Tide-induced microseismicity in the Mertz glacier grounding area, East Antarctica

The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009–2012 provides the opportunity to monitor cryoseismic activity and to obtain new insights on the relationship between tidal cycles and coastal glacier dynamics. Here we focus on records...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 40; no. 20; pp. 5412 - 5416
Main Authors Barruol, Guilhem, Cordier, Emmanuel, Bascou, Jérôme, Fontaine, Fabrice R., Legrésy, Benoit, Lescarmontier, Lydie
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 28.10.2013
John Wiley & Sons, Inc
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009–2012 provides the opportunity to monitor cryoseismic activity and to obtain new insights on the relationship between tidal cycles and coastal glacier dynamics. Here we focus on records from a seismometer located on a rocky outcrop in the vicinity of the grounding line of the 35 km broad Mertz glacier, a major outflow of this region. We detect numerous icequakes (50,000 events within 10 months and up to 100 events/h) and demonstrate their clear tidal modulation. We suggest that they result from ice friction and fracturing around the rocky peak and from the glacier flexure in response to the falling and rising tides at its grounding area. We propose that such icequake monitoring could be used as a climate proxy since grounding lines are subject to migrate with sea level changes. Key Points Large microseismicity is recorded at the Mertz glacier grounding area Icequakes show clear evidence of tide modulation Ice fracturing is proposed to be largely controlled by glacier flexure
AbstractList The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009–2012 provides the opportunity to monitor cryoseismic activity and to obtain new insights on the relationship between tidal cycles and coastal glacier dynamics. Here we focus on records from a seismometer located on a rocky outcrop in the vicinity of the grounding line of the 35 km broad Mertz glacier, a major outflow of this region. We detect numerous icequakes (50,000 events within 10 months and up to 100 events/h) and demonstrate their clear tidal modulation. We suggest that they result from ice friction and fracturing around the rocky peak and from the glacier flexure in response to the falling and rising tides at its grounding area. We propose that such icequake monitoring could be used as a climate proxy since grounding lines are subject to migrate with sea level changes. Large microseismicity is recorded at the Mertz glacier grounding area Icequakes show clear evidence of tide modulation Ice fracturing is proposed to be largely controlled by glacier flexure
The deployment of a seismic network along the Adelie and George V coasts in East Antarctica during the period 2009-2012 provides the opportunity to monitor cryoseismic activity and to obtain new insights on the relationship between tidal cycles and coastal glacier dynamics. Here we focus on records from a seismometer located on a rocky outcrop in the vicinity of the grounding line of the 35 km broad Mertz glacier, a major outflow of this region. We detect numerous icequakes (50,000 events within 10 months and up to 100 events/h) and demonstrate their clear tidal modulation. We suggest that they result from ice friction and fracturing around the rocky peak and from the glacier flexure in response to the falling and rising tides at its grounding area. We propose that such icequake monitoring could be used as a climate proxy since grounding lines are subject to migrate with sea level changes. Key Points * Large microseismicity is recorded at the Mertz glacier grounding area * Icequakes show clear evidence of tide modulation * Ice fracturing is proposed to be largely controlled by glacier flexure
The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009–2012 provides the opportunity to monitor cryoseismic activity and to obtain new insights on the relationship between tidal cycles and coastal glacier dynamics. Here we focus on records from a seismometer located on a rocky outcrop in the vicinity of the grounding line of the 35 km broad Mertz glacier, a major outflow of this region. We detect numerous icequakes (50,000 events within 10 months and up to 100 events/h) and demonstrate their clear tidal modulation. We suggest that they result from ice friction and fracturing around the rocky peak and from the glacier flexure in response to the falling and rising tides at its grounding area. We propose that such icequake monitoring could be used as a climate proxy since grounding lines are subject to migrate with sea level changes. Key Points Large microseismicity is recorded at the Mertz glacier grounding area Icequakes show clear evidence of tide modulation Ice fracturing is proposed to be largely controlled by glacier flexure
The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009–2012 provides the opportunity to monitor cryoseismic activity and to obtain new insights on the relationship between tidal cycles and coastal glacier dynamics. Here we focus on records from a seismometer located on a rocky outcrop in the vicinity of the grounding line of the 35 km broad Mertz glacier, a major outflow of this region. We detect numerous icequakes (50,000 events within 10 months and up to 100 events/h) and demonstrate their clear tidal modulation. We suggest that they result from ice friction and fracturing around the rocky peak and from the glacier flexure in response to the falling and rising tides at its grounding area. We propose that such icequake monitoring could be used as a climate proxy since grounding lines are subject to migrate with sea level changes.
Author Fontaine, Fabrice R.
Legrésy, Benoit
Barruol, Guilhem
Lescarmontier, Lydie
Cordier, Emmanuel
Bascou, Jérôme
Author_xml – sequence: 1
  givenname: Guilhem
  surname: Barruol
  fullname: Barruol, Guilhem
  email: guilhem.barruol@univ-reunion.fr
  organization: Laboratoire GéoSciences Réunion, Université de La Réunion, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS UMR 7154, Université Paris Diderot, Saint Denis, France
– sequence: 2
  givenname: Emmanuel
  surname: Cordier
  fullname: Cordier, Emmanuel
  organization: Laboratoire GéoSciences Réunion, Université de La Réunion, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS UMR 7154, Université Paris Diderot, Saint Denis, France
– sequence: 3
  givenname: Jérôme
  surname: Bascou
  fullname: Bascou, Jérôme
  organization: Université de Lyon, Université Jean Monnet, CNRS UMR 6524, Laboratoire Magmas et Volcans, Saint Etienne, France
– sequence: 4
  givenname: Fabrice R.
  surname: Fontaine
  fullname: Fontaine, Fabrice R.
  organization: Laboratoire GéoSciences Réunion, Université de La Réunion, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS UMR 7154, Université Paris Diderot, Saint Denis, France
– sequence: 5
  givenname: Benoit
  surname: Legrésy
  fullname: Legrésy, Benoit
  organization: Laboratoire d'Etude en Géophysique et Océanographie Spatiale, Toulouse, France
– sequence: 6
  givenname: Lydie
  surname: Lescarmontier
  fullname: Lescarmontier, Lydie
  organization: Laboratoire d'Etude en Géophysique et Océanographie Spatiale, Toulouse, France
BackLink https://hal.univ-reunion.fr/hal-01236143$$DView record in HAL
BookMark eNp9kVtrFDEUgINUcFt98wcEfFHo1JPLzGQel1J3hWmlpdbHkEky29TZTE0y6vrrzbBVpFCfcgjfd66H6MCP3iL0msAJAaDvKRC2aqGsBeHP0II0nBcCoD5AC4Amx7SuXqDDGO8AgAEjC3R57YwtnDeTtgZvnQ5jtC7mwKUddh6nW4vPbUi_8GZQ2tmAN2GcvHF-g1Ww6hifqZjw0icVdHJavUTPezVE--rhPUKfP5xdn66L9tPq4-myLVTJBC8063OfwnTGdLZWXSUMh541NYBhrFJE06ahVleCgxAKoCPQU8q6mpi-spwdoXf7vLdqkPfBbVXYyVE5uV62cv4DQllFOPtOMvt2z96H8dtkY5JbF7UdBuXtOEVJylysBAFz2jeP0LtxCj5PIknFaSZIU2aK7ql5XzHYXuZ9qeRGn4JygyQg54vIfy-SpeNH0p-2n8Afavxwg939l5Wrq7YkQGep2EsuJvvzr6TCV1nVrC7ll4uVvLk5X6-vaCOB_Qb666iu
CitedBy_id crossref_primary_10_5331_bgr_24R04
crossref_primary_10_1016_j_jop_2017_06_004
crossref_primary_10_1088_1361_6633_aa8473
crossref_primary_10_1016_j_jop_2016_12_001
crossref_primary_10_1093_gji_ggw214
crossref_primary_10_1002_2016GL067743
crossref_primary_10_1029_2019JE006030
crossref_primary_10_1002_2015GL064029
crossref_primary_10_5194_tc_17_1327_2023
crossref_primary_10_1029_2019GL082842
crossref_primary_10_5194_tc_14_1139_2020
crossref_primary_10_1017_aog_2018_34
crossref_primary_10_1017_aog_2019_14
crossref_primary_10_1017_aog_2019_25
crossref_primary_10_1029_2023JF007172
crossref_primary_10_5194_tc_15_5007_2021
crossref_primary_10_1016_j_jop_2016_09_001
crossref_primary_10_1002_2016RG000526
crossref_primary_10_1017_jog_2023_4
crossref_primary_10_1016_j_epsl_2018_09_024
crossref_primary_10_1017_aog_2019_26
crossref_primary_10_1029_2023JF007593
Cites_doi 10.3189/172756504781829828
10.1002/jgrc.20339
10.1029/97jb01073
10.3189/172756403781815663
10.1029/JB075i008p01351
10.3189/002214307784409207
10.1029/2007gl031207
10.1017/S0022143000005517
10.1130/g30606.1
10.1038/ngeo1555
10.1016/s0098‐3004(02)00013‐4
10.1029/2006jf000595
10.1029/2006jf000596
10.3189/172756504781830240
10.1126/science.1087231
10.1007/s10236‐006‐0086‐x
10.1017/S0022143000003439
10.1111/j.1365‐246X.2006.02911.x
10.3189/2012JoG11J089
10.1029/94JB02467
10.1016/j.cageo.2009.01.010
10.1016/j.epsl.2012.11.008
10.1016/s0031‐9201(99)00005‐9
10.1029/2006gl028207
10.1080/01418618408233279
ContentType Journal Article
Copyright 2013. American Geophysical Union. All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013. American Geophysical Union. All Rights Reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
1XC
VOOES
DOI 10.1002/2013GL057814
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Technology Research Database


Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 5416
ExternalDocumentID oai_HAL_hal_01236143v1
3545519151
10_1002_2013GL057814
GRL51024
ark_67375_WNG_VVMHHR29_0
Genre article
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
AVUZU
AVWKF
AZFZN
AZVAB
BDRZF
BENPR
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZCG
ZZTAW
~02
~OA
~~A
AANHP
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
ACTHY
AGQPQ
CITATION
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
1XC
31~
6TJ
7XC
88I
8FE
8FG
8FH
8G5
ABJCF
ABJNI
ABUWG
ACCMX
AEUYN
AFKRA
AFZJQ
AI.
ARAPS
ATCPS
AZQEC
BFHJK
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
D1K
DDYGU
DWQXO
FEDTE
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
K6-
L6V
LK5
M2O
M2P
M7R
M7S
MVM
P62
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
RIWAO
RJQFR
SAMSI
UQL
VH1
VOH
VOOES
ID FETCH-LOGICAL-a5384-c3f5788dbddbe7ab68d40f39700d336a1c2992ec684088a00b10f223b71df6e43
ISSN 0094-8276
IngestDate Sun Aug 03 06:10:43 EDT 2025
Fri Jul 11 11:13:22 EDT 2025
Fri Jul 25 10:35:47 EDT 2025
Thu Apr 24 23:09:26 EDT 2025
Tue Jul 01 01:05:25 EDT 2025
Wed Jan 22 16:43:03 EST 2025
Wed Oct 30 09:54:58 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a5384-c3f5788dbddbe7ab68d40f39700d336a1c2992ec684088a00b10f223b71df6e43
Notes istex:DCCA54015C407BC8BA234042855DFC0224FEE4D8
ark:/67375/WNG-VVMHHR29-0
ArticleID:GRL51024
Supporting InformationSupporting InformationSupporting Information
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1909-1630
0000-0002-4049-2375
0000-0002-2402-8986
0000-0002-9357-6951
0000-0003-2015-0770
OpenAccessLink https://hal.univ-reunion.fr/hal-01236143
PQID 1642043195
PQPubID 54723
PageCount 5
ParticipantIDs hal_primary_oai_HAL_hal_01236143v1
proquest_miscellaneous_1529950804
proquest_journals_1642043195
crossref_citationtrail_10_1002_2013GL057814
crossref_primary_10_1002_2013GL057814
wiley_primary_10_1002_2013GL057814_GRL51024
istex_primary_ark_67375_WNG_VVMHHR29_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 October 2013
PublicationDateYYYYMMDD 2013-10-28
PublicationDate_xml – month: 10
  year: 2013
  text: 28 October 2013
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys. Res. Lett
PublicationYear 2013
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: American Geophysical Union
References West, M. E., C. F. Larsen, M. Truffer, S. O'Neel, and L. LeBlanc (2010), Glacier microseismicity, Geology, 38(4), 319-322, doi:10.1130/g30606.1.
Schulson, E. M., P. N. Lim, and R. W. Lee (1984), A brittle to ductile transition in ice under tension, Philos. Mag., 49(3), 353-363.
Bassis, J. N., H. A. Fricker, R. Coleman, Y. Bock, J. Behrens, D. Darnell, M. Okal, and J. B. Minster (2007), Seismicity and deformation associated with ice-shelf rift propagation, J. Glaciol., 53, 523-536, doi:10.3189/002214307784409207.
Zoet, L. K., S. Anandakrishnan, R. B. Alley, A. A. Nyblade, and D. A. Wiens (2012), Motion of an Antarctic glacier by repeated tidally modulated earthquakes, Nat. Geosci., 5(9), 623-626, doi:10.1038/ngeo1555.
Lee, W. H. K., R. E. Bennett, and K. L. Meagher (1972), A method of estimating magnitude of local earthquakes from signal duration, U.S. Geol. Surv. Open File Rep., 1-29.
Mayet, C., L. Testut, B. Legresy, L. Lescarmontier, and F. Lyard (2013), High resolution barotropic modeling and the calving of the Mertz glacier, East Antarctica, J. Geophys. Res. Oceans, doi:10.1002/jgrc.20339, in press.
O'Neel, S., H. P. Marshall, D. E. McNamara, and W. T. Pfeffer (2007), Seismic detection and analysis of icequakes at Columbia Glacier, Alaska, J. Geophys. Res., 112, F03S23, doi:10.1029/2006jf000595.
Lesage, P. (2009), Interactive Matlab software for the analysis of seismic volcanic signals, Comput. Geosci., 35(10), 2137-2144, doi:10.1016/j.cageo.2009.01.010.
Neave, K. G., and J. C. Savage (1970), Icequakes on Athabasca glacier, J. Geophys. Res., 75(8), 1351-1362, doi:10.1029/JB075i008p01351.
Smith, A. M. (2006), Microearthquakes and subglacial conditions, Geophys. Res. Lett., 33, L24501, doi:10.1029/2006gl028207.
von der Osten-Woldenburg, H. (1990), Icequakes from Ekström ice shelf near Atka Bay, Antarctica, J. Glaciol., 36(122), 31-36.
Lescarmontier, L., B. Legresy, R. Coleman, F. Perosanz, C. Mayet, and L. Testut (2012), Vibrations of Mertz glacier ice tongue, East Antarctica, J. Glaciol., 58(210), 665-676, doi:10.3189/2012JoG11J089.
Pawlowicz, R., B. Beardsley, and S. Lentz (2002), Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE, Comput. Geosci., 28(8), 929-937, doi:10.1016/s0098-3004(02)00013-4.
Walker, R. T., B. R. Parizek, R. B. Alley, S. Anandakrishnan, K. L. Riverman, and K. Christianson (2013), Ice-shelf tidal flexure and subglacial pressure variations, Earth Planet. Sci. Lett., 361, 422-428, doi:10.1016/j.epsl.2012.11.008.
Gutenberg, B., and C. F. Richter (1944), Frequency of earthquakes in California, Bull. Geol. Soc. Am., 34, 185-188.
Sinadinovski, C., K. Muirhead, M. Leonard, S. Spiliopoulos, and D. Jespen (1999), Effective discrimination of icequakes on seismic records from Mawson station, Phys. Earth Planet. Inter., 113(1-4), 203-211, doi:10.1016/s0031-9201(99)00005-9.
Anandakrishnan, S., and R. B. Alley (1997), Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland, J. Geophys. Res., 102(B7), 15,183-15,196, doi:10.1029/97jb01073.
Murray, T., A. M. Smith, M. A. King, and G. P. Weedon (2007), Ice flow modulated by tides at up to annual periods at Rutford Ice Stream, West Antarctica, Geophys. Res. Lett., 34, L18503, doi:10.1029/2007gl031207.
Vaughan, D. G. (1995), Tidal flexure at ice shelf margins, J. Geophys. Res., 100(B4), 6213-6224.
Talandier, J., O. Hyvernaud, D. Reymond, and E. Okal (2006), Hydroacoustic signals generated by parked drifting icebergs in the Southern Indian and Pacific Ocean, Geophys. J. Int., 246, 1-18, doi:10.1111/j.1365-246X.2006.02911.x.
Wendler, G., K. Ahlnas, and C. S. Lingle (1996), On Mertz and Ninnis glaciers, East Antarctica, J. Glaciol., 42(142), 447-453.
Reeh, N., E. L. Christensen, C. Mayer, and O. B. Olesen (2003), Tidal bending of glaciers: A linear viscoelastic approach, Ann. Glaciol., 37, 83-89, doi:10.3189/172756403781815663.
Bindschadler, R. A., M. A. King, R. B. Alley, S. Anandakrishan, and L. Padman (2003), Tidally controlled stick-slip discharge of a West Antarctic Ice Stream, Science, 301, 1087-1089.
Lyard, F., F. Lefevre, T. Letellier, and O. Francis (2006), Modelling the global ocean tides: Modern insights from FES2004, Ocean Dyn., 56(5-6), 394-415, doi:10.1007/s10236-006-0086-x.
Weiss, J. (2004), Subcritical crack propagation as a mechanism of crevasse formation and iceberg calving, J. Glaciol., 50(168), 109-115, doi:10.3189/172756504781830240.
Legresy, B., A. Wendt, I. Tabacco, F. Remy, and R. Dietrich (2004), Influence of tides and tidal current on Mertz glacier, Antarctica, J. Glaciol., 50(170), 427-435, doi:10.3189/172756504781829828.
Tsai, V. C., and G. Ekstrom (2007), Analysis of glacial earthquakes, J. Geophys. Res., 112, F03s22, doi:10.1029/2006jf000596.
2010; 38
1990; 36
2012
2006; 56
1984; 49
2006; 33
2003; 37
1970; 75
1972
2013; 361
2007; 53
2012; 58
2007; 34
1944; 34
1997; 102
2002; 28
2007; 112
2009; 35
2004; 50
1999; 113
1995; 100
2013
2003; 301
2012; 5
1996; 42
2006; 246
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_13_1
Gutenberg B. (e_1_2_5_5_1) 1944; 34
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Lee W. H. K. (e_1_2_5_6_1) 1972
References_xml – reference: von der Osten-Woldenburg, H. (1990), Icequakes from Ekström ice shelf near Atka Bay, Antarctica, J. Glaciol., 36(122), 31-36.
– reference: Sinadinovski, C., K. Muirhead, M. Leonard, S. Spiliopoulos, and D. Jespen (1999), Effective discrimination of icequakes on seismic records from Mawson station, Phys. Earth Planet. Inter., 113(1-4), 203-211, doi:10.1016/s0031-9201(99)00005-9.
– reference: Weiss, J. (2004), Subcritical crack propagation as a mechanism of crevasse formation and iceberg calving, J. Glaciol., 50(168), 109-115, doi:10.3189/172756504781830240.
– reference: Schulson, E. M., P. N. Lim, and R. W. Lee (1984), A brittle to ductile transition in ice under tension, Philos. Mag., 49(3), 353-363.
– reference: Anandakrishnan, S., and R. B. Alley (1997), Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland, J. Geophys. Res., 102(B7), 15,183-15,196, doi:10.1029/97jb01073.
– reference: Mayet, C., L. Testut, B. Legresy, L. Lescarmontier, and F. Lyard (2013), High resolution barotropic modeling and the calving of the Mertz glacier, East Antarctica, J. Geophys. Res. Oceans, doi:10.1002/jgrc.20339, in press.
– reference: O'Neel, S., H. P. Marshall, D. E. McNamara, and W. T. Pfeffer (2007), Seismic detection and analysis of icequakes at Columbia Glacier, Alaska, J. Geophys. Res., 112, F03S23, doi:10.1029/2006jf000595.
– reference: Wendler, G., K. Ahlnas, and C. S. Lingle (1996), On Mertz and Ninnis glaciers, East Antarctica, J. Glaciol., 42(142), 447-453.
– reference: Bassis, J. N., H. A. Fricker, R. Coleman, Y. Bock, J. Behrens, D. Darnell, M. Okal, and J. B. Minster (2007), Seismicity and deformation associated with ice-shelf rift propagation, J. Glaciol., 53, 523-536, doi:10.3189/002214307784409207.
– reference: Lescarmontier, L., B. Legresy, R. Coleman, F. Perosanz, C. Mayet, and L. Testut (2012), Vibrations of Mertz glacier ice tongue, East Antarctica, J. Glaciol., 58(210), 665-676, doi:10.3189/2012JoG11J089.
– reference: Talandier, J., O. Hyvernaud, D. Reymond, and E. Okal (2006), Hydroacoustic signals generated by parked drifting icebergs in the Southern Indian and Pacific Ocean, Geophys. J. Int., 246, 1-18, doi:10.1111/j.1365-246X.2006.02911.x.
– reference: Lee, W. H. K., R. E. Bennett, and K. L. Meagher (1972), A method of estimating magnitude of local earthquakes from signal duration, U.S. Geol. Surv. Open File Rep., 1-29.
– reference: Smith, A. M. (2006), Microearthquakes and subglacial conditions, Geophys. Res. Lett., 33, L24501, doi:10.1029/2006gl028207.
– reference: Bindschadler, R. A., M. A. King, R. B. Alley, S. Anandakrishan, and L. Padman (2003), Tidally controlled stick-slip discharge of a West Antarctic Ice Stream, Science, 301, 1087-1089.
– reference: Murray, T., A. M. Smith, M. A. King, and G. P. Weedon (2007), Ice flow modulated by tides at up to annual periods at Rutford Ice Stream, West Antarctica, Geophys. Res. Lett., 34, L18503, doi:10.1029/2007gl031207.
– reference: Gutenberg, B., and C. F. Richter (1944), Frequency of earthquakes in California, Bull. Geol. Soc. Am., 34, 185-188.
– reference: Vaughan, D. G. (1995), Tidal flexure at ice shelf margins, J. Geophys. Res., 100(B4), 6213-6224.
– reference: Pawlowicz, R., B. Beardsley, and S. Lentz (2002), Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE, Comput. Geosci., 28(8), 929-937, doi:10.1016/s0098-3004(02)00013-4.
– reference: Walker, R. T., B. R. Parizek, R. B. Alley, S. Anandakrishnan, K. L. Riverman, and K. Christianson (2013), Ice-shelf tidal flexure and subglacial pressure variations, Earth Planet. Sci. Lett., 361, 422-428, doi:10.1016/j.epsl.2012.11.008.
– reference: Neave, K. G., and J. C. Savage (1970), Icequakes on Athabasca glacier, J. Geophys. Res., 75(8), 1351-1362, doi:10.1029/JB075i008p01351.
– reference: Reeh, N., E. L. Christensen, C. Mayer, and O. B. Olesen (2003), Tidal bending of glaciers: A linear viscoelastic approach, Ann. Glaciol., 37, 83-89, doi:10.3189/172756403781815663.
– reference: West, M. E., C. F. Larsen, M. Truffer, S. O'Neel, and L. LeBlanc (2010), Glacier microseismicity, Geology, 38(4), 319-322, doi:10.1130/g30606.1.
– reference: Legresy, B., A. Wendt, I. Tabacco, F. Remy, and R. Dietrich (2004), Influence of tides and tidal current on Mertz glacier, Antarctica, J. Glaciol., 50(170), 427-435, doi:10.3189/172756504781829828.
– reference: Lesage, P. (2009), Interactive Matlab software for the analysis of seismic volcanic signals, Comput. Geosci., 35(10), 2137-2144, doi:10.1016/j.cageo.2009.01.010.
– reference: Lyard, F., F. Lefevre, T. Letellier, and O. Francis (2006), Modelling the global ocean tides: Modern insights from FES2004, Ocean Dyn., 56(5-6), 394-415, doi:10.1007/s10236-006-0086-x.
– reference: Zoet, L. K., S. Anandakrishnan, R. B. Alley, A. A. Nyblade, and D. A. Wiens (2012), Motion of an Antarctic glacier by repeated tidally modulated earthquakes, Nat. Geosci., 5(9), 623-626, doi:10.1038/ngeo1555.
– reference: Tsai, V. C., and G. Ekstrom (2007), Analysis of glacial earthquakes, J. Geophys. Res., 112, F03s22, doi:10.1029/2006jf000596.
– volume: 301
  start-page: 1087
  year: 2003
  end-page: 1089
  article-title: Tidally controlled stick‐slip discharge of a West Antarctic Ice Stream
  publication-title: Science
– volume: 58
  start-page: 665
  issue: 210
  year: 2012
  end-page: 676
  article-title: Vibrations of Mertz glacier ice tongue, East Antarctica
  publication-title: J. Glaciol.
– volume: 53
  start-page: 523
  year: 2007
  end-page: 536
  article-title: Seismicity and deformation associated with ice‐shelf rift propagation
  publication-title: J. Glaciol.
– volume: 49
  start-page: 353
  issue: 3
  year: 1984
  end-page: 363
  article-title: A brittle to ductile transition in ice under tension
  publication-title: Philos. Mag.
– volume: 28
  start-page: 929
  issue: 8
  year: 2002
  end-page: 937
  article-title: Classical tidal harmonic analysis including error estimates in MATLAB using T‐TIDE
  publication-title: Comput. Geosci.
– start-page: 1
  year: 1972
  end-page: 29
  publication-title: U.S. Geol. Surv. Open File Rep.
– volume: 33
  year: 2006
  article-title: Microearthquakes and subglacial conditions
  publication-title: Geophys. Res. Lett.
– volume: 38
  start-page: 319
  issue: 4
  year: 2010
  end-page: 322
  article-title: Glacier microseismicity
  publication-title: Geology
– volume: 5
  start-page: 623
  issue: 9
  year: 2012
  end-page: 626
  article-title: Motion of an Antarctic glacier by repeated tidally modulated earthquakes
  publication-title: Nat. Geosci.
– volume: 113
  start-page: 203
  issue: 1–4
  year: 1999
  end-page: 211
  article-title: Effective discrimination of icequakes on seismic records from Mawson station
  publication-title: Phys. Earth Planet. Inter.
– volume: 75
  start-page: 1351
  issue: 8
  year: 1970
  end-page: 1362
  article-title: Icequakes on Athabasca glacier
  publication-title: J. Geophys. Res.
– volume: 42
  start-page: 447
  issue: 142
  year: 1996
  end-page: 453
  article-title: On Mertz and Ninnis glaciers, East Antarctica
  publication-title: J. Glaciol.
– volume: 100
  start-page: 6213
  issue: B4
  year: 1995
  end-page: 6224
  article-title: Tidal flexure at ice shelf margins
  publication-title: J. Geophys. Res.
– volume: 37
  start-page: 83
  year: 2003
  end-page: 89
  article-title: Tidal bending of glaciers: A linear viscoelastic approach
  publication-title: Ann. Glaciol.
– year: 2012
– volume: 35
  start-page: 2137
  issue: 10
  year: 2009
  end-page: 2144
  article-title: Interactive Matlab software for the analysis of seismic volcanic signals
  publication-title: Comput. Geosci.
– volume: 34
  year: 2007
  article-title: Ice flow modulated by tides at up to annual periods at Rutford Ice Stream, West Antarctica
  publication-title: Geophys. Res. Lett.
– year: 2013
  article-title: High resolution barotropic modeling and the calving of the Mertz glacier, East Antarctica
  publication-title: J. Geophys. Res. Oceans
– volume: 50
  start-page: 109
  issue: 168
  year: 2004
  end-page: 115
  article-title: Subcritical crack propagation as a mechanism of crevasse formation and iceberg calving
  publication-title: J. Glaciol.
– volume: 102
  start-page: 15,183
  issue: B7
  year: 1997
  end-page: 15,196
  article-title: Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland
  publication-title: J. Geophys. Res.
– volume: 50
  start-page: 427
  issue: 170
  year: 2004
  end-page: 435
  article-title: Influence of tides and tidal current on Mertz glacier, Antarctica
  publication-title: J. Glaciol.
– volume: 361
  start-page: 422
  year: 2013
  end-page: 428
  article-title: Ice‐shelf tidal flexure and subglacial pressure variations
  publication-title: Earth Planet. Sci. Lett.
– volume: 34
  start-page: 185
  year: 1944
  end-page: 188
  article-title: Frequency of earthquakes in California
  publication-title: Bull. Geol. Soc. Am.
– volume: 112
  year: 2007
  article-title: Analysis of glacial earthquakes
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  article-title: Seismic detection and analysis of icequakes at Columbia Glacier, Alaska
  publication-title: J. Geophys. Res.
– volume: 36
  start-page: 31
  issue: 122
  year: 1990
  end-page: 36
  article-title: Icequakes from Ekström ice shelf near Atka Bay, Antarctica
  publication-title: J. Glaciol.
– volume: 56
  start-page: 394
  issue: 5–6
  year: 2006
  end-page: 415
  article-title: Modelling the global ocean tides: Modern insights from FES2004
  publication-title: Ocean Dyn.
– volume: 246
  start-page: 1
  year: 2006
  end-page: 18
  article-title: Hydroacoustic signals generated by parked drifting icebergs in the Southern Indian and Pacific Ocean
  publication-title: Geophys. J. Int.
– ident: e_1_2_5_7_1
  doi: 10.3189/172756504781829828
– ident: e_1_2_5_12_1
  doi: 10.1002/jgrc.20339
– ident: e_1_2_5_2_1
  doi: 10.1029/97jb01073
– ident: e_1_2_5_18_1
  doi: 10.3189/172756403781815663
– ident: e_1_2_5_14_1
  doi: 10.1029/JB075i008p01351
– ident: e_1_2_5_3_1
  doi: 10.3189/002214307784409207
– ident: e_1_2_5_13_1
  doi: 10.1029/2007gl031207
– ident: e_1_2_5_16_1
  doi: 10.1017/S0022143000005517
– volume: 34
  start-page: 185
  year: 1944
  ident: e_1_2_5_5_1
  article-title: Frequency of earthquakes in California
  publication-title: Bull. Geol. Soc. Am.
– ident: e_1_2_5_28_1
  doi: 10.1130/g30606.1
– ident: e_1_2_5_29_1
  doi: 10.1038/ngeo1555
– ident: e_1_2_5_17_1
  doi: 10.1016/s0098‐3004(02)00013‐4
– ident: e_1_2_5_15_1
  doi: 10.1029/2006jf000595
– ident: e_1_2_5_23_1
  doi: 10.1029/2006jf000596
– ident: e_1_2_5_26_1
  doi: 10.3189/172756504781830240
– ident: e_1_2_5_4_1
  doi: 10.1126/science.1087231
– start-page: 1
  year: 1972
  ident: e_1_2_5_6_1
  publication-title: U.S. Geol. Surv. Open File Rep.
– ident: e_1_2_5_11_1
  doi: 10.1007/s10236‐006‐0086‐x
– ident: e_1_2_5_27_1
  doi: 10.1017/S0022143000003439
– ident: e_1_2_5_22_1
  doi: 10.1111/j.1365‐246X.2006.02911.x
– ident: e_1_2_5_10_1
  doi: 10.3189/2012JoG11J089
– ident: e_1_2_5_24_1
  doi: 10.1029/94JB02467
– ident: e_1_2_5_8_1
  doi: 10.1016/j.cageo.2009.01.010
– ident: e_1_2_5_9_1
– ident: e_1_2_5_25_1
  doi: 10.1016/j.epsl.2012.11.008
– ident: e_1_2_5_20_1
  doi: 10.1016/s0031‐9201(99)00005‐9
– ident: e_1_2_5_21_1
  doi: 10.1029/2006gl028207
– ident: e_1_2_5_19_1
  doi: 10.1080/01418618408233279
SSID ssj0003031
Score 2.238709
Snippet The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009–2012 provides the opportunity to monitor...
The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009-2012 provides the opportunity to monitor...
The deployment of a seismic network along the Adelie and George V coasts in East Antarctica during the period 2009-2012 provides the opportunity to monitor...
SourceID hal
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5412
SubjectTerms Adélie land
Antarctica
cryoseismology
Earth Sciences
Flexing
Fracturing
Geophysics
Glaciers
Grounding
icequakes
Marine
Mertz glacier
Modulation
Sciences of the Universe
Sea level changes
Seismic phenomena
Seismology
tide
Tides
Title Tide-induced microseismicity in the Mertz glacier grounding area, East Antarctica
URI https://api.istex.fr/ark:/67375/WNG-VVMHHR29-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2013GL057814
https://www.proquest.com/docview/1642043195
https://www.proquest.com/docview/1529950804
https://hal.univ-reunion.fr/hal-01236143
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa6rZC4IH5FYUEBAZeSXSdxfnwsiG2F2j0s27LiEjmOo1a06appEOyJR-AteC-ehPFP0hQtK5ZLlDpTK8l8GX9jz4wRepGlDEi479tREHk2ISGxI-EmNqeYJ1nmilBFu4-Pg-GEvD_zz1qtn42opXKTHPCLS_NK_ker0AZ6lVmy19Bs3Sk0wDnoF46gYTj-m47nqaijFcC5LuVi_lKG2BViXsCJpNgmkHEs1puLHpBlLvNLZDKHzmdhwBqVQWTFRpYSAOBvqvgdQ1oHYnVeqdMUB5r1FioPaDvJztbr0uzWVc4XMzMjrBJAAIMmq2a5ZHkpFts_FXxVKiDpBXu1bv-GLGu0Ha1yOXehY5BZIisg9U4OmlMVjgp6c6Om-aUABTc0ta-1xaUE2rDe-rYyybqCk4GeixsG1icm6lpUP4NLBwJdWFbexGAElDTSmaq79bZrOf8qSTXWD05GYLxcsoc6Lvgjbht1-tPJp0k96AMT0Jszmic0ORbQ_WGz6x32szeTsbcd-Tl_3XFwmm6S4jmnt9Et46BYfY22O6gl8rvoxkBtAP0NzlTIMC_uoQ8Sfb--_zC4s_7AnTXPLcCdpXBnGdxZNe4sibvXlkSdtUXdfTQ5enf6dmibLTpsBiMlsbmXwXNFaZKmiQhZEkQpwRlwXIxTzwuYw4HuuILLkkJRxDBOHJwBI01CJ80CQbwHqJ2vcvEQWTSlcs4wFaFHCc1C6lMecsehmY-zkPtd1KteXcxN_Xq5jcoi1pW33bj5orvoZS19ruu2_EXuOWihFpHF1of9USzbVHVDcCe-OF30SimpFmPrzzIgMvTjj8eDeDodAx1waYy7aL_SYmzsRBGDLZQJ6A6FR3hWXwYrLpfmWC5WJcj48J7AV8JwQz2l_SvvOq7w-Oha0o_Rze1nuY_am3UpngCn3iRPDZ5_A4GHv8M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELagFYIL4ldbWMAg4LJE6yRO7BwrtNsCaQ_QlhUXK_GPqHbJoiaLgBOPwDPyJMw42dA9gMTNSiaRPeOZ-TIZzxDy1JkCQHiSBDKVccC54IG0URnojOnSucgKn-0-m6fTJX99lBx1fU7xLExbH6IPuKFmeHuNCo4B6f0_VUPBdcWTHPCGxEbWQwQ2ckCG49Xyw7I3xmCh26Z5GUwiEmmX-w5v2N9-_oJXuvwRcyKHyOavF4DnNnz1_ufwBrneAUc6biV9k1yy1S1yZeIb836DkU_l1PVt8m6xNvbXj5_wsQ1iM_QTptzVdl3DACA3XVcUQB-d2U3znQJ4BuXeUDzc4c-30AJQ5At6UNQNHVcNqAEGu--Q5eHB4uU06FonBAVYMB7o2MG6pCmNKa0oylQazhxgD8ZMHKdFqMENRVZjqRcpC8bKkDlACqUIjUstj--SQXVa2R1CM5NhLMdYEWc8c9ibXAsdhplLmBM6GZG9c9Yp3dUVx_YWJ6qtiBypbUaPyLOe-nNbT-MvdE9ACj0JFsGejnOF13zVOYB5X8IRee6F1JMVm2NMVBOJej-fqNVqBmY6yhQbkd1zKapOR2sFexQPBocZLOFxfxu0C3-ZFJU9PQOaBPgEGJbBhPa89P85azV5m4ORi_i9_6J-RK5OF7Nc5a_mb-6Ta0iD7jGSu2TQbM7sA8A9Tfmw29u_AVg09U8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagKxAXxK_YUsAg4FKiOokTO8cVdHeB3RWC7lJxsRz_iFXbtNqkVeHEI_CMPAkzSRq2B5C4Wckksj2emS_O-BtCnnurAYQnSSBTGQecCx5IF-WByZjJvY-cqLPdp7N0POfv9pP9dsMNz8I0_BDdhhtaRu2v0cBPrN_5QxoKkSseTQBuSKxj3UOiPFjVvcFi_mXe-WJw0E3NvAz6EIm0TX2HN-ysP38pKF39iimRPZzl80u4cx291uFneIvcbHEjHTSKvk2uuOIOuTaq6_J-g1adyWnKu-TT3tK6Xz9-wrc2aM3SI8y4K92yhAYgbrosKGA-OnWr6jsF7Ay2vaJ4tqM-3kI1gMhXdFeXFR0UFVgB7nXfI_Ph7t7rcdBWTgg0ODAemNjDuKTNrc2d0HkqLWceoAdjNo5THRqIQpEzyPQipWYsD5kHoJCL0PrU8fg-2SiOC_eA0MxmuJVjnYgznnksTW6ECcPMJ8wLk_TJ9sXUKdPSimN1i0PVECJHan2i--RFJ33S0Gn8Re4ZaKETQQ7s8WCi8FpNOgco7yzsk5e1kjoxvTrAPDWRqM-zkVospuClo0yxPtm60KJqTbRUsETxXHCYwRCedrfBuPCPiS7c8SnIJDBPAGEZdGi71v4_e61GHyfg4yK--V_ST8j1D2-GavJ29v4huYEiGBwjuUU2qtWpewSop8oft0v7N89I9Hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tide%E2%80%90induced+microseismicity+in+the+Mertz+glacier+grounding+area%2C+East+Antarctica&rft.jtitle=Geophysical+research+letters&rft.au=Barruol%2C+Guilhem&rft.au=Cordier%2C+Emmanuel&rft.au=Bascou%2C+J%C3%A9r%C3%B4me&rft.au=Fontaine%2C+Fabrice+R.&rft.date=2013-10-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=40&rft.issue=20&rft.spage=5412&rft.epage=5416&rft_id=info:doi/10.1002%2F2013GL057814&rft.externalDBID=10.1002%252F2013GL057814&rft.externalDocID=GRL51024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon