Required Chlorination Doses to Fulfill the Credit Value for Disinfection of Enteric Viruses in Water: A Critical Review
A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT val...
Saved in:
Published in | Environmental science & technology Vol. 54; no. 4; pp. 2068 - 2077 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log10 inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log10 inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively. |
---|---|
AbstractList | A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log10 inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log10 inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively. A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log₁₀ inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log₁₀ inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively. A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively. A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log10 inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log10 inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively.A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log10 inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log10 inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively. |
Author | Kato, Hiroyuki Okabe, Satoshi Kitajima, Masaaki Kato, Tsuyoshi Rachmadi, Andri Taruna Sano, Daisuke |
AuthorAffiliation | Center for Research on Adoption of NextGen Transportation Systems (CRANTS) Division of Electronics and Informatics, Faculty of Science and Technology Japan Institute of Wastewater Engineering and Technology Integrated Institute for Regulatory Science Gunma University Tohoku University Department of Civil and Environmental Engineering King Abdullah University of Science and Technology (KAUST) Water Desalination and Reuse Center (WDRC) New Industry Creation Hatchery Center Waseda University Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies Division of Environmental Engineering |
AuthorAffiliation_xml | – name: New Industry Creation Hatchery Center – name: Waseda University – name: Gunma University – name: Japan Institute of Wastewater Engineering and Technology – name: Integrated Institute for Regulatory Science – name: Department of Civil and Environmental Engineering – name: Center for Research on Adoption of NextGen Transportation Systems (CRANTS) – name: Tohoku University – name: Water Desalination and Reuse Center (WDRC) – name: Division of Environmental Engineering – name: King Abdullah University of Science and Technology (KAUST) – name: Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies – name: Division of Electronics and Informatics, Faculty of Science and Technology |
Author_xml | – sequence: 1 givenname: Andri Taruna surname: Rachmadi fullname: Rachmadi, Andri Taruna organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Masaaki orcidid: 0000-0002-8142-511X surname: Kitajima fullname: Kitajima, Masaaki organization: Division of Environmental Engineering – sequence: 3 givenname: Tsuyoshi surname: Kato fullname: Kato, Tsuyoshi organization: Waseda University – sequence: 4 givenname: Hiroyuki surname: Kato fullname: Kato, Hiroyuki organization: Tohoku University – sequence: 5 givenname: Satoshi surname: Okabe fullname: Okabe, Satoshi organization: Division of Environmental Engineering – sequence: 6 givenname: Daisuke orcidid: 0000-0001-8075-6972 surname: Sano fullname: Sano, Daisuke email: daisuke.sano.e1@tohoku.ac.jp organization: Tohoku University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31927958$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9rFDEYhoNU7LZ69iYBL0KZ7Zdkkp14K9sfCgWhaPU2ZLJfaEp20iYZi_-92e7aQ0E9BZLn-cj3vgdkb4wjEvKWwZwBZ8fG5jnmMtcDMNXJF2TGJIdGdpLtkRkAE40W6sc-Ocj5FgC4gO4V2RdM84WW3Yw8XOH95BOu6PImxORHU3wc6WnMmGmJ9HwKzodAyw3SZcV8odcmTEhdTPTUZz86tI9KdPRsLJi8pdc-TRvfj_S7qVcf6UmVffHWBHqFPz0-vCYvnQkZ3-zOQ_Lt_Ozr8lNz-eXi8_LksjFSdKWxUFfRK6ZbpTvpUMAw8AUoyZg0TjoYFgiuU4JLkO3AWj60K-NahkK3aK04JB-2c-9SvJ9qVP3aZ4shmBHjlHsuVU2M17z-jwrRgdZM8Yq-f4beximNdZFKqRqzUgwq9W5HTcMaV_1d8muTfvV_0q_A8RawKeac0D0hDPpNv33tt9-M3_VbDfnMsL48VlaS8eEf3tHW2zw8_fVv9G-RKLhk |
CitedBy_id | crossref_primary_10_5004_dwt_2023_29330 crossref_primary_10_1016_j_jclepro_2024_143997 crossref_primary_10_1016_j_jwpe_2024_106611 crossref_primary_10_1016_j_seppur_2022_122563 crossref_primary_10_2166_ws_2024_008 crossref_primary_10_3389_fenvs_2022_1091734 crossref_primary_10_1016_j_scitotenv_2021_149678 crossref_primary_10_1128_aem_00055_24 crossref_primary_10_1016_j_chemosphere_2021_130728 crossref_primary_10_1021_acs_est_1c02704 crossref_primary_10_1016_j_isci_2025_111944 crossref_primary_10_1021_acs_est_2c07048 crossref_primary_10_2139_ssrn_3997715 crossref_primary_10_1016_j_jiec_2024_02_040 crossref_primary_10_1016_j_watres_2020_116291 crossref_primary_10_1021_acs_est_4c02885 crossref_primary_10_1016_j_scitotenv_2022_161372 crossref_primary_10_1016_j_watres_2021_117403 crossref_primary_10_1016_j_jcat_2025_115969 crossref_primary_10_1016_j_scitotenv_2024_171223 crossref_primary_10_1016_j_jhazmat_2022_128515 crossref_primary_10_1016_j_jece_2023_110176 crossref_primary_10_1016_j_tifs_2022_04_006 crossref_primary_10_2166_wh_2022_114 crossref_primary_10_1021_acs_est_0c05144 crossref_primary_10_1016_j_jece_2021_106553 crossref_primary_10_2208_jscejer_78_7_III_11 crossref_primary_10_1016_j_ceramint_2020_09_050 crossref_primary_10_1021_acsestwater_3c00478 crossref_primary_10_1016_j_jece_2020_104812 crossref_primary_10_1016_j_watres_2023_121070 crossref_primary_10_1021_acsestwater_3c00351 crossref_primary_10_3389_fmicb_2022_991856 crossref_primary_10_1016_j_scitotenv_2021_145586 crossref_primary_10_1016_j_jwpe_2022_102642 crossref_primary_10_1016_j_scitotenv_2021_146039 crossref_primary_10_1016_j_jhazmat_2021_126527 crossref_primary_10_1021_acs_est_3c08257 crossref_primary_10_1016_j_scitotenv_2023_167634 crossref_primary_10_1016_j_watres_2020_116674 crossref_primary_10_1080_23311916_2021_1929046 crossref_primary_10_1007_s12560_022_09513_4 crossref_primary_10_1146_annurev_cellbio_040621_032416 crossref_primary_10_3390_polysaccharides4030016 crossref_primary_10_1016_j_coesh_2020_08_003 crossref_primary_10_1016_j_watres_2025_123541 crossref_primary_10_1128_aem_01405_24 crossref_primary_10_1016_j_chemosphere_2022_137393 crossref_primary_10_1016_j_ceja_2023_100482 crossref_primary_10_1021_acs_est_1c01763 crossref_primary_10_1016_j_watres_2022_119309 crossref_primary_10_1021_acs_est_1c04239 crossref_primary_10_1016_j_scitotenv_2021_150766 |
Cites_doi | 10.2307/1907382 10.1128/AEM.71.6.3100-3105.2005 10.1128/JCM.20.3.365-372.1984 10.1016/j.scitotenv.2014.04.087 10.3389/fmicb.2017.01928 10.1016/S1570-0232(02)00244-1 10.1093/aje/kwq320 10.1080/10934520802659653 10.1073/pnas.1500457112 10.1128/AEM.00869-10 10.1128/AEM.02442-07 10.1016/j.watres.2016.11.020 10.1021/acs.est.7b03288 10.1016/j.coviro.2011.11.003 10.1016/0042-6822(88)90582-X 10.1016/j.ijfoodmicro.2015.08.015 10.1016/j.watres.2010.03.003 10.1128/AEM.69.7.3979-3985.2003 10.1021/acs.estlett.6b00079 10.4315/0362-028X.JFP-12-216 10.1128/AEM.00244-18 10.1016/j.envpol.2016.04.001 10.1016/j.jenvman.2013.03.012 10.3390/su10010086 10.1128/AEM.01532-14 10.3390/pathogens4020307 10.1016/j.watres.2009.03.047 10.1061/(ASCE)0733-9372(2007)133:1(95) 10.1128/AEM.01342-09 10.1128/AEM.69.4.2038-2043.2003 10.1016/j.watres.2007.10.024 10.1016/j.jes.2015.11.012 10.1073/pnas.0711757105 10.1111/jam.12051 10.1016/j.watres.2017.08.057 10.1016/j.watres.2007.07.025 10.1021/es060892o 10.2166/wh.2014.027 10.1016/j.envint.2016.03.001 10.1061/(ASCE)0733-9372(1998)124:9(783) 10.1021/acs.est.6b05835 10.1128/AEM.00961-19 10.1126/science.aaf5211 10.2307/1924766 10.1128/AEM.02095-06 10.1016/j.jenvman.2007.08.016 10.1021/es00056a028 10.1021/acs.est.8b00851 10.1007/s12560-011-9059-4 10.1021/acs.est.6b04170 10.1017/S0022172400006987 10.1021/acs.est.5b00301 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Feb 18, 2020 |
Copyright_xml | – notice: Copyright American Chemical Society Feb 18, 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.9b01685 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 2077 |
ExternalDocumentID | 31927958 10_1021_acs_est_9b01685 c310431181 |
Genre | Research Support, Non-U.S. Gov't Systematic Review Journal Article |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a538t-c05859d1946985fe30bb27065115af5f0b7e0f86325054b142b4daf41e394ecc3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 11:10:14 EDT 2025 Fri Jul 11 06:32:49 EDT 2025 Sun Jun 29 12:21:50 EDT 2025 Wed Feb 19 02:31:00 EST 2025 Thu Apr 24 23:07:06 EDT 2025 Tue Jul 01 02:58:07 EDT 2025 Thu Aug 27 22:10:50 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a538t-c05859d1946985fe30bb27065115af5f0b7e0f86325054b142b4daf41e394ecc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0001-8075-6972 0000-0002-8142-511X |
OpenAccessLink | https://pubs.acs.org/doi/pdf/10.1021/acs.est.9b01685 |
PMID | 31927958 |
PQID | 2360026610 |
PQPubID | 45412 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2561522851 proquest_miscellaneous_2338099162 proquest_journals_2360026610 pubmed_primary_31927958 crossref_primary_10_1021_acs_est_9b01685 crossref_citationtrail_10_1021_acs_est_9b01685 acs_journals_10_1021_acs_est_9b01685 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-18 |
PublicationDateYYYYMMDD | 2020-02-18 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 U.S.EPA. (ref16/cit16) 1991 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 U.S. EPA. (ref59/cit59) 1999 ref60/cit60 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 World Health Organization (WHO) (ref9/cit9) 2006 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 Fair G. M. (ref57/cit57) 1984; 40 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 Hoff J. C. (ref17/cit17) 1986 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref22/cit22 doi: 10.2307/1907382 – ident: ref28/cit28 doi: 10.1128/AEM.71.6.3100-3105.2005 – ident: ref47/cit47 doi: 10.1128/JCM.20.3.365-372.1984 – ident: ref6/cit6 doi: 10.1016/j.scitotenv.2014.04.087 – ident: ref53/cit53 doi: 10.3389/fmicb.2017.01928 – ident: ref35/cit35 doi: 10.1016/S1570-0232(02)00244-1 – start-page: 1 year: 1986 ident: ref17/cit17 publication-title: U.S. EPA Project Summary (EPA/600/S2–86/067) – ident: ref63/cit63 doi: 10.1093/aje/kwq320 – ident: ref27/cit27 doi: 10.1080/10934520802659653 – ident: ref3/cit3 doi: 10.1073/pnas.1500457112 – ident: ref25/cit25 doi: 10.1128/AEM.00869-10 – ident: ref36/cit36 doi: 10.1128/AEM.02442-07 – ident: ref12/cit12 doi: 10.1016/j.watres.2016.11.020 – start-page: 1 year: 1999 ident: ref59/cit59 publication-title: EPA 815-R-99-013. – ident: ref8/cit8 – ident: ref50/cit50 doi: 10.1021/acs.est.7b03288 – ident: ref41/cit41 doi: 10.1016/j.coviro.2011.11.003 – ident: ref45/cit45 doi: 10.1016/0042-6822(88)90582-X – ident: ref18/cit18 doi: 10.1016/j.ijfoodmicro.2015.08.015 – ident: ref24/cit24 doi: 10.1016/j.watres.2010.03.003 – ident: ref29/cit29 doi: 10.1128/AEM.69.7.3979-3985.2003 – ident: ref33/cit33 doi: 10.1021/acs.estlett.6b00079 – ident: ref34/cit34 doi: 10.1128/AEM.00869-10 – ident: ref37/cit37 doi: 10.4315/0362-028X.JFP-12-216 – ident: ref42/cit42 doi: 10.1128/AEM.00244-18 – ident: ref15/cit15 doi: 10.1016/j.envpol.2016.04.001 – ident: ref13/cit13 doi: 10.1016/j.jenvman.2013.03.012 – ident: ref60/cit60 – ident: ref14/cit14 doi: 10.3390/su10010086 – ident: ref38/cit38 doi: 10.1128/AEM.01532-14 – ident: ref4/cit4 doi: 10.3390/pathogens4020307 – ident: ref31/cit31 doi: 10.1016/j.watres.2009.03.047 – ident: ref44/cit44 doi: 10.1061/(ASCE)0733-9372(2007)133:1(95) – ident: ref26/cit26 doi: 10.1128/AEM.01342-09 – ident: ref52/cit52 doi: 10.1128/AEM.69.4.2038-2043.2003 – ident: ref30/cit30 doi: 10.1016/j.watres.2007.10.024 – ident: ref2/cit2 doi: 10.1016/j.jes.2015.11.012 – ident: ref46/cit46 doi: 10.1073/pnas.0711757105 – ident: ref5/cit5 doi: 10.1111/jam.12051 – ident: ref11/cit11 doi: 10.1016/j.watres.2017.08.057 – ident: ref56/cit56 doi: 10.1016/j.watres.2007.07.025 – ident: ref62/cit62 doi: 10.1021/es060892o – ident: ref32/cit32 doi: 10.2166/wh.2014.027 – ident: ref10/cit10 doi: 10.1016/j.envint.2016.03.001 – ident: ref20/cit20 doi: 10.1061/(ASCE)0733-9372(1998)124:9(783) – ident: ref58/cit58 doi: 10.1021/acs.est.6b05835 – ident: ref43/cit43 doi: 10.1128/AEM.00961-19 – ident: ref21/cit21 doi: 10.1126/science.aaf5211 – ident: ref23/cit23 doi: 10.2307/1924766 – ident: ref40/cit40 doi: 10.1128/AEM.02095-06 – ident: ref1/cit1 doi: 10.1016/j.jenvman.2007.08.016 – ident: ref19/cit19 doi: 10.1021/es00056a028 – ident: ref48/cit48 doi: 10.1021/acs.est.8b00851 – ident: ref39/cit39 doi: 10.1007/s12560-011-9059-4 – volume: 40 start-page: 1051 issue: 10 year: 1984 ident: ref57/cit57 publication-title: Water Sci. Technol. – ident: ref49/cit49 doi: 10.1021/acs.est.6b04170 – ident: ref61/cit61 doi: 10.1017/S0022172400006987 – ident: ref7/cit7 – start-page: 1 year: 1991 ident: ref16/cit16 publication-title: EPA 68-01-6989 – start-page: 1 year: 2006 ident: ref9/cit9 publication-title: WHO – ident: ref51/cit51 doi: 10.1021/acs.est.5b00301 |
SSID | ssj0002308 |
Score | 2.5282538 |
SecondaryResourceType | review_article |
Snippet | A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse.... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2068 |
SubjectTerms | Adenoviridae Adenoviruses Animals chlorination Chlorine credit Deactivation Disinfectants Disinfection Disinfection & disinfectants Enterovirus Enteroviruses Halogenation Humans Inactivation Infectivity Mice Monochloramine Norovirus Ozone pathogenicity Reclamation Regression analysis systematic review Temperature requirements Viruses Wastewater Wastewater renovation Wastewater reuse Water Water reclamation water reuse Water temperature Water treatment |
Title | Required Chlorination Doses to Fulfill the Credit Value for Disinfection of Enteric Viruses in Water: A Critical Review |
URI | http://dx.doi.org/10.1021/acs.est.9b01685 https://www.ncbi.nlm.nih.gov/pubmed/31927958 https://www.proquest.com/docview/2360026610 https://www.proquest.com/docview/2338099162 https://www.proquest.com/docview/2561522851 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Lb9QwEIAtKBc4UCi0LBQ0SD1wSXDsPJzeVttWFRIcgJa9RXbWFhGrpNokQuLXM5PXAtUC12QcWX7MfPZMZhg7SVXkpIuFh7bOeKGNuadNIj1kVytDZ4Nc0z3k-w_x5VX4bhktt8mi__Tgi-CtzmsfFaSfGqQTFd1l90SsEjpnzRefJqWLJK3GYgWpjJdTFp9bHyAzlNe_m6EdbNnZmIv9Pjqr7lITUmjJN79tjJ__uJ248d_df8QeDqQJ835pPGZ3bHnAHvySf_CAHZ5vf3ND0WGf10_Y94-WIoTtChZfuxC9bv7grKptDU0FeHB1xXoNSI-wQLGigWu9bi0gAsNZUY8hXiVUDrq4gyKH62LTUvuihC9IuJtTmMNYaQF6H8VTdnVx_nlx6Q0lGjyNmrLxco7HjXQVpFSIMnJWcmMEeU4RNLWLHDeJ5U7FkkgrpAsnE660CwMr0xBXjzxke2VV2mcMlKbagviBmOORMXGar2yO6C8Mtzo1yYyd4Fhmwxars857LoKMHuIAZ8MAz5g_TmyWD2nOqdrGeneDN1ODmz7Dx27R43GlbPshJLk2EXP4jL2eXuMmJc-LLm3VkoxUnEhc_EUGSRZhGAl4xo76VTj1B_WkSNJIPf-_MXjB7gu6FqC6NeqY7TWb1r5EdmrMq27X_ATXnRN3 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcgAOBQqFlAKDVCQuDptdxw8kDlHSKqWPA7QlN7Pr7AqLyEaxrar9NfwV_hmzju3wUBCXSlzt2dV4d3bmm53xDMBuGPSNMB53yNYpx9Uec6TyhUPYVQvX6F4s7T3k8Yk3PnPfTfqTNfjW_AtDTOQ0U14F8ZfVBXqv7TPSk91QEUgJmjTKQ315QU5a_vZgRDv6kvP9vdPh2Kn7CDiSjnPhxIwwcTgld92zrGnBlOI2vEdoSJq-YcrXzASesHDAtbciyp1K4_a0CF36REHz3oCbBH24de8Gww-tricAHzQ9EkLhTdriQX8wbK1fnP9q_VZA2sq07d-F7-2iVBktX7plobrx1W_1Iv_nVbsHGzWuxsHiINyHNZ1uwp2fqi1uwtbe8qc-Iq21Wv4ALt5rmw-tpzj8XCUkVtKKoyzXORYZkptuktkMCSvjkMiSAs_lrNRIgB9HSd4ktKWYGayyLJIYz5N5accnKX4kPD9_gwNs-krgIiLzEM6uZUm2YD3NUv0YMJC2kyJN4DFykH0j2VTH5OhwxbQMld-BXdq7qFYoeVTlCvBeZB_Shkb1hnag28hTFNdF3W1vkdnqAa_aAV8X9UxWk-40ArrkgwsbyCVQxzrwon1NKsnGmWSqs9LSiIBZv4P_hYZwO0F_wvsdeLQQ_pYfsgrcD_vB9r-twXO4NT49PoqODk4On8Btbi9EbMeeYAfWi3mpnxJqLNSz6uAifLpumf8BYK9z_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIiE48CiULhQwUpG4ZPHa2TyQOKx2u2opVAhou7dgJ7YasUqqTaIKfg9_hf_FTDZJeWgRl0pck7E1sT0z33gmMwA7YTC00nrCQVunHdd43FHalw5iVyNdawaxonvIt4fe3pH7ejacrcG39l8YZKLAmYo6iE9SfZbYpsLA4AU9R13ZDzUClaBNpTwwX87RUSte7U9wV58JMd39ON5zml4CjkKRLp2YIy4OE3TZPWLPSK61oBAfIiJlh5Zr33AbeJIggUs3I9pNlHUHRoYufqbEea_AVQoSkos3Gn_o9D2C-KDtkxBKb9YVEPqDYbKAcfGrBVwBa2vzNr0F37uFqbNaPverUvfjr7_VjPzfV-423GzwNRstBeIOrJlsA278VHVxAzZ3L37uQ9JGuxV34fy9obxok7DxaZ2YWJ9aNskLU7AyZ-iu23Q-Z4iZ2RjJ0pIdq3llGAJ_NkmLNrEtY7lldbZFGrPjdFHR-DRjJ4jrFy_ZiLX9JdgyMnMPji5lSTZhPcszswUsUNRRESfwODrKvlU8MTE6PEJzo0Lt92AH9y5qFEsR1TkDYhDRQ9zQqNnQHvTbMxXFTXF36jEyXz3geTfgbFnXZDXpdntIL_gQkgK6CO54D552r1E1UbxJZSaviEYGnPwP8RcaxO_oAiDu78H9pQB0_KB1EH44DB782xo8gWvvJtPozf7hwUO4LuhehBr3BNuwXi4q8wjBY6kf17LL4NNlH_kfowJ2gA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Required+Chlorination+Doses+to+Fulfill+the+Credit+Value+for+Disinfection+of+Enteric+Viruses+in+Water%3A+A+Critical+Review&rft.jtitle=Environmental+science+%26+technology&rft.au=Rachmadi%2C+Andri+Taruna&rft.au=Kitajima%2C+Masaaki&rft.au=Kato%2C+Tsuyoshi&rft.au=Kato%2C+Hiroyuki&rft.date=2020-02-18&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=54&rft.issue=4&rft.spage=2068&rft.epage=2077&rft_id=info:doi/10.1021%2Facs.est.9b01685&rft.externalDocID=c310431181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |