Water availability and land subsidence in the Central Valley, California, USA
The Central Valley in California (USA) covers about 52,000 km 2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water...
Saved in:
Published in | Hydrogeology journal Vol. 24; no. 3; pp. 675 - 684 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Central Valley in California (USA) covers about 52,000 km
2
and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use. |
---|---|
AbstractList | Issue Title: Land Subsidence Processes The Central Valley in California (USA) covers about 52,000 km^sup 2^ and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use. The Central Valley in California (USA) covers about 52,000 km² and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use. The Central Valley in California (USA) covers about 52,000 km super(2) and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.Original Abstract: La Vallee Centrale de Californie (Etats-Unis d'Amerique) couvre environ 52,000 km super(2) et constitue l'une des regions agricoles les plus productives du monde. Cette agriculture depend fortement d'apports d'eaux de surface canalisees et de pompages d'eaux souterraines, pour repondre a la demande en eau d'irrigation. Parce que la vallee est semi-aride et que la ressource en eau de surface est tres variable, l'agriculture depend beaucoup des eaux souterraines locales. Dans les deux-tiers sud de la vallee, la Vallee de San Joaquin, les prelevements d'eaux souterraines historiques et recents ont provoque des rabattements importants et etendus, ainsi qu'une compaction du systeme aquifere et une subsidence des terrains. Au cours des periodes de secheresse recentes (2007-2009 et 2012 jusqu'a maintenant), les prelevements d'eaux souterraines ont augmente en raison d'une reduction de la ressource en eaux de surface et de changements dans l'occupation des sols. La baisse des niveaux piezometriques, approchant ou depassant les niveaux historiques bas, ont engendre une acceleration et un accroissement de la compaction et de la subsidence, qui sont probablement irreversibles. La subsidence a provoque des problemes operationnels, de maintenance et de conception pour l'adduction d'eau et pour les canaux, dans la Vallee de San Joaquin. La prevision des effets d'une poursuite de la subsidence dans la region est importante pour les agences de l'eau. Tandis que l'occupation des sols, la recharge des aquiferes, et la ressource en eaux de surface continuent a evoluer, le suivi du niveau des eaux souterraines a long-terme, la surveillance de la subsidence et la modelisation sont cruciaux pour comprendre les dynamiques des usages historiques et a venir des eaux souterraines resultant de la baisse conjointe des niveaux d'eau et des stocks d'eaux souterraines, ainsi que la subsidence associee. Les outils de modelisation, tel que le modele hydrologique de la Vallee Centrale, peuvent etre utilises dans l'evaluation des strategies de gestion pour attenuer les impacts negatifs dus a la subsidence, en optimisant la ressource en eau disponible. Cette connaissance sera cruciale pour une mise en oeuvre reussie de la legislation recente qui a pour objectif une utilisation durable des eaux souterraines. The Central Valley in California (USA) covers about 52,000 km 2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use. |
Author | Sneed, Michelle Traum, Jon Brandt, Justin T. Faunt, Claudia C. |
Author_xml | – sequence: 1 givenname: Claudia C. surname: Faunt fullname: Faunt, Claudia C. email: ccfaunt@usgs.gov organization: U.S. Geological Survey, California Water Science Center – sequence: 2 givenname: Michelle surname: Sneed fullname: Sneed, Michelle organization: U.S. Geological Survey, California Water Science Center – sequence: 3 givenname: Jon surname: Traum fullname: Traum, Jon organization: U.S. Geological Survey, California Water Science Center – sequence: 4 givenname: Justin T. surname: Brandt fullname: Brandt, Justin T. organization: U.S. Geological Survey, California Water Science Center |
BookMark | eNqNkU1PHSEUhonRxK_-gO5IuunCsTB8HFiam7aa2HShtktyhmEsBhkLc43333fG24Ux6cfmQMjzcA68h2Q3jzkQ8pazU84YfKhzlaxhXDVcCNs87ZADLoVaTmD3ec-bloPcJ4e13rGZ5iAOyJfvOIVC8RFjwi6mOG0o5p6mpdR1V2Mfsg80Zjr9CHQV8lQw0W-YUtic0BWmOIwlRzyhN1dnx2RvwFTDm9_rEbn59PF6dd5cfv18sTq7bFBJmJrWDkoEo20LyivotQ5cCaNQeOgEIhiDwgTWybZn1nv0WisrB2Y5H7peiSPyfnvvQxl_rkOd3H2sPqR56jCuq-NGaiHBsv9BmeGcA8C_UTBgjdZ6Qd-9Qu_GdcnzmxdKWNGCZDPFt5QvY60lDO6hxHssG8eZW2Jz29jcHJJbYnNPswOvHB8nnOK4fHxMfzXbrVnnLvk2lBcz_VH6BUVMq1s |
CitedBy_id | crossref_primary_10_1029_2021WR031635 crossref_primary_10_1029_2020WR027756 crossref_primary_10_1007_s12665_023_11211_8 crossref_primary_10_1016_j_scitotenv_2024_177784 crossref_primary_10_1088_1748_9326_11_3_035013 crossref_primary_10_3390_rs16203789 crossref_primary_10_1002_hyp_14308 crossref_primary_10_1007_s10040_023_02705_7 crossref_primary_10_1146_annurev_resource_101620_081102 crossref_primary_10_1016_j_agwat_2021_107031 crossref_primary_10_3390_geosciences9100436 crossref_primary_10_1007_s10661_024_13453_w crossref_primary_10_1007_s11356_022_25099_7 crossref_primary_10_1126_sciadv_abf3503 crossref_primary_10_3390_w16172442 crossref_primary_10_3390_rs15020449 crossref_primary_10_1080_22797254_2019_1663710 crossref_primary_10_1111_ddi_13264 crossref_primary_10_1007_s40899_018_0283_z crossref_primary_10_1029_2020EA001345 crossref_primary_10_1109_JSTARS_2022_3204223 crossref_primary_10_1016_j_ejrh_2023_101442 crossref_primary_10_1126_science_aaz9600 crossref_primary_10_1007_s12524_024_02102_x crossref_primary_10_3389_fsufs_2020_00138 crossref_primary_10_1016_j_watres_2017_11_038 crossref_primary_10_1029_2021JB023135 crossref_primary_10_1029_2021JG006395 crossref_primary_10_3390_ijerph17155285 crossref_primary_10_1126_sciadv_aar8144 crossref_primary_10_1029_2018WR023884 crossref_primary_10_1016_j_scitotenv_2020_143429 crossref_primary_10_1002_2016WR019861 crossref_primary_10_3390_rs11151782 crossref_primary_10_3390_land13030322 crossref_primary_10_3389_fsufs_2021_650727 crossref_primary_10_1029_2022JD038109 crossref_primary_10_3390_atmos15010122 crossref_primary_10_1007_s10040_022_02583_5 crossref_primary_10_3390_rs15010068 crossref_primary_10_1016_j_heliyon_2024_e29415 crossref_primary_10_1029_2018WR024069 crossref_primary_10_3390_su12197871 crossref_primary_10_1029_2018JB017201 crossref_primary_10_1029_2019GL084418 crossref_primary_10_3390_resources7010007 crossref_primary_10_3390_w12010219 crossref_primary_10_1016_j_rse_2024_114464 crossref_primary_10_1016_j_wasec_2020_100070 crossref_primary_10_1038_s41598_019_52371_7 crossref_primary_10_1080_20555563_2019_1625259 crossref_primary_10_1088_1748_9326_ac46e8 crossref_primary_10_3934_geosci_2022007 crossref_primary_10_1002_2017JB014424 crossref_primary_10_3390_rs15082100 crossref_primary_10_1007_s10712_020_09604_6 crossref_primary_10_1029_2020WR027556 crossref_primary_10_1029_2021JB022373 crossref_primary_10_1111_gwat_12578 crossref_primary_10_1111_psj_12524 crossref_primary_10_1002_2017JB015084 crossref_primary_10_1007_s10040_020_02142_w crossref_primary_10_3390_w12113190 crossref_primary_10_1126_sciadv_adh2992 crossref_primary_10_3390_su8121318 crossref_primary_10_1007_s10040_021_02386_0 crossref_primary_10_1088_1748_9326_abb55c crossref_primary_10_1007_s12145_021_00688_1 crossref_primary_10_1080_1747423X_2021_2018061 crossref_primary_10_1016_j_jenvman_2024_122256 crossref_primary_10_1029_2019JB018490 