Required Chlorination Doses to Fulfill the Credit Value for Disinfection of Enteric Viruses in Water: A Critical Review

A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT val...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 54; no. 4; pp. 2068 - 2077
Main Authors Rachmadi, Andri Taruna, Kitajima, Masaaki, Kato, Tsuyoshi, Kato, Hiroyuki, Okabe, Satoshi, Sano, Daisuke
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log10 inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log10 inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively.
AbstractList A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log10 inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log10 inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively.
A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log₁₀ inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log₁₀ inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively.
A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively.
A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log10 inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log10 inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively.A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log10 inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log10 inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively.
Author Kato, Hiroyuki
Okabe, Satoshi
Kitajima, Masaaki
Kato, Tsuyoshi
Rachmadi, Andri Taruna
Sano, Daisuke
AuthorAffiliation Center for Research on Adoption of NextGen Transportation Systems (CRANTS)
Division of Electronics and Informatics, Faculty of Science and Technology
Japan Institute of Wastewater Engineering and Technology
Integrated Institute for Regulatory Science
Gunma University
Tohoku University
Department of Civil and Environmental Engineering
King Abdullah University of Science and Technology (KAUST)
Water Desalination and Reuse Center (WDRC)
New Industry Creation Hatchery Center
Waseda University
Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies
Division of Environmental Engineering
AuthorAffiliation_xml – name: New Industry Creation Hatchery Center
– name: Waseda University
– name: Gunma University
– name: Japan Institute of Wastewater Engineering and Technology
– name: Integrated Institute for Regulatory Science
– name: Department of Civil and Environmental Engineering
– name: Center for Research on Adoption of NextGen Transportation Systems (CRANTS)
– name: Tohoku University
– name: Water Desalination and Reuse Center (WDRC)
– name: Division of Environmental Engineering
– name: King Abdullah University of Science and Technology (KAUST)
– name: Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies
– name: Division of Electronics and Informatics, Faculty of Science and Technology
Author_xml – sequence: 1
  givenname: Andri Taruna
  surname: Rachmadi
  fullname: Rachmadi, Andri Taruna
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Masaaki
  orcidid: 0000-0002-8142-511X
  surname: Kitajima
  fullname: Kitajima, Masaaki
  organization: Division of Environmental Engineering
– sequence: 3
  givenname: Tsuyoshi
  surname: Kato
  fullname: Kato, Tsuyoshi
  organization: Waseda University
– sequence: 4
  givenname: Hiroyuki
  surname: Kato
  fullname: Kato, Hiroyuki
  organization: Tohoku University
– sequence: 5
  givenname: Satoshi
  surname: Okabe
  fullname: Okabe, Satoshi
  organization: Division of Environmental Engineering
– sequence: 6
  givenname: Daisuke
  orcidid: 0000-0001-8075-6972
  surname: Sano
  fullname: Sano, Daisuke
  email: daisuke.sano.e1@tohoku.ac.jp
  organization: Tohoku University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31927958$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFDEYhoNU7LZ69iYBL0KZ7Zdkkp14K9sfCgWhaPU2ZLJfaEp20iYZi_-92e7aQ0E9BZLn-cj3vgdkb4wjEvKWwZwBZ8fG5jnmMtcDMNXJF2TGJIdGdpLtkRkAE40W6sc-Ocj5FgC4gO4V2RdM84WW3Yw8XOH95BOu6PImxORHU3wc6WnMmGmJ9HwKzodAyw3SZcV8odcmTEhdTPTUZz86tI9KdPRsLJi8pdc-TRvfj_S7qVcf6UmVffHWBHqFPz0-vCYvnQkZ3-zOQ_Lt_Ozr8lNz-eXi8_LksjFSdKWxUFfRK6ZbpTvpUMAw8AUoyZg0TjoYFgiuU4JLkO3AWj60K-NahkK3aK04JB-2c-9SvJ9qVP3aZ4shmBHjlHsuVU2M17z-jwrRgdZM8Yq-f4beximNdZFKqRqzUgwq9W5HTcMaV_1d8muTfvV_0q_A8RawKeac0D0hDPpNv33tt9-M3_VbDfnMsL48VlaS8eEf3tHW2zw8_fVv9G-RKLhk
CitedBy_id crossref_primary_10_5004_dwt_2023_29330
crossref_primary_10_1016_j_jclepro_2024_143997
crossref_primary_10_1016_j_jwpe_2024_106611
crossref_primary_10_1016_j_seppur_2022_122563
crossref_primary_10_2166_ws_2024_008
crossref_primary_10_3389_fenvs_2022_1091734
crossref_primary_10_1016_j_scitotenv_2021_149678
crossref_primary_10_1128_aem_00055_24
crossref_primary_10_1016_j_chemosphere_2021_130728
crossref_primary_10_1021_acs_est_1c02704
crossref_primary_10_1016_j_isci_2025_111944
crossref_primary_10_1021_acs_est_2c07048
crossref_primary_10_2139_ssrn_3997715
crossref_primary_10_1016_j_jiec_2024_02_040
crossref_primary_10_1016_j_watres_2020_116291
crossref_primary_10_1021_acs_est_4c02885
crossref_primary_10_1016_j_scitotenv_2022_161372
crossref_primary_10_1016_j_watres_2021_117403
crossref_primary_10_1016_j_jcat_2025_115969
crossref_primary_10_1016_j_scitotenv_2024_171223
crossref_primary_10_1016_j_jhazmat_2022_128515
crossref_primary_10_1016_j_jece_2023_110176
crossref_primary_10_1016_j_tifs_2022_04_006
crossref_primary_10_2166_wh_2022_114
crossref_primary_10_1021_acs_est_0c05144
crossref_primary_10_1016_j_jece_2021_106553
crossref_primary_10_2208_jscejer_78_7_III_11
crossref_primary_10_1016_j_ceramint_2020_09_050
crossref_primary_10_1021_acsestwater_3c00478
crossref_primary_10_1016_j_jece_2020_104812
crossref_primary_10_1016_j_watres_2023_121070
crossref_primary_10_1021_acsestwater_3c00351
crossref_primary_10_3389_fmicb_2022_991856
crossref_primary_10_1016_j_scitotenv_2021_145586
crossref_primary_10_1016_j_jwpe_2022_102642
crossref_primary_10_1016_j_scitotenv_2021_146039
crossref_primary_10_1016_j_jhazmat_2021_126527
crossref_primary_10_1021_acs_est_3c08257
crossref_primary_10_1016_j_scitotenv_2023_167634
crossref_primary_10_1016_j_watres_2020_116674
crossref_primary_10_1080_23311916_2021_1929046
crossref_primary_10_1007_s12560_022_09513_4
crossref_primary_10_1146_annurev_cellbio_040621_032416
crossref_primary_10_3390_polysaccharides4030016
crossref_primary_10_1016_j_coesh_2020_08_003
crossref_primary_10_1016_j_watres_2025_123541
crossref_primary_10_1128_aem_01405_24
crossref_primary_10_1016_j_chemosphere_2022_137393
crossref_primary_10_1016_j_ceja_2023_100482
crossref_primary_10_1021_acs_est_1c01763
crossref_primary_10_1016_j_watres_2022_119309
crossref_primary_10_1021_acs_est_1c04239
crossref_primary_10_1016_j_scitotenv_2021_150766
Cites_doi 10.2307/1907382
10.1128/AEM.71.6.3100-3105.2005
10.1128/JCM.20.3.365-372.1984
10.1016/j.scitotenv.2014.04.087
10.3389/fmicb.2017.01928
10.1016/S1570-0232(02)00244-1
10.1093/aje/kwq320
10.1080/10934520802659653
10.1073/pnas.1500457112
10.1128/AEM.00869-10
10.1128/AEM.02442-07
10.1016/j.watres.2016.11.020
10.1021/acs.est.7b03288
10.1016/j.coviro.2011.11.003
10.1016/0042-6822(88)90582-X
10.1016/j.ijfoodmicro.2015.08.015
10.1016/j.watres.2010.03.003
10.1128/AEM.69.7.3979-3985.2003
10.1021/acs.estlett.6b00079
10.4315/0362-028X.JFP-12-216
10.1128/AEM.00244-18
10.1016/j.envpol.2016.04.001
10.1016/j.jenvman.2013.03.012
10.3390/su10010086
10.1128/AEM.01532-14
10.3390/pathogens4020307
10.1016/j.watres.2009.03.047
10.1061/(ASCE)0733-9372(2007)133:1(95)
10.1128/AEM.01342-09
10.1128/AEM.69.4.2038-2043.2003
10.1016/j.watres.2007.10.024
10.1016/j.jes.2015.11.012
10.1073/pnas.0711757105
10.1111/jam.12051
10.1016/j.watres.2017.08.057
10.1016/j.watres.2007.07.025
10.1021/es060892o
10.2166/wh.2014.027
10.1016/j.envint.2016.03.001
10.1061/(ASCE)0733-9372(1998)124:9(783)
10.1021/acs.est.6b05835
10.1128/AEM.00961-19
10.1126/science.aaf5211
10.2307/1924766
10.1128/AEM.02095-06
10.1016/j.jenvman.2007.08.016
10.1021/es00056a028
10.1021/acs.est.8b00851
10.1007/s12560-011-9059-4
10.1021/acs.est.6b04170
10.1017/S0022172400006987
10.1021/acs.est.5b00301
ContentType Journal Article
Copyright Copyright American Chemical Society Feb 18, 2020
Copyright_xml – notice: Copyright American Chemical Society Feb 18, 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.9b01685
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Biotechnology Research Abstracts
AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 2077
ExternalDocumentID 31927958
10_1021_acs_est_9b01685
c310431181
Genre Research Support, Non-U.S. Gov't
Systematic Review
Journal Article
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a538t-c05859d1946985fe30bb27065115af5f0b7e0f86325054b142b4daf41e394ecc3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 11:10:14 EDT 2025
Fri Jul 11 06:32:49 EDT 2025
Sun Jun 29 12:21:50 EDT 2025
Wed Feb 19 02:31:00 EST 2025
Thu Apr 24 23:07:06 EDT 2025
Tue Jul 01 02:58:07 EDT 2025
Thu Aug 27 22:10:50 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a538t-c05859d1946985fe30bb27065115af5f0b7e0f86325054b142b4daf41e394ecc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-8075-6972
0000-0002-8142-511X
OpenAccessLink https://pubs.acs.org/doi/pdf/10.1021/acs.est.9b01685
PMID 31927958
PQID 2360026610
PQPubID 45412
PageCount 10
ParticipantIDs proquest_miscellaneous_2561522851
proquest_miscellaneous_2338099162
proquest_journals_2360026610
pubmed_primary_31927958
crossref_primary_10_1021_acs_est_9b01685
crossref_citationtrail_10_1021_acs_est_9b01685
acs_journals_10_1021_acs_est_9b01685
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-18
PublicationDateYYYYMMDD 2020-02-18
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
U.S.EPA. (ref16/cit16) 1991
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
U.S. EPA. (ref59/cit59) 1999
ref60/cit60
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
World Health Organization (WHO) (ref9/cit9) 2006
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
Fair G. M. (ref57/cit57) 1984; 40
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
Hoff J. C. (ref17/cit17) 1986
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref22/cit22
  doi: 10.2307/1907382
– ident: ref28/cit28
  doi: 10.1128/AEM.71.6.3100-3105.2005
– ident: ref47/cit47
  doi: 10.1128/JCM.20.3.365-372.1984
– ident: ref6/cit6
  doi: 10.1016/j.scitotenv.2014.04.087
– ident: ref53/cit53
  doi: 10.3389/fmicb.2017.01928
– ident: ref35/cit35
  doi: 10.1016/S1570-0232(02)00244-1
– start-page: 1
  year: 1986
  ident: ref17/cit17
  publication-title: U.S. EPA Project Summary (EPA/600/S2–86/067)
– ident: ref63/cit63
  doi: 10.1093/aje/kwq320
– ident: ref27/cit27
  doi: 10.1080/10934520802659653
– ident: ref3/cit3
  doi: 10.1073/pnas.1500457112
– ident: ref25/cit25
  doi: 10.1128/AEM.00869-10
– ident: ref36/cit36
  doi: 10.1128/AEM.02442-07
– ident: ref12/cit12
  doi: 10.1016/j.watres.2016.11.020
– start-page: 1
  year: 1999
  ident: ref59/cit59
  publication-title: EPA 815-R-99-013.
– ident: ref8/cit8
– ident: ref50/cit50
  doi: 10.1021/acs.est.7b03288
– ident: ref41/cit41
  doi: 10.1016/j.coviro.2011.11.003
– ident: ref45/cit45
  doi: 10.1016/0042-6822(88)90582-X
– ident: ref18/cit18
  doi: 10.1016/j.ijfoodmicro.2015.08.015
– ident: ref24/cit24
  doi: 10.1016/j.watres.2010.03.003
– ident: ref29/cit29
  doi: 10.1128/AEM.69.7.3979-3985.2003
– ident: ref33/cit33
  doi: 10.1021/acs.estlett.6b00079
– ident: ref34/cit34
  doi: 10.1128/AEM.00869-10
– ident: ref37/cit37
  doi: 10.4315/0362-028X.JFP-12-216
– ident: ref42/cit42
  doi: 10.1128/AEM.00244-18
– ident: ref15/cit15
  doi: 10.1016/j.envpol.2016.04.001
– ident: ref13/cit13
  doi: 10.1016/j.jenvman.2013.03.012
– ident: ref60/cit60
– ident: ref14/cit14
  doi: 10.3390/su10010086
– ident: ref38/cit38
  doi: 10.1128/AEM.01532-14
– ident: ref4/cit4
  doi: 10.3390/pathogens4020307
– ident: ref31/cit31
  doi: 10.1016/j.watres.2009.03.047
– ident: ref44/cit44
  doi: 10.1061/(ASCE)0733-9372(2007)133:1(95)
– ident: ref26/cit26
  doi: 10.1128/AEM.01342-09
– ident: ref52/cit52
  doi: 10.1128/AEM.69.4.2038-2043.2003
– ident: ref30/cit30
  doi: 10.1016/j.watres.2007.10.024
– ident: ref2/cit2
  doi: 10.1016/j.jes.2015.11.012
– ident: ref46/cit46
  doi: 10.1073/pnas.0711757105
– ident: ref5/cit5
  doi: 10.1111/jam.12051
– ident: ref11/cit11
  doi: 10.1016/j.watres.2017.08.057
– ident: ref56/cit56
  doi: 10.1016/j.watres.2007.07.025
– ident: ref62/cit62
  doi: 10.1021/es060892o
– ident: ref32/cit32
  doi: 10.2166/wh.2014.027
– ident: ref10/cit10
  doi: 10.1016/j.envint.2016.03.001
– ident: ref20/cit20
  doi: 10.1061/(ASCE)0733-9372(1998)124:9(783)
– ident: ref58/cit58
  doi: 10.1021/acs.est.6b05835
– ident: ref43/cit43
  doi: 10.1128/AEM.00961-19
– ident: ref21/cit21
  doi: 10.1126/science.aaf5211
– ident: ref23/cit23
  doi: 10.2307/1924766
– ident: ref40/cit40
  doi: 10.1128/AEM.02095-06
– ident: ref1/cit1
  doi: 10.1016/j.jenvman.2007.08.016
– ident: ref19/cit19
  doi: 10.1021/es00056a028
– ident: ref48/cit48
  doi: 10.1021/acs.est.8b00851
– ident: ref39/cit39
  doi: 10.1007/s12560-011-9059-4
– volume: 40
  start-page: 1051
  issue: 10
  year: 1984
  ident: ref57/cit57
  publication-title: Water Sci. Technol.
– ident: ref49/cit49
  doi: 10.1021/acs.est.6b04170
– ident: ref61/cit61
  doi: 10.1017/S0022172400006987
– ident: ref7/cit7
– start-page: 1
  year: 1991
  ident: ref16/cit16
  publication-title: EPA 68-01-6989
– start-page: 1
  year: 2006
  ident: ref9/cit9
  publication-title: WHO
– ident: ref51/cit51
  doi: 10.1021/acs.est.5b00301
SSID ssj0002308
Score 2.5282538
SecondaryResourceType review_article
Snippet A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse....
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2068
SubjectTerms Adenoviridae
Adenoviruses
Animals
chlorination
Chlorine
credit
Deactivation
Disinfectants
Disinfection
Disinfection & disinfectants
Enterovirus
Enteroviruses
Halogenation
Humans
Inactivation
Infectivity
Mice
Monochloramine
Norovirus
Ozone
pathogenicity
Reclamation
Regression analysis
systematic review
Temperature requirements
Viruses
Wastewater
Wastewater renovation
Wastewater reuse
Water
Water reclamation
water reuse
Water temperature
Water treatment
Title Required Chlorination Doses to Fulfill the Credit Value for Disinfection of Enteric Viruses in Water: A Critical Review
URI http://dx.doi.org/10.1021/acs.est.9b01685
https://www.ncbi.nlm.nih.gov/pubmed/31927958
https://www.proquest.com/docview/2360026610
https://www.proquest.com/docview/2338099162
https://www.proquest.com/docview/2561522851
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Lb9QwEIAtKBc4UCi0LBQ0SD1wSXDsPJzeVttWFRIcgJa9RXbWFhGrpNokQuLXM5PXAtUC12QcWX7MfPZMZhg7SVXkpIuFh7bOeKGNuadNIj1kVytDZ4Nc0z3k-w_x5VX4bhktt8mi__Tgi-CtzmsfFaSfGqQTFd1l90SsEjpnzRefJqWLJK3GYgWpjJdTFp9bHyAzlNe_m6EdbNnZmIv9Pjqr7lITUmjJN79tjJ__uJ248d_df8QeDqQJ835pPGZ3bHnAHvySf_CAHZ5vf3ND0WGf10_Y94-WIoTtChZfuxC9bv7grKptDU0FeHB1xXoNSI-wQLGigWu9bi0gAsNZUY8hXiVUDrq4gyKH62LTUvuihC9IuJtTmMNYaQF6H8VTdnVx_nlx6Q0lGjyNmrLxco7HjXQVpFSIMnJWcmMEeU4RNLWLHDeJ5U7FkkgrpAsnE660CwMr0xBXjzxke2VV2mcMlKbagviBmOORMXGar2yO6C8Mtzo1yYyd4Fhmwxars857LoKMHuIAZ8MAz5g_TmyWD2nOqdrGeneDN1ODmz7Dx27R43GlbPshJLk2EXP4jL2eXuMmJc-LLm3VkoxUnEhc_EUGSRZhGAl4xo76VTj1B_WkSNJIPf-_MXjB7gu6FqC6NeqY7TWb1r5EdmrMq27X_ATXnRN3
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcgAOBQqFlAKDVCQuDptdxw8kDlHSKqWPA7QlN7Pr7AqLyEaxrar9NfwV_hmzju3wUBCXSlzt2dV4d3bmm53xDMBuGPSNMB53yNYpx9Uec6TyhUPYVQvX6F4s7T3k8Yk3PnPfTfqTNfjW_AtDTOQ0U14F8ZfVBXqv7TPSk91QEUgJmjTKQ315QU5a_vZgRDv6kvP9vdPh2Kn7CDiSjnPhxIwwcTgld92zrGnBlOI2vEdoSJq-YcrXzASesHDAtbciyp1K4_a0CF36REHz3oCbBH24de8Gww-tricAHzQ9EkLhTdriQX8wbK1fnP9q_VZA2sq07d-F7-2iVBktX7plobrx1W_1Iv_nVbsHGzWuxsHiINyHNZ1uwp2fqi1uwtbe8qc-Iq21Wv4ALt5rmw-tpzj8XCUkVtKKoyzXORYZkptuktkMCSvjkMiSAs_lrNRIgB9HSd4ktKWYGayyLJIYz5N5accnKX4kPD9_gwNs-krgIiLzEM6uZUm2YD3NUv0YMJC2kyJN4DFykH0j2VTH5OhwxbQMld-BXdq7qFYoeVTlCvBeZB_Shkb1hnag28hTFNdF3W1vkdnqAa_aAV8X9UxWk-40ArrkgwsbyCVQxzrwon1NKsnGmWSqs9LSiIBZv4P_hYZwO0F_wvsdeLQQ_pYfsgrcD_vB9r-twXO4NT49PoqODk4On8Btbi9EbMeeYAfWi3mpnxJqLNSz6uAifLpumf8BYK9z_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIiE48CiULhQwUpG4ZPHa2TyQOKx2u2opVAhou7dgJ7YasUqqTaIKfg9_hf_FTDZJeWgRl0pck7E1sT0z33gmMwA7YTC00nrCQVunHdd43FHalw5iVyNdawaxonvIt4fe3pH7ejacrcG39l8YZKLAmYo6iE9SfZbYpsLA4AU9R13ZDzUClaBNpTwwX87RUSte7U9wV58JMd39ON5zml4CjkKRLp2YIy4OE3TZPWLPSK61oBAfIiJlh5Zr33AbeJIggUs3I9pNlHUHRoYufqbEea_AVQoSkos3Gn_o9D2C-KDtkxBKb9YVEPqDYbKAcfGrBVwBa2vzNr0F37uFqbNaPverUvfjr7_VjPzfV-423GzwNRstBeIOrJlsA278VHVxAzZ3L37uQ9JGuxV34fy9obxok7DxaZ2YWJ9aNskLU7AyZ-iu23Q-Z4iZ2RjJ0pIdq3llGAJ_NkmLNrEtY7lldbZFGrPjdFHR-DRjJ4jrFy_ZiLX9JdgyMnMPji5lSTZhPcszswUsUNRRESfwODrKvlU8MTE6PEJzo0Lt92AH9y5qFEsR1TkDYhDRQ9zQqNnQHvTbMxXFTXF36jEyXz3geTfgbFnXZDXpdntIL_gQkgK6CO54D552r1E1UbxJZSaviEYGnPwP8RcaxO_oAiDu78H9pQB0_KB1EH44DB782xo8gWvvJtPozf7hwUO4LuhehBr3BNuwXi4q8wjBY6kf17LL4NNlH_kfowJ2gA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Required+Chlorination+Doses+to+Fulfill+the+Credit+Value+for+Disinfection+of+Enteric+Viruses+in+Water%3A+A+Critical+Review&rft.jtitle=Environmental+science+%26+technology&rft.au=Rachmadi%2C+Andri+Taruna&rft.au=Kitajima%2C+Masaaki&rft.au=Kato%2C+Tsuyoshi&rft.au=Kato%2C+Hiroyuki&rft.date=2020-02-18&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=54&rft.issue=4&rft.spage=2068&rft.epage=2077&rft_id=info:doi/10.1021%2Facs.est.9b01685&rft.externalDocID=c310431181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon