14 September 2015
Galloway DL, Jones DR, Ingebritsen SE (1999) Land subsidence in the United States. US Geol Surv Circ 1182, 175 pp
Bertoldi GL, Johnston RH, Evenson KD (1991) Ground water in the Central Valley, California: a summary report. US Geol Surv Prof Pap 1401-A, 44 pp
Swanson AA (1998) Land subsidence in the San Joaquin Valley, updated to 1995. In: Borchers JW (ed) Land subsidence case studies and current research. Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence, Sacramento, Calif., October 4–5, 1995, Association of Engineering Geologists, Special Publ. no. 8, pp 75–79
Williamson AK, Prudic DE, Swain LA (1989) Ground-water flow in the Central Valley, California. US Geol Surv Prof Pap 1401-D, 127 pp
California Department of Water Resources (2014) Summary of recent, historical, and estimated potential for future land subsidence in California. http://www.water.ca.gov/groundwater/docs/Summary_of_Recent_Historical_Potential_Subsidence_in_CA_Final_with_Appendix.pdf. Accessed 14 September 2015
Sneed M, Brandt J, Solt M (2013) Land subsidence along the Delta-Mendota Canal in the northern part of the San Joaquin Valley, California, 2003–10. US Geol Surv Sci Invest Rep 2013-5142, 87 pp, doi:.10.3133/sir20135142. Accessed 14 September 2015
Poland, JF, Lofgren, BE, Ireland, RL, Pugh, AG (1975) Land subsidence in the San Joaquin Valley, California, as of 1972. US Geol Surv Prof Pap 437-H, 78 pp
Luhdorff and Scalmanini Consulting Engineers (LSCE), Borchers JW, Grabert VK, Carpenter M, Dalgish B, Cannon D (2014) Land subsidence from groundwater use in California, report prepared by LSCE with support by the California Water Foundation. http://californiawaterfoundation.org/wp-content/uploads/PDF/1397858208-SUBSIDENCEFULLREPORT_FINAL.pdf. Accessed 14 September 2015
Ireland RL (1986) Land subsidence in the San Joaquin Valley, California, as of 1983. US Geol Surv Water Resour Invest Rep 85-4196, 50 pp
United States Department of Agriculture (USDA) (2000–2013) California County Agricultural Commission reports: National Agricultural Statistics Service. http://www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/Summary/index.asp. Accessed 14 September 2015
Farr TG, Liu Z (2015) Monitoring subsidence associated with groundwater dynamics in the Central Valley of California using interferometric radar. In: Lakshmi V (ed) Remote sensing of the terrestrial water cycle. Geophysical Monograph 206, American Geophysical Union, Washington, DC, pp 397–406
Faunt CC (ed) (2009) Groundwater availability of the Central Valley Aquifer, California. US Geol Surv Prof Pap 1766, 225 pp
GallowayDLBurbeyTJReview: land subsidence accompanying groundwater extractionHydrogeol J20111981459148610.1007/s10040-011-0775-5
Weissmann GS, Bennett G, Lansdale AL (2005) Factors controlling sequence development on Quaternary fluvial fans, San Joaquin Basin, California, USA. In: Harvey A, Mather A, Stokes M (eds) Alluvial fans: geomorphology, sedimentology, dynamics. Geol Soc Lond Spec Publ 251:169–186
1339_CR3
1339_CR2
1339_CR5
DL Galloway (1339_CR6) 2011; 19
1339_CR4
1339_CR1
1339_CR10
1339_CR12
1339_CR11
1339_CR14
1339_CR13
1339_CR16
1339_CR15
1339_CR7
1339_CR17
1339_CR9
1339_CR8
References_xml – reference: Faunt CC (ed) (2009) Groundwater availability of the Central Valley Aquifer, California. US Geol Surv Prof Pap 1766, 225 pp
– reference: Galloway DL, Jones DR, Ingebritsen SE (1999) Land subsidence in the United States. US Geol Surv Circ 1182, 175 pp
– reference: Swanson AA (1998) Land subsidence in the San Joaquin Valley, updated to 1995. In: Borchers JW (ed) Land subsidence case studies and current research. Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence, Sacramento, Calif., October 4–5, 1995, Association of Engineering Geologists, Special Publ. no. 8, pp 75–79
– reference: Luhdorff and Scalmanini Consulting Engineers (LSCE), Borchers JW, Grabert VK, Carpenter M, Dalgish B, Cannon D (2014) Land subsidence from groundwater use in California, report prepared by LSCE with support by the California Water Foundation. http://californiawaterfoundation.org/wp-content/uploads/PDF/1397858208-SUBSIDENCEFULLREPORT_FINAL.pdf. Accessed 14 September 2015
– reference: Farr TG, Jones C, Liu Z (2015) Progress report: subsidence in the Central Valley, California. http://water.ca.gov/groundwater/docs/NASA_REPORT.pdf. Accessed 14 September 2015
– reference: Poland, JF, Lofgren, BE, Ireland, RL, Pugh, AG (1975) Land subsidence in the San Joaquin Valley, California, as of 1972. US Geol Surv Prof Pap 437-H, 78 pp
– reference: GallowayDLBurbeyTJReview: land subsidence accompanying groundwater extractionHydrogeol J20111981459148610.1007/s10040-011-0775-5
– reference: Bertoldi GL, Johnston RH, Evenson KD (1991) Ground water in the Central Valley, California: a summary report. US Geol Surv Prof Pap 1401-A, 44 pp
– reference: Ireland RL (1986) Land subsidence in the San Joaquin Valley, California, as of 1983. US Geol Surv Water Resour Invest Rep 85-4196, 50 pp
– reference: California Department of Water Resources (2014) Summary of recent, historical, and estimated potential for future land subsidence in California. http://www.water.ca.gov/groundwater/docs/Summary_of_Recent_Historical_Potential_Subsidence_in_CA_Final_with_Appendix.pdf. Accessed 14 September 2015
– reference: Ingebritsen SE, Ikehara ME (1999) Sacramento-San Joaquin Delta: the sinking heart of the state. In: Galloway DL, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States. US Geol Surv Circ 1182, pp 83–94. http://pubs.usgs.gov/circ/circ1182/. Accessed 14 September 2015
– reference: Weissmann GS, Bennett G, Lansdale AL (2005) Factors controlling sequence development on Quaternary fluvial fans, San Joaquin Basin, California, USA. In: Harvey A, Mather A, Stokes M (eds) Alluvial fans: geomorphology, sedimentology, dynamics. Geol Soc Lond Spec Publ 251:169–186
– reference: Farr TG, Liu Z (2015) Monitoring subsidence associated with groundwater dynamics in the Central Valley of California using interferometric radar. In: Lakshmi V (ed) Remote sensing of the terrestrial water cycle. Geophysical Monograph 206, American Geophysical Union, Washington, DC, pp 397–406
– reference: Sneed M, Brandt J, Solt M (2013) Land subsidence along the Delta-Mendota Canal in the northern part of the San Joaquin Valley, California, 2003–10. US Geol Surv Sci Invest Rep 2013-5142, 87 pp, doi:.10.3133/sir20135142. Accessed 14 September 2015
– reference: Williamson AK, Prudic DE, Swain LA (1989) Ground-water flow in the Central Valley, California. US Geol Surv Prof Pap 1401-D, 127 pp
– reference: Galloway DL, Riley FS (1999) San Joaquin Valley, California: largest human alteration of the Earth’s surface. In: Galloway DL, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States. US Geol Surv Circ 1182:23–34,. http://pubs.usgs.gov/circ/circ1182/. Accessed 14 September 2015
– reference: United States Department of Agriculture (USDA) (2000–2013) California County Agricultural Commission reports: National Agricultural Statistics Service. http://www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/Summary/index.asp. Accessed 14 September 2015
– volume: 19
  start-page: 1459
  issue: 8
  year: 2011
  ident: 1339_CR6
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-011-0775-5
– ident: 1339_CR9
– ident: 1339_CR17
  doi: 10.3133/pp1401D
– ident: 1339_CR11
  doi: 10.3133/pp437H
– ident: 1339_CR7
– ident: 1339_CR4
– ident: 1339_CR8
  doi: 10.3133/cir1182
– ident: 1339_CR13
  doi: 10.3133/sir20135142
– ident: 1339_CR10
– ident: 1339_CR14
– ident: 1339_CR16
  doi: 10.1144/GSL.SP.2005.251.01.12
– ident: 1339_CR12
– ident: 1339_CR15
– ident: 1339_CR2
– ident: 1339_CR3
– ident: 1339_CR5
  doi: 10.3133/pp1766
– ident: 1339_CR1
  doi: 10.3133/pp1401A
SSID ssj0004173
Score 2.5514333
Snippet The Central Valley in California (USA) covers about 52,000 km 2 and is one of the most productive agricultural regions in the world. This agriculture relies...
Issue Title: Land Subsidence Processes The Central Valley in California (USA) covers about 52,000 km^sup 2^ and is one of the most productive agricultural...
The Central Valley in California (USA) covers about 52,000 km super(2) and is one of the most productive agricultural regions in the world. This agriculture...
The Central Valley in California (USA) covers about 52,000 km² and is one of the most productive agricultural regions in the world. This agriculture relies...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 675
SubjectTerms Agriculture
Aquatic Pollution
Aquifer management
Aquifers
Availability
Central Valley of California
Compaction
Drought
Earth and Environmental Science
Earth Sciences
flood control
Geology
Geophysics/Geodesy
Groundwater
Groundwater irrigation
Groundwater levels
Groundwater recharge
Groundwater storage
Historic
Hydrogeology
Hydrologic models
Hydrology
Hydrology/Water Resources
Irrigation water
Land subsidence
Land use
land use change
laws and regulations
Legislation
Modelling
monitoring
planning
Pumpage
Subsidence
Surface water
Sustainable use
Valleys
Waste Water Technology
Water availability
Water demand
Water Management
Water Pollution Control
Water Quality/Water Pollution
Water resources management
water table
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB6VcIAeqhaKGqDVIvXUssLOel-nKq1AqBIItQ3lZu3LgIQcSAIi_76z8RrTSs3ZY3k1u575ZufxAXw0ee40RjmUcWdpYbym2vqKZjIImVnH1KI9-uRUHI-K7xf8Il24TVNZZWsTF4baj128Iz_IJbpyhjFU9uX2jkbWqJhdTRQaK7CKJlipHqx-PTw9-9F1RjY5ZgQFOY3gu81rNs1zsZoO3SHFOE3Tx789Uwc3_8mQLhzP0Wt4lRAjGTZb_AZehHoDXg4vJ2lqRtiAtURlfjXfhJPfiB4nxDyY65tmBvecmNqTWMFIpmgmGhZRcl0TxH4k3e6S88ipMt8nXa_WPhn9HL6F0dHhr2_HNHEmUMMLOaMDXXEWlNADyR2XXogQbRo3zEnLjMGI1zAVMlsMfKZx-5wQXBcVwoa8sp6zLejV4zq8A1JZRH-28lGkCE6oygWjWM6cxw_kqg9Zq6_SpYHikdfipuxGIUcVl6jiMqq4fOzDp6dXbptpGsuEd9tNKNOPNS27Y9CHvafH-EvEPIepw_h-ISO1wrhMLpGJjCMxYb1UphCx0TbjffjcHoJnS_nfwreXL3wH1hF1iaZqchd6s8l9eI_IZmY_pOP7B8EM89A
  priority: 102
  providerName: ProQuest
Title Water availability and land subsidence in the Central Valley, California, USA
URI https://link.springer.com/article/10.1007/s10040-015-1339-x
https://www.proquest.com/docview/1783932740
https://www.proquest.com/docview/1787986667
https://www.proquest.com/docview/1808111777
https://www.proquest.com/docview/1846347905
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4x0DRe0GCbVmCVJ-2JYSmpYzt-bKu2CEQ1jZUfT5HtOBoSCggKov89d0lKN8Qq7SV-yCWxzo7vO5_vPoBvNo69QS-HC-kdT2xuuHF5wSMdlI6cF2mVHn08VgeT5PBcnjfFoikX5kX8nlLc6MwbGi2O3pThCBfXZCw0sTT0VX-RAlkHk9H6x5xQ9jyA-dor_jZBC1z5IhRaWZjhe9hooCHr1mO5CSuh3IJ3DUv579kWvB1VNLyzD3B8hhDxltkHe3lVF9qeMVvmjI4psjtcC2qqUHZZMgR4rNnCZadEnDLbZ4uErH02Oel-hMlw8Kt_wBtiBG5loqe8YwopQqpMR0svda5UoIVLWuG1E9aiW2tFGiKXdPLI4Bh5paRJCsQGceFyKT7Banldhs_ACocQzxU5iSTBq7TwwaYiFj7HD8RpC6K5rjLfVA0n8oqrbFHvmNSboXozUm_22IK950du6pIZy4R35wOQNX_PXRZrhG0C_eWoBV-fb-O8p2CGLcP1fSWjTYrOl14iQ7QiFJVeKpMoyqaNZAu-zyfAH135V8e3_0t6B9YRaan6pOQurE5v78MXRDNT14Y36XDUhrXusNcbUzu6OBpg2xuMf_xsV7Mcr5NO9wl79O_7
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V7aFwQKWAWGjBSHCBWiRxbMcHhFaFZUu7vdCF3lLHcaBSlS2729L9U_zGzuSjAST21nMmijMee954PPMAXtowdAajHC6ky3hsc8NNlhc80F7pIHMiqcqjR4dqOI4_H8vjFfjd1sLQtcp2T6w26nzi6Iz8bajRlQuMoYL35z85sUZRdrWl0KjNYt8vfmHINnu39wHn91UUDT4e7Q55wyrArYz1nEemkMInykRaOqlzpTytemmF05mwFmNCKxIfZHGUBwZ_0CklTVygYw2LLCeWCNzy12KBnpwq0wefujrMOqONECTkBPXbLGpdqkd399D5cowKDb_62w924PaffGzl5gYbcK_Bp6xfG9R9WPHlJtztf582PTr8Jqw3xOk_Fg9g9A2x6pTZS3t6Vnf8XjBb5ozuS7IZbko1Zyk7LRkiTdacJbOvxOCy2GFdZdgOG3_pP4TxrejyEayWk9I_BlZkiDWzIieR2DuVFM7bRITC5fiBMOlB0OordU37cmLROEu7xsuk4hRVnJKK06sevL555bzu3bFMeKudhLRZxrO0M7oevLh5jAuQsiq29JOLSkabBKNAvUSG-E0oPb5UJlZU1hvIHrxpjeCPofxv4E-WD_w5rA-PRgfpwd7h_lO4g3hP1fc1t2B1Pr3w24ip5tmzypAZnNz2yrkG3e8ukQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ-Qkqg8EEUNVdQ10Rdlw33t7u2DMVVoQKQhapW3c293D0jIFdqi9F_zr3Omd8epiX3judN0Ozc785ubjx_ACxOGVmOWw2Nhc54Yp7nOXcED5aUKchun8_Hog4HcHSYfjsTREvxqZmGorbLxiXNH7UaW3pFvhQpDeYw5VLBV1G0Rh9v9t-cXnBikqNLa0GlUJrLvZz8xfZu82dvGZ_0yivo7X97v8pphgBuRqCmPdCFin0odKWGFclJ68gDCxFblsTGYH5o49UGeRC7Q-GetlEInBQbZsMgdMUag-19WlBV1YPndzuDwUzuVWdW3EZCEnIB_U1OtBveokw9DMcccUfOrv6NiC3X_qc7Og17_LqzWaJX1KvO6B0u-XIOV3vG43tjh1-B2TaN-MrsPB98QuY6Z-WFOz6r93zNmSseoe5JN0EVVDKbstGSIO1n9Zpl9JT6X2SZr58Q22fBz7wEMb0SbD6FTjkq_DqzIEXnmhSORxFuZFtabNA5j6_AHwrQLQaOvzNbLzIlT4yxr1zCTijNUcUYqzq668Or6K-fVJo9FwhvNQ8jqSz3JWhPswvPrj_E6Uo3FlH50OZdROsWcUC2QIbYTKpYvlEkkDfkGoguvGyP44yj_O_ijxQd_Brfw1mQf9wb7j-EOgj9ZNW9uQGc6vvRPEGBN86e1JTP4ftOX5zc_YzQj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+availability+and+land+subsidence+in+the+Central+Valley%2C+California%2C+USA&rft.jtitle=Hydrogeology+journal&rft.au=Faunt%2C+Claudia+C&rft.au=Sneed%2C+Michelle&rft.au=Traum%2C+Jon&rft.au=Brandt%2C+Justin+T&rft.date=2016-05-01&rft.issn=1431-2174&rft.eissn=1435-0157&rft.volume=24&rft.issue=3&rft.spage=675&rft.epage=684&rft_id=info:doi/10.1007%2Fs10040-015-1339-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-2174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-2174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-2174&client=summon