crossref_primary_10_1007_s00442_019_04457_2 crossref_primary_10_1021_acs_est_6b01914 crossref_primary_10_1029_2020WR028876 crossref_primary_10_1016_j_cageo_2021_104945 crossref_primary_10_1016_j_jhydrol_2017_07_056 crossref_primary_10_1088_1748_9326_abcfe1 crossref_primary_10_3390_w9060420 crossref_primary_10_1002_hyp_14757 crossref_primary_10_1007_s00271_022_00799_7 crossref_primary_10_1007_s12518_024_00572_9 crossref_primary_10_1109_TGRS_2023_3305863 crossref_primary_10_1002_wat2_1687 crossref_primary_10_1016_j_agwat_2024_109284 crossref_primary_10_1016_j_cma_2022_115266 crossref_primary_10_1061__ASCE_WR_1943_5452_0001486 crossref_primary_10_1029_2022GL099583 crossref_primary_10_1007_s12517_021_06917_7 crossref_primary_10_1088_1748_9326_ab88fb crossref_primary_10_24232_jmd_434142 crossref_primary_10_1016_j_earscirev_2021_103689 crossref_primary_10_1007_s11069_024_06991_6 crossref_primary_10_1007_s44195_025_00087_9 crossref_primary_10_1002_ecs2_4258 crossref_primary_10_1155_2020_8855839 crossref_primary_10_1029_2021EF002014 crossref_primary_10_1016_j_gsd_2023_100955 crossref_primary_10_1016_j_jafrearsci_2024_105362 crossref_primary_10_1038_s41893_019_0335_x crossref_primary_10_1088_1748_9326_ac7df4 crossref_primary_10_1038_s41598_022_07650_1 crossref_primary_10_1097_MNH_0000000000000938 crossref_primary_10_1029_2019EF001339 crossref_primary_10_1007_s12665_024_11819_4 crossref_primary_10_1016_j_jhydrol_2023_130217 crossref_primary_10_1029_2021WR031390 crossref_primary_10_1021_acs_est_2c08548 crossref_primary_10_1088_1755_1315_1121_1_012006 crossref_primary_10_3390_rs10071146 crossref_primary_10_1038_s43247_024_01778_w crossref_primary_10_1088_1748_9326_ad5855 crossref_primary_10_1016_j_eiar_2019_106352 crossref_primary_10_1029_2022WR034129 crossref_primary_10_1029_2018WR022852 crossref_primary_10_3390_rs16152829 crossref_primary_10_3390_land10090971 crossref_primary_10_1016_j_jhydrol_2017_02_034 crossref_primary_10_1038_s41467_022_35582_x crossref_primary_10_1016_j_ejrh_2021_100879 crossref_primary_10_1525_elementa_2022_00043 crossref_primary_10_1016_j_scitotenv_2021_144992 crossref_primary_10_1016_j_jenvman_2021_114032 crossref_primary_10_1016_j_asr_2022_08_003 crossref_primary_10_1088_1748_9326_aca344 crossref_primary_10_1016_j_jhydrol_2024_132194 crossref_primary_10_3390_rs15040908 crossref_primary_10_1016_j_jhydrol_2017_02_040 crossref_primary_10_1016_j_mex_2023_102134 crossref_primary_10_1080_19475705_2022_2141139 crossref_primary_10_1016_j_envsci_2018_08_002 crossref_primary_10_1515_geo_2020_0258 crossref_primary_10_3390_app122312464 crossref_primary_10_1016_j_jenvman_2017_05_058 crossref_primary_10_1016_j_jhydrol_2022_128818 crossref_primary_10_1007_s12040_019_1173_y crossref_primary_10_1038_s41561_021_00819_9 crossref_primary_10_1002_2017GL076005 crossref_primary_10_1016_j_ejrh_2023_101636 crossref_primary_10_1080_10106049_2022_2086631 crossref_primary_10_1029_2021GL094398 crossref_primary_10_1016_j_scitotenv_2022_161138 crossref_primary_10_1029_2022WR033858 crossref_primary_10_2166_hydro_2020_247 crossref_primary_10_1007_s10040_018_1863_6 crossref_primary_10_1007_s11356_022_24788_7 crossref_primary_10_1029_2019WR027026 crossref_primary_10_1093_gji_ggae009 crossref_primary_10_1080_02508060_2018_1516092 crossref_primary_10_1029_2018JB016083 crossref_primary_10_1029_2021EF002456 crossref_primary_10_1080_07900627_2021_1874889 crossref_primary_10_1016_j_envsoft_2018_07_011 crossref_primary_10_1016_j_jhydrol_2022_128156 crossref_primary_10_1016_j_scitotenv_2019_03_496 crossref_primary_10_1038_s41586_018_0123_1 crossref_primary_10_1016_j_agrformet_2022_108898 crossref_primary_10_1016_j_scitotenv_2020_138595 crossref_primary_10_1007_s12040_019_1096_7 crossref_primary_10_3390_w16081189 crossref_primary_10_1002_hyp_11468 crossref_primary_10_1029_2019WR026621 crossref_primary_10_3390_w12072051 crossref_primary_10_1038_s41598_024_84865_4 crossref_primary_10_1016_j_jmps_2022_104912 crossref_primary_10_1007_s12145_023_01143_z crossref_primary_10_1016_j_scitotenv_2020_143579 crossref_primary_10_3389_fsufs_2021_564900 crossref_primary_10_3390_su141811397 crossref_primary_10_3390_rs10060889 crossref_primary_10_1029_2021WR030352 crossref_primary_10_3390_math13020203 crossref_primary_10_3390_en12132567 crossref_primary_10_1038_s43017_022_00329_1 crossref_primary_10_1061__ASCE_WR_1943_5452_0001530 crossref_primary_10_1088_1748_9326_ab8e8c crossref_primary_10_1029_2023JB026759 crossref_primary_10_1088_1748_9326_ac16ff crossref_primary_10_1029_2017WR022250 crossref_primary_10_1016_j_rse_2020_112063 crossref_primary_10_3389_feart_2018_00149 crossref_primary_10_1007_s12665_018_7386_6 crossref_primary_10_1021_acsestwater_2c00214 crossref_primary_10_1088_1748_9326_aa7b1b crossref_primary_10_1016_j_ejrh_2024_101674 crossref_primary_10_1029_2017WR022133 crossref_primary_10_1029_2019JB017354 crossref_primary_10_1002_vzj2_20128 crossref_primary_10_1016_j_eiar_2020_106479 crossref_primary_10_1111_gwat_12996 crossref_primary_10_1007_s10661_024_12309_7 crossref_primary_10_1680_jfoen_21_00013 crossref_primary_10_3390_w17030439 crossref_primary_10_4236_ars_2017_62010 crossref_primary_10_1016_j_jhydrol_2020_125163 crossref_primary_10_1029_2020WR028451 crossref_primary_10_1007_s10040_019_02060_6 crossref_primary_10_1029_2022WR032219 crossref_primary_10_3389_fpls_2020_00290 crossref_primary_10_1080_01431161_2023_2283902 crossref_primary_10_1016_j_jhydrol_2020_125720 crossref_primary_10_1016_j_ejrh_2021_100808 |
Cites_doi | 10.1007/s10040-011-0775-5 10.3133/pp1401D 10.3133/pp437H 10.3133/cir1182 10.3133/sir20135142 10.1144/GSL.SP.2005.251.01.12 10.3133/pp1766 10.3133/pp1401A |
ContentType | Journal Article |
Copyright | The Author(s) 2015 Springer-Verlag Berlin Heidelberg 2016 |
Copyright_xml | – notice: The Author(s) 2015 – notice: Springer-Verlag Berlin Heidelberg 2016 |
DBID | C6C AAYXX CITATION 3V. 7QH 7ST 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M2P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6 |
DOI | 10.1007/s10040-015-1339-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Freely Accessible) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Agriculture |
DocumentTitle_FL | Ressource en eau et subsidence dans la Vallée Centrale, Californie, Etats-Unis d’Amérique |
EISSN | 1435-0157 |
EndPage | 684 |
ExternalDocumentID | 4033729221 10_1007_s10040_015_1339_x |
Genre | Feature |
GeographicLocations | United States--US California INE, USA, California USA, California, Central Valley USA, California, San Joaquin Valley Central Valley of California |
GeographicLocations_xml | – name: United States--US – name: California – name: INE, USA, California – name: USA, California, San Joaquin Valley – name: USA, California, Central Valley – name: Central Valley of California |
GroupedDBID | -5A -5G -5~ -BR -DZ -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29I 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67M 67Z 6NX 78A 7XC 88I 8CJ 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPPZ ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D1J D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V LAS LK5 LLZTM M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7Y Z7Z Z85 Z86 ZMTXR ZY4 ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7QH 7ST 7TG 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H96 KL. KR7 L.G PKEHL PQEST PQGLB PQUKI Q9U SOI 7S9 L.6 |
ID | FETCH-LOGICAL-a547t-29f53e869275c57d66e15385a3c7b3aa788a38e0b42d09ccac66594f0911fbd53 |
IEDL.DBID | C6C |
ISSN | 1431-2174 |
IngestDate | Fri Jul 11 05:54:23 EDT 2025 Fri Jul 11 01:27:34 EDT 2025 Fri Jul 11 08:34:55 EDT 2025 Fri Jul 25 19:01:42 EDT 2025 Tue Jul 01 00:57:55 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 Fri Feb 21 02:33:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Groundwater/surface-water relations USA Subsidence Geohazards Compaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a547t-29f53e869275c57d66e15385a3c7b3aa788a38e0b42d09ccac66594f0911fbd53 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1007/s10040-015-1339-x |
PQID | 1783932740 |
PQPubID | 55405 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1846347905 proquest_miscellaneous_1808111777 proquest_miscellaneous_1787986667 proquest_journals_1783932740 crossref_primary_10_1007_s10040_015_1339_x crossref_citationtrail_10_1007_s10040_015_1339_x springer_journals_10_1007_s10040_015_1339_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Official Journal of the International Association of Hydrogeologists |
PublicationTitle | Hydrogeology journal |
PublicationTitleAbbrev | Hydrogeol J |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Farr TG, Jones C, Liu Z (2015) Progress report: subsidence in the Central Valley, California. http://water.ca.gov/groundwater/docs/NASA_REPORT.pdf. Accessed 14 September 2015 Galloway DL, Riley FS (1999) San Joaquin Valley, California: largest human alteration of the Earth’s surface. In: Galloway DL, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States. US Geol Surv Circ 1182:23–34,. http://pubs.usgs.gov/circ/circ1182/. Accessed 14 September 2015 Ingebritsen SE, Ikehara ME (1999) Sacramento-San Joaquin Delta: the sinking heart of the state. In: Galloway DL, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States. US Geol Surv Circ 1182, pp 83–94. http://pubs.usgs.gov/circ/circ1182/. Accessed 14 September 2015 Galloway DL, Jones DR, Ingebritsen SE (1999) Land subsidence in the United States. US Geol Surv Circ 1182, 175 pp Bertoldi GL, Johnston RH, Evenson KD (1991) Ground water in the Central Valley, California: a summary report. US Geol Surv Prof Pap 1401-A, 44 pp Swanson AA (1998) Land subsidence in the San Joaquin Valley, updated to 1995. In: Borchers JW (ed) Land subsidence case studies and current research. Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence, Sacramento, Calif., October 4–5, 1995, Association of Engineering Geologists, Special Publ. no. 8, pp 75–79 Williamson AK, Prudic DE, Swain LA (1989) Ground-water flow in the Central Valley, California. US Geol Surv Prof Pap 1401-D, 127 pp California Department of Water Resources (2014) Summary of recent, historical, and estimated potential for future land subsidence in California. http://www.water.ca.gov/groundwater/docs/Summary_of_Recent_Historical_Potential_Subsidence_in_CA_Final_with_Appendix.pdf. Accessed 14 September 2015 Sneed M, Brandt J, Solt M (2013) Land subsidence along the Delta-Mendota Canal in the northern part of the San Joaquin Valley, California, 2003–10. US Geol Surv Sci Invest Rep 2013-5142, 87 pp, doi:.10.3133/sir20135142. Accessed 14 September 2015 Poland, JF, Lofgren, BE, Ireland, RL, Pugh, AG (1975) Land subsidence in the San Joaquin Valley, California, as of 1972. US Geol Surv Prof Pap 437-H, 78 pp Luhdorff and Scalmanini Consulting Engineers (LSCE), Borchers JW, Grabert VK, Carpenter M, Dalgish B, Cannon D (2014) Land subsidence from groundwater use in California, report prepared by LSCE with support by the California Water Foundation. http://californiawaterfoundation.org/wp-content/uploads/PDF/1397858208-SUBSIDENCEFULLREPORT_FINAL.pdf. Accessed 14 September 2015 Ireland RL (1986) Land subsidence in the San Joaquin Valley, California, as of 1983. US Geol Surv Water Resour Invest Rep 85-4196, 50 pp United States Department of Agriculture (USDA) (2000–2013) California County Agricultural Commission reports: National Agricultural Statistics Service. http://www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/Summary/index.asp. Accessed 14 September 2015 Farr TG, Liu Z (2015) Monitoring subsidence associated with groundwater dynamics in the Central Valley of California using interferometric radar. In: Lakshmi V (ed) Remote sensing of the terrestrial water cycle. Geophysical Monograph 206, American Geophysical Union, Washington, DC, pp 397–406 Faunt CC (ed) (2009) Groundwater availability of the Central Valley Aquifer, California. US Geol Surv Prof Pap 1766, 225 pp GallowayDLBurbeyTJReview: land subsidence accompanying groundwater extractionHydrogeol J20111981459148610.1007/s10040-011-0775-5 Weissmann GS, Bennett G, Lansdale AL (2005) Factors controlling sequence development on Quaternary fluvial fans, San Joaquin Basin, California, USA. In: Harvey A, Mather A, Stokes M (eds) Alluvial fans: geomorphology, sedimentology, dynamics. Geol Soc Lond Spec Publ 251:169–186 1339_CR3 1339_CR2 1339_CR5 DL Galloway (1339_CR6) 2011; 19 1339_CR4 1339_CR1 1339_CR10 1339_CR12 1339_CR11 1339_CR14 1339_CR13 1339_CR16 1339_CR15 1339_CR7 1339_CR17 1339_CR9 1339_CR8 |
References_xml | – reference: Faunt CC (ed) (2009) Groundwater availability of the Central Valley Aquifer, California. US Geol Surv Prof Pap 1766, 225 pp – reference: Galloway DL, Jones DR, Ingebritsen SE (1999) Land subsidence in the United States. US Geol Surv Circ 1182, 175 pp – reference: Swanson AA (1998) Land subsidence in the San Joaquin Valley, updated to 1995. In: Borchers JW (ed) Land subsidence case studies and current research. Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence, Sacramento, Calif., October 4–5, 1995, Association of Engineering Geologists, Special Publ. no. 8, pp 75–79 – reference: Luhdorff and Scalmanini Consulting Engineers (LSCE), Borchers JW, Grabert VK, Carpenter M, Dalgish B, Cannon D (2014) Land subsidence from groundwater use in California, report prepared by LSCE with support by the California Water Foundation. http://californiawaterfoundation.org/wp-content/uploads/PDF/1397858208-SUBSIDENCEFULLREPORT_FINAL.pdf. Accessed 14 September 2015 – reference: Farr TG, Jones C, Liu Z (2015) Progress report: subsidence in the Central Valley, California. http://water.ca.gov/groundwater/docs/NASA_REPORT.pdf. Accessed 14 September 2015 – reference: Poland, JF, Lofgren, BE, Ireland, RL, Pugh, AG (1975) Land subsidence in the San Joaquin Valley, California, as of 1972. US Geol Surv Prof Pap 437-H, 78 pp – reference: GallowayDLBurbeyTJReview: land subsidence accompanying groundwater extractionHydrogeol J20111981459148610.1007/s10040-011-0775-5 – reference: Bertoldi GL, Johnston RH, Evenson KD (1991) Ground water in the Central Valley, California: a summary report. US Geol Surv Prof Pap 1401-A, 44 pp – reference: Ireland RL (1986) Land subsidence in the San Joaquin Valley, California, as of 1983. US Geol Surv Water Resour Invest Rep 85-4196, 50 pp – reference: California Department of Water Resources (2014) Summary of recent, historical, and estimated potential for future land subsidence in California. http://www.water.ca.gov/groundwater/docs/Summary_of_Recent_Historical_Potential_Subsidence_in_CA_Final_with_Appendix.pdf. Accessed 14 September 2015 – reference: Ingebritsen SE, Ikehara ME (1999) Sacramento-San Joaquin Delta: the sinking heart of the state. In: Galloway DL, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States. US Geol Surv Circ 1182, pp 83–94. http://pubs.usgs.gov/circ/circ1182/. Accessed 14 September 2015 – reference: Weissmann GS, Bennett G, Lansdale AL (2005) Factors controlling sequence development on Quaternary fluvial fans, San Joaquin Basin, California, USA. In: Harvey A, Mather A, Stokes M (eds) Alluvial fans: geomorphology, sedimentology, dynamics. Geol Soc Lond Spec Publ 251:169–186 – reference: Farr TG, Liu Z (2015) Monitoring subsidence associated with groundwater dynamics in the Central Valley of California using interferometric radar. In: Lakshmi V (ed) Remote sensing of the terrestrial water cycle. Geophysical Monograph 206, American Geophysical Union, Washington, DC, pp 397–406 – reference: Sneed M, Brandt J, Solt M (2013) Land subsidence along the Delta-Mendota Canal in the northern part of the San Joaquin Valley, California, 2003–10. US Geol Surv Sci Invest Rep 2013-5142, 87 pp, doi:.10.3133/sir20135142. Accessed 14 September 2015 – reference: Williamson AK, Prudic DE, Swain LA (1989) Ground-water flow in the Central Valley, California. US Geol Surv Prof Pap 1401-D, 127 pp – reference: Galloway DL, Riley FS (1999) San Joaquin Valley, California: largest human alteration of the Earth’s surface. In: Galloway DL, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States. US Geol Surv Circ 1182:23–34,. http://pubs.usgs.gov/circ/circ1182/. Accessed 14 September 2015 – reference: United States Department of Agriculture (USDA) (2000–2013) California County Agricultural Commission reports: National Agricultural Statistics Service. http://www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/Summary/index.asp. Accessed 14 September 2015 – volume: 19 start-page: 1459 issue: 8 year: 2011 ident: 1339_CR6 publication-title: Hydrogeol J doi: 10.1007/s10040-011-0775-5 – ident: 1339_CR9 – ident: 1339_CR17 doi: 10.3133/pp1401D – ident: 1339_CR11 doi: 10.3133/pp437H – ident: 1339_CR7 – ident: 1339_CR4 – ident: 1339_CR8 doi: 10.3133/cir1182 – ident: 1339_CR13 doi: 10.3133/sir20135142 – ident: 1339_CR10 – ident: 1339_CR14 – ident: 1339_CR16 doi: 10.1144/GSL.SP.2005.251.01.12 – ident: 1339_CR12 – ident: 1339_CR15 – ident: 1339_CR2 – ident: 1339_CR3 – ident: 1339_CR5 doi: 10.3133/pp1766 – ident: 1339_CR1 doi: 10.3133/pp1401A |
SSID | ssj0004173 |
Score | 2.5514333 |
Snippet | The Central Valley in California (USA) covers about 52,000 km
2
and is one of the most productive agricultural regions in the world. This agriculture relies... Issue Title: Land Subsidence Processes The Central Valley in California (USA) covers about 52,000 km^sup 2^ and is one of the most productive agricultural... The Central Valley in California (USA) covers about 52,000 km super(2) and is one of the most productive agricultural regions in the world. This agriculture... The Central Valley in California (USA) covers about 52,000 km² and is one of the most productive agricultural regions in the world. This agriculture relies... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 675 |
SubjectTerms | Agriculture Aquatic Pollution Aquifer management Aquifers Availability Central Valley of California Compaction Drought Earth and Environmental Science Earth Sciences flood control Geology Geophysics/Geodesy Groundwater Groundwater irrigation Groundwater levels Groundwater recharge Groundwater storage Historic Hydrogeology Hydrologic models Hydrology Hydrology/Water Resources Irrigation water Land subsidence Land use land use change laws and regulations Legislation Modelling monitoring planning Pumpage Subsidence Surface water Sustainable use Valleys Waste Water Technology Water availability Water demand Water Management Water Pollution Control Water Quality/Water Pollution Water resources management water table |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB6VcIAeqhaKGqDVIvXUssLOel-nKq1AqBIItQ3lZu3LgIQcSAIi_76z8RrTSs3ZY3k1u575ZufxAXw0ee40RjmUcWdpYbym2vqKZjIImVnH1KI9-uRUHI-K7xf8Il24TVNZZWsTF4baj128Iz_IJbpyhjFU9uX2jkbWqJhdTRQaK7CKJlipHqx-PTw9-9F1RjY5ZgQFOY3gu81rNs1zsZoO3SHFOE3Tx789Uwc3_8mQLhzP0Wt4lRAjGTZb_AZehHoDXg4vJ2lqRtiAtURlfjXfhJPfiB4nxDyY65tmBvecmNqTWMFIpmgmGhZRcl0TxH4k3e6S88ipMt8nXa_WPhn9HL6F0dHhr2_HNHEmUMMLOaMDXXEWlNADyR2XXogQbRo3zEnLjMGI1zAVMlsMfKZx-5wQXBcVwoa8sp6zLejV4zq8A1JZRH-28lGkCE6oygWjWM6cxw_kqg9Zq6_SpYHikdfipuxGIUcVl6jiMqq4fOzDp6dXbptpGsuEd9tNKNOPNS27Y9CHvafH-EvEPIepw_h-ISO1wrhMLpGJjCMxYb1UphCx0TbjffjcHoJnS_nfwreXL3wH1hF1iaZqchd6s8l9eI_IZmY_pOP7B8EM89A priority: 102 providerName: ProQuest |
Title | Water availability and land subsidence in the Central Valley, California, USA |
URI | https://link.springer.com/article/10.1007/s10040-015-1339-x https://www.proquest.com/docview/1783932740 https://www.proquest.com/docview/1787986667 https://www.proquest.com/docview/1808111777 https://www.proquest.com/docview/1846347905 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4x0DRe0GCbVmCVJ-2JYSmpYzt-bKu2CEQ1jZUfT5HtOBoSCggKov89d0lKN8Qq7SV-yCWxzo7vO5_vPoBvNo69QS-HC-kdT2xuuHF5wSMdlI6cF2mVHn08VgeT5PBcnjfFoikX5kX8nlLc6MwbGi2O3pThCBfXZCw0sTT0VX-RAlkHk9H6x5xQ9jyA-dor_jZBC1z5IhRaWZjhe9hooCHr1mO5CSuh3IJ3DUv579kWvB1VNLyzD3B8hhDxltkHe3lVF9qeMVvmjI4psjtcC2qqUHZZMgR4rNnCZadEnDLbZ4uErH02Oel-hMlw8Kt_wBtiBG5loqe8YwopQqpMR0svda5UoIVLWuG1E9aiW2tFGiKXdPLI4Bh5paRJCsQGceFyKT7Banldhs_ACocQzxU5iSTBq7TwwaYiFj7HD8RpC6K5rjLfVA0n8oqrbFHvmNSboXozUm_22IK950du6pIZy4R35wOQNX_PXRZrhG0C_eWoBV-fb-O8p2CGLcP1fSWjTYrOl14iQ7QiFJVeKpMoyqaNZAu-zyfAH135V8e3_0t6B9YRaan6pOQurE5v78MXRDNT14Y36XDUhrXusNcbUzu6OBpg2xuMf_xsV7Mcr5NO9wl79O_7 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V7aFwQKWAWGjBSHCBWiRxbMcHhFaFZUu7vdCF3lLHcaBSlS2729L9U_zGzuSjAST21nMmijMee954PPMAXtowdAajHC6ky3hsc8NNlhc80F7pIHMiqcqjR4dqOI4_H8vjFfjd1sLQtcp2T6w26nzi6Iz8bajRlQuMoYL35z85sUZRdrWl0KjNYt8vfmHINnu39wHn91UUDT4e7Q55wyrArYz1nEemkMInykRaOqlzpTytemmF05mwFmNCKxIfZHGUBwZ_0CklTVygYw2LLCeWCNzy12KBnpwq0wefujrMOqONECTkBPXbLGpdqkd399D5cowKDb_62w924PaffGzl5gYbcK_Bp6xfG9R9WPHlJtztf582PTr8Jqw3xOk_Fg9g9A2x6pTZS3t6Vnf8XjBb5ozuS7IZbko1Zyk7LRkiTdacJbOvxOCy2GFdZdgOG3_pP4TxrejyEayWk9I_BlZkiDWzIieR2DuVFM7bRITC5fiBMOlB0OordU37cmLROEu7xsuk4hRVnJKK06sevL555bzu3bFMeKudhLRZxrO0M7oevLh5jAuQsiq29JOLSkabBKNAvUSG-E0oPb5UJlZU1hvIHrxpjeCPofxv4E-WD_w5rA-PRgfpwd7h_lO4g3hP1fc1t2B1Pr3w24ip5tmzypAZnNz2yrkG3e8ukQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ-Qkqg8EEUNVdQ10Rdlw33t7u2DMVVoQKQhapW3c293D0jIFdqi9F_zr3Omd8epiX3judN0Ozc785ubjx_ACxOGVmOWw2Nhc54Yp7nOXcED5aUKchun8_Hog4HcHSYfjsTREvxqZmGorbLxiXNH7UaW3pFvhQpDeYw5VLBV1G0Rh9v9t-cXnBikqNLa0GlUJrLvZz8xfZu82dvGZ_0yivo7X97v8pphgBuRqCmPdCFin0odKWGFclJ68gDCxFblsTGYH5o49UGeRC7Q-GetlEInBQbZsMgdMUag-19WlBV1YPndzuDwUzuVWdW3EZCEnIB_U1OtBveokw9DMcccUfOrv6NiC3X_qc7Og17_LqzWaJX1KvO6B0u-XIOV3vG43tjh1-B2TaN-MrsPB98QuY6Z-WFOz6r93zNmSseoe5JN0EVVDKbstGSIO1n9Zpl9JT6X2SZr58Q22fBz7wEMb0SbD6FTjkq_DqzIEXnmhSORxFuZFtabNA5j6_AHwrQLQaOvzNbLzIlT4yxr1zCTijNUcUYqzq668Or6K-fVJo9FwhvNQ8jqSz3JWhPswvPrj_E6Uo3FlH50OZdROsWcUC2QIbYTKpYvlEkkDfkGoguvGyP44yj_O_ijxQd_Brfw1mQf9wb7j-EOgj9ZNW9uQGc6vvRPEGBN86e1JTP4ftOX5zc_YzQj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+availability+and+land+subsidence+in+the+Central+Valley%2C+California%2C+USA&rft.jtitle=Hydrogeology+journal&rft.au=Faunt%2C+Claudia+C&rft.au=Sneed%2C+Michelle&rft.au=Traum%2C+Jon&rft.au=Brandt%2C+Justin+T&rft.date=2016-05-01&rft.issn=1431-2174&rft.eissn=1435-0157&rft.volume=24&rft.issue=3&rft.spage=675&rft.epage=684&rft_id=info:doi/10.1007%2Fs10040-015-1339-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-2174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-2174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-2174&client=summon |