Metabolism of novel potential syntrophic acetate-oxidizing bacteria in thermophilic methanogenic chemostats

Combining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better cont...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 90; no. 2; p. e0109023
Main Authors Zeng, Yan, Zheng, Dan, Li, Lan-Peng, Wang, Miaoxiao, Gou, Min, Kamagata, Yoichi, Chen, Ya-Ting, Nobu, Masaru Konishi, Tang, Yue-Qin
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 21.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Combining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.
AbstractList Combining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.
Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH . In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera , , and , we identified a number of potential SAOB that are affiliated with , Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as . The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.
Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.
Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.
Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.
Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH 4 . In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter , Desulfotomaculum , and Thermodesulfovibrio , we identified a number of potential SAOB that are affiliated with Clostridia , Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila . The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.
Author Yue-Qin Tang
Yoichi Kamagata
Lan-Peng Li
Min Gou
Yan Zeng
Dan Zheng
Masaru Konishi Nobu
Miaoxiao Wang
Ya-Ting Chen
Author_xml – sequence: 1
  givenname: Yan
  surname: Zeng
  fullname: Zeng, Yan
  organization: Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, Sichuan, China
– sequence: 2
  givenname: Dan
  surname: Zheng
  fullname: Zheng, Dan
  organization: College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
– sequence: 3
  givenname: Lan-Peng
  surname: Li
  fullname: Li, Lan-Peng
  organization: Sinopec (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd., Dalian, Liaoning, China
– sequence: 4
  givenname: Miaoxiao
  surname: Wang
  fullname: Wang, Miaoxiao
  organization: College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
– sequence: 5
  givenname: Min
  surname: Gou
  fullname: Gou, Min
  organization: College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
– sequence: 6
  givenname: Yoichi
  surname: Kamagata
  fullname: Kamagata, Yoichi
  organization: Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
– sequence: 7
  givenname: Ya-Ting
  orcidid: 0000-0002-0301-9730
  surname: Chen
  fullname: Chen, Ya-Ting
  organization: College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
– sequence: 8
  givenname: Masaru Konishi
  orcidid: 0000-0002-0046-9306
  surname: Nobu
  fullname: Nobu, Masaru Konishi
  organization: Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
– sequence: 9
  givenname: Yue-Qin
  orcidid: 0000-0001-6872-1099
  surname: Tang
  fullname: Tang, Yue-Qin
  organization: Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, Sichuan, China, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China, Engineering Research Centre of Alternative Energy Materials and Devices, Ministry of Education, Chengdu, Sichuan, China, Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorisation, Chengdu, Sichuan, China
BackLink https://cir.nii.ac.jp/crid/1871428067581647872$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/38259075$$D View this record in MEDLINE/PubMed
BookMark eNp1kctrFTEYxYNU7G3tzrUM6ELBqXlMXqsipT6g4qb7kMn95k50JrkmucX615vx1qqFbvIgv3P4Ts4ROggxAELPCD4lhKq3FuZTTLDGLWWP0KqeVMsZEwdohbHWLaUdPkQnOfsed0xIjiV-gg6ZolxjyVfo22coto-Tz3MThybEa5iabSwQirdTk29CSXE7etdYV8kCbfzh1_6nD5umt65A8rbxoSkjpHkBp4rOUEYb4gZCvbgR5pirND9Fjwc7ZTi53Y_R1fuLq_OP7eWXD5_O3122lne0tFIxzZhySq077mpKMlgJriOC84EqblUvew4aW913AmNmO9BrLgioXjvKjtHZ3na762dYuxol2clsk59tujHRevP_S_Cj2cRrQ7BSWFBdHV7dOqT4fQe5mNlnB9NkA8RdNlQTqQQVglT0xT30a9ylUONVikmlJGWyUq_3lM0z_UsQbJYWTW3R_G7RUFbZ5_-Ofzf3n84q8GYPuBRzTjDcIQ_40Xu487UNH5fwfnpI9HIvCt5XflmJkqSj9YMkV0R0ckn2CxXJxPk
CitedBy_id crossref_primary_10_1111_1462_2920_70040
crossref_primary_10_1016_j_watres_2024_122102
crossref_primary_10_1016_j_biotechadv_2024_108379
crossref_primary_10_3389_fmicb_2024_1368215
crossref_primary_10_1007_s10529_024_03528_6
crossref_primary_10_1016_j_jclepro_2024_143487
Cites_doi 10.1196/annals.1419.005
10.1038/nrmicro2166
10.1007/s00018-010-0555-8
10.1128/jb.174.17.5489-5495.1992
10.1007/s00253-019-10078-9
10.1128/JB.00385-12
10.1101/gr.186072.114
10.1128/AEM.01428-08
10.1371/journal.pone.0033439
10.1016/j.bbabio.2012.07.002
10.1264/jsme2.me10122
10.1099/00207713-50-4-1601
10.1146/annurev-micro-090110-102844
10.1007/BF00245332
10.1128/AEM.67.4.1800-1804.2001
10.1038/ismej.2016.39
10.1186/s40168-020-00885-y
10.1016/j.enzmictec.2008.04.007
10.1093/bioinformatics/btu153
10.1016/j.syapm.2010.11.018
10.1007/s00248-020-01485-x
10.1099/00207713-46-4-1145
10.1099/00207713-52-4-1361
10.1074/jbc.M311657200
10.1002/bit.10628
10.1128/AEM.66.12.5488-5491.2000
10.1021/acs.est.0c01840
10.1111/1462-2920.14388
10.1111/j.1462-2920.2010.02289.x
10.1016/j.watres.2012.01.034
10.1061/(ASCE)EE.1943-7870.0001011
10.1007/BF00410965
10.1128/AEM.01637-12
10.1371/journal.pone.0166520
10.1263/jbb.106.180
10.1128/AEM.71.12.8773-8783.2005
10.1007/s00438-005-1126-9
10.1089/cmb.2012.0021
10.1016/j.watres.2004.03.012
10.1038/ncomms3304
10.1038/ismej.2014.256
10.1128/mmbr.61.2.262-280.1997
10.1016/S1389-1723(04)70148-6
10.1016/j.jbiotec.2013.11.016
10.1038/s41587-020-0501-8
10.1128/aem.54.2.454-459.1988
10.7717/peerj.1165
10.1128/am.14.3.368-371.1966
10.1186/s13068-016-0454-9
10.1155/2018/4712608
10.1111/j.1462-2920.2010.02338.x
10.1128/AEM.01219-10
10.1016/j.chemosphere.2021.132389
10.1007/s12010-017-2557-6
10.1111/1462-2920.13382
10.1111/j.1574-6968.2010.02023.x
10.1093/bioinformatics/btu170
10.1128/AEM.00166-14
10.1264/jsme2.23.118
10.1093/nar/gkw290
10.1007/s00253-016-8028-0
10.1186/1471-2164-13-723
10.1093/bioinformatics/btv638
ContentType Journal Article
Copyright Copyright © 2024 American Society for Microbiology.
Copyright American Society for Microbiology Feb 2024
Copyright © 2024 American Society for Microbiology. 2024 American Society for Microbiology.
Copyright_xml – notice: Copyright © 2024 American Society for Microbiology.
– notice: Copyright American Society for Microbiology Feb 2024
– notice: Copyright © 2024 American Society for Microbiology. 2024 American Society for Microbiology.
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1128/aem.01090-23
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
EISSN 1098-5336
Editor Bose, Arpita
Editor_xml – sequence: 1
  givenname: Arpita
  surname: Bose
  fullname: Bose, Arpita
ExternalDocumentID PMC10880629
01090-23
38259075
10_1128_aem_01090_23
Genre Journal Article
GrantInformation_xml – fundername: MOST | National Natural Science Foundation of China (NSFC)
  grantid: No. 51678378
– fundername: Ministry of Science and Technology of the People's Republic of China (MOST)
  grantid: No. 2016YFE0127700
– fundername: ;
  grantid: No. 2016YFE0127700
– fundername: ;
  grantid: No. 51678378
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CS3
D0L
DIK
E.-
E3Z
EBS
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
O9-
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
RYH
TAE
TN5
TR2
TWZ
UHB
W8F
WH7
WOQ
X6Y
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RHF
UCJ
ZA5
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-a542t-7839338c88d45c1281fa7ec41655f285a8b7b5e90a9b46003a4e9d561e8b9c23
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 18:32:52 EDT 2025
Fri Jul 11 06:39:38 EDT 2025
Mon Jun 30 10:37:35 EDT 2025
Tue May 21 18:31:39 EDT 2024
Mon Jul 21 06:05:16 EDT 2025
Tue Jul 01 04:29:33 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Fri Jun 27 01:01:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords energy conservation
thermophilic anaerobic digestion
glycine-mediated acetate oxidation pathway
syntrophic acetate oxidation
Wood-Ljungdahl pathway
Language English
License All Rights Reserved. https://doi.org/10.1128/ASMCopyrightv2
All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a542t-7839338c88d45c1281fa7ec41655f285a8b7b5e90a9b46003a4e9d561e8b9c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0002-8680-432x
0000-0001-6872-1099
0000-0002-0046-9306
0000-0002-0301-9730
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10880629
PMID 38259075
PQID 2937887237
PQPubID 42251
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10880629
proquest_miscellaneous_2917862661
proquest_journals_2937887237
asm2_journals_10_1128_aem_01090_23
pubmed_primary_38259075
crossref_primary_10_1128_aem_01090_23
crossref_citationtrail_10_1128_aem_01090_23
nii_cinii_1871428067581647872
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-21
PublicationDateYYYYMMDD 2024-02-21
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
– name: Washington
PublicationTitle Applied and Environmental Microbiology
PublicationTitleAbbrev Appl Environ Microbiol
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2024
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_4_3_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
Poehlein, A, Schmidt, S, Kaster, AK, Goenrich, M, Vollmers, J, Thürmer, A, Bertsch, J, Schuchmann, K, Voigt, B, Hecker, M, Daniel, R, Thauer, RK, Gottschalk, G, Müller, V (B53) 2012; 7
Kato, S, Watanabe, K (B6) 2010; 25
Sun, L, Müller, B, Westerholm, M, Schnürer, A (B11) 2014; 171
Mayumi, D, Mochimaru, H, Yoshioka, H, Sakata, S, Maeda, H, Miyagawa, Y, Ikarashi, M, Takeuchi, M, Kamagata, Y (B62) 2011; 13
Ueno, Y, Tatara, M (B55) 2008; 43
Segata, N, Börnigen, D, Morgan, XC, Huttenhower, C (B38) 2013; 4
Dolfing, J, Jiang, B, Henstra, AM, Stams, AJM, Plugge, CM (B51) 2008; 74
Hovey, R, Lentes, S, Ehrenreich, A, Salmon, K, Saba, K, Gottschalk, G, Gunsalus, RP, Deppenmeier, U (B43) 2005; 273
Smith, PH, Mah, RA (B8) 1966; 14
Oehler, D, Poehlein, A, Leimbach, A, Müller, N, Daniel, R, Gottschalk, G, Schink, B (B21) 2012; 13
Tang, YQ, Matsui, T, Morimura, S, Wu, XL, Kida, K (B54) 2008; 106
Werner, JJ, Garcia, ML, Perkins, SD, Yarasheski, KE, Smith, SR, Muegge, BD, Stadermann, FJ, DeRito, CM, Floss, C, Madsen, EL, Gordon, JI, Angenent, LT (B12) 2014; 80
Ahring, BK, Westermann, P, Mah, RA (B42) 1991; 157
Chen, YT, Zeng, Y, Wang, HZ, Zheng, D, Kamagata, Y, Narihiro, T, Nobu, MK, Tang, YQ (B30) 2020; 80
Pind, PF, Angelidaki, I, Ahring, BK (B1) 2003; 82
de Bok, FA, Stams, AJ, Dijkema, C, Boone, DR (B3) 2001; 67
Biegel, E, Schmidt, S, González, JM, Müller, V (B48) 2011; 68
Chen, YT, Zeng, Y, Li, J, Zhao, XY, Yi, Y, Gou, M, Kamagata, Y, Narihiro, T, Nobu, MK, Tang, YQ (B29) 2020; 54
Hidalgo-Ahumada, CAP, Nobu, MK, Narihiro, T, Tamaki, H, Liu, WT, Kamagata, Y, Stams, AJM, Imachi, H, Sousa, DZ (B47) 2018; 20
Sauer, U, Canonaco, F, Heri, S, Perrenoud, A, Fischer, E (B49) 2004; 279
Heine-Dobbernack, E, Schoberth, SM, Sahm, H (B44) 1988; 54
Shigematsu, T, Tang, YQ, Kawaguchi, H, Ninomiya, K, Kijima, J, Kobayashi, T, Morimura, S, Kida, K (B16) 2003; 96
Li, MT, Rao, L, Wang, L, Gou, M, Sun, ZY, Xia, ZY, Song, WF, Tang, YQ (B59) 2022; 288
Nobu, MK, Narihiro, T, Rinke, C, Kamagata, Y, Tringe, SG, Woyke, T, Liu, WT (B24) 2015; 9
Zheng, D, Wang, HZ, Gou, M, Nobu, MK, Narihiro, T, Hu, B, Nie, Y, Tang, YQ (B28) 2019; 103
Nobu, MK, Narihiro, T, Mei, R, Kamagata, Y, Lee, PKH, Lee, PH, McInerney, MJ, Liu, WT (B50) 2020; 8
Schnurer, A, Schink, B, Svensson, BH (B23) 1996; 46
Westerholm, M, Roos, S, Schnürer, A (B18) 2010; 309
Mosbæk, F, Kjeldal, H, Mulat, DG, Albertsen, M, Ward, AJ, Feilberg, A, Nielsen, JL (B27) 2016; 10
Wu, YW, Simmons, BA, Singer, SW (B35) 2016; 32
Narihiro, T, Terada, T, Ohashi, A, Kamagata, Y, Nakamura, K, Sekiguchi, Y (B25) 2012; 46
Stams, AJM, Plugge, CM (B7) 2009; 7
Tang, Y, Shigematsu, T, Ikbal, Morimura, S, Kida, K (B56) 2004; 38
Balk, M, Weijma, J, Stams, AJM (B22) 2002; 52
Parks, DH, Chuvochina, M, Chaumeil, PA, Rinke, C, Mussig, AJ, Hugenholtz, P (B37) 2020; 38
Sieber, JR, McInerney, MJ, Gunsalus, RP (B45) 2012; 66
Podmirseg, SM, Gadermaier, M, Franke-Whittle, IH, Wett, B, Insam, H, Goberna, M (B57) 2016; 142
Bolger, AM, Lohse, M, Usadel, B (B32) 2014; 30
Vanwonterghem, I, Jensen, PD, Rabaey, K, Tyson, GW (B26) 2016; 18
Bankevich, A, Nurk, S, Antipov, D, Gurevich, AA, Dvorkin, M, Kulikov, AS, Lesin, VM, Nikolenko, SI, Pham, S, Prjibelski, AD, Pyshkin, AV, Sirotkin, AV, Vyahhi, N, Tesler, G, Alekseyev, MA, Pevzner, PA (B33) 2012; 19
Buckel, W, Thauer, RK (B46) 2013; 1827
Kang, DD, Froula, J, Egan, R, Wang, Z (B34) 2015; 3
Parks, DH, Imelfort, M, Skennerton, CT, Hugenholtz, P, Tyson, GW (B36) 2015; 25
Moser, DP, Gihring, TM, Brockman, FJ, Fredrickson, JK, Balkwill, DL, Dollhopf, ME, Lollar, BS, Pratt, LM, Boice, E, Southam, G, Wanger, G, Baker, BJ, Pfiffner, SM, Lin, LH, Onstott, TC (B61) 2005; 71
Manzoor, S, Bongcam-Rudloff, E, Schnürer, A, Müller, B (B20) 2016; 11
Lackner, N, Hintersonnleitner, A, Wagner, AO, Illmer, P (B41) 2018; 2018
Zhu, X, Kougias, PG, Treu, L, Campanaro, S, Angelidaki, I (B15) 2017; 101
Stieb, M, Schink, B (B2) 1986; 144
Griffiths, RI, Whiteley, AS, O’Donnell, AG, Bailey, MJ (B31) 2000; 66
Hattori, S (B9) 2008; 23
Sizova, MV, Izquierdo, JA, Panikov, NS, Lynd, LR (B60) 2011; 77
Müller, B, Sun, L, Westerholm, M, Schnürer, A (B14) 2016; 9
Ferry, JG (B10) 1992; 174
Hattori, S, Kamagata, Y, Hanada, S, Shoun, H (B17) 2000; 50 Pt 4
Huang, H, Wang, S, Moll, J, Thauer, RK (B52) 2012; 194
Schink, B (B4) 1997; 61
Wang, TT, Sun, ZY, Huang, YL, Tan, L, Tang, YQ, Kida, K (B58) 2018; 184
Liu, F, Conrad, R (B63) 2010; 12
Letunic, I, Bork, P (B39) 2016; 44
Westerholm, M, Roos, S, Schnürer, A (B19) 2011; 34
Westerholm, M, Levén, L, Schnürer, A (B13) 2012; 78
McInerney, MJ, Struchtemeyer, CG, Sieber, J, Mouttaki, H, Stams, AJM, Schink, B, Rohlin, L, Gunsalus, RP (B5) 2008; 1125
Seemann, T (B40) 2014; 30
References_xml – ident: e_1_3_4_6_2
  doi: 10.1196/annals.1419.005
– ident: e_1_3_4_8_2
  doi: 10.1038/nrmicro2166
– ident: e_1_3_4_49_2
  doi: 10.1007/s00018-010-0555-8
– ident: e_1_3_4_11_2
  doi: 10.1128/jb.174.17.5489-5495.1992
– ident: e_1_3_4_29_2
  doi: 10.1007/s00253-019-10078-9
– ident: e_1_3_4_53_2
  doi: 10.1128/JB.00385-12
– ident: e_1_3_4_37_2
  doi: 10.1101/gr.186072.114
– ident: e_1_3_4_52_2
  doi: 10.1128/AEM.01428-08
– ident: e_1_3_4_54_2
  doi: 10.1371/journal.pone.0033439
– ident: e_1_3_4_47_2
  doi: 10.1016/j.bbabio.2012.07.002
– ident: e_1_3_4_7_2
  doi: 10.1264/jsme2.me10122
– ident: e_1_3_4_18_2
  doi: 10.1099/00207713-50-4-1601
– ident: e_1_3_4_46_2
  doi: 10.1146/annurev-micro-090110-102844
– ident: e_1_3_4_43_2
  doi: 10.1007/BF00245332
– ident: e_1_3_4_4_2
  doi: 10.1128/AEM.67.4.1800-1804.2001
– ident: e_1_3_4_28_2
  doi: 10.1038/ismej.2016.39
– ident: e_1_3_4_51_2
  doi: 10.1186/s40168-020-00885-y
– ident: e_1_3_4_56_2
  doi: 10.1016/j.enzmictec.2008.04.007
– ident: e_1_3_4_41_2
  doi: 10.1093/bioinformatics/btu153
– ident: e_1_3_4_20_2
  doi: 10.1016/j.syapm.2010.11.018
– ident: e_1_3_4_31_2
  doi: 10.1007/s00248-020-01485-x
– ident: e_1_3_4_24_2
  doi: 10.1099/00207713-46-4-1145
– ident: e_1_3_4_23_2
  doi: 10.1099/00207713-52-4-1361
– ident: e_1_3_4_50_2
  doi: 10.1074/jbc.M311657200
– ident: e_1_3_4_2_2
  doi: 10.1002/bit.10628
– ident: e_1_3_4_32_2
  doi: 10.1128/AEM.66.12.5488-5491.2000
– ident: e_1_3_4_30_2
  doi: 10.1021/acs.est.0c01840
– ident: e_1_3_4_48_2
  doi: 10.1111/1462-2920.14388
– ident: e_1_3_4_64_2
  doi: 10.1111/j.1462-2920.2010.02289.x
– ident: e_1_3_4_26_2
  doi: 10.1016/j.watres.2012.01.034
– ident: e_1_3_4_58_2
  doi: 10.1061/(ASCE)EE.1943-7870.0001011
– ident: e_1_3_4_3_2
  doi: 10.1007/BF00410965
– ident: e_1_3_4_14_2
  doi: 10.1128/AEM.01637-12
– ident: e_1_3_4_21_2
  doi: 10.1371/journal.pone.0166520
– ident: e_1_3_4_55_2
  doi: 10.1263/jbb.106.180
– ident: e_1_3_4_62_2
  doi: 10.1128/AEM.71.12.8773-8783.2005
– ident: e_1_3_4_44_2
  doi: 10.1007/s00438-005-1126-9
– ident: e_1_3_4_34_2
  doi: 10.1089/cmb.2012.0021
– ident: e_1_3_4_57_2
  doi: 10.1016/j.watres.2004.03.012
– ident: e_1_3_4_39_2
  doi: 10.1038/ncomms3304
– ident: e_1_3_4_25_2
  doi: 10.1038/ismej.2014.256
– ident: e_1_3_4_5_2
  doi: 10.1128/mmbr.61.2.262-280.1997
– ident: e_1_3_4_17_2
  doi: 10.1016/S1389-1723(04)70148-6
– ident: e_1_3_4_12_2
  doi: 10.1016/j.jbiotec.2013.11.016
– ident: e_1_3_4_38_2
  doi: 10.1038/s41587-020-0501-8
– ident: e_1_3_4_45_2
  doi: 10.1128/aem.54.2.454-459.1988
– ident: e_1_3_4_35_2
  doi: 10.7717/peerj.1165
– ident: e_1_3_4_9_2
  doi: 10.1128/am.14.3.368-371.1966
– ident: e_1_3_4_15_2
  doi: 10.1186/s13068-016-0454-9
– ident: e_1_3_4_42_2
  doi: 10.1155/2018/4712608
– ident: e_1_3_4_63_2
  doi: 10.1111/j.1462-2920.2010.02338.x
– ident: e_1_3_4_61_2
  doi: 10.1128/AEM.01219-10
– ident: e_1_3_4_60_2
  doi: 10.1016/j.chemosphere.2021.132389
– ident: e_1_3_4_59_2
  doi: 10.1007/s12010-017-2557-6
– ident: e_1_3_4_27_2
  doi: 10.1111/1462-2920.13382
– ident: e_1_3_4_19_2
  doi: 10.1111/j.1574-6968.2010.02023.x
– ident: e_1_3_4_33_2
  doi: 10.1093/bioinformatics/btu170
– ident: e_1_3_4_13_2
  doi: 10.1128/AEM.00166-14
– ident: e_1_3_4_10_2
  doi: 10.1264/jsme2.23.118
– ident: e_1_3_4_40_2
  doi: 10.1093/nar/gkw290
– ident: e_1_3_4_16_2
  doi: 10.1007/s00253-016-8028-0
– ident: e_1_3_4_22_2
  doi: 10.1186/1471-2164-13-723
– ident: e_1_3_4_36_2
  doi: 10.1093/bioinformatics/btv638
– volume: 7
  start-page: 568
  year: 2009
  end-page: 577
  ident: B7
  article-title: Electron transfer in syntrophic communities of anaerobic bacteria and archaea
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2166
– volume: 144
  start-page: 291
  year: 1986
  end-page: 295
  ident: B2
  article-title: Anaerobic degradation of isovalerate by a defined methanogenic coculture
  publication-title: Arch Microbiol
  doi: 10.1007/BF00410965
– volume: 67
  start-page: 1800
  year: 2001
  end-page: 1804
  ident: B3
  article-title: Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.67.4.1800-1804.2001
– volume: 32
  start-page: 605
  year: 2016
  end-page: 607
  ident: B35
  article-title: MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv638
– volume: 30
  start-page: 2068
  year: 2014
  end-page: 2069
  ident: B40
  article-title: Prokka: rapid prokaryotic genome annotation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu153
– volume: 54
  start-page: 454
  year: 1988
  end-page: 459
  ident: B44
  article-title: Relationship of intracellular coenzyme F(420) content to growth and metabolic activity of Methanobacterium bryantii and Methanosarcina barkeri
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.54.2.454-459.1988
– volume: 80
  start-page: 120
  year: 2020
  end-page: 132
  ident: B30
  article-title: Different interspecies electron transfer patterns during mesophilic and thermophilic syntrophic propionate degradation in chemostats
  publication-title: Microb Ecol
  doi: 10.1007/s00248-020-01485-x
– volume: 68
  start-page: 613
  year: 2011
  end-page: 634
  ident: B48
  article-title: Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-010-0555-8
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  ident: B32
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 13
  start-page: 1995
  year: 2011
  end-page: 2006
  ident: B62
  article-title: Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan)
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2010.02338.x
– volume: 157
  start-page: 38
  year: 1991
  end-page: 42
  ident: B42
  article-title: Hydrogen inhibition of acetate metabolism and kinetics of hydrogen consumption by Methanosarcina thermophila TM-1
  publication-title: Arch Microbiol
  doi: 10.1007/BF00245332
– volume: 66
  start-page: 429
  year: 2012
  end-page: 452
  ident: B45
  article-title: Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-090110-102844
– volume: 106
  start-page: 180
  year: 2008
  end-page: 187
  ident: B54
  article-title: Effect of temperature on microbial community of a glucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation
  publication-title: J Biosci Bioeng
  doi: 10.1263/jbb.106.180
– volume: 23
  start-page: 118
  year: 2008
  end-page: 127
  ident: B9
  article-title: Syntrophic acetate-oxidizing microbes in methanogenic environments
  publication-title: Microbes Environ
  doi: 10.1264/jsme2.23.118
– volume: 1125
  start-page: 58
  year: 2008
  end-page: 72
  ident: B5
  article-title: Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1419.005
– volume: 46
  start-page: 2167
  year: 2012
  end-page: 2175
  ident: B25
  article-title: Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method
  publication-title: Water Res
  doi: 10.1016/j.watres.2012.01.034
– volume: 78
  start-page: 7619
  year: 2012
  end-page: 7625
  ident: B13
  article-title: Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01637-12
– volume: 11
  year: 2016
  ident: B20
  article-title: Genome-guided analysis and whole transcriptome profiling of the mesophilic syntrophic acetate oxidising bacterium Syntrophaceticus schinkii
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0166520
– volume: 279
  start-page: 6613
  year: 2004
  end-page: 6619
  ident: B49
  article-title: The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M311657200
– volume: 194
  start-page: 3689
  year: 2012
  end-page: 3699
  ident: B52
  article-title: Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2
  publication-title: J Bacteriol
  doi: 10.1128/JB.00385-12
– volume: 38
  start-page: 2537
  year: 2004
  end-page: 2550
  ident: B56
  article-title: The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester
  publication-title: Water Res
  doi: 10.1016/j.watres.2004.03.012
– volume: 1827
  start-page: 94
  year: 2013
  end-page: 113
  ident: B46
  article-title: Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbabio.2012.07.002
– volume: 80
  start-page: 3375
  year: 2014
  end-page: 3383
  ident: B12
  article-title: Microbial community Dynamics and stability during an ammonia-induced shift to Syntrophic acetate oxidation
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00166-14
– volume: 50 Pt 4
  start-page: 1601
  year: 2000
  end-page: 1609
  ident: B17
  article-title: Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/00207713-50-4-1601
– volume: 34
  start-page: 260
  year: 2011
  end-page: 266
  ident: B19
  article-title: Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes
  publication-title: Syst Appl Microbiol
  doi: 10.1016/j.syapm.2010.11.018
– volume: 9
  start-page: 48
  year: 2016
  ident: B14
  article-title: Bacterial community composition and fhs profiles of low-and high-ammonia biogas digesters reveal novel syntrophic acetate-oxidising bacteria
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-016-0454-9
– volume: 43
  start-page: 302
  year: 2008
  end-page: 308
  ident: B55
  article-title: Microbial population in a thermophilic packed-bed reactor for methanogenesis from volatile fatty acids
  publication-title: Enzyme Microb Tech
  doi: 10.1016/j.enzmictec.2008.04.007
– volume: 142
  start-page: 04015055
  year: 2016
  ident: B57
  article-title: Prokaryotic community dynamics during the start-up of a full-scale BIO4GAS digester
  publication-title: J Environ Eng
  doi: 10.1061/(ASCE)EE.1943-7870.0001011
– volume: 10
  start-page: 2405
  year: 2016
  end-page: 2418
  ident: B27
  article-title: Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics
  publication-title: ISME J
  doi: 10.1038/ismej.2016.39
– volume: 184
  start-page: 685
  year: 2018
  end-page: 702
  ident: B58
  article-title: Biogas production from distilled grain waste by thermophilic dry anaerobic digestion: pretreatment of feedstock and dynamics of microbial community
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/s12010-017-2557-6
– volume: 4
  start-page: 1
  year: 2013
  end-page: 11
  ident: B38
  article-title: Phylophlan is a new method for improved phylogenetic and taxonomic placement of microbes
  publication-title: Nat Commun
  doi: 10.1038/ncomms3304
– volume: 3
  year: 2015
  ident: B34
  article-title: Metabat, an efficient tool for accurately reconstructing single genomes from complex microbial communities
  publication-title: PeerJ
  doi: 10.7717/peerj.1165
– volume: 14
  start-page: 368
  year: 1966
  end-page: 371
  ident: B8
  article-title: Kinetics of acetate metabolism during sludge digestion
  publication-title: Appl Microbiol
  doi: 10.1128/am.14.3.368-371.1966
– volume: 66
  start-page: 5488
  year: 2000
  end-page: 5491
  ident: B31
  article-title: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.12.5488-5491.2000
– volume: 273
  start-page: 225
  year: 2005
  end-page: 239
  ident: B43
  article-title: DNA microarray analysis of Methanosarcina mazei Gö1 reveals adaptation to different methanogenic substrates
  publication-title: Mol Genet Genomics
  doi: 10.1007/s00438-005-1126-9
– volume: 103
  start-page: 8631
  year: 2019
  end-page: 8645
  ident: B28
  article-title: Identification of novel potential acetate-oxidizing bacteria in thermophilic methanogenic chemostats by DNA stable Isotope probing
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-019-10078-9
– volume: 13
  year: 2012
  ident: B21
  article-title: Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-723
– volume: 7
  year: 2012
  ident: B53
  article-title: An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0033439
– volume: 9
  start-page: 1710
  year: 2015
  end-page: 1722
  ident: B24
  article-title: Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor
  publication-title: ISME J
  doi: 10.1038/ismej.2014.256
– volume: 25
  start-page: 1043
  year: 2015
  end-page: 1055
  ident: B36
  article-title: CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and Metagenomes
  publication-title: Genome Res
  doi: 10.1101/gr.186072.114
– volume: 74
  start-page: 6126
  year: 2008
  end-page: 6131
  ident: B51
  article-title: Syntrophic growth on formate: a new microbial niche in anoxic environments
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01428-08
– volume: 71
  start-page: 8773
  year: 2005
  end-page: 8783
  ident: B61
  article-title: Desulfotomaculum and Methanobacterium spp. Dominate a 4- to 5-kilometer-deep fault
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.12.8773-8783.2005
– volume: 38
  start-page: 1079
  year: 2020
  end-page: 1086
  ident: B37
  article-title: A complete domain-to-species taxonomy for bacteria and archaea
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0501-8
– volume: 77
  start-page: 2282
  year: 2011
  end-page: 2291
  ident: B60
  article-title: Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01219-10
– volume: 61
  start-page: 262
  year: 1997
  end-page: 280
  ident: B4
  article-title: Energetics of syntrophic cooperation in methanogenic degradation
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/mmbr.61.2.262-280.1997
– volume: 174
  start-page: 5489
  year: 1992
  end-page: 5495
  ident: B10
  article-title: Methane from acetate
  publication-title: J Bacteriol
  doi: 10.1128/jb.174.17.5489-5495.1992
– volume: 82
  start-page: 791
  year: 2003
  end-page: 801
  ident: B1
  article-title: Dynamics of the anaerobic process: effects of volatile fatty acids
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.10628
– volume: 288
  year: 2022
  ident: B59
  article-title: Bioaugmentation with syntrophic volatile fatty acids-oxidizing consortia to alleviate the ammonia inhibition in continuously anaerobic digestion of municipal sludge
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132389
– volume: 101
  start-page: 1313
  year: 2017
  end-page: 1322
  ident: B15
  article-title: Microbial community changes in methanogenic granules during the transition from mesophilic to thermophilic conditions
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-016-8028-0
– volume: 96
  start-page: 547
  year: 2003
  end-page: 558
  ident: B16
  article-title: Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation
  publication-title: J Biosci Bioeng
  doi: 10.1016/S1389-1723(04)70148-6
– volume: 20
  start-page: 4503
  year: 2018
  end-page: 4511
  ident: B47
  article-title: Novel energy conservation strategies and behaviour of pelotomaculum schinkii driving syntrophic propionate catabolism
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.14388
– volume: 18
  start-page: 3144
  year: 2016
  end-page: 3158
  ident: B26
  article-title: Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13382
– volume: 8
  year: 2020
  ident: B50
  article-title: Catabolism and interactions of uncultured organisms shaped by eco-thermodynamics in methanogenic bioprocesses
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00885-y
– volume: 54
  start-page: 9618
  year: 2020
  end-page: 9628
  ident: B29
  article-title: Novel syntrophic Isovalerate-degrading bacteria and their energetic cooperation with methanogens in methanogenic chemostats
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c01840
– volume: 309
  start-page: 100
  year: 2010
  end-page: 104
  ident: B18
  article-title: Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2010.02023.x
– volume: 46
  start-page: 1145
  year: 1996
  end-page: 1152
  ident: B23
  article-title: Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium
  publication-title: Int J Syst Bacteriol
  doi: 10.1099/00207713-46-4-1145
– volume: 12
  start-page: 2341
  year: 2010
  end-page: 2354
  ident: B63
  article-title: Thermoanaerobacteriaceae oxidize acetate in methanogenic rice field soil at 50°C
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2010.02289.x
– volume: 25
  start-page: 145
  year: 2010
  end-page: 151
  ident: B6
  article-title: Ecological and evolutionary interactions in syntrophic methanogenic consortia
  publication-title: Microbes Environ
  doi: 10.1264/jsme2.me10122
– volume: 52
  start-page: 1361
  year: 2002
  end-page: 1368
  ident: B22
  article-title: Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/00207713-52-4-1361
– volume: 19
  start-page: 455
  year: 2012
  end-page: 477
  ident: B33
  article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2012.0021
– volume: 44
  start-page: W242
  year: 2016
  end-page: W245
  ident: B39
  article-title: Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw290
– volume: 171
  start-page: 39
  year: 2014
  end-page: 44
  ident: B11
  article-title: Syntrophic acetate oxidation in industrial CSTR biogas digesters
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2013.11.016
– volume: 2018
  year: 2018
  ident: B41
  article-title: Hydrogenotrophic methanogenesis and autotrophic growth of Methanosarcina thermophila
  publication-title: Archaea
  doi: 10.1155/2018/4712608
SSID ssib043675070
ssib000532188
ssib058492269
ssib008315320
ssib045319166
ssib026260219
ssj0004068
Score 2.4977643
Snippet Combining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic...
Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH . In methanogenic systems, acetate degradation is carried out by...
Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by...
Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH 4 . In methanogenic systems, acetate degradation is carried out by...
SourceID pubmedcentral
proquest
asm2
pubmed
crossref
nii
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e0109023
SubjectTerms Acetates - metabolism
Acetic acid
Anaerobic digestion
Anaerobiosis
Applied and Industrial Microbiology
Bacteria
Bacteria, Anaerobic - metabolism
Biodegradation
Bioreactors
Bioreactors - microbiology
Chemostats
Degradation
Euryarchaeota - metabolism
Firmicutes - metabolism
Genera
Glycine
Metabolism
Metagenomics
Methane - metabolism
Methanogenesis
Methanogenic bacteria
Organic wastes
Oxidation
Oxidation-Reduction
Oxidizing agents
Phylogeny
Thermophilic bacteria
Title Metabolism of novel potential syntrophic acetate-oxidizing bacteria in thermophilic methanogenic chemostats
URI https://cir.nii.ac.jp/crid/1871428067581647872
https://www.ncbi.nlm.nih.gov/pubmed/38259075
https://journals.asm.org/doi/10.1128/aem.01090-23
https://www.proquest.com/docview/2937887237
https://www.proquest.com/docview/2917862661
https://pubmed.ncbi.nlm.nih.gov/PMC10880629
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6IQQ8ICi3woYMgqcpW2rn4jwi2DShdfDQSYOXyHZcNaJNqjVFbO_8b87J1R0dAl6i1jlKj3q-2J_tcz4T8sZVvtSaTxw5lMzxIj50FPeEE6KcOfd8yRTu6I5Og-Mz7-O5f97r_bSyllaF2tdXG-tK_ieq0AZxxSrZf4hs-1BogM8QX7hChOH6VzEemQJiOMNzLjAfI_9uZnuLvMAEICwDucQs9MUUFVk1ZhUaJ_-RJukVrg6oSqVZ1nmOF3M0RMFrPFJaZjn8JnyBiM5zrDla2iS2Ya645m4VymEdStrpOrVL0qbqTr50OPw6rds-WBlBdZl25nw29WharvNXhqNUgu8ytxcpmFcWfVsJH83uk52KOrruUt1FR5GDPKMaoKpeGUVPgZcGdrddnTJaw5NtHg0YVjhIM98v80-dqrJ5XXT79FN8dHZyEo8Pz8db5BaD2QZvFn2a8lo3EI2YKXrW1E8wcWA_GwZ1uZyzNYKzlaXpprnL9RRci9OMH5D79WSEvquQ9ZD0TNYnt6vjSS_75E5Ttb7sk3uWcOUj8q1DHs0ntEQebZFHO-TR35BHG-TRNKM28qiNPNoh7zEZHx2O3x879bEdjvQ9VjghcG7OhRYi8XyNO7UTGRoNzN_3J0z4UqhQ-SZyZaQ84NtceiZKgMcboSLN-BOyneWZeUaoFJ5hSaKDwBWeCl0lVKITV2hfaxMmbEBe4z8e16_kMi5ntEzEEJa4DEvM-IDsNfGIda17j8evzG6wfttaLyq9lxvsdiG08EC8DkWIwoXl5Bv1-UQIru00Qe_cA2qNybuMhwPyqr0N_Tlu0snM5Cu0GYa4yhAMB-RphZHWES6YHwHHHxCxhp7WALXi1-9k6bTUjB8Cm3ADFj3_s18vyN3u9d0h28XFyuwC6y7Uy_Kd-AVJC9yE
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolism+of+novel+potential+syntrophic+acetate-oxidizing+bacteria+in+thermophilic+methanogenic+chemostats&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Zeng%2C+Yan&rft.au=Zheng%2C+Dan&rft.au=Li%2C+Lan-Peng&rft.au=Wang%2C+Miaoxiao&rft.date=2024-02-21&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=90&rft.issue=2&rft_id=info:doi/10.1128%2Faem.01090-23&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon