Quantitative Measurement of OH and CH Chemiluminescence in Jet Diffusion Flames
Quantitative measurement of chemiluminescence is a challenging work that limits the development of combustion diagnostics based on chemiluminescence. Here, we present a feasible method to obtain effective quantitative chemiluminescence data with an integrating sphere uniform light source. Spatial di...
Saved in:
Published in | ACS omega Vol. 5; no. 26; pp. 15922 - 15930 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
07.07.2020
|
Online Access | Get full text |
ISSN | 2470-1343 2470-1343 |
DOI | 10.1021/acsomega.0c01093 |
Cover
Loading…
Abstract | Quantitative measurement of chemiluminescence is a challenging work that limits the development of combustion diagnostics based on chemiluminescence. Here, we present a feasible method to obtain effective quantitative chemiluminescence data with an integrating sphere uniform light source. Spatial distribution images of OH* and CH* radiation from methane laminar diffusion flames were acquired using intensified charge-coupled device (CCD) cameras coupled with multiple lenses and narrow-band-pass filters. After the process of eliminating background emissions by three filters and the Abel inverse transformation, the chemiluminescence intensity was converted to a radiating rate based on the uniform light source. The simulated distributions of OH* and CH* agree well with the experimental results. It has also been found that the distribution of OH* is more extensive and closer to the flame front than that of CH*, demonstrating that OH* is more representative of the flame structure. Based on the change in the reaction rate of different formation reactions, OH* distributions can be divided into three regions: intense section near the nozzle, transition section in the middle of the flame, and secondary section downstream the flame, whereas CH* only exists in the first two regions. In addition, as the velocity ratio of methane and co-flowing air increases, the main reactions become more intense, while the secondary reaction of OH* becomes weaker. |
---|---|
AbstractList | Quantitative measurement
of chemiluminescence is a challenging
work that limits the development of combustion diagnostics based on
chemiluminescence. Here, we present a feasible method to obtain effective
quantitative chemiluminescence data with an integrating sphere uniform
light source. Spatial distribution images of OH* and CH* radiation
from methane laminar diffusion flames were acquired using intensified
charge-coupled device (CCD) cameras coupled with multiple lenses and
narrow-band-pass filters. After the process of eliminating background
emissions by three filters and the Abel inverse transformation, the
chemiluminescence intensity was converted to a radiating rate based
on the uniform light source. The simulated distributions of OH* and
CH* agree well with the experimental results. It has also been found
that the distribution of OH* is more extensive and closer to the flame
front than that of CH*, demonstrating that OH* is more representative
of the flame structure. Based on the change in the reaction rate of
different formation reactions, OH* distributions can be divided into
three regions: intense section near the nozzle, transition section
in the middle of the flame, and secondary section downstream the flame,
whereas CH* only exists in the first two regions. In addition, as
the velocity ratio of methane and co-flowing air increases, the main
reactions become more intense, while the secondary reaction of OH*
becomes weaker. Quantitative measurement of chemiluminescence is a challenging work that limits the development of combustion diagnostics based on chemiluminescence. Here, we present a feasible method to obtain effective quantitative chemiluminescence data with an integrating sphere uniform light source. Spatial distribution images of OH* and CH* radiation from methane laminar diffusion flames were acquired using intensified charge-coupled device (CCD) cameras coupled with multiple lenses and narrow-band-pass filters. After the process of eliminating background emissions by three filters and the Abel inverse transformation, the chemiluminescence intensity was converted to a radiating rate based on the uniform light source. The simulated distributions of OH* and CH* agree well with the experimental results. It has also been found that the distribution of OH* is more extensive and closer to the flame front than that of CH*, demonstrating that OH* is more representative of the flame structure. Based on the change in the reaction rate of different formation reactions, OH* distributions can be divided into three regions: intense section near the nozzle, transition section in the middle of the flame, and secondary section downstream the flame, whereas CH* only exists in the first two regions. In addition, as the velocity ratio of methane and co-flowing air increases, the main reactions become more intense, while the secondary reaction of OH* becomes weaker.Quantitative measurement of chemiluminescence is a challenging work that limits the development of combustion diagnostics based on chemiluminescence. Here, we present a feasible method to obtain effective quantitative chemiluminescence data with an integrating sphere uniform light source. Spatial distribution images of OH* and CH* radiation from methane laminar diffusion flames were acquired using intensified charge-coupled device (CCD) cameras coupled with multiple lenses and narrow-band-pass filters. After the process of eliminating background emissions by three filters and the Abel inverse transformation, the chemiluminescence intensity was converted to a radiating rate based on the uniform light source. The simulated distributions of OH* and CH* agree well with the experimental results. It has also been found that the distribution of OH* is more extensive and closer to the flame front than that of CH*, demonstrating that OH* is more representative of the flame structure. Based on the change in the reaction rate of different formation reactions, OH* distributions can be divided into three regions: intense section near the nozzle, transition section in the middle of the flame, and secondary section downstream the flame, whereas CH* only exists in the first two regions. In addition, as the velocity ratio of methane and co-flowing air increases, the main reactions become more intense, while the secondary reaction of OH* becomes weaker. Quantitative measurement of chemiluminescence is a challenging work that limits the development of combustion diagnostics based on chemiluminescence. Here, we present a feasible method to obtain effective quantitative chemiluminescence data with an integrating sphere uniform light source. Spatial distribution images of OH* and CH* radiation from methane laminar diffusion flames were acquired using intensified charge-coupled device (CCD) cameras coupled with multiple lenses and narrow-band-pass filters. After the process of eliminating background emissions by three filters and the Abel inverse transformation, the chemiluminescence intensity was converted to a radiating rate based on the uniform light source. The simulated distributions of OH* and CH* agree well with the experimental results. It has also been found that the distribution of OH* is more extensive and closer to the flame front than that of CH*, demonstrating that OH* is more representative of the flame structure. Based on the change in the reaction rate of different formation reactions, OH* distributions can be divided into three regions: intense section near the nozzle, transition section in the middle of the flame, and secondary section downstream the flame, whereas CH* only exists in the first two regions. In addition, as the velocity ratio of methane and co-flowing air increases, the main reactions become more intense, while the secondary reaction of OH* becomes weaker. |
Author | Yao, Xiao Liu, Yao Wan, Minggang Zhang, Lang Tan, Jianguo |
AuthorAffiliation | College of Aerospace Science and Engineering |
AuthorAffiliation_xml | – name: College of Aerospace Science and Engineering |
Author_xml | – sequence: 1 givenname: Yao orcidid: 0000-0001-6173-5738 surname: Liu fullname: Liu, Yao – sequence: 2 givenname: Jianguo orcidid: 0000-0003-0083-0779 surname: Tan fullname: Tan, Jianguo email: jianguotan@nudt.edu.cn – sequence: 3 givenname: Minggang surname: Wan fullname: Wan, Minggang – sequence: 4 givenname: Lang surname: Zhang fullname: Zhang, Lang – sequence: 5 givenname: Xiao surname: Yao fullname: Yao, Xiao |
BookMark | eNp9kc1vEzEQxS1URD_onaOPHEjxt3cvSCjQpqgoQoKzNfGOU0e7drF3K_Hfs20CokhwsuV57zczfqfkKOWEhLzi7IIzwd-Cr3nALVwwzzhr5TNyIpRlCy6VPPrjfkzOa90xxrhpRCPMC3IshdFGcXFC1l8mSGMcYYz3SD8j1KnggGmkOdD1ikLq6HJFl7c4xH4aYsLqMXmkMdFPONIPMYSpxpzoZQ8D1pfkeYC-4vnhPCPfLj9-Xa4WN-ur6-X7mwVoJcaFbASaruEtAytY0yJItFpJHmCDKEWD0hoWdNAQuJVdkL5rbCulFx2XLMgzcr3ndhl27q7EAcoPlyG6x4dctg7KGH2PTltp0GjfoQfVWZw7Kr6xAhqz0cqrmfVuz7qbNgN2835jgf4J9GklxVu3zffOSqVly2bA6wOg5O8T1tENcf6mvoeEeapOKCE119yaWcr2Ul9yrQXD7zacuYdY3a9Y3SHW2WL-svjHvPLDMLH_n_HN3jhX3C5PJc2J_Fv-Ezp5uRc |
CitedBy_id | crossref_primary_10_1016_j_combustflame_2025_114099 crossref_primary_10_1016_j_ijhydene_2024_02_281 crossref_primary_10_1016_j_fuel_2024_132137 crossref_primary_10_1021_acsomega_3c04688 crossref_primary_10_1002_ese3_959 crossref_primary_10_1021_acsomega_3c00069 crossref_primary_10_1080_00102202_2023_2206521 crossref_primary_10_1016_j_combustflame_2024_113865 crossref_primary_10_1016_j_treng_2023_100200 crossref_primary_10_1021_acs_energyfuels_0c03830 crossref_primary_10_1021_acs_energyfuels_4c00105 crossref_primary_10_1016_j_combustflame_2021_111614 crossref_primary_10_1039_D4AN01082E crossref_primary_10_1016_j_combustflame_2024_113407 crossref_primary_10_1016_j_rineng_2025_104251 crossref_primary_10_1016_j_fuproc_2022_107284 crossref_primary_10_1016_j_ast_2024_109680 crossref_primary_10_2139_ssrn_4111998 crossref_primary_10_1016_j_ijhydene_2024_07_119 crossref_primary_10_1016_j_fuel_2023_130075 crossref_primary_10_26599_FRICT_2025_9440998 crossref_primary_10_1364_AO_412637 crossref_primary_10_1155_2023_3889951 crossref_primary_10_3390_aerospace10070656 crossref_primary_10_1016_j_csite_2023_103032 crossref_primary_10_1016_j_fuel_2025_134448 crossref_primary_10_1016_j_joei_2025_101977 crossref_primary_10_1016_j_combustflame_2024_113755 crossref_primary_10_1016_j_combustflame_2024_113417 crossref_primary_10_1021_acsomega_2c02103 crossref_primary_10_1016_j_fuel_2022_125178 crossref_primary_10_3390_s22155665 crossref_primary_10_1016_j_joei_2024_101928 crossref_primary_10_1016_j_csite_2021_101653 crossref_primary_10_1016_j_energy_2023_127548 crossref_primary_10_1007_s00348_024_03844_7 crossref_primary_10_1016_j_expthermflusci_2024_111386 crossref_primary_10_1080_00102202_2021_1872552 crossref_primary_10_1016_j_egyr_2021_11_262 |
Cites_doi | 10.1016/j.combustflame.2016.02.012 10.1016/j.combustflame.2013.08.021 10.1088/0957-0233/16/3/032 10.1007/s00348-010-0915-z 10.1016/S0010-2180(97)00324-6 10.1016/j.combustflame.2008.11.008 10.1021/acsomega.9b01214 10.1016/j.actaastro.2018.03.053 10.1021/jp035568j 10.1021/jp053684b 10.1364/OL.44.004793 10.1063/1.5111567 10.1016/S0010-2180(02)00399-1 10.1016/j.combustflame.2013.05.002 10.1021/ef401204g 10.1016/j.actaastro.2019.07.019 10.1016/j.combustflame.2004.08.003 10.1021/acs.energyfuels.7b03484 10.1016/j.fuel.2018.05.086 10.1364/AO.58.001363 10.1016/j.combustflame.2007.01.008 10.1016/j.proci.2008.05.050 10.1002/aic.15555 10.1016/j.combustflame.2004.10.002 10.1016/j.combustflame.2017.05.003 10.1007/s00340-019-7179-y 10.1364/OE.25.024093 10.1016/j.proci.2014.05.138 10.1016/j.crme.2010.05.002 10.1364/OE.25.021008 10.1115/1.4000126 10.1021/acs.energyfuels.5b02721 10.1016/j.applthermaleng.2003.10.028 10.1016/j.combustflame.2018.08.019 10.1016/j.actaastro.2018.10.022 10.1016/j.actaastro.2017.07.005 10.1016/j.combustflame.2018.12.009 10.1364/OE.25.004640 10.1016/j.renene.2019.09.014 10.1364/OE.21.007050 |
ContentType | Journal Article |
Copyright | Copyright © 2020 American Chemical Society. Copyright © 2020 American Chemical Society 2020 American Chemical Society |
Copyright_xml | – notice: Copyright © 2020 American Chemical Society. – notice: Copyright © 2020 American Chemical Society 2020 American Chemical Society |
DBID | N~. AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1021/acsomega.0c01093 |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2470-1343 |
EndPage | 15930 |
ExternalDocumentID | oai_doaj_org_article_5736e65cdeca4d7ea7241b72a86b54c4 PMC7345390 10_1021_acsomega_0c01093 a899308397 |
GroupedDBID | 53G ABUCX ACS ADACO ADBBV AFEFF ALMA_UNASSIGNED_HOLDINGS BCNDV EBS GROUPED_DOAJ HYE N~. OK1 RPM VF5 AAFWJ AAHBH AAYXX ABBLG ADUCK AFPKN AOIJS CITATION M~E 7X8 5PM |
ID | FETCH-LOGICAL-a542t-382e6d8190a72089ea3e75431fabee328e3760f5f5af173df3cd87933c2d130f3 |
IEDL.DBID | N~. |
ISSN | 2470-1343 |
IngestDate | Wed Aug 27 01:22:41 EDT 2025 Thu Aug 21 18:19:18 EDT 2025 Thu Jul 10 23:58:57 EDT 2025 Thu Apr 24 23:06:24 EDT 2025 Tue Jul 01 01:03:27 EDT 2025 Thu Aug 27 13:41:53 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a542t-382e6d8190a72089ea3e75431fabee328e3760f5f5af173df3cd87933c2d130f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6173-5738 0000-0003-0083-0779 |
OpenAccessLink | http://dx.doi.org/10.1021/acsomega.0c01093 |
PMID | 32656412 |
PQID | 2423515176 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5736e65cdeca4d7ea7241b72a86b54c4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7345390 proquest_miscellaneous_2423515176 crossref_primary_10_1021_acsomega_0c01093 crossref_citationtrail_10_1021_acsomega_0c01093 acs_journals_10_1021_acsomega_0c01093 |
ProviderPackageCode | ACS ABUCX AFEFF VF5 N~. CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-07 |
PublicationDateYYYYMMDD | 2020-07-07 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | ACS omega |
PublicationTitleAlternate | ACS Omega |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref32/cit32 doi: 10.1016/j.combustflame.2016.02.012 – ident: ref17/cit17 doi: 10.1016/j.combustflame.2013.08.021 – ident: ref37/cit37 doi: 10.1088/0957-0233/16/3/032 – ident: ref16/cit16 doi: 10.1007/s00348-010-0915-z – ident: ref39/cit39 doi: 10.1016/S0010-2180(97)00324-6 – ident: ref15/cit15 doi: 10.1016/j.combustflame.2008.11.008 – ident: ref2/cit2 doi: 10.1021/acsomega.9b01214 – ident: ref4/cit4 doi: 10.1016/j.actaastro.2018.03.053 – ident: ref38/cit38 doi: 10.1021/jp035568j – ident: ref40/cit40 doi: 10.1021/jp053684b – ident: ref25/cit25 doi: 10.1364/OL.44.004793 – ident: ref23/cit23 doi: 10.1063/1.5111567 – ident: ref31/cit31 doi: 10.1016/S0010-2180(02)00399-1 – ident: ref36/cit36 doi: 10.1016/j.combustflame.2013.05.002 – ident: ref12/cit12 doi: 10.1021/ef401204g – ident: ref19/cit19 doi: 10.1016/j.actaastro.2019.07.019 – ident: ref14/cit14 doi: 10.1016/j.combustflame.2004.08.003 – ident: ref35/cit35 doi: 10.1021/acs.energyfuels.7b03484 – ident: ref8/cit8 doi: 10.1016/j.fuel.2018.05.086 – ident: ref22/cit22 doi: 10.1364/AO.58.001363 – ident: ref7/cit7 doi: 10.1016/j.combustflame.2007.01.008 – ident: ref33/cit33 doi: 10.1016/j.proci.2008.05.050 – ident: ref13/cit13 doi: 10.1002/aic.15555 – ident: ref5/cit5 doi: 10.1016/j.combustflame.2004.10.002 – ident: ref30/cit30 doi: 10.1016/j.combustflame.2017.05.003 – ident: ref24/cit24 doi: 10.1007/s00340-019-7179-y – ident: ref27/cit27 doi: 10.1364/OE.25.024093 – ident: ref34/cit34 doi: 10.1016/j.proci.2014.05.138 – ident: ref11/cit11 doi: 10.1016/j.crme.2010.05.002 – ident: ref28/cit28 doi: 10.1364/OE.25.021008 – ident: ref9/cit9 doi: 10.1115/1.4000126 – ident: ref6/cit6 doi: 10.1021/acs.energyfuels.5b02721 – ident: ref10/cit10 doi: 10.1016/j.applthermaleng.2003.10.028 – ident: ref1/cit1 doi: 10.1016/j.combustflame.2018.08.019 – ident: ref18/cit18 doi: 10.1016/j.actaastro.2018.10.022 – ident: ref20/cit20 doi: 10.1016/j.actaastro.2017.07.005 – ident: ref3/cit3 doi: 10.1016/j.combustflame.2018.12.009 – ident: ref29/cit29 doi: 10.1364/OE.25.004640 – ident: ref21/cit21 doi: 10.1016/j.renene.2019.09.014 – ident: ref26/cit26 doi: 10.1364/OE.21.007050 |
SSID | ssj0001682826 |
Score | 2.3464665 |
Snippet | Quantitative measurement of chemiluminescence is a challenging work that limits the development of combustion diagnostics based on chemiluminescence. Here, we... Quantitative measurement of chemiluminescence is a challenging work that limits the development of combustion diagnostics based on chemiluminescence. Here, we... |
SourceID | doaj pubmedcentral proquest crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15922 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCyyIpygvGQkGhkAax4k7QqGqkKBCAonNcuwzVIIU0fb_c-cmpVnKwurYiXM--57-jrGzduzijjUxam6ZiVKDOx3VEBupDihLxpi35O94eMz6L-n9q3xdKPVFOWEzeOAZ4dBgFxlk0jqwJnU5mBxlTpEnRmWFTG1AAkWZt2BMBe9KhpZEUsclUY5dGTsefcKbuYwtRYMIJRCbGtIogPY3NM1mnuSC4Oltso1KY-TXs5lusRUot9laty7UtsMGT1NThrtieHLxh1-nHx95PuhzUzre7fMwAo8iynO3tJ_5sOT3MOG3Q--n5DTjvQ_Kmd1lL727524_quokREamySQSKoHMkWhH4sRIZSMgpzvu3hQAIlFAmS9eeml8OxfOC-sU7kthE4cizIs9tlqOSthn3FvpfCqELPAFBVWXFL5IAZRUzgmVtdg5Uk1XfD7WIYSdtHVNXV1Rt8WuarpqW4GNU82LjyUjLuYjvmZAG0v63tBSzfsRRHZoQMbRFePovxinxU7rhda4YBQnMSWMpmNNKiaqee0cfzdvcEDji80n5fA9gHPnIpWiEx_8xxQP2XpC5n3wJh-x1cn3FI5RB5oUJ4HdfwDYYgbX priority: 102 providerName: Directory of Open Access Journals |
Title | Quantitative Measurement of OH and CH Chemiluminescence in Jet Diffusion Flames |
URI | http://dx.doi.org/10.1021/acsomega.0c01093 https://www.proquest.com/docview/2423515176 https://pubmed.ncbi.nlm.nih.gov/PMC7345390 https://doaj.org/article/5736e65cdeca4d7ea7241b72a86b54c4 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHOBSUR5iKayMBAcOaROPH9kjbLtaVdpWCCr1Zjl-0JVKFrG71_52Ztxst6lQxSWHxE6Uz2PP55nxDGMfqzKUI-9KZG7aFdLhTEca4ot6FGtPm7Hkyd4xO9XTc3lyoS62aXLue_BFdej8cvEr_nQHpSc3DjxmT4SuDUnw6fXB1p6ice-Qq6sJacqiAgmdV_JfLyFd5Jc9XZRT9vd4Zj9K8o7amTxnux1f5F9uBniPPYrtC_Z0vCnT9pKdfVu7Np8Uw3WLz7YmP75I_GzKXRv4eMpzD1yIKMrd02zm85afxBU_mqe0JpMZn1xRxOwrdj45_jGeFl2VhMIpKVYF1CLqQIrdGVEixg6ioRPuyTUxgqgjxb0klZRLlYGQwAeED8CLgAoswWu20y7a-Ibx5FVIEkA1-IKGaktCamSMtapDgFoP2CdEzXZSvrTZgS0qu0HXdugO2OEGV-u7VONU8eLqgR6fb3v8vkmz8UDbrzRUt-0oQXa-gVJju_lmlQEdtfIheieDiYiNrBojXK0bJb0csA-bgbY4YOQlcW1crJeWCCaSvMrg75qeBPS-2H_Szi9zam4DUsGofPufQO2zZ4L279lc_I7trP6s43skOatmiCR__H2YTQR4nV0fD7O8_wX29vxv |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKeygXBKVVl6eR4MAhbeJH7D3Cwiot3a2QWqk3y_EDVipZRHav_HZm3KRLpKrq1bGdZDzj-TwzniHkfZH7fOxsDsittJmwIOkAQ1ymx0E7PIxFh_aO2bysLsXplbzaIkV_FwY-ooWZ2uTE32QXKI6hbfkr_LBHuUNvDn9EdgCLCGTk-d-jjVmlhCNEKrLGhMqzggveOSfvmgRVkmsHKill7h_AzWGw5H_aZ_qUPOlgI_10s87PyFZo9sjupK_W9pycf1_bJl0Yg-2LzjaWP7qM9LyitvF0UtE0AvYjDHZ3KNR00dDTsKJfFjGu0XJGp9cYOLtPLqdfLyZV1hVLyKwUbJVxzULpUb9bxXIgteVB4UX3aOsQONMBw1-ijNLGQnEfufMahJM75kGPRX5AtptlEw4JjU76KDiXNUxQY4lJHmsRgpbae67LEfkAVDMds7cm-bFZYXrqmo66I3Lc09W4LuM4Fr64vmfEx9sRv2-ybdzT9zMu1W0_zJOdGoBzTCd2RipehlI6H5wVXgWgjShqxawuaymcGJF3_UIbWDB0ltgmLNetQZwJWK9Q8LtqwAGDNw6fNIufKUO34kLycf7igYR6S3ari9mZOTuZf3tJHjM80icL8iuyvfqzDq8B96zqN4nT_wEVof72 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0CpFgl54oy7lYSQ4cMg2ie3YeyxbVkuhLQiKerMcP-iqJVuR5NKvZ8ZNtgShCq6O7djz8IxnxjOEvMpSl06sSUFzK0zCDXA6qCE2UROvLF7GgkV7x_5BMT_ie8fieI2I_i0MLKKGmeroxEeuPnehyzCQbUP78of_bsapRY8Ou0FuotcOI_l2pl-uTCsFXCNiobWcyzTJGGedg_Jvk6BYsvVALMXs_QOVcxgw-ZsEmt0l31Zrj4Enp-O2Kcf24o-0jv-9uXvkTqeT0p1LIrpP1nz1gNye9qXgHpLDz62p4ms0OBvp_pVZkS4DPZxTUzk6ndM4Ag47jKS3eGLQRUX3fEN3FyG0aJajszOMyn1Ejmbvvk7nSVeJITGC503CVO4Lh8qDkXkKeDTMS3xFH0zpPcuVx9iaIIIwIZPMBWadAs5nNncgJAN7TNarZeU3CQ1WuMAZEyVMUGL9ShZK7r0SyjmmihF5DZDQHSfVOjrJ80z34NEdeEZku0eYtl06c6yqcXbNiDerEeeXqTyu6fsWaWDVD5NwxwbAnO54WgvJCl8I67w13EkPsOFZKXOjilJwy0fkZU9BGhCGnhhT-WVba1RiQZHMJGxXDkhr8Mfhl2pxEtN_S8YFm6RP_hFQL8itT7sz_fH9wYctspGjuSBap5-S9eZn65-BTtWUzyMH_QLE0R1Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Measurement+of+OH+and+CH+Chemiluminescence+in+Jet+Diffusion+Flames&rft.jtitle=ACS+omega&rft.au=Liu%2C+Yao&rft.au=Tan%2C+Jianguo&rft.au=Wan%2C+Minggang&rft.au=Zhang%2C+Lang&rft.date=2020-07-07&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=5&rft.issue=26&rft.spage=15922&rft.epage=15930&rft_id=info:doi/10.1021%2Facsomega.0c01093&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsomega_0c01093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon |