Removal of Prussian blue from contaminated soil in the rhizosphere of cyanogenic plants
The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum ( Sorghum bicolor var. P721) and flax ( Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plan...
Saved in:
Published in | Chemosphere (Oxford) Vol. 69; no. 9; pp. 1492 - 1498 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.11.2007
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (
Sorghum bicolor var. P721) and flax (
Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plant roots, incorporation and biodegradation in plant tissue. For this study,
14C-labeled cyanide was added to soil, and distribution of
14C activity was assessed before plant establishment and after harvest. After 3 months of plant growth, 7% of the
14C-labeled cyanide was converted to
14CO
2 with sorghum and 6% with flax, compared with only 2% conversion in unplanted soil. A small amount of unaltered cyanide was shown to be accumulated by the plants (≈140
mg cyanide/kg plant or <0.1% of the total). Results from this experiment demonstrate the potential of cyanogenic plants for use in phytoremediation of cyanide-contaminated soil. |
---|---|
AbstractList | The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (
Sorghum bicolor var. P721) and flax (
Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plant roots, incorporation and biodegradation in plant tissue. For this study,
14C-labeled cyanide was added to soil, and distribution of
14C activity was assessed before plant establishment and after harvest. After 3 months of plant growth, 7% of the
14C-labeled cyanide was converted to
14CO
2 with sorghum and 6% with flax, compared with only 2% conversion in unplanted soil. A small amount of unaltered cyanide was shown to be accumulated by the plants (≈140
mg cyanide/kg plant or <0.1% of the total). Results from this experiment demonstrate the potential of cyanogenic plants for use in phytoremediation of cyanide-contaminated soil. The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (Sorghum bicolor var. P721) and flax (Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plant roots, incorporation and biodegradation in plant tissue. For this study, (14)C-labeled cyanide was added to soil, and distribution of (14)C activity was assessed before plant establishment and after harvest. After 3 months of plant growth, 7% of the (14)C-labeled cyanide was converted to (14)CO(2) with sorghum and 6% with flax, compared with only 2% conversion in unplanted soil. A small amount of unaltered cyanide was shown to be accumulated by the plants (approximately 140 mg cyanide/kg plant or <0.1% of the total). Results from this experiment demonstrate the potential of cyanogenic plants for use in phytoremediation of cyanide-contaminated soil.The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (Sorghum bicolor var. P721) and flax (Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plant roots, incorporation and biodegradation in plant tissue. For this study, (14)C-labeled cyanide was added to soil, and distribution of (14)C activity was assessed before plant establishment and after harvest. After 3 months of plant growth, 7% of the (14)C-labeled cyanide was converted to (14)CO(2) with sorghum and 6% with flax, compared with only 2% conversion in unplanted soil. A small amount of unaltered cyanide was shown to be accumulated by the plants (approximately 140 mg cyanide/kg plant or <0.1% of the total). Results from this experiment demonstrate the potential of cyanogenic plants for use in phytoremediation of cyanide-contaminated soil. The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (Sorghum bicolor var. P721) and flax (Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plant roots, incorporation and biodegradation in plant tissue. For this study, super(1) super(4)C-labeled cyanide was added to soil, and distribution of super(1) super(4)C activity was assessed before plant establishment and after harvest. After 3 months of plant growth, 7% of the super(1) super(4)C-labeled cyanide was converted to super(1) super(4)CO sub(2) with sorghum and 6% with flax, compared with only 2% conversion in unplanted soil. A small amount of unaltered cyanide was shown to be accumulated by the plants (~140mg cyanide/kg plant or <0.1% of the total). Results from this experiment demonstrate the potential of cyanogenic plants for use in phytoremediation of cyanide-contaminated soil. Various aspects related to removal of Prussian blue from contaminated soil in the rhizosphere of cyanogenic plants were discussed. Charcoal was used to trap volatile organic compounds in the gas stream existing in the system. All plant biomass was harvested and divided into shoot and root sections. Total cyanide in soil, plant biomass, and trap solutions was determined using a standard digestion and distillation technique. Radiolabeled Prussian blue was used as a target contaminant to evaluate cyanide removal from soil by cyanogenic plants in a controlled growth chamber. In the root chambers, all treatments were statistically equivalent, averaging 2.5% transformation. The concentrations of cyanide remaining in the flax and sorghum soil chambers at the end of the experiment were significantly different from the unplanted control chambers. Although approximately 19% of the cyanide in the sorghum and flax chambers was transformed after three months, but only 2% of the cyanide was removed in the unvegetated control chamber. The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (Sorghum bicolor var. P721) and flax (Linum usitassimum var. Omega-Gold), in fully-contained growth chambers. Labeled cyanide was subject to microbial transformation, assimilation by plant roots, incorporation and biodegradation in plant tissue. For this study, (14)C-labeled cyanide was added to soil, and distribution of (14)C activity was assessed before plant establishment and after harvest. After 3 months of plant growth, 7% of the (14)C-labeled cyanide was converted to (14)CO(2) with sorghum and 6% with flax, compared with only 2% conversion in unplanted soil. A small amount of unaltered cyanide was shown to be accumulated by the plants (approximately 140 mg cyanide/kg plant or <0.1% of the total). Results from this experiment demonstrate the potential of cyanogenic plants for use in phytoremediation of cyanide-contaminated soil. |
Author | Banks, M. Katherine Paul Schwab, A. Kang, Dong-Hee Hong, Lee Yen |
Author_xml | – sequence: 1 givenname: Dong-Hee surname: Kang fullname: Kang, Dong-Hee organization: School of Civil Engineering, Purdue University, West Lafayette, IN 47907, United States – sequence: 2 givenname: Lee Yen surname: Hong fullname: Hong, Lee Yen organization: School of Civil Engineering, Purdue University, West Lafayette, IN 47907, United States – sequence: 3 givenname: A. surname: Paul Schwab fullname: Paul Schwab, A. organization: Department of Agronomy, Purdue University, West Lafayette, IN 47907, United States – sequence: 4 givenname: M. Katherine surname: Banks fullname: Banks, M. Katherine email: kbanks@purdue.edu organization: School of Civil Engineering, Purdue University, West Lafayette, IN 47907, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19218833$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17555792$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk-LFDEQxYOsuLOrX0Hbg956TDpJd3ISGfwHC4q6eAw16cpOhu5kTLoX1k9vhhlZ8TJ7ChS_9_KoehfkLMSAhLxkdMkoa99sl3aDY8y7DSZcNpR2SyqWVDaPyIKpTtes0eqMLCgVsm4ll-fkIuctpUUs9RNyzjopZaebBfn5rRjdwlBFV31Nc84eQrUeZqxcimNlY5hg9AEm7Ksc_VD5UE0brNLG_z4G2EvtHYR4g8HbajdAmPJT8tjBkPHZ8b0k1x_e_1h9qq--fPy8endVgxRyqtE5qQX2HW-bXqCCxsnOCUTuqOCCStEqAWwtewtlxiwHK3vFWM97ydbAL8nrg-8uxV8z5smMPlscSgiMczat4lqXdZwERVmJ0LI7CTZUlWhtexJkQrFOK1bA50dwXo_Ym13yI6Q78_cKBXh1BCBbGFyCYH2-53TDlOK8cPrA2RRzTujuEWr2zTBb808zzL4ZhgpTmlG0b__TWj_B5MuBE_jhQQ4vDg4OooGbVBJef28o45Qq0TbtfserA4Hl4rcek8nWY7DY-4R2Mn30D_jnD5Xv5jg |
CODEN | CMSHAF |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2009_05_030 crossref_primary_10_1007_s00244_007_9101_6 crossref_primary_10_1016_j_cej_2020_125623 crossref_primary_10_1016_j_jclepro_2021_126946 crossref_primary_10_1016_j_ecoenv_2008_05_007 crossref_primary_10_1007_s11356_009_0173_x crossref_primary_10_1007_s11356_013_2341_2 crossref_primary_10_1007_s11274_019_2643_8 crossref_primary_10_1007_s13762_014_0571_6 crossref_primary_10_1080_10643389_2010_481597 crossref_primary_10_4491_eer_2021_308 crossref_primary_10_1016_j_envpol_2022_119240 crossref_primary_10_1002_smll_202302692 crossref_primary_10_1007_s11270_013_1522_4 crossref_primary_10_1111_j_1462_2920_2009_02118_x crossref_primary_10_1016_j_scitotenv_2016_07_040 |
Cites_doi | 10.1128/AEM.63.7.2729-2734.1997 10.1016/0003-9861(87)90019-1 10.1021/es030400x 10.2134/jeq1994.00472425002300040024x 10.1021/es051224q 10.1046/j.0016-8025.2003.01069.x 10.1021/es00050a014 10.1073/pnas.81.10.3059 10.1002/jsfa.2740660413 10.1016/j.envpol.2003.08.002 10.1016/S0041-0101(99)00128-2 10.1002/9780470166468.ch4 10.1111/j.1462-2920.2005.00902.x 10.1016/S0032-9592(99)00014-X 10.1104/pp.65.6.1199 10.1006/rtph.1996.0032 10.1021/es048799s 10.1016/S0141-0229(97)00171-3 10.2113/3.2.471 10.1016/j.chemosphere.2004.02.008 |
ContentType | Journal Article |
Copyright | 2007 Elsevier Ltd 2008 INIST-CNRS |
Copyright_xml | – notice: 2007 Elsevier Ltd – notice: 2008 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7ST C1K SOI 7QO 7T7 7TV 8FD FR3 P64 7S9 L.6 7X8 |
DOI | 10.1016/j.chemosphere.2007.04.052 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Environment Abstracts Environmental Sciences and Pollution Management Biotechnology Research Abstracts Technology Research Database Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biotechnology Research Abstracts Environment Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology Applied Sciences |
EISSN | 1879-1298 |
EndPage | 1498 |
ExternalDocumentID | 17555792 19218833 10_1016_j_chemosphere_2007_04_052 US201300846269 S0045653507005802 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM 7ST C1K SOI 7QO 7T7 7TV 8FD FR3 P64 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-a545t-eff594ed7362d4e8a2f57f4ee3f0434054684a1b5dcae3f1c3ac5d811d3d51ba3 |
IEDL.DBID | AIKHN |
ISSN | 0045-6535 |
IngestDate | Thu Jul 10 19:27:51 EDT 2025 Fri Jul 11 13:14:34 EDT 2025 Fri Jul 11 16:10:09 EDT 2025 Fri Jul 11 02:47:37 EDT 2025 Mon Jul 21 05:37:35 EDT 2025 Mon Jul 21 09:17:53 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Tue Jul 01 02:23:17 EDT 2025 Wed Dec 27 19:14:15 EST 2023 Fri Feb 23 02:20:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Soil Cyanide Prussian blue Groundwater Contamination Phytoremediation Monocotyledones Radiolabelling In situ Cyanides Soil pollution Industry Linum usitatissimum Rhizosphere Sorghum bicolor Linaceae Decontamination Gramineae Dicotyledones Angiospermae Spermatophyta Water pollution Bioremediation Ground water |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a545t-eff594ed7362d4e8a2f57f4ee3f0434054684a1b5dcae3f1c3ac5d811d3d51ba3 |
Notes | http://dx.doi.org/10.1016/j.chemosphere.2007.04.052 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 17555792 |
PQID | 14817981 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_68399129 proquest_miscellaneous_47554957 proquest_miscellaneous_20804366 proquest_miscellaneous_14817981 pubmed_primary_17555792 pascalfrancis_primary_19218833 crossref_primary_10_1016_j_chemosphere_2007_04_052 crossref_citationtrail_10_1016_j_chemosphere_2007_04_052 fao_agris_US201300846269 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2007_04_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-11-01 |
PublicationDateYYYYMMDD | 2007-11-01 |
PublicationDate_xml | – month: 11 year: 2007 text: 2007-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2007 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Jahn, Haderlein, Meckenstock (bib10) 2006; 8 Nambisan, Sundaresan (bib18) 1994; 66 Reeves, M., 2000. Treatment of fluoride and iron cyanides using willow: a greenhouse feasibility study. Master’s Thesis. Cornell University. Ithaca, NY, USA. Miller, Conn (bib17) 1980; 65 Bennett, Tucker, Maunder (bib3) 1990 Way (bib27) 1981 Vetter (bib26) 2000; 38 APHA (bib1) 1998 Dursun, Calik, Aksu (bib7) 1999; 34 Kang, D.H., 2006. Phytoremediation of cyanide contaminated soil. PhD Dissertation. Purdue University, West Lafayette, IN. Dumestre, Chone, Portal, Gerard, Berthelin (bib5) 1997; 63 Trapp, Larsen, Pirandello, Danquah-Boakye (bib25) 2003; 3 Lee, Banks (bib14) 1993; 28 Thornton (bib24) 1917 Meeussen, Keizer, van Riemsdijk, de Haan (bib16) 1994; 23 Yu, Trapp, Puhua, Chang, Xishi (bib28) 2004; 56 Larsen, Ucisik, Trapp (bib13) 2005; 39 Mansfeldt, Leyer, Barmettler, Kretzschmar (bib15) 2004; 3 Theis, Young, Huang, Knutesn (bib23) 1994; 28 Ebbs, Bushey, Poston, Kosma, Samiotakis, Dzombak (bib8) 2003; 26 Larsen, Trapp (bib12) 2006; 40 Peiser, Wang, Hoffman, Yang, Walsh (bib19) 1984; 81 Chen, Banks, Schwab (bib4) 2003; 37 Samiotakis, Ebbs (bib21) 2004; 127 Shifrin, Beck, Gauthier, Chapnick, Goodman (bib22) 1996; 23 Hosel, Tober, Eklund, Conn (bib9) 1987; 252 Dunbar, Heintz (bib6) 1997; 45 Barclay, Hart, Knowles, Meeussen, Tett (bib2) 1998; 22 Way (10.1016/j.chemosphere.2007.04.052_bib27) 1981 Jahn (10.1016/j.chemosphere.2007.04.052_bib10) 2006; 8 Samiotakis (10.1016/j.chemosphere.2007.04.052_bib21) 2004; 127 Lee (10.1016/j.chemosphere.2007.04.052_bib14) 1993; 28 10.1016/j.chemosphere.2007.04.052_bib20 Nambisan (10.1016/j.chemosphere.2007.04.052_bib18) 1994; 66 Larsen (10.1016/j.chemosphere.2007.04.052_bib13) 2005; 39 Shifrin (10.1016/j.chemosphere.2007.04.052_bib22) 1996; 23 Larsen (10.1016/j.chemosphere.2007.04.052_bib12) 2006; 40 Peiser (10.1016/j.chemosphere.2007.04.052_bib19) 1984; 81 APHA (10.1016/j.chemosphere.2007.04.052_bib1) 1998 Chen (10.1016/j.chemosphere.2007.04.052_bib4) 2003; 37 Thornton (10.1016/j.chemosphere.2007.04.052_bib24) 1917 Yu (10.1016/j.chemosphere.2007.04.052_bib28) 2004; 56 Bennett (10.1016/j.chemosphere.2007.04.052_bib3) 1990 Mansfeldt (10.1016/j.chemosphere.2007.04.052_bib15) 2004; 3 Hosel (10.1016/j.chemosphere.2007.04.052_bib9) 1987; 252 Dumestre (10.1016/j.chemosphere.2007.04.052_bib5) 1997; 63 Dunbar (10.1016/j.chemosphere.2007.04.052_bib6) 1997; 45 Dursun (10.1016/j.chemosphere.2007.04.052_bib7) 1999; 34 Miller (10.1016/j.chemosphere.2007.04.052_bib17) 1980; 65 Trapp (10.1016/j.chemosphere.2007.04.052_bib25) 2003; 3 Ebbs (10.1016/j.chemosphere.2007.04.052_bib8) 2003; 26 Meeussen (10.1016/j.chemosphere.2007.04.052_bib16) 1994; 23 Theis (10.1016/j.chemosphere.2007.04.052_bib23) 1994; 28 Barclay (10.1016/j.chemosphere.2007.04.052_bib2) 1998; 22 10.1016/j.chemosphere.2007.04.052_bib11 Vetter (10.1016/j.chemosphere.2007.04.052_bib26) 2000; 38 |
References_xml | – volume: 45 start-page: 283 year: 1997 end-page: 391 ident: bib6 article-title: Chemistry of transition metal cyanide compounds: modern perspectives publication-title: Prog. Inorgan. Chem. – volume: 63 start-page: 2729 year: 1997 end-page: 2734 ident: bib5 article-title: Cyanide degradation under alkaline conditions by a strain of publication-title: Appl. Environ. Microbiol. – volume: 39 start-page: 2135 year: 2005 end-page: 2142 ident: bib13 article-title: Uptake, metabolism, accumulation and toxicity of cyanide in willow trees publication-title: Environ. Sci. Technol. – year: 1990 ident: bib3 article-title: Modern Grain Sorghum Production – volume: 37 start-page: 5778 year: 2003 end-page: 5782 ident: bib4 article-title: Pyrene degradation in the rhizosphere of tall fescue ( publication-title: Environ. Sci. Technol. – volume: 22 start-page: 223 year: 1998 end-page: 231 ident: bib2 article-title: Biodegradation of metal cyanides by mixed and pure cultures of fungi publication-title: Enzyme Microb. Technol. – volume: 28 start-page: 99 year: 1994 end-page: 105 ident: bib23 article-title: Leachate characteristics and composition of cyanide-bearing wastes from manufactured gas plants publication-title: Environ. Sci. Technol. – reference: Reeves, M., 2000. Treatment of fluoride and iron cyanides using willow: a greenhouse feasibility study. Master’s Thesis. Cornell University. Ithaca, NY, USA. – volume: 65 start-page: 1199 year: 1980 end-page: 1202 ident: bib17 article-title: Metabolism of hydrogen cyanide by higher plants publication-title: Plant Physiol. – volume: 34 start-page: 901 year: 1999 end-page: 908 ident: bib7 article-title: Degradation of ferrous (II) cyanide complex ions by publication-title: Process Biochem. – volume: 38 start-page: 11 year: 2000 end-page: 36 ident: bib26 article-title: Plant cyanogenic glycosides publication-title: Toxicon – volume: 28 start-page: 2187 year: 1993 end-page: 2198 ident: bib14 article-title: Bioremediation of petroleum contaminated soil using vegetation: a microbial study publication-title: J. Environ. Sci. A – volume: 127 start-page: 169 year: 2004 end-page: 173 ident: bib21 article-title: Possible evidence for transport of an iron cyanide complex by plants publication-title: Environ. Pollut. – volume: 3 start-page: 128 year: 2003 end-page: 137 ident: bib25 article-title: Feasibility of cyanide elimination using plants publication-title: Europ. J. Min. Proc. Environ. Prot. – reference: Kang, D.H., 2006. Phytoremediation of cyanide contaminated soil. PhD Dissertation. Purdue University, West Lafayette, IN. – volume: 23 start-page: 106 year: 1996 end-page: 116 ident: bib22 article-title: Chemistry, toxicology, and human health risk of cyanide compounds in soils at former manufactured gas plants sites publication-title: Regulatory Toxic. Pharmacol. – volume: 8 start-page: 362 year: 2006 end-page: 367 ident: bib10 article-title: Reduction of Prussian blue by the two iron-reducing microorganisms publication-title: Environ. Microbiol. – volume: 56 start-page: 121 year: 2004 end-page: 126 ident: bib28 article-title: Metabolism of cyanide by Chinese vegetation publication-title: Chemosphere – year: 1998 ident: bib1 article-title: Standard Methods for Examination of Water and Wastewater – volume: 3 start-page: 471 year: 2004 end-page: 479 ident: bib15 article-title: Cyanide leaching from soil developed from coking plant purifier waste as influenced by citrate publication-title: Vadose Zone J. – volume: 66 start-page: 503 year: 1994 end-page: 507 ident: bib18 article-title: Distribution of linamarin and its metabolising enzymes in cassava tissues publication-title: J. Sci. Food Agric. – volume: 81 start-page: 3059 year: 1984 end-page: 3063 ident: bib19 article-title: Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene publication-title: Proc. Natl. Acad. Sci. USA – volume: 252 start-page: 152 year: 1987 end-page: 162 ident: bib9 article-title: Characterization of beta-glucosidases with high specificity for the cyanogenic glucoside dhurrin in publication-title: Arch. Biochem. Biophys. – year: 1917 ident: bib24 article-title: The American System of Flax and Other Fiber Culture – volume: 26 start-page: 1467 year: 2003 end-page: 1478 ident: bib8 article-title: Transport and metabolism of free cyanide and iron cyanide complexes by willow publication-title: Plant Cell Environ. – volume: 40 start-page: 1956 year: 2006 end-page: 1961 ident: bib12 article-title: Uptake of iron cyanide complexes into willow trees publication-title: Environ. Sci. Technol. – volume: 23 start-page: 785 year: 1994 end-page: 792 ident: bib16 article-title: Solubility of cyanide in contaminated soils publication-title: J. Environ. Qual. – year: 1981 ident: bib27 article-title: Pharmacologic aspects of cyanide and its antagonism publication-title: Cyanide in Biology – volume: 63 start-page: 2729 year: 1997 ident: 10.1016/j.chemosphere.2007.04.052_bib5 article-title: Cyanide degradation under alkaline conditions by a strain of Fusarium solani isolated from contaminated soils publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.63.7.2729-2734.1997 – volume: 252 start-page: 152 year: 1987 ident: 10.1016/j.chemosphere.2007.04.052_bib9 article-title: Characterization of beta-glucosidases with high specificity for the cyanogenic glucoside dhurrin in Sorghum biocolor (L.) moench seedlings publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(87)90019-1 – volume: 37 start-page: 5778 year: 2003 ident: 10.1016/j.chemosphere.2007.04.052_bib4 article-title: Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.) publication-title: Environ. Sci. Technol. doi: 10.1021/es030400x – volume: 23 start-page: 785 year: 1994 ident: 10.1016/j.chemosphere.2007.04.052_bib16 article-title: Solubility of cyanide in contaminated soils publication-title: J. Environ. Qual. doi: 10.2134/jeq1994.00472425002300040024x – volume: 28 start-page: 2187 year: 1993 ident: 10.1016/j.chemosphere.2007.04.052_bib14 article-title: Bioremediation of petroleum contaminated soil using vegetation: a microbial study publication-title: J. Environ. Sci. A – year: 1998 ident: 10.1016/j.chemosphere.2007.04.052_bib1 – volume: 40 start-page: 1956 year: 2006 ident: 10.1016/j.chemosphere.2007.04.052_bib12 article-title: Uptake of iron cyanide complexes into willow trees publication-title: Environ. Sci. Technol. doi: 10.1021/es051224q – volume: 26 start-page: 1467 year: 2003 ident: 10.1016/j.chemosphere.2007.04.052_bib8 article-title: Transport and metabolism of free cyanide and iron cyanide complexes by willow publication-title: Plant Cell Environ. doi: 10.1046/j.0016-8025.2003.01069.x – volume: 28 start-page: 99 year: 1994 ident: 10.1016/j.chemosphere.2007.04.052_bib23 article-title: Leachate characteristics and composition of cyanide-bearing wastes from manufactured gas plants publication-title: Environ. Sci. Technol. doi: 10.1021/es00050a014 – volume: 81 start-page: 3059 year: 1984 ident: 10.1016/j.chemosphere.2007.04.052_bib19 article-title: Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.81.10.3059 – ident: 10.1016/j.chemosphere.2007.04.052_bib20 – year: 1990 ident: 10.1016/j.chemosphere.2007.04.052_bib3 – volume: 66 start-page: 503 year: 1994 ident: 10.1016/j.chemosphere.2007.04.052_bib18 article-title: Distribution of linamarin and its metabolising enzymes in cassava tissues publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.2740660413 – year: 1981 ident: 10.1016/j.chemosphere.2007.04.052_bib27 article-title: Pharmacologic aspects of cyanide and its antagonism – volume: 3 start-page: 128 year: 2003 ident: 10.1016/j.chemosphere.2007.04.052_bib25 article-title: Feasibility of cyanide elimination using plants publication-title: Europ. J. Min. Proc. Environ. Prot. – ident: 10.1016/j.chemosphere.2007.04.052_bib11 – volume: 127 start-page: 169 year: 2004 ident: 10.1016/j.chemosphere.2007.04.052_bib21 article-title: Possible evidence for transport of an iron cyanide complex by plants publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2003.08.002 – volume: 38 start-page: 11 year: 2000 ident: 10.1016/j.chemosphere.2007.04.052_bib26 article-title: Plant cyanogenic glycosides publication-title: Toxicon doi: 10.1016/S0041-0101(99)00128-2 – volume: 45 start-page: 283 year: 1997 ident: 10.1016/j.chemosphere.2007.04.052_bib6 article-title: Chemistry of transition metal cyanide compounds: modern perspectives publication-title: Prog. Inorgan. Chem. doi: 10.1002/9780470166468.ch4 – volume: 8 start-page: 362 year: 2006 ident: 10.1016/j.chemosphere.2007.04.052_bib10 article-title: Reduction of Prussian blue by the two iron-reducing microorganisms Geobacter metallireducens and Shewanella alga publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2005.00902.x – volume: 34 start-page: 901 year: 1999 ident: 10.1016/j.chemosphere.2007.04.052_bib7 article-title: Degradation of ferrous (II) cyanide complex ions by Pseudomonas fluorescens publication-title: Process Biochem. doi: 10.1016/S0032-9592(99)00014-X – volume: 65 start-page: 1199 year: 1980 ident: 10.1016/j.chemosphere.2007.04.052_bib17 article-title: Metabolism of hydrogen cyanide by higher plants publication-title: Plant Physiol. doi: 10.1104/pp.65.6.1199 – volume: 23 start-page: 106 year: 1996 ident: 10.1016/j.chemosphere.2007.04.052_bib22 article-title: Chemistry, toxicology, and human health risk of cyanide compounds in soils at former manufactured gas plants sites publication-title: Regulatory Toxic. Pharmacol. doi: 10.1006/rtph.1996.0032 – volume: 39 start-page: 2135 year: 2005 ident: 10.1016/j.chemosphere.2007.04.052_bib13 article-title: Uptake, metabolism, accumulation and toxicity of cyanide in willow trees publication-title: Environ. Sci. Technol. doi: 10.1021/es048799s – volume: 22 start-page: 223 year: 1998 ident: 10.1016/j.chemosphere.2007.04.052_bib2 article-title: Biodegradation of metal cyanides by mixed and pure cultures of fungi publication-title: Enzyme Microb. Technol. doi: 10.1016/S0141-0229(97)00171-3 – volume: 3 start-page: 471 year: 2004 ident: 10.1016/j.chemosphere.2007.04.052_bib15 article-title: Cyanide leaching from soil developed from coking plant purifier waste as influenced by citrate publication-title: Vadose Zone J. doi: 10.2113/3.2.471 – volume: 56 start-page: 121 year: 2004 ident: 10.1016/j.chemosphere.2007.04.052_bib28 article-title: Metabolism of cyanide by Chinese vegetation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.02.008 – year: 1917 ident: 10.1016/j.chemosphere.2007.04.052_bib24 |
SSID | ssj0001659 |
Score | 1.9753451 |
Snippet | The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (
Sorghum bicolor var. P721) and flax (
Linum... The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (Sorghum bicolor var. P721) and flax (Linum... Various aspects related to removal of Prussian blue from contaminated soil in the rhizosphere of cyanogenic plants were discussed. Charcoal was used to trap... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1492 |
SubjectTerms | analysis Applied sciences Biodegradation, Environmental Biological and medical sciences bioremediation Biotechnology biotransformation Contamination Cyanide cyanides cyanogenic plants Decontamination. Miscellaneous Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Environment and pollution Exact sciences and technology Ferrocyanides Ferrocyanides - analysis flax Flax - growth & development Fundamental and applied biological sciences. Psychology grain sorghum Groundwater growth & development Industrial applications and implications. Economical aspects Linum Linum usitatissimum Miscellaneous Phytoremediation Plant Shoots Plant Shoots - growth & development polluted soils Pollution Pollution, environment geology Prussian blue Rhizome Rhizome - growth & development rhizosphere Soil Soil and sediments pollution soil microorganisms Soil Pollutants Soil Pollutants - analysis soil pollution Sorghum Sorghum - growth & development Sorghum bicolor |
Title | Removal of Prussian blue from contaminated soil in the rhizosphere of cyanogenic plants |
URI | https://dx.doi.org/10.1016/j.chemosphere.2007.04.052 https://www.ncbi.nlm.nih.gov/pubmed/17555792 https://www.proquest.com/docview/14817981 https://www.proquest.com/docview/20804366 https://www.proquest.com/docview/47554957 https://www.proquest.com/docview/68399129 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9xADBZ50MeltOkj7mM7hV6d2J4Zewy9hCVh20IobZfmZmbnUVy29rLePeTS317Jj2xzMAR6M2YEM5IsfbY_SQDvMyttqjIX6sjwkFJAqOTCh3FsOcIJLZxpCbKX6WwuPl3Jqz2YDrUwRKvsY38X09to3d857bV5uipLqvElNMIR0NBsPGooeZjwPEXXPjz7-Hl2eROQ41R2KFjIkATuw7sdzQtV87tuqITf9Q0NxUkkk7E0te91TfxJ3aAKfTf7Yhyctknq4jE86tElO-sO8AT2XHUED6bDULcjuHfedqm-fgo_vuKO0M1Y7dmX9bahYkq2WG4do4oTRhR2TTQZRKSsqcslKyuGYJGtiaTXnYREzbWuanTC0rDVkjg1z2B-cf59Ogv7KQuhRvS0CZ33MhfOZpjKrHBKJ15mXjjHfSQ44jmRKqHjhbRG473YcG2kVWRMK-OF5s_hoKordwzMZkmac2WtF1Jo65TgxhhLr3ARXiUBqEGphelbkNMkjGUxcM1-Ff_Yg0ZkZkUkCrRHAMmN6Krrw3EXoQ-D5YpbTlVgvriL-DFau9A_MdwW828JHSNCvIaHDGByywV2e8oRMynOA3g7-ESBJqa_MLpy9bbBdy1FTeLi8RUJonjB03R8hcgQBeYyG1-RIvDNEcsF8KJzyN0OUVZmefLy_5TzCh62n7nbsszXcLBZb90bxGebxQT2T_7Ek_4p_Atl1zsa |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIigXBOXR8GiNxDVtEtuJI3FBq1YLlApBV_RmeW0HBS3JarN76IXfzkweLD1EqsQtsjySPTP2fEm-mQF4mznpUpX50ESWhxQCQiXnRRjHjiOcMMLbliB7kU5n4uOVvNqByZALQ7TK_u7v7vT2tu5HTnptnizLknJ8CY1wBDTUG48KSt4VeHzpdB7_3vI84lR2GFjIkKbfhzdbkhcq5lfdUAK_78sZiuNIJmNB6k5hamJPmgYVWHSdL8ahaRuizh7Bwx5bsvfd8h_Djq_2YW8ytHTbh3unbY3q6yfw_SuuCJ2M1QX7sto0lErJ5ouNZ5RvwojAbogkg3iUNXW5YGXFECqyFVH0up2QqL02VY0uWFq2XBCj5inMzk4vJ9Ow77EQGsRO69AXhcyFdxkGMie8Mkkhs0J4z4tIcERzIlXCxHPprMGx2HJjpVNkSifjueHPYLeqK38AzGVJmnPlXCGkMM4rwa21jl7gInxKAlCDUrXtC5BTH4yFHphmP_U_9qAGmZmOhEZ7BJD8FV12VThuI_RusJy-4VIao8VtxA_Q2tr8wMtWz74ltI0I0RpuMoDDGy6wXVOOiElxHsDR4BMaTUz_YEzl602Db1qKSsTF4zMSxPCCp-n4DJEhBsxlNj4jRdibI5IL4HnnkNsVoqzM8uTF_ynnCPaml5_P9fmHi08v4UH7wbtN0HwFu-vVxr9GpLaeH7Yn8Q8DBzve |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+Prussian+blue+from+contaminated+soil+in+the+rhizosphere+of+cyanogenic+plants&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Kang%2C+D+H&rft.au=Ho%C3%A0i%2C+%C4%90%C3%B4ng&rft.au=Schwab%2C+A+P&rft.au=Banks%2C+M+K&rft.date=2007-11-01&rft.issn=0045-6535&rft.volume=69&rft.issue=9+p.1492-1498&rft.spage=1492&rft.epage=1498&rft_id=info:doi/10.1016%2Fj.chemosphere.2007.04.052&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |