Removal of Prussian blue from contaminated soil in the rhizosphere of cyanogenic plants

The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum ( Sorghum bicolor var. P721) and flax ( Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plan...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 69; no. 9; pp. 1492 - 1498
Main Authors Kang, Dong-Hee, Hong, Lee Yen, Paul Schwab, A., Banks, M. Katherine
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2007
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum ( Sorghum bicolor var. P721) and flax ( Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plant roots, incorporation and biodegradation in plant tissue. For this study, 14C-labeled cyanide was added to soil, and distribution of 14C activity was assessed before plant establishment and after harvest. After 3 months of plant growth, 7% of the 14C-labeled cyanide was converted to 14CO 2 with sorghum and 6% with flax, compared with only 2% conversion in unplanted soil. A small amount of unaltered cyanide was shown to be accumulated by the plants (≈140 mg cyanide/kg plant or <0.1% of the total). Results from this experiment demonstrate the potential of cyanogenic plants for use in phytoremediation of cyanide-contaminated soil.
AbstractList The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum ( Sorghum bicolor var. P721) and flax ( Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plant roots, incorporation and biodegradation in plant tissue. For this study, 14C-labeled cyanide was added to soil, and distribution of 14C activity was assessed before plant establishment and after harvest. After 3 months of plant growth, 7% of the 14C-labeled cyanide was converted to 14CO 2 with sorghum and 6% with flax, compared with only 2% conversion in unplanted soil. A small amount of unaltered cyanide was shown to be accumulated by the plants (≈140 mg cyanide/kg plant or <0.1% of the total). Results from this experiment demonstrate the potential of cyanogenic plants for use in phytoremediation of cyanide-contaminated soil.
The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (Sorghum bicolor var. P721) and flax (Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plant roots, incorporation and biodegradation in plant tissue. For this study, (14)C-labeled cyanide was added to soil, and distribution of (14)C activity was assessed before plant establishment and after harvest. After 3 months of plant growth, 7% of the (14)C-labeled cyanide was converted to (14)CO(2) with sorghum and 6% with flax, compared with only 2% conversion in unplanted soil. A small amount of unaltered cyanide was shown to be accumulated by the plants (approximately 140 mg cyanide/kg plant or <0.1% of the total). Results from this experiment demonstrate the potential of cyanogenic plants for use in phytoremediation of cyanide-contaminated soil.The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (Sorghum bicolor var. P721) and flax (Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plant roots, incorporation and biodegradation in plant tissue. For this study, (14)C-labeled cyanide was added to soil, and distribution of (14)C activity was assessed before plant establishment and after harvest. After 3 months of plant growth, 7% of the (14)C-labeled cyanide was converted to (14)CO(2) with sorghum and 6% with flax, compared with only 2% conversion in unplanted soil. A small amount of unaltered cyanide was shown to be accumulated by the plants (approximately 140 mg cyanide/kg plant or <0.1% of the total). Results from this experiment demonstrate the potential of cyanogenic plants for use in phytoremediation of cyanide-contaminated soil.
The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (Sorghum bicolor var. P721) and flax (Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plant roots, incorporation and biodegradation in plant tissue. For this study, super(1) super(4)C-labeled cyanide was added to soil, and distribution of super(1) super(4)C activity was assessed before plant establishment and after harvest. After 3 months of plant growth, 7% of the super(1) super(4)C-labeled cyanide was converted to super(1) super(4)CO sub(2) with sorghum and 6% with flax, compared with only 2% conversion in unplanted soil. A small amount of unaltered cyanide was shown to be accumulated by the plants (~140mg cyanide/kg plant or <0.1% of the total). Results from this experiment demonstrate the potential of cyanogenic plants for use in phytoremediation of cyanide-contaminated soil.
Various aspects related to removal of Prussian blue from contaminated soil in the rhizosphere of cyanogenic plants were discussed. Charcoal was used to trap volatile organic compounds in the gas stream existing in the system. All plant biomass was harvested and divided into shoot and root sections. Total cyanide in soil, plant biomass, and trap solutions was determined using a standard digestion and distillation technique. Radiolabeled Prussian blue was used as a target contaminant to evaluate cyanide removal from soil by cyanogenic plants in a controlled growth chamber. In the root chambers, all treatments were statistically equivalent, averaging 2.5% transformation. The concentrations of cyanide remaining in the flax and sorghum soil chambers at the end of the experiment were significantly different from the unplanted control chambers. Although approximately 19% of the cyanide in the sorghum and flax chambers was transformed after three months, but only 2% of the cyanide was removed in the unvegetated control chamber.
The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (Sorghum bicolor var. P721) and flax (Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plant roots, incorporation and biodegradation in plant tissue. For this study, (14)C-labeled cyanide was added to soil, and distribution of (14)C activity was assessed before plant establishment and after harvest. After 3 months of plant growth, 7% of the (14)C-labeled cyanide was converted to (14)CO(2) with sorghum and 6% with flax, compared with only 2% conversion in unplanted soil. A small amount of unaltered cyanide was shown to be accumulated by the plants (approximately 140 mg cyanide/kg plant or <0.1% of the total). Results from this experiment demonstrate the potential of cyanogenic plants for use in phytoremediation of cyanide-contaminated soil.
Author Banks, M. Katherine
Paul Schwab, A.
Kang, Dong-Hee
Hong, Lee Yen
Author_xml – sequence: 1
  givenname: Dong-Hee
  surname: Kang
  fullname: Kang, Dong-Hee
  organization: School of Civil Engineering, Purdue University, West Lafayette, IN 47907, United States
– sequence: 2
  givenname: Lee Yen
  surname: Hong
  fullname: Hong, Lee Yen
  organization: School of Civil Engineering, Purdue University, West Lafayette, IN 47907, United States
– sequence: 3
  givenname: A.
  surname: Paul Schwab
  fullname: Paul Schwab, A.
  organization: Department of Agronomy, Purdue University, West Lafayette, IN 47907, United States
– sequence: 4
  givenname: M. Katherine
  surname: Banks
  fullname: Banks, M. Katherine
  email: kbanks@purdue.edu
  organization: School of Civil Engineering, Purdue University, West Lafayette, IN 47907, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19218833$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17555792$$D View this record in MEDLINE/PubMed
BookMark eNqNkk-LFDEQxYOsuLOrX0Hbg956TDpJd3ISGfwHC4q6eAw16cpOhu5kTLoX1k9vhhlZ8TJ7ChS_9_KoehfkLMSAhLxkdMkoa99sl3aDY8y7DSZcNpR2SyqWVDaPyIKpTtes0eqMLCgVsm4ll-fkIuctpUUs9RNyzjopZaebBfn5rRjdwlBFV31Nc84eQrUeZqxcimNlY5hg9AEm7Ksc_VD5UE0brNLG_z4G2EvtHYR4g8HbajdAmPJT8tjBkPHZ8b0k1x_e_1h9qq--fPy8endVgxRyqtE5qQX2HW-bXqCCxsnOCUTuqOCCStEqAWwtewtlxiwHK3vFWM97ydbAL8nrg-8uxV8z5smMPlscSgiMczat4lqXdZwERVmJ0LI7CTZUlWhtexJkQrFOK1bA50dwXo_Ym13yI6Q78_cKBXh1BCBbGFyCYH2-53TDlOK8cPrA2RRzTujuEWr2zTBb808zzL4ZhgpTmlG0b__TWj_B5MuBE_jhQQ4vDg4OooGbVBJef28o45Qq0TbtfserA4Hl4rcek8nWY7DY-4R2Mn30D_jnD5Xv5jg
CODEN CMSHAF
CitedBy_id crossref_primary_10_1016_j_chemosphere_2009_05_030
crossref_primary_10_1007_s00244_007_9101_6
crossref_primary_10_1016_j_cej_2020_125623
crossref_primary_10_1016_j_jclepro_2021_126946
crossref_primary_10_1016_j_ecoenv_2008_05_007
crossref_primary_10_1007_s11356_009_0173_x
crossref_primary_10_1007_s11356_013_2341_2
crossref_primary_10_1007_s11274_019_2643_8
crossref_primary_10_1007_s13762_014_0571_6
crossref_primary_10_1080_10643389_2010_481597
crossref_primary_10_4491_eer_2021_308
crossref_primary_10_1016_j_envpol_2022_119240
crossref_primary_10_1002_smll_202302692
crossref_primary_10_1007_s11270_013_1522_4
crossref_primary_10_1111_j_1462_2920_2009_02118_x
crossref_primary_10_1016_j_scitotenv_2016_07_040
Cites_doi 10.1128/AEM.63.7.2729-2734.1997
10.1016/0003-9861(87)90019-1
10.1021/es030400x
10.2134/jeq1994.00472425002300040024x
10.1021/es051224q
10.1046/j.0016-8025.2003.01069.x
10.1021/es00050a014
10.1073/pnas.81.10.3059
10.1002/jsfa.2740660413
10.1016/j.envpol.2003.08.002
10.1016/S0041-0101(99)00128-2
10.1002/9780470166468.ch4
10.1111/j.1462-2920.2005.00902.x
10.1016/S0032-9592(99)00014-X
10.1104/pp.65.6.1199
10.1006/rtph.1996.0032
10.1021/es048799s
10.1016/S0141-0229(97)00171-3
10.2113/3.2.471
10.1016/j.chemosphere.2004.02.008
ContentType Journal Article
Copyright 2007 Elsevier Ltd
2008 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: 2008 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7ST
C1K
SOI
7QO
7T7
7TV
8FD
FR3
P64
7S9
L.6
7X8
DOI 10.1016/j.chemosphere.2007.04.052
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Environment Abstracts
Environmental Sciences and Pollution Management
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Biotechnology Research Abstracts
Environment Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
Applied Sciences
EISSN 1879-1298
EndPage 1498
ExternalDocumentID 17555792
19218833
10_1016_j_chemosphere_2007_04_052
US201300846269
S0045653507005802
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7ST
C1K
SOI
7QO
7T7
7TV
8FD
FR3
P64
7S9
L.6
7X8
ID FETCH-LOGICAL-a545t-eff594ed7362d4e8a2f57f4ee3f0434054684a1b5dcae3f1c3ac5d811d3d51ba3
IEDL.DBID AIKHN
ISSN 0045-6535
IngestDate Thu Jul 10 19:27:51 EDT 2025
Fri Jul 11 13:14:34 EDT 2025
Fri Jul 11 16:10:09 EDT 2025
Fri Jul 11 02:47:37 EDT 2025
Mon Jul 21 05:37:35 EDT 2025
Mon Jul 21 09:17:53 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Tue Jul 01 02:23:17 EDT 2025
Wed Dec 27 19:14:15 EST 2023
Fri Feb 23 02:20:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Soil
Cyanide
Prussian blue
Groundwater
Contamination
Phytoremediation
Monocotyledones
Radiolabelling
In situ
Cyanides
Soil pollution
Industry
Linum usitatissimum
Rhizosphere
Sorghum bicolor
Linaceae
Decontamination
Gramineae
Dicotyledones
Angiospermae
Spermatophyta
Water pollution
Bioremediation
Ground water
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a545t-eff594ed7362d4e8a2f57f4ee3f0434054684a1b5dcae3f1c3ac5d811d3d51ba3
Notes http://dx.doi.org/10.1016/j.chemosphere.2007.04.052
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 17555792
PQID 14817981
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_68399129
proquest_miscellaneous_47554957
proquest_miscellaneous_20804366
proquest_miscellaneous_14817981
pubmed_primary_17555792
pascalfrancis_primary_19218833
crossref_primary_10_1016_j_chemosphere_2007_04_052
crossref_citationtrail_10_1016_j_chemosphere_2007_04_052
fao_agris_US201300846269
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2007_04_052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-11-01
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Jahn, Haderlein, Meckenstock (bib10) 2006; 8
Nambisan, Sundaresan (bib18) 1994; 66
Reeves, M., 2000. Treatment of fluoride and iron cyanides using willow: a greenhouse feasibility study. Master’s Thesis. Cornell University. Ithaca, NY, USA.
Miller, Conn (bib17) 1980; 65
Bennett, Tucker, Maunder (bib3) 1990
Way (bib27) 1981
Vetter (bib26) 2000; 38
APHA (bib1) 1998
Dursun, Calik, Aksu (bib7) 1999; 34
Kang, D.H., 2006. Phytoremediation of cyanide contaminated soil. PhD Dissertation. Purdue University, West Lafayette, IN.
Dumestre, Chone, Portal, Gerard, Berthelin (bib5) 1997; 63
Trapp, Larsen, Pirandello, Danquah-Boakye (bib25) 2003; 3
Lee, Banks (bib14) 1993; 28
Thornton (bib24) 1917
Meeussen, Keizer, van Riemsdijk, de Haan (bib16) 1994; 23
Yu, Trapp, Puhua, Chang, Xishi (bib28) 2004; 56
Larsen, Ucisik, Trapp (bib13) 2005; 39
Mansfeldt, Leyer, Barmettler, Kretzschmar (bib15) 2004; 3
Theis, Young, Huang, Knutesn (bib23) 1994; 28
Ebbs, Bushey, Poston, Kosma, Samiotakis, Dzombak (bib8) 2003; 26
Larsen, Trapp (bib12) 2006; 40
Peiser, Wang, Hoffman, Yang, Walsh (bib19) 1984; 81
Chen, Banks, Schwab (bib4) 2003; 37
Samiotakis, Ebbs (bib21) 2004; 127
Shifrin, Beck, Gauthier, Chapnick, Goodman (bib22) 1996; 23
Hosel, Tober, Eklund, Conn (bib9) 1987; 252
Dunbar, Heintz (bib6) 1997; 45
Barclay, Hart, Knowles, Meeussen, Tett (bib2) 1998; 22
Way (10.1016/j.chemosphere.2007.04.052_bib27) 1981
Jahn (10.1016/j.chemosphere.2007.04.052_bib10) 2006; 8
Samiotakis (10.1016/j.chemosphere.2007.04.052_bib21) 2004; 127
Lee (10.1016/j.chemosphere.2007.04.052_bib14) 1993; 28
10.1016/j.chemosphere.2007.04.052_bib20
Nambisan (10.1016/j.chemosphere.2007.04.052_bib18) 1994; 66
Larsen (10.1016/j.chemosphere.2007.04.052_bib13) 2005; 39
Shifrin (10.1016/j.chemosphere.2007.04.052_bib22) 1996; 23
Larsen (10.1016/j.chemosphere.2007.04.052_bib12) 2006; 40
Peiser (10.1016/j.chemosphere.2007.04.052_bib19) 1984; 81
APHA (10.1016/j.chemosphere.2007.04.052_bib1) 1998
Chen (10.1016/j.chemosphere.2007.04.052_bib4) 2003; 37
Thornton (10.1016/j.chemosphere.2007.04.052_bib24) 1917
Yu (10.1016/j.chemosphere.2007.04.052_bib28) 2004; 56
Bennett (10.1016/j.chemosphere.2007.04.052_bib3) 1990
Mansfeldt (10.1016/j.chemosphere.2007.04.052_bib15) 2004; 3
Hosel (10.1016/j.chemosphere.2007.04.052_bib9) 1987; 252
Dumestre (10.1016/j.chemosphere.2007.04.052_bib5) 1997; 63
Dunbar (10.1016/j.chemosphere.2007.04.052_bib6) 1997; 45
Dursun (10.1016/j.chemosphere.2007.04.052_bib7) 1999; 34
Miller (10.1016/j.chemosphere.2007.04.052_bib17) 1980; 65
Trapp (10.1016/j.chemosphere.2007.04.052_bib25) 2003; 3
Ebbs (10.1016/j.chemosphere.2007.04.052_bib8) 2003; 26
Meeussen (10.1016/j.chemosphere.2007.04.052_bib16) 1994; 23
Theis (10.1016/j.chemosphere.2007.04.052_bib23) 1994; 28
Barclay (10.1016/j.chemosphere.2007.04.052_bib2) 1998; 22
10.1016/j.chemosphere.2007.04.052_bib11
Vetter (10.1016/j.chemosphere.2007.04.052_bib26) 2000; 38
References_xml – volume: 45
  start-page: 283
  year: 1997
  end-page: 391
  ident: bib6
  article-title: Chemistry of transition metal cyanide compounds: modern perspectives
  publication-title: Prog. Inorgan. Chem.
– volume: 63
  start-page: 2729
  year: 1997
  end-page: 2734
  ident: bib5
  article-title: Cyanide degradation under alkaline conditions by a strain of
  publication-title: Appl. Environ. Microbiol.
– volume: 39
  start-page: 2135
  year: 2005
  end-page: 2142
  ident: bib13
  article-title: Uptake, metabolism, accumulation and toxicity of cyanide in willow trees
  publication-title: Environ. Sci. Technol.
– year: 1990
  ident: bib3
  article-title: Modern Grain Sorghum Production
– volume: 37
  start-page: 5778
  year: 2003
  end-page: 5782
  ident: bib4
  article-title: Pyrene degradation in the rhizosphere of tall fescue (
  publication-title: Environ. Sci. Technol.
– volume: 22
  start-page: 223
  year: 1998
  end-page: 231
  ident: bib2
  article-title: Biodegradation of metal cyanides by mixed and pure cultures of fungi
  publication-title: Enzyme Microb. Technol.
– volume: 28
  start-page: 99
  year: 1994
  end-page: 105
  ident: bib23
  article-title: Leachate characteristics and composition of cyanide-bearing wastes from manufactured gas plants
  publication-title: Environ. Sci. Technol.
– reference: Reeves, M., 2000. Treatment of fluoride and iron cyanides using willow: a greenhouse feasibility study. Master’s Thesis. Cornell University. Ithaca, NY, USA.
– volume: 65
  start-page: 1199
  year: 1980
  end-page: 1202
  ident: bib17
  article-title: Metabolism of hydrogen cyanide by higher plants
  publication-title: Plant Physiol.
– volume: 34
  start-page: 901
  year: 1999
  end-page: 908
  ident: bib7
  article-title: Degradation of ferrous (II) cyanide complex ions by
  publication-title: Process Biochem.
– volume: 38
  start-page: 11
  year: 2000
  end-page: 36
  ident: bib26
  article-title: Plant cyanogenic glycosides
  publication-title: Toxicon
– volume: 28
  start-page: 2187
  year: 1993
  end-page: 2198
  ident: bib14
  article-title: Bioremediation of petroleum contaminated soil using vegetation: a microbial study
  publication-title: J. Environ. Sci. A
– volume: 127
  start-page: 169
  year: 2004
  end-page: 173
  ident: bib21
  article-title: Possible evidence for transport of an iron cyanide complex by plants
  publication-title: Environ. Pollut.
– volume: 3
  start-page: 128
  year: 2003
  end-page: 137
  ident: bib25
  article-title: Feasibility of cyanide elimination using plants
  publication-title: Europ. J. Min. Proc. Environ. Prot.
– reference: Kang, D.H., 2006. Phytoremediation of cyanide contaminated soil. PhD Dissertation. Purdue University, West Lafayette, IN.
– volume: 23
  start-page: 106
  year: 1996
  end-page: 116
  ident: bib22
  article-title: Chemistry, toxicology, and human health risk of cyanide compounds in soils at former manufactured gas plants sites
  publication-title: Regulatory Toxic. Pharmacol.
– volume: 8
  start-page: 362
  year: 2006
  end-page: 367
  ident: bib10
  article-title: Reduction of Prussian blue by the two iron-reducing microorganisms
  publication-title: Environ. Microbiol.
– volume: 56
  start-page: 121
  year: 2004
  end-page: 126
  ident: bib28
  article-title: Metabolism of cyanide by Chinese vegetation
  publication-title: Chemosphere
– year: 1998
  ident: bib1
  article-title: Standard Methods for Examination of Water and Wastewater
– volume: 3
  start-page: 471
  year: 2004
  end-page: 479
  ident: bib15
  article-title: Cyanide leaching from soil developed from coking plant purifier waste as influenced by citrate
  publication-title: Vadose Zone J.
– volume: 66
  start-page: 503
  year: 1994
  end-page: 507
  ident: bib18
  article-title: Distribution of linamarin and its metabolising enzymes in cassava tissues
  publication-title: J. Sci. Food Agric.
– volume: 81
  start-page: 3059
  year: 1984
  end-page: 3063
  ident: bib19
  article-title: Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 252
  start-page: 152
  year: 1987
  end-page: 162
  ident: bib9
  article-title: Characterization of beta-glucosidases with high specificity for the cyanogenic glucoside dhurrin in
  publication-title: Arch. Biochem. Biophys.
– year: 1917
  ident: bib24
  article-title: The American System of Flax and Other Fiber Culture
– volume: 26
  start-page: 1467
  year: 2003
  end-page: 1478
  ident: bib8
  article-title: Transport and metabolism of free cyanide and iron cyanide complexes by willow
  publication-title: Plant Cell Environ.
– volume: 40
  start-page: 1956
  year: 2006
  end-page: 1961
  ident: bib12
  article-title: Uptake of iron cyanide complexes into willow trees
  publication-title: Environ. Sci. Technol.
– volume: 23
  start-page: 785
  year: 1994
  end-page: 792
  ident: bib16
  article-title: Solubility of cyanide in contaminated soils
  publication-title: J. Environ. Qual.
– year: 1981
  ident: bib27
  article-title: Pharmacologic aspects of cyanide and its antagonism
  publication-title: Cyanide in Biology
– volume: 63
  start-page: 2729
  year: 1997
  ident: 10.1016/j.chemosphere.2007.04.052_bib5
  article-title: Cyanide degradation under alkaline conditions by a strain of Fusarium solani isolated from contaminated soils
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.63.7.2729-2734.1997
– volume: 252
  start-page: 152
  year: 1987
  ident: 10.1016/j.chemosphere.2007.04.052_bib9
  article-title: Characterization of beta-glucosidases with high specificity for the cyanogenic glucoside dhurrin in Sorghum biocolor (L.) moench seedlings
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(87)90019-1
– volume: 37
  start-page: 5778
  year: 2003
  ident: 10.1016/j.chemosphere.2007.04.052_bib4
  article-title: Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es030400x
– volume: 23
  start-page: 785
  year: 1994
  ident: 10.1016/j.chemosphere.2007.04.052_bib16
  article-title: Solubility of cyanide in contaminated soils
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1994.00472425002300040024x
– volume: 28
  start-page: 2187
  year: 1993
  ident: 10.1016/j.chemosphere.2007.04.052_bib14
  article-title: Bioremediation of petroleum contaminated soil using vegetation: a microbial study
  publication-title: J. Environ. Sci. A
– year: 1998
  ident: 10.1016/j.chemosphere.2007.04.052_bib1
– volume: 40
  start-page: 1956
  year: 2006
  ident: 10.1016/j.chemosphere.2007.04.052_bib12
  article-title: Uptake of iron cyanide complexes into willow trees
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es051224q
– volume: 26
  start-page: 1467
  year: 2003
  ident: 10.1016/j.chemosphere.2007.04.052_bib8
  article-title: Transport and metabolism of free cyanide and iron cyanide complexes by willow
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.0016-8025.2003.01069.x
– volume: 28
  start-page: 99
  year: 1994
  ident: 10.1016/j.chemosphere.2007.04.052_bib23
  article-title: Leachate characteristics and composition of cyanide-bearing wastes from manufactured gas plants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00050a014
– volume: 81
  start-page: 3059
  year: 1984
  ident: 10.1016/j.chemosphere.2007.04.052_bib19
  article-title: Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.81.10.3059
– ident: 10.1016/j.chemosphere.2007.04.052_bib20
– year: 1990
  ident: 10.1016/j.chemosphere.2007.04.052_bib3
– volume: 66
  start-page: 503
  year: 1994
  ident: 10.1016/j.chemosphere.2007.04.052_bib18
  article-title: Distribution of linamarin and its metabolising enzymes in cassava tissues
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.2740660413
– year: 1981
  ident: 10.1016/j.chemosphere.2007.04.052_bib27
  article-title: Pharmacologic aspects of cyanide and its antagonism
– volume: 3
  start-page: 128
  year: 2003
  ident: 10.1016/j.chemosphere.2007.04.052_bib25
  article-title: Feasibility of cyanide elimination using plants
  publication-title: Europ. J. Min. Proc. Environ. Prot.
– ident: 10.1016/j.chemosphere.2007.04.052_bib11
– volume: 127
  start-page: 169
  year: 2004
  ident: 10.1016/j.chemosphere.2007.04.052_bib21
  article-title: Possible evidence for transport of an iron cyanide complex by plants
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2003.08.002
– volume: 38
  start-page: 11
  year: 2000
  ident: 10.1016/j.chemosphere.2007.04.052_bib26
  article-title: Plant cyanogenic glycosides
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(99)00128-2
– volume: 45
  start-page: 283
  year: 1997
  ident: 10.1016/j.chemosphere.2007.04.052_bib6
  article-title: Chemistry of transition metal cyanide compounds: modern perspectives
  publication-title: Prog. Inorgan. Chem.
  doi: 10.1002/9780470166468.ch4
– volume: 8
  start-page: 362
  year: 2006
  ident: 10.1016/j.chemosphere.2007.04.052_bib10
  article-title: Reduction of Prussian blue by the two iron-reducing microorganisms Geobacter metallireducens and Shewanella alga
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2005.00902.x
– volume: 34
  start-page: 901
  year: 1999
  ident: 10.1016/j.chemosphere.2007.04.052_bib7
  article-title: Degradation of ferrous (II) cyanide complex ions by Pseudomonas fluorescens
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(99)00014-X
– volume: 65
  start-page: 1199
  year: 1980
  ident: 10.1016/j.chemosphere.2007.04.052_bib17
  article-title: Metabolism of hydrogen cyanide by higher plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.65.6.1199
– volume: 23
  start-page: 106
  year: 1996
  ident: 10.1016/j.chemosphere.2007.04.052_bib22
  article-title: Chemistry, toxicology, and human health risk of cyanide compounds in soils at former manufactured gas plants sites
  publication-title: Regulatory Toxic. Pharmacol.
  doi: 10.1006/rtph.1996.0032
– volume: 39
  start-page: 2135
  year: 2005
  ident: 10.1016/j.chemosphere.2007.04.052_bib13
  article-title: Uptake, metabolism, accumulation and toxicity of cyanide in willow trees
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048799s
– volume: 22
  start-page: 223
  year: 1998
  ident: 10.1016/j.chemosphere.2007.04.052_bib2
  article-title: Biodegradation of metal cyanides by mixed and pure cultures of fungi
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/S0141-0229(97)00171-3
– volume: 3
  start-page: 471
  year: 2004
  ident: 10.1016/j.chemosphere.2007.04.052_bib15
  article-title: Cyanide leaching from soil developed from coking plant purifier waste as influenced by citrate
  publication-title: Vadose Zone J.
  doi: 10.2113/3.2.471
– volume: 56
  start-page: 121
  year: 2004
  ident: 10.1016/j.chemosphere.2007.04.052_bib28
  article-title: Metabolism of cyanide by Chinese vegetation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.02.008
– year: 1917
  ident: 10.1016/j.chemosphere.2007.04.052_bib24
SSID ssj0001659
Score 1.9753451
Snippet The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum ( Sorghum bicolor var. P721) and flax ( Linum...
The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (Sorghum bicolor var. P721) and flax (Linum...
Various aspects related to removal of Prussian blue from contaminated soil in the rhizosphere of cyanogenic plants were discussed. Charcoal was used to trap...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1492
SubjectTerms analysis
Applied sciences
Biodegradation, Environmental
Biological and medical sciences
bioremediation
Biotechnology
biotransformation
Contamination
Cyanide
cyanides
cyanogenic plants
Decontamination. Miscellaneous
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Environment and pollution
Exact sciences and technology
Ferrocyanides
Ferrocyanides - analysis
flax
Flax - growth & development
Fundamental and applied biological sciences. Psychology
grain sorghum
Groundwater
growth & development
Industrial applications and implications. Economical aspects
Linum
Linum usitatissimum
Miscellaneous
Phytoremediation
Plant Shoots
Plant Shoots - growth & development
polluted soils
Pollution
Pollution, environment geology
Prussian blue
Rhizome
Rhizome - growth & development
rhizosphere
Soil
Soil and sediments pollution
soil microorganisms
Soil Pollutants
Soil Pollutants - analysis
soil pollution
Sorghum
Sorghum - growth & development
Sorghum bicolor
Title Removal of Prussian blue from contaminated soil in the rhizosphere of cyanogenic plants
URI https://dx.doi.org/10.1016/j.chemosphere.2007.04.052
https://www.ncbi.nlm.nih.gov/pubmed/17555792
https://www.proquest.com/docview/14817981
https://www.proquest.com/docview/20804366
https://www.proquest.com/docview/47554957
https://www.proquest.com/docview/68399129
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9xADBZ50MeltOkj7mM7hV6d2J4Zewy9hCVh20IobZfmZmbnUVy29rLePeTS317Jj2xzMAR6M2YEM5IsfbY_SQDvMyttqjIX6sjwkFJAqOTCh3FsOcIJLZxpCbKX6WwuPl3Jqz2YDrUwRKvsY38X09to3d857bV5uipLqvElNMIR0NBsPGooeZjwPEXXPjz7-Hl2eROQ41R2KFjIkATuw7sdzQtV87tuqITf9Q0NxUkkk7E0te91TfxJ3aAKfTf7Yhyctknq4jE86tElO-sO8AT2XHUED6bDULcjuHfedqm-fgo_vuKO0M1Y7dmX9bahYkq2WG4do4oTRhR2TTQZRKSsqcslKyuGYJGtiaTXnYREzbWuanTC0rDVkjg1z2B-cf59Ogv7KQuhRvS0CZ33MhfOZpjKrHBKJ15mXjjHfSQ44jmRKqHjhbRG473YcG2kVWRMK-OF5s_hoKordwzMZkmac2WtF1Jo65TgxhhLr3ARXiUBqEGphelbkNMkjGUxcM1-Ff_Yg0ZkZkUkCrRHAMmN6Krrw3EXoQ-D5YpbTlVgvriL-DFau9A_MdwW828JHSNCvIaHDGByywV2e8oRMynOA3g7-ESBJqa_MLpy9bbBdy1FTeLi8RUJonjB03R8hcgQBeYyG1-RIvDNEcsF8KJzyN0OUVZmefLy_5TzCh62n7nbsszXcLBZb90bxGebxQT2T_7Ek_4p_Atl1zsa
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIigXBOXR8GiNxDVtEtuJI3FBq1YLlApBV_RmeW0HBS3JarN76IXfzkweLD1EqsQtsjySPTP2fEm-mQF4mznpUpX50ESWhxQCQiXnRRjHjiOcMMLbliB7kU5n4uOVvNqByZALQ7TK_u7v7vT2tu5HTnptnizLknJ8CY1wBDTUG48KSt4VeHzpdB7_3vI84lR2GFjIkKbfhzdbkhcq5lfdUAK_78sZiuNIJmNB6k5hamJPmgYVWHSdL8ahaRuizh7Bwx5bsvfd8h_Djq_2YW8ytHTbh3unbY3q6yfw_SuuCJ2M1QX7sto0lErJ5ouNZ5RvwojAbogkg3iUNXW5YGXFECqyFVH0up2QqL02VY0uWFq2XBCj5inMzk4vJ9Ow77EQGsRO69AXhcyFdxkGMie8Mkkhs0J4z4tIcERzIlXCxHPprMGx2HJjpVNkSifjueHPYLeqK38AzGVJmnPlXCGkMM4rwa21jl7gInxKAlCDUrXtC5BTH4yFHphmP_U_9qAGmZmOhEZ7BJD8FV12VThuI_RusJy-4VIao8VtxA_Q2tr8wMtWz74ltI0I0RpuMoDDGy6wXVOOiElxHsDR4BMaTUz_YEzl602Db1qKSsTF4zMSxPCCp-n4DJEhBsxlNj4jRdibI5IL4HnnkNsVoqzM8uTF_ynnCPaml5_P9fmHi08v4UH7wbtN0HwFu-vVxr9GpLaeH7Yn8Q8DBzve
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+Prussian+blue+from+contaminated+soil+in+the+rhizosphere+of+cyanogenic+plants&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Kang%2C+D+H&rft.au=Ho%C3%A0i%2C+%C4%90%C3%B4ng&rft.au=Schwab%2C+A+P&rft.au=Banks%2C+M+K&rft.date=2007-11-01&rft.issn=0045-6535&rft.volume=69&rft.issue=9+p.1492-1498&rft.spage=1492&rft.epage=1498&rft_id=info:doi/10.1016%2Fj.chemosphere.2007.04.052&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon