Metabolism of novel potential syntrophic acetate-oxidizing bacteria in thermophilic methanogenic chemostats
Combining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better cont...
Saved in:
Published in | Applied and Environmental Microbiology Vol. 90; no. 2; p. e0109023 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
21.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Combining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes. |
---|---|
AbstractList | Combining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes. Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH . In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera , , and , we identified a number of potential SAOB that are affiliated with , Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as . The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes. Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes. Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens. Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes. Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH 4 . In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter , Desulfotomaculum , and Thermodesulfovibrio , we identified a number of potential SAOB that are affiliated with Clostridia , Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila . The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens. |
Author | Yue-Qin Tang Yoichi Kamagata Lan-Peng Li Min Gou Yan Zeng Dan Zheng Masaru Konishi Nobu Miaoxiao Wang Ya-Ting Chen |
Author_xml | – sequence: 1 givenname: Yan surname: Zeng fullname: Zeng, Yan organization: Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, Sichuan, China – sequence: 2 givenname: Dan surname: Zheng fullname: Zheng, Dan organization: College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China – sequence: 3 givenname: Lan-Peng surname: Li fullname: Li, Lan-Peng organization: Sinopec (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd., Dalian, Liaoning, China – sequence: 4 givenname: Miaoxiao surname: Wang fullname: Wang, Miaoxiao organization: College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China – sequence: 5 givenname: Min surname: Gou fullname: Gou, Min organization: College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China – sequence: 6 givenname: Yoichi surname: Kamagata fullname: Kamagata, Yoichi organization: Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan – sequence: 7 givenname: Ya-Ting orcidid: 0000-0002-0301-9730 surname: Chen fullname: Chen, Ya-Ting organization: College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China – sequence: 8 givenname: Masaru Konishi orcidid: 0000-0002-0046-9306 surname: Nobu fullname: Nobu, Masaru Konishi organization: Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan – sequence: 9 givenname: Yue-Qin orcidid: 0000-0001-6872-1099 surname: Tang fullname: Tang, Yue-Qin organization: Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, Sichuan, China, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China, Engineering Research Centre of Alternative Energy Materials and Devices, Ministry of Education, Chengdu, Sichuan, China, Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorisation, Chengdu, Sichuan, China |
BackLink | https://cir.nii.ac.jp/crid/1871428067581647872$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/38259075$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctrFTEYxYNU7G3tzrUM6ELBqXlMXqsipT6g4qb7kMn95k50JrkmucX615vx1qqFbvIgv3P4Ts4ROggxAELPCD4lhKq3FuZTTLDGLWWP0KqeVMsZEwdohbHWLaUdPkQnOfsed0xIjiV-gg6ZolxjyVfo22coto-Tz3MThybEa5iabSwQirdTk29CSXE7etdYV8kCbfzh1_6nD5umt65A8rbxoSkjpHkBp4rOUEYb4gZCvbgR5pirND9Fjwc7ZTi53Y_R1fuLq_OP7eWXD5_O3122lne0tFIxzZhySq077mpKMlgJriOC84EqblUvew4aW913AmNmO9BrLgioXjvKjtHZ3na762dYuxol2clsk59tujHRevP_S_Cj2cRrQ7BSWFBdHV7dOqT4fQe5mNlnB9NkA8RdNlQTqQQVglT0xT30a9ylUONVikmlJGWyUq_3lM0z_UsQbJYWTW3R_G7RUFbZ5_-Ofzf3n84q8GYPuBRzTjDcIQ_40Xu487UNH5fwfnpI9HIvCt5XflmJkqSj9YMkV0R0ckn2CxXJxPk |
CitedBy_id | crossref_primary_10_1111_1462_2920_70040 crossref_primary_10_1016_j_watres_2024_122102 crossref_primary_10_1016_j_biotechadv_2024_108379 crossref_primary_10_3389_fmicb_2024_1368215 crossref_primary_10_1007_s10529_024_03528_6 crossref_primary_10_1016_j_jclepro_2024_143487 |
Cites_doi | 10.1196/annals.1419.005 10.1038/nrmicro2166 10.1007/s00018-010-0555-8 10.1128/jb.174.17.5489-5495.1992 10.1007/s00253-019-10078-9 10.1128/JB.00385-12 10.1101/gr.186072.114 10.1128/AEM.01428-08 10.1371/journal.pone.0033439 10.1016/j.bbabio.2012.07.002 10.1264/jsme2.me10122 10.1099/00207713-50-4-1601 10.1146/annurev-micro-090110-102844 10.1007/BF00245332 10.1128/AEM.67.4.1800-1804.2001 10.1038/ismej.2016.39 10.1186/s40168-020-00885-y 10.1016/j.enzmictec.2008.04.007 10.1093/bioinformatics/btu153 10.1016/j.syapm.2010.11.018 10.1007/s00248-020-01485-x 10.1099/00207713-46-4-1145 10.1099/00207713-52-4-1361 10.1074/jbc.M311657200 10.1002/bit.10628 10.1128/AEM.66.12.5488-5491.2000 10.1021/acs.est.0c01840 10.1111/1462-2920.14388 10.1111/j.1462-2920.2010.02289.x 10.1016/j.watres.2012.01.034 10.1061/(ASCE)EE.1943-7870.0001011 10.1007/BF00410965 10.1128/AEM.01637-12 10.1371/journal.pone.0166520 10.1263/jbb.106.180 10.1128/AEM.71.12.8773-8783.2005 10.1007/s00438-005-1126-9 10.1089/cmb.2012.0021 10.1016/j.watres.2004.03.012 10.1038/ncomms3304 10.1038/ismej.2014.256 10.1128/mmbr.61.2.262-280.1997 10.1016/S1389-1723(04)70148-6 10.1016/j.jbiotec.2013.11.016 10.1038/s41587-020-0501-8 10.1128/aem.54.2.454-459.1988 10.7717/peerj.1165 10.1128/am.14.3.368-371.1966 10.1186/s13068-016-0454-9 10.1155/2018/4712608 10.1111/j.1462-2920.2010.02338.x 10.1128/AEM.01219-10 10.1016/j.chemosphere.2021.132389 10.1007/s12010-017-2557-6 10.1111/1462-2920.13382 10.1111/j.1574-6968.2010.02023.x 10.1093/bioinformatics/btu170 10.1128/AEM.00166-14 10.1264/jsme2.23.118 10.1093/nar/gkw290 10.1007/s00253-016-8028-0 10.1186/1471-2164-13-723 10.1093/bioinformatics/btv638 |
ContentType | Journal Article |
Copyright | Copyright © 2024 American Society for Microbiology. Copyright American Society for Microbiology Feb 2024 Copyright © 2024 American Society for Microbiology. 2024 American Society for Microbiology. |
Copyright_xml | – notice: Copyright © 2024 American Society for Microbiology. – notice: Copyright American Society for Microbiology Feb 2024 – notice: Copyright © 2024 American Society for Microbiology. 2024 American Society for Microbiology. |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
DOI | 10.1128/aem.01090-23 |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
EISSN | 1098-5336 |
Editor | Bose, Arpita |
Editor_xml | – sequence: 1 givenname: Arpita surname: Bose fullname: Bose, Arpita |
ExternalDocumentID | PMC10880629 01090-23 38259075 10_1128_aem_01090_23 |
Genre | Journal Article |
GrantInformation_xml | – fundername: MOST | National Natural Science Foundation of China (NSFC) grantid: No. 51678378 – fundername: Ministry of Science and Technology of the People's Republic of China (MOST) grantid: No. 2016YFE0127700 – fundername: ; grantid: No. 2016YFE0127700 – fundername: ; grantid: No. 51678378 |
GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAGFI AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CS3 D0L DIK E.- E3Z EBS F5P GX1 H13 HYE HZ~ K-O KQ8 L7B O9- P2P PQQKQ RHI RNS RPM RSF RXW RYH TAE TN5 TR2 TWZ UHB W8F WH7 WOQ X6Y ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM RHF UCJ ZA5 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-a542t-7839338c88d45c1281fa7ec41655f285a8b7b5e90a9b46003a4e9d561e8b9c23 |
ISSN | 0099-2240 1098-5336 |
IngestDate | Thu Aug 21 18:32:52 EDT 2025 Fri Jul 11 06:39:38 EDT 2025 Mon Jun 30 10:37:35 EDT 2025 Tue May 21 18:31:39 EDT 2024 Mon Jul 21 06:05:16 EDT 2025 Tue Jul 01 04:29:33 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Fri Jun 27 01:01:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | energy conservation thermophilic anaerobic digestion glycine-mediated acetate oxidation pathway syntrophic acetate oxidation Wood-Ljungdahl pathway |
Language | English |
License | All Rights Reserved. https://doi.org/10.1128/ASMCopyrightv2 All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a542t-7839338c88d45c1281fa7ec41655f285a8b7b5e90a9b46003a4e9d561e8b9c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0002-8680-432x 0000-0001-6872-1099 0000-0002-0046-9306 0000-0002-0301-9730 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10880629 |
PMID | 38259075 |
PQID | 2937887237 |
PQPubID | 42251 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10880629 proquest_miscellaneous_2917862661 proquest_journals_2937887237 asm2_journals_10_1128_aem_01090_23 pubmed_primary_38259075 crossref_primary_10_1128_aem_01090_23 crossref_citationtrail_10_1128_aem_01090_23 nii_cinii_1871428067581647872 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-21 |
PublicationDateYYYYMMDD | 2024-02-21 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC – name: Washington |
PublicationTitle | Applied and Environmental Microbiology |
PublicationTitleAbbrev | Appl Environ Microbiol |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2024 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_4_3_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 Poehlein, A, Schmidt, S, Kaster, AK, Goenrich, M, Vollmers, J, Thürmer, A, Bertsch, J, Schuchmann, K, Voigt, B, Hecker, M, Daniel, R, Thauer, RK, Gottschalk, G, Müller, V (B53) 2012; 7 Kato, S, Watanabe, K (B6) 2010; 25 Sun, L, Müller, B, Westerholm, M, Schnürer, A (B11) 2014; 171 Mayumi, D, Mochimaru, H, Yoshioka, H, Sakata, S, Maeda, H, Miyagawa, Y, Ikarashi, M, Takeuchi, M, Kamagata, Y (B62) 2011; 13 Ueno, Y, Tatara, M (B55) 2008; 43 Segata, N, Börnigen, D, Morgan, XC, Huttenhower, C (B38) 2013; 4 Dolfing, J, Jiang, B, Henstra, AM, Stams, AJM, Plugge, CM (B51) 2008; 74 Hovey, R, Lentes, S, Ehrenreich, A, Salmon, K, Saba, K, Gottschalk, G, Gunsalus, RP, Deppenmeier, U (B43) 2005; 273 Smith, PH, Mah, RA (B8) 1966; 14 Oehler, D, Poehlein, A, Leimbach, A, Müller, N, Daniel, R, Gottschalk, G, Schink, B (B21) 2012; 13 Tang, YQ, Matsui, T, Morimura, S, Wu, XL, Kida, K (B54) 2008; 106 Werner, JJ, Garcia, ML, Perkins, SD, Yarasheski, KE, Smith, SR, Muegge, BD, Stadermann, FJ, DeRito, CM, Floss, C, Madsen, EL, Gordon, JI, Angenent, LT (B12) 2014; 80 Ahring, BK, Westermann, P, Mah, RA (B42) 1991; 157 Chen, YT, Zeng, Y, Wang, HZ, Zheng, D, Kamagata, Y, Narihiro, T, Nobu, MK, Tang, YQ (B30) 2020; 80 Pind, PF, Angelidaki, I, Ahring, BK (B1) 2003; 82 de Bok, FA, Stams, AJ, Dijkema, C, Boone, DR (B3) 2001; 67 Biegel, E, Schmidt, S, González, JM, Müller, V (B48) 2011; 68 Chen, YT, Zeng, Y, Li, J, Zhao, XY, Yi, Y, Gou, M, Kamagata, Y, Narihiro, T, Nobu, MK, Tang, YQ (B29) 2020; 54 Hidalgo-Ahumada, CAP, Nobu, MK, Narihiro, T, Tamaki, H, Liu, WT, Kamagata, Y, Stams, AJM, Imachi, H, Sousa, DZ (B47) 2018; 20 Sauer, U, Canonaco, F, Heri, S, Perrenoud, A, Fischer, E (B49) 2004; 279 Heine-Dobbernack, E, Schoberth, SM, Sahm, H (B44) 1988; 54 Shigematsu, T, Tang, YQ, Kawaguchi, H, Ninomiya, K, Kijima, J, Kobayashi, T, Morimura, S, Kida, K (B16) 2003; 96 Li, MT, Rao, L, Wang, L, Gou, M, Sun, ZY, Xia, ZY, Song, WF, Tang, YQ (B59) 2022; 288 Nobu, MK, Narihiro, T, Rinke, C, Kamagata, Y, Tringe, SG, Woyke, T, Liu, WT (B24) 2015; 9 Zheng, D, Wang, HZ, Gou, M, Nobu, MK, Narihiro, T, Hu, B, Nie, Y, Tang, YQ (B28) 2019; 103 Nobu, MK, Narihiro, T, Mei, R, Kamagata, Y, Lee, PKH, Lee, PH, McInerney, MJ, Liu, WT (B50) 2020; 8 Schnurer, A, Schink, B, Svensson, BH (B23) 1996; 46 Westerholm, M, Roos, S, Schnürer, A (B18) 2010; 309 Mosbæk, F, Kjeldal, H, Mulat, DG, Albertsen, M, Ward, AJ, Feilberg, A, Nielsen, JL (B27) 2016; 10 Wu, YW, Simmons, BA, Singer, SW (B35) 2016; 32 Narihiro, T, Terada, T, Ohashi, A, Kamagata, Y, Nakamura, K, Sekiguchi, Y (B25) 2012; 46 Stams, AJM, Plugge, CM (B7) 2009; 7 Tang, Y, Shigematsu, T, Ikbal, Morimura, S, Kida, K (B56) 2004; 38 Balk, M, Weijma, J, Stams, AJM (B22) 2002; 52 Parks, DH, Chuvochina, M, Chaumeil, PA, Rinke, C, Mussig, AJ, Hugenholtz, P (B37) 2020; 38 Sieber, JR, McInerney, MJ, Gunsalus, RP (B45) 2012; 66 Podmirseg, SM, Gadermaier, M, Franke-Whittle, IH, Wett, B, Insam, H, Goberna, M (B57) 2016; 142 Bolger, AM, Lohse, M, Usadel, B (B32) 2014; 30 Vanwonterghem, I, Jensen, PD, Rabaey, K, Tyson, GW (B26) 2016; 18 Bankevich, A, Nurk, S, Antipov, D, Gurevich, AA, Dvorkin, M, Kulikov, AS, Lesin, VM, Nikolenko, SI, Pham, S, Prjibelski, AD, Pyshkin, AV, Sirotkin, AV, Vyahhi, N, Tesler, G, Alekseyev, MA, Pevzner, PA (B33) 2012; 19 Buckel, W, Thauer, RK (B46) 2013; 1827 Kang, DD, Froula, J, Egan, R, Wang, Z (B34) 2015; 3 Parks, DH, Imelfort, M, Skennerton, CT, Hugenholtz, P, Tyson, GW (B36) 2015; 25 Moser, DP, Gihring, TM, Brockman, FJ, Fredrickson, JK, Balkwill, DL, Dollhopf, ME, Lollar, BS, Pratt, LM, Boice, E, Southam, G, Wanger, G, Baker, BJ, Pfiffner, SM, Lin, LH, Onstott, TC (B61) 2005; 71 Manzoor, S, Bongcam-Rudloff, E, Schnürer, A, Müller, B (B20) 2016; 11 Lackner, N, Hintersonnleitner, A, Wagner, AO, Illmer, P (B41) 2018; 2018 Zhu, X, Kougias, PG, Treu, L, Campanaro, S, Angelidaki, I (B15) 2017; 101 Stieb, M, Schink, B (B2) 1986; 144 Griffiths, RI, Whiteley, AS, O’Donnell, AG, Bailey, MJ (B31) 2000; 66 Hattori, S (B9) 2008; 23 Sizova, MV, Izquierdo, JA, Panikov, NS, Lynd, LR (B60) 2011; 77 Müller, B, Sun, L, Westerholm, M, Schnürer, A (B14) 2016; 9 Ferry, JG (B10) 1992; 174 Hattori, S, Kamagata, Y, Hanada, S, Shoun, H (B17) 2000; 50 Pt 4 Huang, H, Wang, S, Moll, J, Thauer, RK (B52) 2012; 194 Schink, B (B4) 1997; 61 Wang, TT, Sun, ZY, Huang, YL, Tan, L, Tang, YQ, Kida, K (B58) 2018; 184 Liu, F, Conrad, R (B63) 2010; 12 Letunic, I, Bork, P (B39) 2016; 44 Westerholm, M, Roos, S, Schnürer, A (B19) 2011; 34 Westerholm, M, Levén, L, Schnürer, A (B13) 2012; 78 McInerney, MJ, Struchtemeyer, CG, Sieber, J, Mouttaki, H, Stams, AJM, Schink, B, Rohlin, L, Gunsalus, RP (B5) 2008; 1125 Seemann, T (B40) 2014; 30 |
References_xml | – ident: e_1_3_4_6_2 doi: 10.1196/annals.1419.005 – ident: e_1_3_4_8_2 doi: 10.1038/nrmicro2166 – ident: e_1_3_4_49_2 doi: 10.1007/s00018-010-0555-8 – ident: e_1_3_4_11_2 doi: 10.1128/jb.174.17.5489-5495.1992 – ident: e_1_3_4_29_2 doi: 10.1007/s00253-019-10078-9 – ident: e_1_3_4_53_2 doi: 10.1128/JB.00385-12 – ident: e_1_3_4_37_2 doi: 10.1101/gr.186072.114 – ident: e_1_3_4_52_2 doi: 10.1128/AEM.01428-08 – ident: e_1_3_4_54_2 doi: 10.1371/journal.pone.0033439 – ident: e_1_3_4_47_2 doi: 10.1016/j.bbabio.2012.07.002 – ident: e_1_3_4_7_2 doi: 10.1264/jsme2.me10122 – ident: e_1_3_4_18_2 doi: 10.1099/00207713-50-4-1601 – ident: e_1_3_4_46_2 doi: 10.1146/annurev-micro-090110-102844 – ident: e_1_3_4_43_2 doi: 10.1007/BF00245332 – ident: e_1_3_4_4_2 doi: 10.1128/AEM.67.4.1800-1804.2001 – ident: e_1_3_4_28_2 doi: 10.1038/ismej.2016.39 – ident: e_1_3_4_51_2 doi: 10.1186/s40168-020-00885-y – ident: e_1_3_4_56_2 doi: 10.1016/j.enzmictec.2008.04.007 – ident: e_1_3_4_41_2 doi: 10.1093/bioinformatics/btu153 – ident: e_1_3_4_20_2 doi: 10.1016/j.syapm.2010.11.018 – ident: e_1_3_4_31_2 doi: 10.1007/s00248-020-01485-x – ident: e_1_3_4_24_2 doi: 10.1099/00207713-46-4-1145 – ident: e_1_3_4_23_2 doi: 10.1099/00207713-52-4-1361 – ident: e_1_3_4_50_2 doi: 10.1074/jbc.M311657200 – ident: e_1_3_4_2_2 doi: 10.1002/bit.10628 – ident: e_1_3_4_32_2 doi: 10.1128/AEM.66.12.5488-5491.2000 – ident: e_1_3_4_30_2 doi: 10.1021/acs.est.0c01840 – ident: e_1_3_4_48_2 doi: 10.1111/1462-2920.14388 – ident: e_1_3_4_64_2 doi: 10.1111/j.1462-2920.2010.02289.x – ident: e_1_3_4_26_2 doi: 10.1016/j.watres.2012.01.034 – ident: e_1_3_4_58_2 doi: 10.1061/(ASCE)EE.1943-7870.0001011 – ident: e_1_3_4_3_2 doi: 10.1007/BF00410965 – ident: e_1_3_4_14_2 doi: 10.1128/AEM.01637-12 – ident: e_1_3_4_21_2 doi: 10.1371/journal.pone.0166520 – ident: e_1_3_4_55_2 doi: 10.1263/jbb.106.180 – ident: e_1_3_4_62_2 doi: 10.1128/AEM.71.12.8773-8783.2005 – ident: e_1_3_4_44_2 doi: 10.1007/s00438-005-1126-9 – ident: e_1_3_4_34_2 doi: 10.1089/cmb.2012.0021 – ident: e_1_3_4_57_2 doi: 10.1016/j.watres.2004.03.012 – ident: e_1_3_4_39_2 doi: 10.1038/ncomms3304 – ident: e_1_3_4_25_2 doi: 10.1038/ismej.2014.256 – ident: e_1_3_4_5_2 doi: 10.1128/mmbr.61.2.262-280.1997 – ident: e_1_3_4_17_2 doi: 10.1016/S1389-1723(04)70148-6 – ident: e_1_3_4_12_2 doi: 10.1016/j.jbiotec.2013.11.016 – ident: e_1_3_4_38_2 doi: 10.1038/s41587-020-0501-8 – ident: e_1_3_4_45_2 doi: 10.1128/aem.54.2.454-459.1988 – ident: e_1_3_4_35_2 doi: 10.7717/peerj.1165 – ident: e_1_3_4_9_2 doi: 10.1128/am.14.3.368-371.1966 – ident: e_1_3_4_15_2 doi: 10.1186/s13068-016-0454-9 – ident: e_1_3_4_42_2 doi: 10.1155/2018/4712608 – ident: e_1_3_4_63_2 doi: 10.1111/j.1462-2920.2010.02338.x – ident: e_1_3_4_61_2 doi: 10.1128/AEM.01219-10 – ident: e_1_3_4_60_2 doi: 10.1016/j.chemosphere.2021.132389 – ident: e_1_3_4_59_2 doi: 10.1007/s12010-017-2557-6 – ident: e_1_3_4_27_2 doi: 10.1111/1462-2920.13382 – ident: e_1_3_4_19_2 doi: 10.1111/j.1574-6968.2010.02023.x – ident: e_1_3_4_33_2 doi: 10.1093/bioinformatics/btu170 – ident: e_1_3_4_13_2 doi: 10.1128/AEM.00166-14 – ident: e_1_3_4_10_2 doi: 10.1264/jsme2.23.118 – ident: e_1_3_4_40_2 doi: 10.1093/nar/gkw290 – ident: e_1_3_4_16_2 doi: 10.1007/s00253-016-8028-0 – ident: e_1_3_4_22_2 doi: 10.1186/1471-2164-13-723 – ident: e_1_3_4_36_2 doi: 10.1093/bioinformatics/btv638 – volume: 7 start-page: 568 year: 2009 end-page: 577 ident: B7 article-title: Electron transfer in syntrophic communities of anaerobic bacteria and archaea publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2166 – volume: 144 start-page: 291 year: 1986 end-page: 295 ident: B2 article-title: Anaerobic degradation of isovalerate by a defined methanogenic coculture publication-title: Arch Microbiol doi: 10.1007/BF00410965 – volume: 67 start-page: 1800 year: 2001 end-page: 1804 ident: B3 article-title: Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.4.1800-1804.2001 – volume: 32 start-page: 605 year: 2016 end-page: 607 ident: B35 article-title: MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv638 – volume: 30 start-page: 2068 year: 2014 end-page: 2069 ident: B40 article-title: Prokka: rapid prokaryotic genome annotation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu153 – volume: 54 start-page: 454 year: 1988 end-page: 459 ident: B44 article-title: Relationship of intracellular coenzyme F(420) content to growth and metabolic activity of Methanobacterium bryantii and Methanosarcina barkeri publication-title: Appl Environ Microbiol doi: 10.1128/aem.54.2.454-459.1988 – volume: 80 start-page: 120 year: 2020 end-page: 132 ident: B30 article-title: Different interspecies electron transfer patterns during mesophilic and thermophilic syntrophic propionate degradation in chemostats publication-title: Microb Ecol doi: 10.1007/s00248-020-01485-x – volume: 68 start-page: 613 year: 2011 end-page: 634 ident: B48 article-title: Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes publication-title: Cell Mol Life Sci doi: 10.1007/s00018-010-0555-8 – volume: 30 start-page: 2114 year: 2014 end-page: 2120 ident: B32 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 13 start-page: 1995 year: 2011 end-page: 2006 ident: B62 article-title: Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan) publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2010.02338.x – volume: 157 start-page: 38 year: 1991 end-page: 42 ident: B42 article-title: Hydrogen inhibition of acetate metabolism and kinetics of hydrogen consumption by Methanosarcina thermophila TM-1 publication-title: Arch Microbiol doi: 10.1007/BF00245332 – volume: 66 start-page: 429 year: 2012 end-page: 452 ident: B45 article-title: Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-090110-102844 – volume: 106 start-page: 180 year: 2008 end-page: 187 ident: B54 article-title: Effect of temperature on microbial community of a glucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation publication-title: J Biosci Bioeng doi: 10.1263/jbb.106.180 – volume: 23 start-page: 118 year: 2008 end-page: 127 ident: B9 article-title: Syntrophic acetate-oxidizing microbes in methanogenic environments publication-title: Microbes Environ doi: 10.1264/jsme2.23.118 – volume: 1125 start-page: 58 year: 2008 end-page: 72 ident: B5 article-title: Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1419.005 – volume: 46 start-page: 2167 year: 2012 end-page: 2175 ident: B25 article-title: Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method publication-title: Water Res doi: 10.1016/j.watres.2012.01.034 – volume: 78 start-page: 7619 year: 2012 end-page: 7625 ident: B13 article-title: Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01637-12 – volume: 11 year: 2016 ident: B20 article-title: Genome-guided analysis and whole transcriptome profiling of the mesophilic syntrophic acetate oxidising bacterium Syntrophaceticus schinkii publication-title: PLoS One doi: 10.1371/journal.pone.0166520 – volume: 279 start-page: 6613 year: 2004 end-page: 6619 ident: B49 article-title: The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli publication-title: J Biol Chem doi: 10.1074/jbc.M311657200 – volume: 194 start-page: 3689 year: 2012 end-page: 3699 ident: B52 article-title: Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2 publication-title: J Bacteriol doi: 10.1128/JB.00385-12 – volume: 38 start-page: 2537 year: 2004 end-page: 2550 ident: B56 article-title: The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester publication-title: Water Res doi: 10.1016/j.watres.2004.03.012 – volume: 1827 start-page: 94 year: 2013 end-page: 113 ident: B46 article-title: Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation publication-title: Biochim Biophys Acta doi: 10.1016/j.bbabio.2012.07.002 – volume: 80 start-page: 3375 year: 2014 end-page: 3383 ident: B12 article-title: Microbial community Dynamics and stability during an ammonia-induced shift to Syntrophic acetate oxidation publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00166-14 – volume: 50 Pt 4 start-page: 1601 year: 2000 end-page: 1609 ident: B17 article-title: Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium publication-title: Int J Syst Evol Microbiol doi: 10.1099/00207713-50-4-1601 – volume: 34 start-page: 260 year: 2011 end-page: 266 ident: B19 article-title: Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes publication-title: Syst Appl Microbiol doi: 10.1016/j.syapm.2010.11.018 – volume: 9 start-page: 48 year: 2016 ident: B14 article-title: Bacterial community composition and fhs profiles of low-and high-ammonia biogas digesters reveal novel syntrophic acetate-oxidising bacteria publication-title: Biotechnol Biofuels doi: 10.1186/s13068-016-0454-9 – volume: 43 start-page: 302 year: 2008 end-page: 308 ident: B55 article-title: Microbial population in a thermophilic packed-bed reactor for methanogenesis from volatile fatty acids publication-title: Enzyme Microb Tech doi: 10.1016/j.enzmictec.2008.04.007 – volume: 142 start-page: 04015055 year: 2016 ident: B57 article-title: Prokaryotic community dynamics during the start-up of a full-scale BIO4GAS digester publication-title: J Environ Eng doi: 10.1061/(ASCE)EE.1943-7870.0001011 – volume: 10 start-page: 2405 year: 2016 end-page: 2418 ident: B27 article-title: Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics publication-title: ISME J doi: 10.1038/ismej.2016.39 – volume: 184 start-page: 685 year: 2018 end-page: 702 ident: B58 article-title: Biogas production from distilled grain waste by thermophilic dry anaerobic digestion: pretreatment of feedstock and dynamics of microbial community publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-017-2557-6 – volume: 4 start-page: 1 year: 2013 end-page: 11 ident: B38 article-title: Phylophlan is a new method for improved phylogenetic and taxonomic placement of microbes publication-title: Nat Commun doi: 10.1038/ncomms3304 – volume: 3 year: 2015 ident: B34 article-title: Metabat, an efficient tool for accurately reconstructing single genomes from complex microbial communities publication-title: PeerJ doi: 10.7717/peerj.1165 – volume: 14 start-page: 368 year: 1966 end-page: 371 ident: B8 article-title: Kinetics of acetate metabolism during sludge digestion publication-title: Appl Microbiol doi: 10.1128/am.14.3.368-371.1966 – volume: 66 start-page: 5488 year: 2000 end-page: 5491 ident: B31 article-title: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.12.5488-5491.2000 – volume: 273 start-page: 225 year: 2005 end-page: 239 ident: B43 article-title: DNA microarray analysis of Methanosarcina mazei Gö1 reveals adaptation to different methanogenic substrates publication-title: Mol Genet Genomics doi: 10.1007/s00438-005-1126-9 – volume: 103 start-page: 8631 year: 2019 end-page: 8645 ident: B28 article-title: Identification of novel potential acetate-oxidizing bacteria in thermophilic methanogenic chemostats by DNA stable Isotope probing publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-019-10078-9 – volume: 13 year: 2012 ident: B21 article-title: Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum publication-title: BMC Genomics doi: 10.1186/1471-2164-13-723 – volume: 7 year: 2012 ident: B53 article-title: An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis publication-title: PLoS One doi: 10.1371/journal.pone.0033439 – volume: 9 start-page: 1710 year: 2015 end-page: 1722 ident: B24 article-title: Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor publication-title: ISME J doi: 10.1038/ismej.2014.256 – volume: 25 start-page: 1043 year: 2015 end-page: 1055 ident: B36 article-title: CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and Metagenomes publication-title: Genome Res doi: 10.1101/gr.186072.114 – volume: 74 start-page: 6126 year: 2008 end-page: 6131 ident: B51 article-title: Syntrophic growth on formate: a new microbial niche in anoxic environments publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01428-08 – volume: 71 start-page: 8773 year: 2005 end-page: 8783 ident: B61 article-title: Desulfotomaculum and Methanobacterium spp. Dominate a 4- to 5-kilometer-deep fault publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.12.8773-8783.2005 – volume: 38 start-page: 1079 year: 2020 end-page: 1086 ident: B37 article-title: A complete domain-to-species taxonomy for bacteria and archaea publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0501-8 – volume: 77 start-page: 2282 year: 2011 end-page: 2291 ident: B60 article-title: Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01219-10 – volume: 61 start-page: 262 year: 1997 end-page: 280 ident: B4 article-title: Energetics of syntrophic cooperation in methanogenic degradation publication-title: Microbiol Mol Biol Rev doi: 10.1128/mmbr.61.2.262-280.1997 – volume: 174 start-page: 5489 year: 1992 end-page: 5495 ident: B10 article-title: Methane from acetate publication-title: J Bacteriol doi: 10.1128/jb.174.17.5489-5495.1992 – volume: 82 start-page: 791 year: 2003 end-page: 801 ident: B1 article-title: Dynamics of the anaerobic process: effects of volatile fatty acids publication-title: Biotechnol Bioeng doi: 10.1002/bit.10628 – volume: 288 year: 2022 ident: B59 article-title: Bioaugmentation with syntrophic volatile fatty acids-oxidizing consortia to alleviate the ammonia inhibition in continuously anaerobic digestion of municipal sludge publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132389 – volume: 101 start-page: 1313 year: 2017 end-page: 1322 ident: B15 article-title: Microbial community changes in methanogenic granules during the transition from mesophilic to thermophilic conditions publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-016-8028-0 – volume: 96 start-page: 547 year: 2003 end-page: 558 ident: B16 article-title: Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation publication-title: J Biosci Bioeng doi: 10.1016/S1389-1723(04)70148-6 – volume: 20 start-page: 4503 year: 2018 end-page: 4511 ident: B47 article-title: Novel energy conservation strategies and behaviour of pelotomaculum schinkii driving syntrophic propionate catabolism publication-title: Environ Microbiol doi: 10.1111/1462-2920.14388 – volume: 18 start-page: 3144 year: 2016 end-page: 3158 ident: B26 article-title: Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion publication-title: Environ Microbiol doi: 10.1111/1462-2920.13382 – volume: 8 year: 2020 ident: B50 article-title: Catabolism and interactions of uncultured organisms shaped by eco-thermodynamics in methanogenic bioprocesses publication-title: Microbiome doi: 10.1186/s40168-020-00885-y – volume: 54 start-page: 9618 year: 2020 end-page: 9628 ident: B29 article-title: Novel syntrophic Isovalerate-degrading bacteria and their energetic cooperation with methanogens in methanogenic chemostats publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c01840 – volume: 309 start-page: 100 year: 2010 end-page: 104 ident: B18 article-title: Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2010.02023.x – volume: 46 start-page: 1145 year: 1996 end-page: 1152 ident: B23 article-title: Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium publication-title: Int J Syst Bacteriol doi: 10.1099/00207713-46-4-1145 – volume: 12 start-page: 2341 year: 2010 end-page: 2354 ident: B63 article-title: Thermoanaerobacteriaceae oxidize acetate in methanogenic rice field soil at 50°C publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2010.02289.x – volume: 25 start-page: 145 year: 2010 end-page: 151 ident: B6 article-title: Ecological and evolutionary interactions in syntrophic methanogenic consortia publication-title: Microbes Environ doi: 10.1264/jsme2.me10122 – volume: 52 start-page: 1361 year: 2002 end-page: 1368 ident: B22 article-title: Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor publication-title: Int J Syst Evol Microbiol doi: 10.1099/00207713-52-4-1361 – volume: 19 start-page: 455 year: 2012 end-page: 477 ident: B33 article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing publication-title: J Comput Biol doi: 10.1089/cmb.2012.0021 – volume: 44 start-page: W242 year: 2016 end-page: W245 ident: B39 article-title: Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw290 – volume: 171 start-page: 39 year: 2014 end-page: 44 ident: B11 article-title: Syntrophic acetate oxidation in industrial CSTR biogas digesters publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2013.11.016 – volume: 2018 year: 2018 ident: B41 article-title: Hydrogenotrophic methanogenesis and autotrophic growth of Methanosarcina thermophila publication-title: Archaea doi: 10.1155/2018/4712608 |
SSID | ssib043675070 ssib000532188 ssib058492269 ssib008315320 ssib045319166 ssib026260219 ssj0004068 |
Score | 2.4977643 |
Snippet | Combining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic... Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH . In methanogenic systems, acetate degradation is carried out by... Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by... Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH 4 . In methanogenic systems, acetate degradation is carried out by... |
SourceID | pubmedcentral proquest asm2 pubmed crossref nii |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e0109023 |
SubjectTerms | Acetates - metabolism Acetic acid Anaerobic digestion Anaerobiosis Applied and Industrial Microbiology Bacteria Bacteria, Anaerobic - metabolism Biodegradation Bioreactors Bioreactors - microbiology Chemostats Degradation Euryarchaeota - metabolism Firmicutes - metabolism Genera Glycine Metabolism Metagenomics Methane - metabolism Methanogenesis Methanogenic bacteria Organic wastes Oxidation Oxidation-Reduction Oxidizing agents Phylogeny Thermophilic bacteria |
Title | Metabolism of novel potential syntrophic acetate-oxidizing bacteria in thermophilic methanogenic chemostats |
URI | https://cir.nii.ac.jp/crid/1871428067581647872 https://www.ncbi.nlm.nih.gov/pubmed/38259075 https://journals.asm.org/doi/10.1128/aem.01090-23 https://www.proquest.com/docview/2937887237 https://www.proquest.com/docview/2917862661 https://pubmed.ncbi.nlm.nih.gov/PMC10880629 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6IQQ8ICi3woYMgqcpW2rn4jwi2DShdfDQSYOXyHZcNaJNqjVFbO_8b87J1R0dAl6i1jlKj3q-2J_tcz4T8sZVvtSaTxw5lMzxIj50FPeEE6KcOfd8yRTu6I5Og-Mz7-O5f97r_bSyllaF2tdXG-tK_ieq0AZxxSrZf4hs-1BogM8QX7hChOH6VzEemQJiOMNzLjAfI_9uZnuLvMAEICwDucQs9MUUFVk1ZhUaJ_-RJukVrg6oSqVZ1nmOF3M0RMFrPFJaZjn8JnyBiM5zrDla2iS2Ya645m4VymEdStrpOrVL0qbqTr50OPw6rds-WBlBdZl25nw29WharvNXhqNUgu8ytxcpmFcWfVsJH83uk52KOrruUt1FR5GDPKMaoKpeGUVPgZcGdrddnTJaw5NtHg0YVjhIM98v80-dqrJ5XXT79FN8dHZyEo8Pz8db5BaD2QZvFn2a8lo3EI2YKXrW1E8wcWA_GwZ1uZyzNYKzlaXpprnL9RRci9OMH5D79WSEvquQ9ZD0TNYnt6vjSS_75E5Ttb7sk3uWcOUj8q1DHs0ntEQebZFHO-TR35BHG-TRNKM28qiNPNoh7zEZHx2O3x879bEdjvQ9VjghcG7OhRYi8XyNO7UTGRoNzN_3J0z4UqhQ-SZyZaQ84NtceiZKgMcboSLN-BOyneWZeUaoFJ5hSaKDwBWeCl0lVKITV2hfaxMmbEBe4z8e16_kMi5ntEzEEJa4DEvM-IDsNfGIda17j8evzG6wfttaLyq9lxvsdiG08EC8DkWIwoXl5Bv1-UQIru00Qe_cA2qNybuMhwPyqr0N_Tlu0snM5Cu0GYa4yhAMB-RphZHWES6YHwHHHxCxhp7WALXi1-9k6bTUjB8Cm3ADFj3_s18vyN3u9d0h28XFyuwC6y7Uy_Kd-AVJC9yE |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolism+of+novel+potential+syntrophic+acetate-oxidizing+bacteria+in+thermophilic+methanogenic+chemostats&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Zeng%2C+Yan&rft.au=Zheng%2C+Dan&rft.au=Li%2C+Lan-Peng&rft.au=Wang%2C+Miaoxiao&rft.date=2024-02-21&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=90&rft.issue=2&rft_id=info:doi/10.1128%2Faem.01090-23&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |