Selective Recognition of RNA Substrates by ADAR Deaminase Domains

Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2 have different substrate selectivity, which is believed to mainly originate from the proteins’ deaminase domains (hADAR1d and hADAR2d, respecti...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 57; no. 10; pp. 1640 - 1651
Main Authors Wang, Yuru, Park, SeHee, Beal, Peter A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2 have different substrate selectivity, which is believed to mainly originate from the proteins’ deaminase domains (hADAR1d and hADAR2d, respectively). RNA-seq of the Saccharomyces cerevisiae transcriptome subjected to ADAR-catalyzed RNA editing identified substrates with common secondary structure features preferentially edited by hADAR1d over hADAR2d. The relatively small size and efficient reaction of one of these substrates suggested it could be useful for further study of the hADAR1d reaction. Indeed, a short hairpin stem from the S. cerevisiae HER1 mRNA was efficiently deaminated by hADAR1d and used to generate an hADAR1d-specific fluorescent reporter of editing activity. Using substrates preferred by either hADAR1d or hADAR2d in vitro, we found that a chimeric protein bearing an RNA-binding loop from hADAR2d grafted onto hADAR1d showed ADAR2-like selectivity. Finally, a high-throughput mutagenesis analysis (Sat-FACS-Seq) of conserved residues in an RNA-binding loop of hADAR1d revealed essential amino acids for function, advancing our understanding of RNA recognition by this domain.
AbstractList Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2 have different substrate selectivity, which is believed to mainly originate from the proteins' deaminase domains (hADAR1d and hADAR2d, respectively). RNA-seq of the Saccharomyces cerevisiae transcriptome subjected to ADAR-catalyzed RNA editing identified substrates with common secondary structure features preferentially edited by hADAR1d over hADAR2d. The relatively small size and efficient reaction of one of these substrates suggested it could be useful for further study of the hADAR1d reaction. Indeed, a short hairpin stem from the S. cerevisiae HER1 mRNA was efficiently deaminated by hADAR1d and used to generate an hADAR1d-specific fluorescent reporter of editing activity. Using substrates preferred by either hADAR1d or hADAR2d in vitro, we found that a chimeric protein bearing an RNA-binding loop from hADAR2d grafted onto hADAR1d showed ADAR2-like selectivity. Finally, a high-throughput mutagenesis analysis (Sat-FACS-Seq) of conserved residues in an RNA-binding loop of hADAR1d revealed essential amino acids for function, advancing our understanding of RNA recognition by this domain.
Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2 have different substrate selectivity, which is believed to mainly originate from the proteins’ deaminase domains (hADAR1d and hADAR2d, respectively). RNA-seq of the S. cerevisiae transcriptome subjected to ADAR-catalyzed RNA editing identified substrates with common secondary structure features preferentially edited by hADAR1d over hADAR2d. The relatively small size and efficient reaction of one of these substrates suggested it could be useful for further study of the hADAR1d reaction. Indeed, a short hairpin stem from the S. cerevisiae HER1 mRNA was efficiently deaminated by hADAR1d and used to generate an hADAR1d-specific fluorescent reporter of editing activity. Using substrates preferred by either hADAR1d or hADAR2d in vitro , we found that a chimeric protein bearing an RNA binding loop from hADAR2d grafted onto hADAR1d showed ADAR2-like selectivity. Finally, a high-throughput mutagenesis analysis (Sat-FACS-Seq) of conserved residues in an RNA-binding loop of hADAR1d revealed essential amino acids for function and advances our understanding of RNA recognition by this domain.
Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2 have different substrate selectivity, which is believed to mainly originate from the proteins' deaminase domains (hADAR1d and hADAR2d, respectively). RNA-seq of the Saccharomyces cerevisiae transcriptome subjected to ADAR-catalyzed RNA editing identified substrates with common secondary structure features preferentially edited by hADAR1d over hADAR2d. The relatively small size and efficient reaction of one of these substrates suggested it could be useful for further study of the hADAR1d reaction. Indeed, a short hairpin stem from the S. cerevisiae HER1 mRNA was efficiently deaminated by hADAR1d and used to generate an hADAR1d-specific fluorescent reporter of editing activity. Using substrates preferred by either hADAR1d or hADAR2d in vitro, we found that a chimeric protein bearing an RNA-binding loop from hADAR2d grafted onto hADAR1d showed ADAR2-like selectivity. Finally, a high-throughput mutagenesis analysis (Sat-FACS-Seq) of conserved residues in an RNA-binding loop of hADAR1d revealed essential amino acids for function, advancing our understanding of RNA recognition by this domain.Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2 have different substrate selectivity, which is believed to mainly originate from the proteins' deaminase domains (hADAR1d and hADAR2d, respectively). RNA-seq of the Saccharomyces cerevisiae transcriptome subjected to ADAR-catalyzed RNA editing identified substrates with common secondary structure features preferentially edited by hADAR1d over hADAR2d. The relatively small size and efficient reaction of one of these substrates suggested it could be useful for further study of the hADAR1d reaction. Indeed, a short hairpin stem from the S. cerevisiae HER1 mRNA was efficiently deaminated by hADAR1d and used to generate an hADAR1d-specific fluorescent reporter of editing activity. Using substrates preferred by either hADAR1d or hADAR2d in vitro, we found that a chimeric protein bearing an RNA-binding loop from hADAR2d grafted onto hADAR1d showed ADAR2-like selectivity. Finally, a high-throughput mutagenesis analysis (Sat-FACS-Seq) of conserved residues in an RNA-binding loop of hADAR1d revealed essential amino acids for function, advancing our understanding of RNA recognition by this domain.
Author Park, SeHee
Beal, Peter A
Wang, Yuru
AuthorAffiliation Department of Chemistry
University of California
AuthorAffiliation_xml – name: University of California
– name: Department of Chemistry
– name: 1 Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
Author_xml – sequence: 1
  givenname: Yuru
  surname: Wang
  fullname: Wang, Yuru
– sequence: 2
  givenname: SeHee
  surname: Park
  fullname: Park, SeHee
– sequence: 3
  givenname: Peter A
  orcidid: 0000-0003-4855-7185
  surname: Beal
  fullname: Beal, Peter A
  email: pabeal@ucdavis.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29457714$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1LHDEYhUOx1FX7CwplLnszazKTj8lNYXD7IUiF1fvwJvuORmYSO5kR_Pdm2VW0F_YqhPc8h8M5R-QgxICEfGF0yWjFTsGlpfXR3eKwVJYyRukHsmCioiXXWhyQBaVUlpWW9JAcpXSXv5wq_okcVpoLpRhfkPYKe3STf8BijS7eBD_5GIrYFes_bXE12zSNMGEq7GPRrtp1sUIYfICExSoO4EM6IR876BN-3r_H5Prnj-uz3-XF5a_zs_aiBMH5VALT0m7qqoOuQRCOWiVU7WRHldxwJyoA1aHtWMdUw6xTttmAlc4BaCZpfUy-72zvZzvgxmHIwXpzP_oBxkcTwZu3l-BvzU18MKLRjeQ8G3zbG4zx74xpMoNPDvseAsY5mYoxqWtFFfu_NBfJ60bwKku_vo71kue54SzQO4EbY0ojdsb5CbYl55S-N4ya7Zomr2n2a5r9mpmt_2Gf7d-nTnfU9ngX5zHkWd4lngDBb7da
CitedBy_id crossref_primary_10_1038_s41467_023_43633_0
crossref_primary_10_1016_j_micpath_2024_106796
crossref_primary_10_1074_jbc_TM118_004166
crossref_primary_10_1261_rna_079990_124
crossref_primary_10_1080_10409238_2020_1856768
crossref_primary_10_1186_s12915_019_0736_3
crossref_primary_10_1002_chem_202001667
crossref_primary_10_1093_nar_gkz815
crossref_primary_10_1021_acsomega_2c03568
crossref_primary_10_1093_nar_gky800
crossref_primary_10_1021_acs_accounts_3c00390
crossref_primary_10_1016_j_ymthe_2023_01_005
crossref_primary_10_1038_s41467_020_18862_2
crossref_primary_10_1038_s41587_024_02430_w
crossref_primary_10_1021_acschembio_0c00260
crossref_primary_10_1002_wrna_1863
crossref_primary_10_1021_acs_biochem_2c00686
crossref_primary_10_1038_s41467_022_29138_2
crossref_primary_10_1016_j_abb_2025_110353
crossref_primary_10_1016_j_jmb_2019_02_025
crossref_primary_10_1016_j_molcel_2025_02_017
crossref_primary_10_1038_s44318_024_00314_y
crossref_primary_10_1038_s41467_021_22489_2
crossref_primary_10_1016_j_chembiol_2018_10_025
crossref_primary_10_1371_journal_pone_0235102
crossref_primary_10_1261_rna_079518_122
crossref_primary_10_1146_annurev_virology_091919_065320
crossref_primary_10_1016_j_isci_2022_104836
crossref_primary_10_1261_rna_079266_122
crossref_primary_10_3390_genes15070898
crossref_primary_10_1007_s10822_024_00565_1
crossref_primary_10_1016_j_bbagrm_2018_10_011
crossref_primary_10_1016_j_ymeth_2018_10_019
crossref_primary_10_1021_acs_biochem_3c00405
crossref_primary_10_1261_rna_072728_119
crossref_primary_10_1016_j_jbc_2022_102267
crossref_primary_10_1016_j_omtn_2024_102284
crossref_primary_10_1021_acs_orglett_9b02929
crossref_primary_10_1093_nar_gkad098
Cites_doi 10.1002/wrna.89
10.1074/jbc.271.21.12221
10.1002/wrna.1319
10.1126/science.1113150
10.1021/acschembio.5b00711
10.1261/rna.349107
10.1186/gb-2004-5-2-209
10.1038/nature13802
10.1017/S1355838200000170
10.1093/nar/gkw738
10.1093/nar/gku1345
10.1038/nsmb.3203
10.1073/pnas.1212548109
10.1038/379460a0
10.1074/jbc.M112.366005
10.1021/bi0011577
10.1074/jbc.271.50.31795
10.1038/ncomms1324
10.1038/nature24041
10.1073/pnas.97.23.12541
10.1038/nchembio.2040
10.1021/bi4006539
10.1038/ncomms10715
10.1021/bi001383g
10.1093/nar/gkg681
10.1073/pnas.211419898
10.1016/bs.enz.2017.03.006
10.1080/15476286.2016.1267097
10.1038/nm.3043
10.1126/science.aaq0180
10.1093/nar/gkw799
10.1093/nar/gkw911
10.1017/S135583820101007X
10.1146/annurev.biochem.71.110601.135501
10.1016/j.chembiol.2004.06.009
10.1016/S0076-6879(07)24015-7
10.1002/j.1460-2075.1994.tb06908.x
10.1002/bies.201600187
10.1038/nature21022
10.1038/ng.2414
10.1073/pnas.1009231107
10.1038/nrm.2016.132
10.1126/science.aad8711
10.1021/cb6003838
10.1186/gb-2013-14-4-r36
ContentType Journal Article
Copyright Copyright © 2018 American Chemical Society
Copyright_xml – notice: Copyright © 2018 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/acs.biochem.7b01100
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 1651
ExternalDocumentID PMC5898644
29457714
10_1021_acs_biochem_7b01100
a123276683
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM061115
– fundername: NIH HHS
  grantid: S10 OD018223
– fundername: NCI NIH HHS
  grantid: P30 CA093373
GroupedDBID -
.K2
02
23N
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a544t-a196bd32faf8ea5c0b7573c6f076d4c52aa7febf1f1781bc7b8dab6ccaa91603
IEDL.DBID ACS
ISSN 0006-2960
1520-4995
IngestDate Thu Aug 21 18:04:20 EDT 2025
Thu Jul 10 23:19:29 EDT 2025
Fri Jul 11 10:36:56 EDT 2025
Thu Apr 03 07:08:51 EDT 2025
Tue Jul 01 03:33:39 EDT 2025
Thu Apr 24 23:10:29 EDT 2025
Thu Aug 27 13:44:49 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a544t-a196bd32faf8ea5c0b7573c6f076d4c52aa7febf1f1781bc7b8dab6ccaa91603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4855-7185
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5898644
PMID 29457714
PQID 2004438542
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5898644
proquest_miscellaneous_2116937071
proquest_miscellaneous_2004438542
pubmed_primary_29457714
crossref_citationtrail_10_1021_acs_biochem_7b01100
crossref_primary_10_1021_acs_biochem_7b01100
acs_journals_10_1021_acs_biochem_7b01100
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-13
PublicationDateYYYYMMDD 2018-03-13
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
Polson A. G. (ref45/cit45) 1994; 13
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
Bass B. L. (ref9/cit9) 1997; 3
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – volume: 3
  start-page: 947
  year: 1997
  ident: ref9/cit9
  publication-title: RNA
– ident: ref40/cit40
  doi: 10.1002/wrna.89
– ident: ref14/cit14
  doi: 10.1074/jbc.271.21.12221
– ident: ref39/cit39
  doi: 10.1002/wrna.1319
– ident: ref23/cit23
  doi: 10.1126/science.1113150
– ident: ref31/cit31
  doi: 10.1021/acschembio.5b00711
– ident: ref32/cit32
  doi: 10.1261/rna.349107
– ident: ref42/cit42
  doi: 10.1186/gb-2004-5-2-209
– ident: ref1/cit1
  doi: 10.1038/nature13802
– ident: ref8/cit8
  doi: 10.1017/S1355838200000170
– ident: ref25/cit25
  doi: 10.1093/nar/gkw738
– ident: ref34/cit34
  doi: 10.1093/nar/gku1345
– ident: ref22/cit22
  doi: 10.1038/nsmb.3203
– ident: ref37/cit37
  doi: 10.1073/pnas.1212548109
– ident: ref15/cit15
  doi: 10.1038/379460a0
– ident: ref30/cit30
  doi: 10.1074/jbc.M112.366005
– ident: ref35/cit35
  doi: 10.1021/bi0011577
– ident: ref10/cit10
  doi: 10.1074/jbc.271.50.31795
– ident: ref12/cit12
  doi: 10.1038/ncomms1324
– ident: ref17/cit17
  doi: 10.1038/nature24041
– ident: ref19/cit19
  doi: 10.1073/pnas.97.23.12541
– ident: ref3/cit3
  doi: 10.1038/nchembio.2040
– ident: ref29/cit29
  doi: 10.1021/bi4006539
– ident: ref33/cit33
  doi: 10.1038/ncomms10715
– ident: ref13/cit13
  doi: 10.1021/bi001383g
– ident: ref11/cit11
  doi: 10.1093/nar/gkg681
– ident: ref44/cit44
  doi: 10.1073/pnas.211419898
– ident: ref7/cit7
  doi: 10.1016/bs.enz.2017.03.006
– ident: ref41/cit41
  doi: 10.1080/15476286.2016.1267097
– ident: ref46/cit46
  doi: 10.1038/nm.3043
– ident: ref24/cit24
  doi: 10.1126/science.aaq0180
– ident: ref21/cit21
  doi: 10.1093/nar/gkw799
– ident: ref26/cit26
  doi: 10.1093/nar/gkw911
– ident: ref20/cit20
  doi: 10.1017/S135583820101007X
– ident: ref6/cit6
  doi: 10.1146/annurev.biochem.71.110601.135501
– ident: ref18/cit18
  doi: 10.1016/j.chembiol.2004.06.009
– ident: ref28/cit28
  doi: 10.1016/S0076-6879(07)24015-7
– volume: 13
  start-page: 5701
  year: 1994
  ident: ref45/cit45
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1994.tb06908.x
– ident: ref38/cit38
  doi: 10.1002/bies.201600187
– ident: ref4/cit4
  doi: 10.1038/nature21022
– ident: ref43/cit43
  doi: 10.1038/ng.2414
– ident: ref16/cit16
  doi: 10.1073/pnas.1009231107
– ident: ref5/cit5
  doi: 10.1038/nrm.2016.132
– ident: ref2/cit2
  doi: 10.1126/science.aad8711
– ident: ref36/cit36
  doi: 10.1021/cb6003838
– ident: ref27/cit27
  doi: 10.1186/gb-2013-14-4-r36
SSID ssj0004074
Score 2.4344945
Snippet Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1640
SubjectTerms adenosine
Adenosine Deaminase - chemistry
Adenosine Deaminase - metabolism
Base Sequence
deamination
essential amino acids
fluorescence
Genes, Reporter
Green Fluorescent Proteins - genetics
High-Throughput Screening Assays
Humans
messenger RNA
mutagenesis
Protein Domains
Protein Processing, Post-Translational
recombinant fusion proteins
RNA - chemistry
RNA - metabolism
RNA editing
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - metabolism
Saccharomyces cerevisiae
sequence analysis
Sequence Analysis, RNA
Substrate Specificity
transcriptome
Title Selective Recognition of RNA Substrates by ADAR Deaminase Domains
URI http://dx.doi.org/10.1021/acs.biochem.7b01100
https://www.ncbi.nlm.nih.gov/pubmed/29457714
https://www.proquest.com/docview/2004438542
https://www.proquest.com/docview/2116937071
https://pubmed.ncbi.nlm.nih.gov/PMC5898644
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHODCvpRNRkKIAymNY8fJMWpBCIkeCkjcItuxRQVNEGkP8PXYblIooIprYifKZMZ-tmfeAzgxECiLlAkkhYnyCGexx7Mo9mSAOQvD2JehLU6-7YbXD-TmkT5-K1b_cYKP_Qsuy6boW_moQZMJR3E2D4s4NGFskVD77qsMslWRLptFMjbIvCYZ-vshdjqS5fR09Atj_kyV_Db3XK1Ct67gGaecPDdHQ9GUH78JHf_3WWuwUqFQlIzdZh3mVL4Bm0luVuCDd3SKXF6o23DfgKV2rQm3aQZhJ5tjRkjUqzOPihwVGvW6CbKDkCO7LZF4R0kn6aGO4jbXplSoUwx4Py-34P7q8r597VUiDB6nhAw9bkJUZAHWXEeKU9kSjLJAhrrFwoxIijlnWgnta58ZCCyZiDIuQuMYPLYS1tuwkBe52gVEtGRZIGRsIQHTWrSo0lIFShBll10NODNGSasYKlN3PI791F6sLJVWlmoArv9aKisucyup8TK70_mk0-uYymN28-PaHVJjZXuOwnNVjEqr3ElIEFGCZ7TxLcsNMwCuATtjF5q8FMeEMuaTBrAp55o0sJTf03fy_pOj_qaRpdMne_831T4sG4znyij94AAWhm8jdWhw1FAcuej5BC-kG3I
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BeBgvAzZg5aeREOKBdI3jxMlj1DIV2PpQOmlvke3YooImiLQP46_nzk06OlAFr47tOJc7-7N99x3Aa4RAZWrRkCwXNhBKZoEq0ywwEVcySbLQJBScfD5Jxhfi42V82QaFUSwMDqLBnhp_iX_NLhCeUJmeUxapRV9qz3R2G-4gHOGk1_nw83U05KDlXsa9MkeA3nEN_b0TWpVMs70q_QE1b3pM_rYEnd6Di83gvefJ1_5qqfvm5w1ex__9uvtw0GJSlq-V6AHcstUhHOUV7scXV-wN816i_vj9EPaHXYa4I5ySfRIdnC_ZtPNDqitWOzad5IymJE992zB9xfJRPmUjq8jzprFsVC_UvGoewuz0_Ww4DtqUDIGKhVgGCg1WlxF3yqVWxWagZSwjk7iBTEphYq6UdFa70IUSAbGROi2VTlBNVEYJrR_BXlVX9hiYcEaWkTYZAQTpnB7E1hkbWS0sbcJ68BaFUrQW1RT-spyHBRW2kipaSfWAdz-vMC2zOSXY-La70btNo-9rYo_d1V91WlGglOlWRVW2XjWUx1OIKI0F31EnJM4biXCuB4_XmrR5Kc9ELGUoeiC3dGxTgQjAt59U8y-eCDxOiVxfPPl3Ub2E_fHs_Kw4-zD59BTuIvrzAZZh9Az2lj9W9jkirKV-4Q3qF_ipI9M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQJe9smgGx9GQogH0jWOHSePUbtqDKhQGdJ4imzH1ipoMpH2Yfz1-Nyk0DFViNfEduLLnf1z7u53AK8cBCoS4wzJUGYCJkUayCJJAx1RKeI4DXWMyckfR_HZF3Z-yS83IGlzYdxL1G6k2jvx0aqvC9swDIQneF1NsJLUtCuUZzu7B1vouEPdzvqff2dE9hr-ZXdepg6kt3xDdw-CO5OuV3emv-Dm7ajJP7ah4Q58XU7AR598685nqqt_3uJ2_J8Z7sJ2g01JtlCmPdgw5T4cZKU7l09vyGvio0X9b_h9eNBvK8UduKXZF9Nx6yYZt_FIVUkqS8ajjODS5Clwa6JuSDbIxmRgJEbg1IYMqqmclPUjuBieXvTPgqY0QyA5Y7NAOsNVRUSttImRXPeU4CLSse2JuGCaUymFNcqGNhQOGGuhkkKq2KmLTLGw9SFsllVpngBhVosiUjpFoCCsVT1urDaRUczgYawDb5xQ8say6tw7zWmY48VGUnkjqQ7Q9gPmumE4x0Ib39d3ervsdL0g-Fjf_GWrGbmTMnpXZGmqeY31PBmLEs7omjYhct8IB-s68HihTcuH0pRxIULWAbGiZ8sGSAS-eqecXHlCcJ4gyT47-ndRvYD7nwbD_MO70ftjeOhAoM-zDKOnsDn7MTfPHNCaqefepn4BOasmVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Recognition+of+RNA+Substrates+by+ADAR+Deaminase+Domains&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Wang%2C+Yuru&rft.au=Park%2C+SeHee&rft.au=Beal%2C+Peter+A&rft.date=2018-03-13&rft.eissn=1520-4995&rft.volume=57&rft.issue=10&rft.spage=1640&rft_id=info:doi/10.1021%2Facs.biochem.7b01100&rft_id=info%3Apmid%2F29457714&rft.externalDocID=29457714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon