Tide-induced microseismicity in the Mertz glacier grounding area, East Antarctica
The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009–2012 provides the opportunity to monitor cryoseismic activity and to obtain new insights on the relationship between tidal cycles and coastal glacier dynamics. Here we focus on records...
Saved in:
Published in | Geophysical research letters Vol. 40; no. 20; pp. 5412 - 5416 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
28.10.2013
John Wiley & Sons, Inc American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009–2012 provides the opportunity to monitor cryoseismic activity and to obtain new insights on the relationship between tidal cycles and coastal glacier dynamics. Here we focus on records from a seismometer located on a rocky outcrop in the vicinity of the grounding line of the 35 km broad Mertz glacier, a major outflow of this region. We detect numerous icequakes (50,000 events within 10 months and up to 100 events/h) and demonstrate their clear tidal modulation. We suggest that they result from ice friction and fracturing around the rocky peak and from the glacier flexure in response to the falling and rising tides at its grounding area. We propose that such icequake monitoring could be used as a climate proxy since grounding lines are subject to migrate with sea level changes.
Key Points
Large microseismicity is recorded at the Mertz glacier grounding area
Icequakes show clear evidence of tide modulation
Ice fracturing is proposed to be largely controlled by glacier flexure |
---|---|
AbstractList | The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009–2012 provides the opportunity to monitor cryoseismic activity and to obtain new insights on the relationship between tidal cycles and coastal glacier dynamics. Here we focus on records from a seismometer located on a rocky outcrop in the vicinity of the grounding line of the 35 km broad Mertz glacier, a major outflow of this region. We detect numerous icequakes (50,000 events within 10 months and up to 100 events/h) and demonstrate their clear tidal modulation. We suggest that they result from ice friction and fracturing around the rocky peak and from the glacier flexure in response to the falling and rising tides at its grounding area. We propose that such icequake monitoring could be used as a climate proxy since grounding lines are subject to migrate with sea level changes.
Large microseismicity is recorded at the Mertz glacier grounding area
Icequakes show clear evidence of tide modulation
Ice fracturing is proposed to be largely controlled by glacier flexure The deployment of a seismic network along the Adelie and George V coasts in East Antarctica during the period 2009-2012 provides the opportunity to monitor cryoseismic activity and to obtain new insights on the relationship between tidal cycles and coastal glacier dynamics. Here we focus on records from a seismometer located on a rocky outcrop in the vicinity of the grounding line of the 35 km broad Mertz glacier, a major outflow of this region. We detect numerous icequakes (50,000 events within 10 months and up to 100 events/h) and demonstrate their clear tidal modulation. We suggest that they result from ice friction and fracturing around the rocky peak and from the glacier flexure in response to the falling and rising tides at its grounding area. We propose that such icequake monitoring could be used as a climate proxy since grounding lines are subject to migrate with sea level changes. Key Points * Large microseismicity is recorded at the Mertz glacier grounding area * Icequakes show clear evidence of tide modulation * Ice fracturing is proposed to be largely controlled by glacier flexure The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009–2012 provides the opportunity to monitor cryoseismic activity and to obtain new insights on the relationship between tidal cycles and coastal glacier dynamics. Here we focus on records from a seismometer located on a rocky outcrop in the vicinity of the grounding line of the 35 km broad Mertz glacier, a major outflow of this region. We detect numerous icequakes (50,000 events within 10 months and up to 100 events/h) and demonstrate their clear tidal modulation. We suggest that they result from ice friction and fracturing around the rocky peak and from the glacier flexure in response to the falling and rising tides at its grounding area. We propose that such icequake monitoring could be used as a climate proxy since grounding lines are subject to migrate with sea level changes. Key Points Large microseismicity is recorded at the Mertz glacier grounding area Icequakes show clear evidence of tide modulation Ice fracturing is proposed to be largely controlled by glacier flexure The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009–2012 provides the opportunity to monitor cryoseismic activity and to obtain new insights on the relationship between tidal cycles and coastal glacier dynamics. Here we focus on records from a seismometer located on a rocky outcrop in the vicinity of the grounding line of the 35 km broad Mertz glacier, a major outflow of this region. We detect numerous icequakes (50,000 events within 10 months and up to 100 events/h) and demonstrate their clear tidal modulation. We suggest that they result from ice friction and fracturing around the rocky peak and from the glacier flexure in response to the falling and rising tides at its grounding area. We propose that such icequake monitoring could be used as a climate proxy since grounding lines are subject to migrate with sea level changes. |
Author | Fontaine, Fabrice R. Legrésy, Benoit Barruol, Guilhem Lescarmontier, Lydie Cordier, Emmanuel Bascou, Jérôme |
Author_xml | – sequence: 1 givenname: Guilhem surname: Barruol fullname: Barruol, Guilhem email: guilhem.barruol@univ-reunion.fr organization: Laboratoire GéoSciences Réunion, Université de La Réunion, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS UMR 7154, Université Paris Diderot, Saint Denis, France – sequence: 2 givenname: Emmanuel surname: Cordier fullname: Cordier, Emmanuel organization: Laboratoire GéoSciences Réunion, Université de La Réunion, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS UMR 7154, Université Paris Diderot, Saint Denis, France – sequence: 3 givenname: Jérôme surname: Bascou fullname: Bascou, Jérôme organization: Université de Lyon, Université Jean Monnet, CNRS UMR 6524, Laboratoire Magmas et Volcans, Saint Etienne, France – sequence: 4 givenname: Fabrice R. surname: Fontaine fullname: Fontaine, Fabrice R. organization: Laboratoire GéoSciences Réunion, Université de La Réunion, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS UMR 7154, Université Paris Diderot, Saint Denis, France – sequence: 5 givenname: Benoit surname: Legrésy fullname: Legrésy, Benoit organization: Laboratoire d'Etude en Géophysique et Océanographie Spatiale, Toulouse, France – sequence: 6 givenname: Lydie surname: Lescarmontier fullname: Lescarmontier, Lydie organization: Laboratoire d'Etude en Géophysique et Océanographie Spatiale, Toulouse, France |
BackLink | https://hal.univ-reunion.fr/hal-01236143$$DView record in HAL |
BookMark | eNp9kVtrFDEUgINUcFt98wcEfFHo1JPLzGQel1J3hWmlpdbHkEky29TZTE0y6vrrzbBVpFCfcgjfd66H6MCP3iL0msAJAaDvKRC2aqGsBeHP0II0nBcCoD5AC4Amx7SuXqDDGO8AgAEjC3R57YwtnDeTtgZvnQ5jtC7mwKUddh6nW4vPbUi_8GZQ2tmAN2GcvHF-g1Ww6hifqZjw0icVdHJavUTPezVE--rhPUKfP5xdn66L9tPq4-myLVTJBC8063OfwnTGdLZWXSUMh541NYBhrFJE06ahVleCgxAKoCPQU8q6mpi-spwdoXf7vLdqkPfBbVXYyVE5uV62cv4DQllFOPtOMvt2z96H8dtkY5JbF7UdBuXtOEVJylysBAFz2jeP0LtxCj5PIknFaSZIU2aK7ql5XzHYXuZ9qeRGn4JygyQg54vIfy-SpeNH0p-2n8Afavxwg939l5Wrq7YkQGep2EsuJvvzr6TCV1nVrC7ll4uVvLk5X6-vaCOB_Qb666iu |
CitedBy_id | crossref_primary_10_5331_bgr_24R04 crossref_primary_10_1016_j_jop_2017_06_004 crossref_primary_10_1088_1361_6633_aa8473 crossref_primary_10_1016_j_jop_2016_12_001 crossref_primary_10_1093_gji_ggw214 crossref_primary_10_1002_2016GL067743 crossref_primary_10_1029_2019JE006030 crossref_primary_10_1002_2015GL064029 crossref_primary_10_5194_tc_17_1327_2023 crossref_primary_10_1029_2019GL082842 crossref_primary_10_5194_tc_14_1139_2020 crossref_primary_10_1017_aog_2018_34 crossref_primary_10_1017_aog_2019_14 crossref_primary_10_1017_aog_2019_25 crossref_primary_10_1029_2023JF007172 crossref_primary_10_5194_tc_15_5007_2021 crossref_primary_10_1016_j_jop_2016_09_001 crossref_primary_10_1002_2016RG000526 crossref_primary_10_1017_jog_2023_4 crossref_primary_10_1016_j_epsl_2018_09_024 crossref_primary_10_1017_aog_2019_26 crossref_primary_10_1029_2023JF007593 |
Cites_doi | 10.3189/172756504781829828 10.1002/jgrc.20339 10.1029/97jb01073 10.3189/172756403781815663 10.1029/JB075i008p01351 10.3189/002214307784409207 10.1029/2007gl031207 10.1017/S0022143000005517 10.1130/g30606.1 10.1038/ngeo1555 10.1016/s0098‐3004(02)00013‐4 10.1029/2006jf000595 10.1029/2006jf000596 10.3189/172756504781830240 10.1126/science.1087231 10.1007/s10236‐006‐0086‐x 10.1017/S0022143000003439 10.1111/j.1365‐246X.2006.02911.x 10.3189/2012JoG11J089 10.1029/94JB02467 10.1016/j.cageo.2009.01.010 10.1016/j.epsl.2012.11.008 10.1016/s0031‐9201(99)00005‐9 10.1029/2006gl028207 10.1080/01418618408233279 |
ContentType | Journal Article |
Copyright | 2013. American Geophysical Union. All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2013. American Geophysical Union. All Rights Reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 1XC VOOES |
DOI | 10.1002/2013GL057814 |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Technology Research Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 5416 |
ExternalDocumentID | oai_HAL_hal_01236143v1 3545519151 10_1002_2013GL057814 GRL51024 ark_67375_WNG_VVMHHR29_0 |
Genre | article |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG AVUZU AVWKF AZFZN AZVAB BDRZF BENPR BMXJE BRXPI BSCLL CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZCG ZZTAW ~02 ~OA ~~A AANHP ACRPL ACYXJ ADNMO AAFWJ AAYXX ACTHY AGQPQ CITATION 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M 1XC 31~ 6TJ 7XC 88I 8FE 8FG 8FH 8G5 ABJCF ABJNI ABUWG ACCMX AEUYN AFKRA AFZJQ AI. ARAPS ATCPS AZQEC BFHJK BGLVJ BHPHI BKSAR BPHCQ CCPQU D1K DDYGU DWQXO FEDTE GNUQQ GROUPED_DOAJ GUQSH HCIFZ HVGLF K6- L6V LK5 M2O M2P M7R M7S MVM P62 PALCI PATMY PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS RIWAO RJQFR SAMSI UQL VH1 VOH VOOES |
ID | FETCH-LOGICAL-a5384-c3f5788dbddbe7ab68d40f39700d336a1c2992ec684088a00b10f223b71df6e43 |
ISSN | 0094-8276 |
IngestDate | Sun Aug 03 06:10:43 EDT 2025 Fri Jul 11 11:13:22 EDT 2025 Fri Jul 25 10:35:47 EDT 2025 Thu Apr 24 23:09:26 EDT 2025 Tue Jul 01 01:05:25 EDT 2025 Wed Jan 22 16:43:03 EST 2025 Wed Oct 30 09:54:58 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a5384-c3f5788dbddbe7ab68d40f39700d336a1c2992ec684088a00b10f223b71df6e43 |
Notes | istex:DCCA54015C407BC8BA234042855DFC0224FEE4D8 ark:/67375/WNG-VVMHHR29-0 ArticleID:GRL51024 Supporting InformationSupporting InformationSupporting Information ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1909-1630 0000-0002-4049-2375 0000-0002-2402-8986 0000-0002-9357-6951 0000-0003-2015-0770 |
OpenAccessLink | https://hal.univ-reunion.fr/hal-01236143 |
PQID | 1642043195 |
PQPubID | 54723 |
PageCount | 5 |
ParticipantIDs | hal_primary_oai_HAL_hal_01236143v1 proquest_miscellaneous_1529950804 proquest_journals_1642043195 crossref_citationtrail_10_1002_2013GL057814 crossref_primary_10_1002_2013GL057814 wiley_primary_10_1002_2013GL057814_GRL51024 istex_primary_ark_67375_WNG_VVMHHR29_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 28 October 2013 |
PublicationDateYYYYMMDD | 2013-10-28 |
PublicationDate_xml | – month: 10 year: 2013 text: 28 October 2013 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationTitleAlternate | Geophys. Res. Lett |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: American Geophysical Union |
References | West, M. E., C. F. Larsen, M. Truffer, S. O'Neel, and L. LeBlanc (2010), Glacier microseismicity, Geology, 38(4), 319-322, doi:10.1130/g30606.1. Schulson, E. M., P. N. Lim, and R. W. Lee (1984), A brittle to ductile transition in ice under tension, Philos. Mag., 49(3), 353-363. Bassis, J. N., H. A. Fricker, R. Coleman, Y. Bock, J. Behrens, D. Darnell, M. Okal, and J. B. Minster (2007), Seismicity and deformation associated with ice-shelf rift propagation, J. Glaciol., 53, 523-536, doi:10.3189/002214307784409207. Zoet, L. K., S. Anandakrishnan, R. B. Alley, A. A. Nyblade, and D. A. Wiens (2012), Motion of an Antarctic glacier by repeated tidally modulated earthquakes, Nat. Geosci., 5(9), 623-626, doi:10.1038/ngeo1555. Lee, W. H. K., R. E. Bennett, and K. L. Meagher (1972), A method of estimating magnitude of local earthquakes from signal duration, U.S. Geol. Surv. Open File Rep., 1-29. Mayet, C., L. Testut, B. Legresy, L. Lescarmontier, and F. Lyard (2013), High resolution barotropic modeling and the calving of the Mertz glacier, East Antarctica, J. Geophys. Res. Oceans, doi:10.1002/jgrc.20339, in press. O'Neel, S., H. P. Marshall, D. E. McNamara, and W. T. Pfeffer (2007), Seismic detection and analysis of icequakes at Columbia Glacier, Alaska, J. Geophys. Res., 112, F03S23, doi:10.1029/2006jf000595. Lesage, P. (2009), Interactive Matlab software for the analysis of seismic volcanic signals, Comput. Geosci., 35(10), 2137-2144, doi:10.1016/j.cageo.2009.01.010. Neave, K. G., and J. C. Savage (1970), Icequakes on Athabasca glacier, J. Geophys. Res., 75(8), 1351-1362, doi:10.1029/JB075i008p01351. Smith, A. M. (2006), Microearthquakes and subglacial conditions, Geophys. Res. Lett., 33, L24501, doi:10.1029/2006gl028207. von der Osten-Woldenburg, H. (1990), Icequakes from Ekström ice shelf near Atka Bay, Antarctica, J. Glaciol., 36(122), 31-36. Lescarmontier, L., B. Legresy, R. Coleman, F. Perosanz, C. Mayet, and L. Testut (2012), Vibrations of Mertz glacier ice tongue, East Antarctica, J. Glaciol., 58(210), 665-676, doi:10.3189/2012JoG11J089. Pawlowicz, R., B. Beardsley, and S. Lentz (2002), Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE, Comput. Geosci., 28(8), 929-937, doi:10.1016/s0098-3004(02)00013-4. Walker, R. T., B. R. Parizek, R. B. Alley, S. Anandakrishnan, K. L. Riverman, and K. Christianson (2013), Ice-shelf tidal flexure and subglacial pressure variations, Earth Planet. Sci. Lett., 361, 422-428, doi:10.1016/j.epsl.2012.11.008. Gutenberg, B., and C. F. Richter (1944), Frequency of earthquakes in California, Bull. Geol. Soc. Am., 34, 185-188. Sinadinovski, C., K. Muirhead, M. Leonard, S. Spiliopoulos, and D. Jespen (1999), Effective discrimination of icequakes on seismic records from Mawson station, Phys. Earth Planet. Inter., 113(1-4), 203-211, doi:10.1016/s0031-9201(99)00005-9. Anandakrishnan, S., and R. B. Alley (1997), Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland, J. Geophys. Res., 102(B7), 15,183-15,196, doi:10.1029/97jb01073. Murray, T., A. M. Smith, M. A. King, and G. P. Weedon (2007), Ice flow modulated by tides at up to annual periods at Rutford Ice Stream, West Antarctica, Geophys. Res. Lett., 34, L18503, doi:10.1029/2007gl031207. Vaughan, D. G. (1995), Tidal flexure at ice shelf margins, J. Geophys. Res., 100(B4), 6213-6224. Talandier, J., O. Hyvernaud, D. Reymond, and E. Okal (2006), Hydroacoustic signals generated by parked drifting icebergs in the Southern Indian and Pacific Ocean, Geophys. J. Int., 246, 1-18, doi:10.1111/j.1365-246X.2006.02911.x. Wendler, G., K. Ahlnas, and C. S. Lingle (1996), On Mertz and Ninnis glaciers, East Antarctica, J. Glaciol., 42(142), 447-453. Reeh, N., E. L. Christensen, C. Mayer, and O. B. Olesen (2003), Tidal bending of glaciers: A linear viscoelastic approach, Ann. Glaciol., 37, 83-89, doi:10.3189/172756403781815663. Bindschadler, R. A., M. A. King, R. B. Alley, S. Anandakrishan, and L. Padman (2003), Tidally controlled stick-slip discharge of a West Antarctic Ice Stream, Science, 301, 1087-1089. Lyard, F., F. Lefevre, T. Letellier, and O. Francis (2006), Modelling the global ocean tides: Modern insights from FES2004, Ocean Dyn., 56(5-6), 394-415, doi:10.1007/s10236-006-0086-x. Weiss, J. (2004), Subcritical crack propagation as a mechanism of crevasse formation and iceberg calving, J. Glaciol., 50(168), 109-115, doi:10.3189/172756504781830240. Legresy, B., A. Wendt, I. Tabacco, F. Remy, and R. Dietrich (2004), Influence of tides and tidal current on Mertz glacier, Antarctica, J. Glaciol., 50(170), 427-435, doi:10.3189/172756504781829828. Tsai, V. C., and G. Ekstrom (2007), Analysis of glacial earthquakes, J. Geophys. Res., 112, F03s22, doi:10.1029/2006jf000596. 2010; 38 1990; 36 2012 2006; 56 1984; 49 2006; 33 2003; 37 1970; 75 1972 2013; 361 2007; 53 2012; 58 2007; 34 1944; 34 1997; 102 2002; 28 2007; 112 2009; 35 2004; 50 1999; 113 1995; 100 2013 2003; 301 2012; 5 1996; 42 2006; 246 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_13_1 Gutenberg B. (e_1_2_5_5_1) 1944; 34 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Lee W. H. K. (e_1_2_5_6_1) 1972 |
References_xml | – reference: von der Osten-Woldenburg, H. (1990), Icequakes from Ekström ice shelf near Atka Bay, Antarctica, J. Glaciol., 36(122), 31-36. – reference: Sinadinovski, C., K. Muirhead, M. Leonard, S. Spiliopoulos, and D. Jespen (1999), Effective discrimination of icequakes on seismic records from Mawson station, Phys. Earth Planet. Inter., 113(1-4), 203-211, doi:10.1016/s0031-9201(99)00005-9. – reference: Weiss, J. (2004), Subcritical crack propagation as a mechanism of crevasse formation and iceberg calving, J. Glaciol., 50(168), 109-115, doi:10.3189/172756504781830240. – reference: Schulson, E. M., P. N. Lim, and R. W. Lee (1984), A brittle to ductile transition in ice under tension, Philos. Mag., 49(3), 353-363. – reference: Anandakrishnan, S., and R. B. Alley (1997), Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland, J. Geophys. Res., 102(B7), 15,183-15,196, doi:10.1029/97jb01073. – reference: Mayet, C., L. Testut, B. Legresy, L. Lescarmontier, and F. Lyard (2013), High resolution barotropic modeling and the calving of the Mertz glacier, East Antarctica, J. Geophys. Res. Oceans, doi:10.1002/jgrc.20339, in press. – reference: O'Neel, S., H. P. Marshall, D. E. McNamara, and W. T. Pfeffer (2007), Seismic detection and analysis of icequakes at Columbia Glacier, Alaska, J. Geophys. Res., 112, F03S23, doi:10.1029/2006jf000595. – reference: Wendler, G., K. Ahlnas, and C. S. Lingle (1996), On Mertz and Ninnis glaciers, East Antarctica, J. Glaciol., 42(142), 447-453. – reference: Bassis, J. N., H. A. Fricker, R. Coleman, Y. Bock, J. Behrens, D. Darnell, M. Okal, and J. B. Minster (2007), Seismicity and deformation associated with ice-shelf rift propagation, J. Glaciol., 53, 523-536, doi:10.3189/002214307784409207. – reference: Lescarmontier, L., B. Legresy, R. Coleman, F. Perosanz, C. Mayet, and L. Testut (2012), Vibrations of Mertz glacier ice tongue, East Antarctica, J. Glaciol., 58(210), 665-676, doi:10.3189/2012JoG11J089. – reference: Talandier, J., O. Hyvernaud, D. Reymond, and E. Okal (2006), Hydroacoustic signals generated by parked drifting icebergs in the Southern Indian and Pacific Ocean, Geophys. J. Int., 246, 1-18, doi:10.1111/j.1365-246X.2006.02911.x. – reference: Lee, W. H. K., R. E. Bennett, and K. L. Meagher (1972), A method of estimating magnitude of local earthquakes from signal duration, U.S. Geol. Surv. Open File Rep., 1-29. – reference: Smith, A. M. (2006), Microearthquakes and subglacial conditions, Geophys. Res. Lett., 33, L24501, doi:10.1029/2006gl028207. – reference: Bindschadler, R. A., M. A. King, R. B. Alley, S. Anandakrishan, and L. Padman (2003), Tidally controlled stick-slip discharge of a West Antarctic Ice Stream, Science, 301, 1087-1089. – reference: Murray, T., A. M. Smith, M. A. King, and G. P. Weedon (2007), Ice flow modulated by tides at up to annual periods at Rutford Ice Stream, West Antarctica, Geophys. Res. Lett., 34, L18503, doi:10.1029/2007gl031207. – reference: Gutenberg, B., and C. F. Richter (1944), Frequency of earthquakes in California, Bull. Geol. Soc. Am., 34, 185-188. – reference: Vaughan, D. G. (1995), Tidal flexure at ice shelf margins, J. Geophys. Res., 100(B4), 6213-6224. – reference: Pawlowicz, R., B. Beardsley, and S. Lentz (2002), Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE, Comput. Geosci., 28(8), 929-937, doi:10.1016/s0098-3004(02)00013-4. – reference: Walker, R. T., B. R. Parizek, R. B. Alley, S. Anandakrishnan, K. L. Riverman, and K. Christianson (2013), Ice-shelf tidal flexure and subglacial pressure variations, Earth Planet. Sci. Lett., 361, 422-428, doi:10.1016/j.epsl.2012.11.008. – reference: Neave, K. G., and J. C. Savage (1970), Icequakes on Athabasca glacier, J. Geophys. Res., 75(8), 1351-1362, doi:10.1029/JB075i008p01351. – reference: Reeh, N., E. L. Christensen, C. Mayer, and O. B. Olesen (2003), Tidal bending of glaciers: A linear viscoelastic approach, Ann. Glaciol., 37, 83-89, doi:10.3189/172756403781815663. – reference: West, M. E., C. F. Larsen, M. Truffer, S. O'Neel, and L. LeBlanc (2010), Glacier microseismicity, Geology, 38(4), 319-322, doi:10.1130/g30606.1. – reference: Legresy, B., A. Wendt, I. Tabacco, F. Remy, and R. Dietrich (2004), Influence of tides and tidal current on Mertz glacier, Antarctica, J. Glaciol., 50(170), 427-435, doi:10.3189/172756504781829828. – reference: Lesage, P. (2009), Interactive Matlab software for the analysis of seismic volcanic signals, Comput. Geosci., 35(10), 2137-2144, doi:10.1016/j.cageo.2009.01.010. – reference: Lyard, F., F. Lefevre, T. Letellier, and O. Francis (2006), Modelling the global ocean tides: Modern insights from FES2004, Ocean Dyn., 56(5-6), 394-415, doi:10.1007/s10236-006-0086-x. – reference: Zoet, L. K., S. Anandakrishnan, R. B. Alley, A. A. Nyblade, and D. A. Wiens (2012), Motion of an Antarctic glacier by repeated tidally modulated earthquakes, Nat. Geosci., 5(9), 623-626, doi:10.1038/ngeo1555. – reference: Tsai, V. C., and G. Ekstrom (2007), Analysis of glacial earthquakes, J. Geophys. Res., 112, F03s22, doi:10.1029/2006jf000596. – volume: 301 start-page: 1087 year: 2003 end-page: 1089 article-title: Tidally controlled stick‐slip discharge of a West Antarctic Ice Stream publication-title: Science – volume: 58 start-page: 665 issue: 210 year: 2012 end-page: 676 article-title: Vibrations of Mertz glacier ice tongue, East Antarctica publication-title: J. Glaciol. – volume: 53 start-page: 523 year: 2007 end-page: 536 article-title: Seismicity and deformation associated with ice‐shelf rift propagation publication-title: J. Glaciol. – volume: 49 start-page: 353 issue: 3 year: 1984 end-page: 363 article-title: A brittle to ductile transition in ice under tension publication-title: Philos. Mag. – volume: 28 start-page: 929 issue: 8 year: 2002 end-page: 937 article-title: Classical tidal harmonic analysis including error estimates in MATLAB using T‐TIDE publication-title: Comput. Geosci. – start-page: 1 year: 1972 end-page: 29 publication-title: U.S. Geol. Surv. Open File Rep. – volume: 33 year: 2006 article-title: Microearthquakes and subglacial conditions publication-title: Geophys. Res. Lett. – volume: 38 start-page: 319 issue: 4 year: 2010 end-page: 322 article-title: Glacier microseismicity publication-title: Geology – volume: 5 start-page: 623 issue: 9 year: 2012 end-page: 626 article-title: Motion of an Antarctic glacier by repeated tidally modulated earthquakes publication-title: Nat. Geosci. – volume: 113 start-page: 203 issue: 1–4 year: 1999 end-page: 211 article-title: Effective discrimination of icequakes on seismic records from Mawson station publication-title: Phys. Earth Planet. Inter. – volume: 75 start-page: 1351 issue: 8 year: 1970 end-page: 1362 article-title: Icequakes on Athabasca glacier publication-title: J. Geophys. Res. – volume: 42 start-page: 447 issue: 142 year: 1996 end-page: 453 article-title: On Mertz and Ninnis glaciers, East Antarctica publication-title: J. Glaciol. – volume: 100 start-page: 6213 issue: B4 year: 1995 end-page: 6224 article-title: Tidal flexure at ice shelf margins publication-title: J. Geophys. Res. – volume: 37 start-page: 83 year: 2003 end-page: 89 article-title: Tidal bending of glaciers: A linear viscoelastic approach publication-title: Ann. Glaciol. – year: 2012 – volume: 35 start-page: 2137 issue: 10 year: 2009 end-page: 2144 article-title: Interactive Matlab software for the analysis of seismic volcanic signals publication-title: Comput. Geosci. – volume: 34 year: 2007 article-title: Ice flow modulated by tides at up to annual periods at Rutford Ice Stream, West Antarctica publication-title: Geophys. Res. Lett. – year: 2013 article-title: High resolution barotropic modeling and the calving of the Mertz glacier, East Antarctica publication-title: J. Geophys. Res. Oceans – volume: 50 start-page: 109 issue: 168 year: 2004 end-page: 115 article-title: Subcritical crack propagation as a mechanism of crevasse formation and iceberg calving publication-title: J. Glaciol. – volume: 102 start-page: 15,183 issue: B7 year: 1997 end-page: 15,196 article-title: Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland publication-title: J. Geophys. Res. – volume: 50 start-page: 427 issue: 170 year: 2004 end-page: 435 article-title: Influence of tides and tidal current on Mertz glacier, Antarctica publication-title: J. Glaciol. – volume: 361 start-page: 422 year: 2013 end-page: 428 article-title: Ice‐shelf tidal flexure and subglacial pressure variations publication-title: Earth Planet. Sci. Lett. – volume: 34 start-page: 185 year: 1944 end-page: 188 article-title: Frequency of earthquakes in California publication-title: Bull. Geol. Soc. Am. – volume: 112 year: 2007 article-title: Analysis of glacial earthquakes publication-title: J. Geophys. Res. – volume: 112 year: 2007 article-title: Seismic detection and analysis of icequakes at Columbia Glacier, Alaska publication-title: J. Geophys. Res. – volume: 36 start-page: 31 issue: 122 year: 1990 end-page: 36 article-title: Icequakes from Ekström ice shelf near Atka Bay, Antarctica publication-title: J. Glaciol. – volume: 56 start-page: 394 issue: 5–6 year: 2006 end-page: 415 article-title: Modelling the global ocean tides: Modern insights from FES2004 publication-title: Ocean Dyn. – volume: 246 start-page: 1 year: 2006 end-page: 18 article-title: Hydroacoustic signals generated by parked drifting icebergs in the Southern Indian and Pacific Ocean publication-title: Geophys. J. Int. – ident: e_1_2_5_7_1 doi: 10.3189/172756504781829828 – ident: e_1_2_5_12_1 doi: 10.1002/jgrc.20339 – ident: e_1_2_5_2_1 doi: 10.1029/97jb01073 – ident: e_1_2_5_18_1 doi: 10.3189/172756403781815663 – ident: e_1_2_5_14_1 doi: 10.1029/JB075i008p01351 – ident: e_1_2_5_3_1 doi: 10.3189/002214307784409207 – ident: e_1_2_5_13_1 doi: 10.1029/2007gl031207 – ident: e_1_2_5_16_1 doi: 10.1017/S0022143000005517 – volume: 34 start-page: 185 year: 1944 ident: e_1_2_5_5_1 article-title: Frequency of earthquakes in California publication-title: Bull. Geol. Soc. Am. – ident: e_1_2_5_28_1 doi: 10.1130/g30606.1 – ident: e_1_2_5_29_1 doi: 10.1038/ngeo1555 – ident: e_1_2_5_17_1 doi: 10.1016/s0098‐3004(02)00013‐4 – ident: e_1_2_5_15_1 doi: 10.1029/2006jf000595 – ident: e_1_2_5_23_1 doi: 10.1029/2006jf000596 – ident: e_1_2_5_26_1 doi: 10.3189/172756504781830240 – ident: e_1_2_5_4_1 doi: 10.1126/science.1087231 – start-page: 1 year: 1972 ident: e_1_2_5_6_1 publication-title: U.S. Geol. Surv. Open File Rep. – ident: e_1_2_5_11_1 doi: 10.1007/s10236‐006‐0086‐x – ident: e_1_2_5_27_1 doi: 10.1017/S0022143000003439 – ident: e_1_2_5_22_1 doi: 10.1111/j.1365‐246X.2006.02911.x – ident: e_1_2_5_10_1 doi: 10.3189/2012JoG11J089 – ident: e_1_2_5_24_1 doi: 10.1029/94JB02467 – ident: e_1_2_5_8_1 doi: 10.1016/j.cageo.2009.01.010 – ident: e_1_2_5_9_1 – ident: e_1_2_5_25_1 doi: 10.1016/j.epsl.2012.11.008 – ident: e_1_2_5_20_1 doi: 10.1016/s0031‐9201(99)00005‐9 – ident: e_1_2_5_21_1 doi: 10.1029/2006gl028207 – ident: e_1_2_5_19_1 doi: 10.1080/01418618408233279 |
SSID | ssj0003031 |
Score | 2.238709 |
Snippet | The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009–2012 provides the opportunity to monitor... The deployment of a seismic network along the Adélie and George V coasts in East Antarctica during the period 2009-2012 provides the opportunity to monitor... The deployment of a seismic network along the Adelie and George V coasts in East Antarctica during the period 2009-2012 provides the opportunity to monitor... |
SourceID | hal proquest crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5412 |
SubjectTerms | Adélie land Antarctica cryoseismology Earth Sciences Flexing Fracturing Geophysics Glaciers Grounding icequakes Marine Mertz glacier Modulation Sciences of the Universe Sea level changes Seismic phenomena Seismology tide Tides |
Title | Tide-induced microseismicity in the Mertz glacier grounding area, East Antarctica |
URI | https://api.istex.fr/ark:/67375/WNG-VVMHHR29-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2013GL057814 https://www.proquest.com/docview/1642043195 https://www.proquest.com/docview/1529950804 https://hal.univ-reunion.fr/hal-01236143 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa6rZC4IH5FYUEBAZeSXSdxfnwsiG2F2j0s27LiEjmOo1a06appEOyJR-AteC-ehPFP0hQtK5ZLlDpTK8l8GX9jz4wRepGlDEi479tREHk2ISGxI-EmNqeYJ1nmilBFu4-Pg-GEvD_zz1qtn42opXKTHPCLS_NK_ker0AZ6lVmy19Bs3Sk0wDnoF46gYTj-m47nqaijFcC5LuVi_lKG2BViXsCJpNgmkHEs1puLHpBlLvNLZDKHzmdhwBqVQWTFRpYSAOBvqvgdQ1oHYnVeqdMUB5r1FioPaDvJztbr0uzWVc4XMzMjrBJAAIMmq2a5ZHkpFts_FXxVKiDpBXu1bv-GLGu0Ha1yOXehY5BZIisg9U4OmlMVjgp6c6Om-aUABTc0ta-1xaUE2rDe-rYyybqCk4GeixsG1icm6lpUP4NLBwJdWFbexGAElDTSmaq79bZrOf8qSTXWD05GYLxcsoc6Lvgjbht1-tPJp0k96AMT0Jszmic0ORbQ_WGz6x32szeTsbcd-Tl_3XFwmm6S4jmnt9Et46BYfY22O6gl8rvoxkBtAP0NzlTIMC_uoQ8Sfb--_zC4s_7AnTXPLcCdpXBnGdxZNe4sibvXlkSdtUXdfTQ5enf6dmibLTpsBiMlsbmXwXNFaZKmiQhZEkQpwRlwXIxTzwuYw4HuuILLkkJRxDBOHJwBI01CJ80CQbwHqJ2vcvEQWTSlcs4wFaFHCc1C6lMecsehmY-zkPtd1KteXcxN_Xq5jcoi1pW33bj5orvoZS19ruu2_EXuOWihFpHF1of9USzbVHVDcCe-OF30SimpFmPrzzIgMvTjj8eDeDodAx1waYy7aL_SYmzsRBGDLZQJ6A6FR3hWXwYrLpfmWC5WJcj48J7AV8JwQz2l_SvvOq7w-Oha0o_Rze1nuY_am3UpngCn3iRPDZ5_A4GHv8M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELagFYIL4ldbWMAg4LJE6yRO7BwrtNsCaQ_QlhUXK_GPqHbJoiaLgBOPwDPyJMw42dA9gMTNSiaRPeOZ-TIZzxDy1JkCQHiSBDKVccC54IG0URnojOnSucgKn-0-m6fTJX99lBx1fU7xLExbH6IPuKFmeHuNCo4B6f0_VUPBdcWTHPCGxEbWQwQ2ckCG49Xyw7I3xmCh26Z5GUwiEmmX-w5v2N9-_oJXuvwRcyKHyOavF4DnNnz1_ufwBrneAUc6biV9k1yy1S1yZeIb836DkU_l1PVt8m6xNvbXj5_wsQ1iM_QTptzVdl3DACA3XVcUQB-d2U3znQJ4BuXeUDzc4c-30AJQ5At6UNQNHVcNqAEGu--Q5eHB4uU06FonBAVYMB7o2MG6pCmNKa0oylQazhxgD8ZMHKdFqMENRVZjqRcpC8bKkDlACqUIjUstj--SQXVa2R1CM5NhLMdYEWc8c9ibXAsdhplLmBM6GZG9c9Yp3dUVx_YWJ6qtiBypbUaPyLOe-nNbT-MvdE9ACj0JFsGejnOF13zVOYB5X8IRee6F1JMVm2NMVBOJej-fqNVqBmY6yhQbkd1zKapOR2sFexQPBocZLOFxfxu0C3-ZFJU9PQOaBPgEGJbBhPa89P85azV5m4ORi_i9_6J-RK5OF7Nc5a_mb-6Ta0iD7jGSu2TQbM7sA8A9Tfmw29u_AVg09U8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagKxAXxK_YUsAg4FKiOokTO8cVdHeB3RWC7lJxsRz_iFXbtNqkVeHEI_CMPAkzSRq2B5C4Wckksj2emS_O-BtCnnurAYQnSSBTGQecCx5IF-WByZjJvY-cqLPdp7N0POfv9pP9dsMNz8I0_BDdhhtaRu2v0cBPrN_5QxoKkSseTQBuSKxj3UOiPFjVvcFi_mXe-WJw0E3NvAz6EIm0TX2HN-ysP38pKF39iimRPZzl80u4cx291uFneIvcbHEjHTSKvk2uuOIOuTaq6_J-g1adyWnKu-TT3tK6Xz9-wrc2aM3SI8y4K92yhAYgbrosKGA-OnWr6jsF7Ay2vaJ4tqM-3kI1gMhXdFeXFR0UFVgB7nXfI_Ph7t7rcdBWTgg0ODAemNjDuKTNrc2d0HkqLWceoAdjNo5THRqIQpEzyPQipWYsD5kHoJCL0PrU8fg-2SiOC_eA0MxmuJVjnYgznnksTW6ECcPMJ8wLk_TJ9sXUKdPSimN1i0PVECJHan2i--RFJ33S0Gn8Re4ZaKETQQ7s8WCi8FpNOgco7yzsk5e1kjoxvTrAPDWRqM-zkVospuClo0yxPtm60KJqTbRUsETxXHCYwRCedrfBuPCPiS7c8SnIJDBPAGEZdGi71v4_e61GHyfg4yK--V_ST8j1D2-GavJ29v4huYEiGBwjuUU2qtWpewSop8oft0v7N89I9Hg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tide%E2%80%90induced+microseismicity+in+the+Mertz+glacier+grounding+area%2C+East+Antarctica&rft.jtitle=Geophysical+research+letters&rft.au=Barruol%2C+Guilhem&rft.au=Cordier%2C+Emmanuel&rft.au=Bascou%2C+J%C3%A9r%C3%B4me&rft.au=Fontaine%2C+Fabrice+R.&rft.date=2013-10-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=40&rft.issue=20&rft.spage=5412&rft.epage=5416&rft_id=info:doi/10.1002%2F2013GL057814&rft.externalDBID=10.1002%252F2013GL057814&rft.externalDocID=GRL51024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |