Selective Recognition of RNA Substrates by ADAR Deaminase Domains
Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2 have different substrate selectivity, which is believed to mainly originate from the proteins’ deaminase domains (hADAR1d and hADAR2d, respecti...
Saved in:
Published in | Biochemistry (Easton) Vol. 57; no. 10; pp. 1640 - 1651 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2 have different substrate selectivity, which is believed to mainly originate from the proteins’ deaminase domains (hADAR1d and hADAR2d, respectively). RNA-seq of the Saccharomyces cerevisiae transcriptome subjected to ADAR-catalyzed RNA editing identified substrates with common secondary structure features preferentially edited by hADAR1d over hADAR2d. The relatively small size and efficient reaction of one of these substrates suggested it could be useful for further study of the hADAR1d reaction. Indeed, a short hairpin stem from the S. cerevisiae HER1 mRNA was efficiently deaminated by hADAR1d and used to generate an hADAR1d-specific fluorescent reporter of editing activity. Using substrates preferred by either hADAR1d or hADAR2d in vitro, we found that a chimeric protein bearing an RNA-binding loop from hADAR2d grafted onto hADAR1d showed ADAR2-like selectivity. Finally, a high-throughput mutagenesis analysis (Sat-FACS-Seq) of conserved residues in an RNA-binding loop of hADAR1d revealed essential amino acids for function, advancing our understanding of RNA recognition by this domain. |
---|---|
AbstractList | Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2 have different substrate selectivity, which is believed to mainly originate from the proteins' deaminase domains (hADAR1d and hADAR2d, respectively). RNA-seq of the Saccharomyces cerevisiae transcriptome subjected to ADAR-catalyzed RNA editing identified substrates with common secondary structure features preferentially edited by hADAR1d over hADAR2d. The relatively small size and efficient reaction of one of these substrates suggested it could be useful for further study of the hADAR1d reaction. Indeed, a short hairpin stem from the S. cerevisiae HER1 mRNA was efficiently deaminated by hADAR1d and used to generate an hADAR1d-specific fluorescent reporter of editing activity. Using substrates preferred by either hADAR1d or hADAR2d in vitro, we found that a chimeric protein bearing an RNA-binding loop from hADAR2d grafted onto hADAR1d showed ADAR2-like selectivity. Finally, a high-throughput mutagenesis analysis (Sat-FACS-Seq) of conserved residues in an RNA-binding loop of hADAR1d revealed essential amino acids for function, advancing our understanding of RNA recognition by this domain. Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2 have different substrate selectivity, which is believed to mainly originate from the proteins’ deaminase domains (hADAR1d and hADAR2d, respectively). RNA-seq of the S. cerevisiae transcriptome subjected to ADAR-catalyzed RNA editing identified substrates with common secondary structure features preferentially edited by hADAR1d over hADAR2d. The relatively small size and efficient reaction of one of these substrates suggested it could be useful for further study of the hADAR1d reaction. Indeed, a short hairpin stem from the S. cerevisiae HER1 mRNA was efficiently deaminated by hADAR1d and used to generate an hADAR1d-specific fluorescent reporter of editing activity. Using substrates preferred by either hADAR1d or hADAR2d in vitro , we found that a chimeric protein bearing an RNA binding loop from hADAR2d grafted onto hADAR1d showed ADAR2-like selectivity. Finally, a high-throughput mutagenesis analysis (Sat-FACS-Seq) of conserved residues in an RNA-binding loop of hADAR1d revealed essential amino acids for function and advances our understanding of RNA recognition by this domain. Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2 have different substrate selectivity, which is believed to mainly originate from the proteins' deaminase domains (hADAR1d and hADAR2d, respectively). RNA-seq of the Saccharomyces cerevisiae transcriptome subjected to ADAR-catalyzed RNA editing identified substrates with common secondary structure features preferentially edited by hADAR1d over hADAR2d. The relatively small size and efficient reaction of one of these substrates suggested it could be useful for further study of the hADAR1d reaction. Indeed, a short hairpin stem from the S. cerevisiae HER1 mRNA was efficiently deaminated by hADAR1d and used to generate an hADAR1d-specific fluorescent reporter of editing activity. Using substrates preferred by either hADAR1d or hADAR2d in vitro, we found that a chimeric protein bearing an RNA-binding loop from hADAR2d grafted onto hADAR1d showed ADAR2-like selectivity. Finally, a high-throughput mutagenesis analysis (Sat-FACS-Seq) of conserved residues in an RNA-binding loop of hADAR1d revealed essential amino acids for function, advancing our understanding of RNA recognition by this domain.Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2 have different substrate selectivity, which is believed to mainly originate from the proteins' deaminase domains (hADAR1d and hADAR2d, respectively). RNA-seq of the Saccharomyces cerevisiae transcriptome subjected to ADAR-catalyzed RNA editing identified substrates with common secondary structure features preferentially edited by hADAR1d over hADAR2d. The relatively small size and efficient reaction of one of these substrates suggested it could be useful for further study of the hADAR1d reaction. Indeed, a short hairpin stem from the S. cerevisiae HER1 mRNA was efficiently deaminated by hADAR1d and used to generate an hADAR1d-specific fluorescent reporter of editing activity. Using substrates preferred by either hADAR1d or hADAR2d in vitro, we found that a chimeric protein bearing an RNA-binding loop from hADAR2d grafted onto hADAR1d showed ADAR2-like selectivity. Finally, a high-throughput mutagenesis analysis (Sat-FACS-Seq) of conserved residues in an RNA-binding loop of hADAR1d revealed essential amino acids for function, advancing our understanding of RNA recognition by this domain. |
Author | Park, SeHee Beal, Peter A Wang, Yuru |
AuthorAffiliation | Department of Chemistry University of California |
AuthorAffiliation_xml | – name: University of California – name: Department of Chemistry – name: 1 Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA |
Author_xml | – sequence: 1 givenname: Yuru surname: Wang fullname: Wang, Yuru – sequence: 2 givenname: SeHee surname: Park fullname: Park, SeHee – sequence: 3 givenname: Peter A orcidid: 0000-0003-4855-7185 surname: Beal fullname: Beal, Peter A email: pabeal@ucdavis.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29457714$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1LHDEYhUOx1FX7CwplLnszazKTj8lNYXD7IUiF1fvwJvuORmYSO5kR_Pdm2VW0F_YqhPc8h8M5R-QgxICEfGF0yWjFTsGlpfXR3eKwVJYyRukHsmCioiXXWhyQBaVUlpWW9JAcpXSXv5wq_okcVpoLpRhfkPYKe3STf8BijS7eBD_5GIrYFes_bXE12zSNMGEq7GPRrtp1sUIYfICExSoO4EM6IR876BN-3r_H5Prnj-uz3-XF5a_zs_aiBMH5VALT0m7qqoOuQRCOWiVU7WRHldxwJyoA1aHtWMdUw6xTttmAlc4BaCZpfUy-72zvZzvgxmHIwXpzP_oBxkcTwZu3l-BvzU18MKLRjeQ8G3zbG4zx74xpMoNPDvseAsY5mYoxqWtFFfu_NBfJ60bwKku_vo71kue54SzQO4EbY0ojdsb5CbYl55S-N4ya7Zomr2n2a5r9mpmt_2Gf7d-nTnfU9ngX5zHkWd4lngDBb7da |
CitedBy_id | crossref_primary_10_1038_s41467_023_43633_0 crossref_primary_10_1016_j_micpath_2024_106796 crossref_primary_10_1074_jbc_TM118_004166 crossref_primary_10_1261_rna_079990_124 crossref_primary_10_1080_10409238_2020_1856768 crossref_primary_10_1186_s12915_019_0736_3 crossref_primary_10_1002_chem_202001667 crossref_primary_10_1093_nar_gkz815 crossref_primary_10_1021_acsomega_2c03568 crossref_primary_10_1093_nar_gky800 crossref_primary_10_1021_acs_accounts_3c00390 crossref_primary_10_1016_j_ymthe_2023_01_005 crossref_primary_10_1038_s41467_020_18862_2 crossref_primary_10_1038_s41587_024_02430_w crossref_primary_10_1021_acschembio_0c00260 crossref_primary_10_1002_wrna_1863 crossref_primary_10_1021_acs_biochem_2c00686 crossref_primary_10_1038_s41467_022_29138_2 crossref_primary_10_1016_j_abb_2025_110353 crossref_primary_10_1016_j_jmb_2019_02_025 crossref_primary_10_1016_j_molcel_2025_02_017 crossref_primary_10_1038_s44318_024_00314_y crossref_primary_10_1038_s41467_021_22489_2 crossref_primary_10_1016_j_chembiol_2018_10_025 crossref_primary_10_1371_journal_pone_0235102 crossref_primary_10_1261_rna_079518_122 crossref_primary_10_1146_annurev_virology_091919_065320 crossref_primary_10_1016_j_isci_2022_104836 crossref_primary_10_1261_rna_079266_122 crossref_primary_10_3390_genes15070898 crossref_primary_10_1007_s10822_024_00565_1 crossref_primary_10_1016_j_bbagrm_2018_10_011 crossref_primary_10_1016_j_ymeth_2018_10_019 crossref_primary_10_1021_acs_biochem_3c00405 crossref_primary_10_1261_rna_072728_119 crossref_primary_10_1016_j_jbc_2022_102267 crossref_primary_10_1016_j_omtn_2024_102284 crossref_primary_10_1021_acs_orglett_9b02929 crossref_primary_10_1093_nar_gkad098 |
Cites_doi | 10.1002/wrna.89 10.1074/jbc.271.21.12221 10.1002/wrna.1319 10.1126/science.1113150 10.1021/acschembio.5b00711 10.1261/rna.349107 10.1186/gb-2004-5-2-209 10.1038/nature13802 10.1017/S1355838200000170 10.1093/nar/gkw738 10.1093/nar/gku1345 10.1038/nsmb.3203 10.1073/pnas.1212548109 10.1038/379460a0 10.1074/jbc.M112.366005 10.1021/bi0011577 10.1074/jbc.271.50.31795 10.1038/ncomms1324 10.1038/nature24041 10.1073/pnas.97.23.12541 10.1038/nchembio.2040 10.1021/bi4006539 10.1038/ncomms10715 10.1021/bi001383g 10.1093/nar/gkg681 10.1073/pnas.211419898 10.1016/bs.enz.2017.03.006 10.1080/15476286.2016.1267097 10.1038/nm.3043 10.1126/science.aaq0180 10.1093/nar/gkw799 10.1093/nar/gkw911 10.1017/S135583820101007X 10.1146/annurev.biochem.71.110601.135501 10.1016/j.chembiol.2004.06.009 10.1016/S0076-6879(07)24015-7 10.1002/j.1460-2075.1994.tb06908.x 10.1002/bies.201600187 10.1038/nature21022 10.1038/ng.2414 10.1073/pnas.1009231107 10.1038/nrm.2016.132 10.1126/science.aad8711 10.1021/cb6003838 10.1186/gb-2013-14-4-r36 |
ContentType | Journal Article |
Copyright | Copyright © 2018 American Chemical Society |
Copyright_xml | – notice: Copyright © 2018 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.biochem.7b01100 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 1651 |
ExternalDocumentID | PMC5898644 29457714 10_1021_acs_biochem_7b01100 a123276683 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM061115 – fundername: NIH HHS grantid: S10 OD018223 – fundername: NCI NIH HHS grantid: P30 CA093373 |
GroupedDBID | - .K2 02 23N 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 KM L7B LG6 P2P ROL TN5 UI2 VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 --- -DZ -~X .55 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK XSW ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a544t-a196bd32faf8ea5c0b7573c6f076d4c52aa7febf1f1781bc7b8dab6ccaa91603 |
IEDL.DBID | ACS |
ISSN | 0006-2960 1520-4995 |
IngestDate | Thu Aug 21 18:04:20 EDT 2025 Thu Jul 10 23:19:29 EDT 2025 Fri Jul 11 10:36:56 EDT 2025 Thu Apr 03 07:08:51 EDT 2025 Tue Jul 01 03:33:39 EDT 2025 Thu Apr 24 23:10:29 EDT 2025 Thu Aug 27 13:44:49 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a544t-a196bd32faf8ea5c0b7573c6f076d4c52aa7febf1f1781bc7b8dab6ccaa91603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4855-7185 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5898644 |
PMID | 29457714 |
PQID | 2004438542 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5898644 proquest_miscellaneous_2116937071 proquest_miscellaneous_2004438542 pubmed_primary_29457714 crossref_citationtrail_10_1021_acs_biochem_7b01100 crossref_primary_10_1021_acs_biochem_7b01100 acs_journals_10_1021_acs_biochem_7b01100 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-13 |
PublicationDateYYYYMMDD | 2018-03-13 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 Polson A. G. (ref45/cit45) 1994; 13 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 Bass B. L. (ref9/cit9) 1997; 3 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – volume: 3 start-page: 947 year: 1997 ident: ref9/cit9 publication-title: RNA – ident: ref40/cit40 doi: 10.1002/wrna.89 – ident: ref14/cit14 doi: 10.1074/jbc.271.21.12221 – ident: ref39/cit39 doi: 10.1002/wrna.1319 – ident: ref23/cit23 doi: 10.1126/science.1113150 – ident: ref31/cit31 doi: 10.1021/acschembio.5b00711 – ident: ref32/cit32 doi: 10.1261/rna.349107 – ident: ref42/cit42 doi: 10.1186/gb-2004-5-2-209 – ident: ref1/cit1 doi: 10.1038/nature13802 – ident: ref8/cit8 doi: 10.1017/S1355838200000170 – ident: ref25/cit25 doi: 10.1093/nar/gkw738 – ident: ref34/cit34 doi: 10.1093/nar/gku1345 – ident: ref22/cit22 doi: 10.1038/nsmb.3203 – ident: ref37/cit37 doi: 10.1073/pnas.1212548109 – ident: ref15/cit15 doi: 10.1038/379460a0 – ident: ref30/cit30 doi: 10.1074/jbc.M112.366005 – ident: ref35/cit35 doi: 10.1021/bi0011577 – ident: ref10/cit10 doi: 10.1074/jbc.271.50.31795 – ident: ref12/cit12 doi: 10.1038/ncomms1324 – ident: ref17/cit17 doi: 10.1038/nature24041 – ident: ref19/cit19 doi: 10.1073/pnas.97.23.12541 – ident: ref3/cit3 doi: 10.1038/nchembio.2040 – ident: ref29/cit29 doi: 10.1021/bi4006539 – ident: ref33/cit33 doi: 10.1038/ncomms10715 – ident: ref13/cit13 doi: 10.1021/bi001383g – ident: ref11/cit11 doi: 10.1093/nar/gkg681 – ident: ref44/cit44 doi: 10.1073/pnas.211419898 – ident: ref7/cit7 doi: 10.1016/bs.enz.2017.03.006 – ident: ref41/cit41 doi: 10.1080/15476286.2016.1267097 – ident: ref46/cit46 doi: 10.1038/nm.3043 – ident: ref24/cit24 doi: 10.1126/science.aaq0180 – ident: ref21/cit21 doi: 10.1093/nar/gkw799 – ident: ref26/cit26 doi: 10.1093/nar/gkw911 – ident: ref20/cit20 doi: 10.1017/S135583820101007X – ident: ref6/cit6 doi: 10.1146/annurev.biochem.71.110601.135501 – ident: ref18/cit18 doi: 10.1016/j.chembiol.2004.06.009 – ident: ref28/cit28 doi: 10.1016/S0076-6879(07)24015-7 – volume: 13 start-page: 5701 year: 1994 ident: ref45/cit45 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1994.tb06908.x – ident: ref38/cit38 doi: 10.1002/bies.201600187 – ident: ref4/cit4 doi: 10.1038/nature21022 – ident: ref43/cit43 doi: 10.1038/ng.2414 – ident: ref16/cit16 doi: 10.1073/pnas.1009231107 – ident: ref5/cit5 doi: 10.1038/nrm.2016.132 – ident: ref2/cit2 doi: 10.1126/science.aad8711 – ident: ref36/cit36 doi: 10.1021/cb6003838 – ident: ref27/cit27 doi: 10.1186/gb-2013-14-4-r36 |
SSID | ssj0004074 |
Score | 2.4344945 |
Snippet | Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1640 |
SubjectTerms | adenosine Adenosine Deaminase - chemistry Adenosine Deaminase - metabolism Base Sequence deamination essential amino acids fluorescence Genes, Reporter Green Fluorescent Proteins - genetics High-Throughput Screening Assays Humans messenger RNA mutagenesis Protein Domains Protein Processing, Post-Translational recombinant fusion proteins RNA - chemistry RNA - metabolism RNA editing RNA-Binding Proteins - chemistry RNA-Binding Proteins - metabolism Saccharomyces cerevisiae sequence analysis Sequence Analysis, RNA Substrate Specificity transcriptome |
Title | Selective Recognition of RNA Substrates by ADAR Deaminase Domains |
URI | http://dx.doi.org/10.1021/acs.biochem.7b01100 https://www.ncbi.nlm.nih.gov/pubmed/29457714 https://www.proquest.com/docview/2004438542 https://www.proquest.com/docview/2116937071 https://pubmed.ncbi.nlm.nih.gov/PMC5898644 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHODCvpRNRkKIAymNY8fJMWpBCIkeCkjcItuxRQVNEGkP8PXYblIooIprYifKZMZ-tmfeAzgxECiLlAkkhYnyCGexx7Mo9mSAOQvD2JehLU6-7YbXD-TmkT5-K1b_cYKP_Qsuy6boW_moQZMJR3E2D4s4NGFskVD77qsMslWRLptFMjbIvCYZ-vshdjqS5fR09Atj_kyV_Db3XK1Ct67gGaecPDdHQ9GUH78JHf_3WWuwUqFQlIzdZh3mVL4Bm0luVuCDd3SKXF6o23DfgKV2rQm3aQZhJ5tjRkjUqzOPihwVGvW6CbKDkCO7LZF4R0kn6aGO4jbXplSoUwx4Py-34P7q8r597VUiDB6nhAw9bkJUZAHWXEeKU9kSjLJAhrrFwoxIijlnWgnta58ZCCyZiDIuQuMYPLYS1tuwkBe52gVEtGRZIGRsIQHTWrSo0lIFShBll10NODNGSasYKlN3PI791F6sLJVWlmoArv9aKisucyup8TK70_mk0-uYymN28-PaHVJjZXuOwnNVjEqr3ElIEFGCZ7TxLcsNMwCuATtjF5q8FMeEMuaTBrAp55o0sJTf03fy_pOj_qaRpdMne_831T4sG4znyij94AAWhm8jdWhw1FAcuej5BC-kG3I |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BeBgvAzZg5aeREOKBdI3jxMlj1DIV2PpQOmlvke3YooImiLQP46_nzk06OlAFr47tOJc7-7N99x3Aa4RAZWrRkCwXNhBKZoEq0ywwEVcySbLQJBScfD5Jxhfi42V82QaFUSwMDqLBnhp_iX_NLhCeUJmeUxapRV9qz3R2G-4gHOGk1_nw83U05KDlXsa9MkeA3nEN_b0TWpVMs70q_QE1b3pM_rYEnd6Di83gvefJ1_5qqfvm5w1ex__9uvtw0GJSlq-V6AHcstUhHOUV7scXV-wN816i_vj9EPaHXYa4I5ySfRIdnC_ZtPNDqitWOzad5IymJE992zB9xfJRPmUjq8jzprFsVC_UvGoewuz0_Ww4DtqUDIGKhVgGCg1WlxF3yqVWxWagZSwjk7iBTEphYq6UdFa70IUSAbGROi2VTlBNVEYJrR_BXlVX9hiYcEaWkTYZAQTpnB7E1hkbWS0sbcJ68BaFUrQW1RT-spyHBRW2kipaSfWAdz-vMC2zOSXY-La70btNo-9rYo_d1V91WlGglOlWRVW2XjWUx1OIKI0F31EnJM4biXCuB4_XmrR5Kc9ELGUoeiC3dGxTgQjAt59U8y-eCDxOiVxfPPl3Ub2E_fHs_Kw4-zD59BTuIvrzAZZh9Az2lj9W9jkirKV-4Q3qF_ipI9M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQJe9smgGx9GQogH0jWOHSePUbtqDKhQGdJ4imzH1ipoMpH2Yfz1-Nyk0DFViNfEduLLnf1z7u53AK8cBCoS4wzJUGYCJkUayCJJAx1RKeI4DXWMyckfR_HZF3Z-yS83IGlzYdxL1G6k2jvx0aqvC9swDIQneF1NsJLUtCuUZzu7B1vouEPdzvqff2dE9hr-ZXdepg6kt3xDdw-CO5OuV3emv-Dm7ajJP7ah4Q58XU7AR598685nqqt_3uJ2_J8Z7sJ2g01JtlCmPdgw5T4cZKU7l09vyGvio0X9b_h9eNBvK8UduKXZF9Nx6yYZt_FIVUkqS8ajjODS5Clwa6JuSDbIxmRgJEbg1IYMqqmclPUjuBieXvTPgqY0QyA5Y7NAOsNVRUSttImRXPeU4CLSse2JuGCaUymFNcqGNhQOGGuhkkKq2KmLTLGw9SFsllVpngBhVosiUjpFoCCsVT1urDaRUczgYawDb5xQ8say6tw7zWmY48VGUnkjqQ7Q9gPmumE4x0Ib39d3ervsdL0g-Fjf_GWrGbmTMnpXZGmqeY31PBmLEs7omjYhct8IB-s68HihTcuH0pRxIULWAbGiZ8sGSAS-eqecXHlCcJ4gyT47-ndRvYD7nwbD_MO70ftjeOhAoM-zDKOnsDn7MTfPHNCaqefepn4BOasmVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Recognition+of+RNA+Substrates+by+ADAR+Deaminase+Domains&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Wang%2C+Yuru&rft.au=Park%2C+SeHee&rft.au=Beal%2C+Peter+A&rft.date=2018-03-13&rft.eissn=1520-4995&rft.volume=57&rft.issue=10&rft.spage=1640&rft_id=info:doi/10.1021%2Facs.biochem.7b01100&rft_id=info%3Apmid%2F29457714&rft.externalDocID=29457714 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |