Photochemical Fate of Pharmaceuticals in the Environment:  Cimetidine and Ranitidine

The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (1O2, O2(1Δg)) and hydroxyl radical (•OH), two transient oxidants formed in sunl...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 37; no. 15; pp. 3342 - 3350
Main Authors Latch, Douglas E, Stender, Brian L, Packer, Jennifer L, Arnold, William A, McNeill, Kristopher
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.08.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (1O2, O2(1Δg)) and hydroxyl radical (•OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with •OH in water is 6.5 ± 0.5 × 109 M-1 s-1. Over the pH range 4−10, cimetidine reacts with 1O2 with bimolecular rate constants ranging from 3.3 ± 0.3 × 106 M-1 s-1 at low pH to 2.5 ± 0.2 × 108 M-1 s-1 in alkaline solutions. The bimolecular rate constants for ranitidine reacting with 1O2 in water ranges from 1.6 ± 0.2 × 107 M-1 s-1 at pH 6−6.4 ± 0.2 × 107 M-1 s-1 at pH 10. Reaction of ranitidine hydrochloride with •OH proceeds with a rate constant of 1.5 ± 0.2 × 1010 M-1 s-1. Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 ° latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of 1O2 and •OH, indicate that photooxidation mediated by 1O2 is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by 1O2. These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to singlet-oxygenation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with 1O2, as evidenced by the high relative rate constants of the furan and imidazole models. The nitroacetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis.
AbstractList The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (1O2, O2(1delta(g))) and hydroxyl radical (*OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with *OH in water is 6.5 +/- 0.5 x 10(9) M(-1) s(-1). Over the pH range 4-10, cimetidine reacts with 1O2 with bimolecular rate constants ranging from 3.3 +/- 0.3 x 10(6) M(-1) s(-1) at low pH to 2.5 +/- 0.2 x 10(8) M(-1) s(-1) in alkaline solutions. The bimolecular rate constants for ranitidine reacting with 1O2 in water ranges from 1.6 +/- 0.2 x 10(7) M(-1) s(-1) at pH 6-6.4 +/- 0.2 x 10(7) M(-1) s(-1) at pH 10. Reaction of ranitidine hydrochloride with *OH proceeds with a rate constant of 1.5 +/- 0.2 x 10(10) M(-1) s(-1). Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 degrees latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of 1O2 and *OH, indicate that photooxidation mediated by 1O2 is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by 1O2. These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to singlet-oxygenation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with 1O2, as evidenced by the high relative rate constants of the furan and imidazole models. The nitroacetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis.The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (1O2, O2(1delta(g))) and hydroxyl radical (*OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with *OH in water is 6.5 +/- 0.5 x 10(9) M(-1) s(-1). Over the pH range 4-10, cimetidine reacts with 1O2 with bimolecular rate constants ranging from 3.3 +/- 0.3 x 10(6) M(-1) s(-1) at low pH to 2.5 +/- 0.2 x 10(8) M(-1) s(-1) in alkaline solutions. The bimolecular rate constants for ranitidine reacting with 1O2 in water ranges from 1.6 +/- 0.2 x 10(7) M(-1) s(-1) at pH 6-6.4 +/- 0.2 x 10(7) M(-1) s(-1) at pH 10. Reaction of ranitidine hydrochloride with *OH proceeds with a rate constant of 1.5 +/- 0.2 x 10(10) M(-1) s(-1). Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 degrees latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of 1O2 and *OH, indicate that photooxidation mediated by 1O2 is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by 1O2. These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to singlet-oxygenation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with 1O2, as evidenced by the high relative rate constants of the furan and imidazole models. The nitroacetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis.
The photochemical fate of the pharmaceuticals, cimetidine and ranitidine, which display disparate degradation mechanisms, was investigated. Photolysis experiments with sunlight in natural water were performed, as were steady-state photolysis experiments and laser flash photolysis experiments. The second-order rate constant for the reaction of the pharmaceuticals with hydroxyl radical was determined using Fenton's reagent. In Mississippi River water, singlet-oxygenation formed from the interaction of sunlight with dissolved organic carbon appeared to be the dominant decay process for cimetidine, while ranitidine was subject to direct photolysis, and reaction with singlet oxygen was an additional loss process. Chemical reaction was the primary pathway by which ranitidine and cimetidine interacted with singlet oxygen, while the contribution of the physical quenching pathway was negligible. For cimetidine, the data indicated that the dialkylimidazole ring was the most reactive group, while for ranitidine, the furan displayed the highest reactivity. The direct photodegradation rate of ranitidine was insensitive to pH, while the reaction with singlet oxygen exhibited a pH-dependence.
The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (1O2, O2(1delta(g))) and hydroxyl radical (*OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with *OH in water is 6.5 +/- 0.5 x 10(9) M(-1) s(-1). Over the pH range 4-10, cimetidine reacts with 1O2 with bimolecular rate constants ranging from 3.3 +/- 0.3 x 10(6) M(-1) s(-1) at low pH to 2.5 +/- 0.2 x 10(8) M(-1) s(-1) in alkaline solutions. The bimolecular rate constants for ranitidine reacting with 1O2 in water ranges from 1.6 +/- 0.2 x 10(7) M(-1) s(-1) at pH 6-6.4 +/- 0.2 x 10(7) M(-1) s(-1) at pH 10. Reaction of ranitidine hydrochloride with *OH proceeds with a rate constant of 1.5 +/- 0.2 x 10(10) M(-1) s(-1). Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 degrees latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of 1O2 and *OH, indicate that photooxidation mediated by 1O2 is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by 1O2. These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to singlet-oxygenation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with 1O2, as evidenced by the high relative rate constants of the furan and imidazole models. The nitroacetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis.
The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (102, 02('deltag)) and hydroxyl radical (*OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with *OH in water is 6.5 ± 0.5 x 109 M-1 s-1. Over the pH range 4-10, cimetidine reacts with 102 with bimolecular rate constants ranging from 3.3 ± 0.3 x 106 M-1 s-1 at low pH to 2.5 ± 0.2 x 108 M-1 s-1 in alkaline solutions. The bimolecular rate constants for ranitidine reacting with 102 in water ranges from 1.6 ± 0.2 x 107 M-1 s-I at pH 6-6.4 ± 0.2 x 107 M-1 S-I at pH 10. Reaction of ranitidine hydrochloride with 'OH proceeds with a rate constant of 1.5 ± 0.2 x 1010 M-1 s-1. Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 ' latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of 102 and *OH, indicate that photooxidation mediated by 102 is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by 102. These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to sing let-oxyg e nation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with 102, as evidenced by the high relative rate constants of the furan and imidazole models. The nitroacetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis. [PUBLICATION ABSTRACT]
The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (1O2, O2(1Δg)) and hydroxyl radical (•OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with •OH in water is 6.5 ± 0.5 × 109 M-1 s-1. Over the pH range 4−10, cimetidine reacts with 1O2 with bimolecular rate constants ranging from 3.3 ± 0.3 × 106 M-1 s-1 at low pH to 2.5 ± 0.2 × 108 M-1 s-1 in alkaline solutions. The bimolecular rate constants for ranitidine reacting with 1O2 in water ranges from 1.6 ± 0.2 × 107 M-1 s-1 at pH 6−6.4 ± 0.2 × 107 M-1 s-1 at pH 10. Reaction of ranitidine hydrochloride with •OH proceeds with a rate constant of 1.5 ± 0.2 × 1010 M-1 s-1. Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 ° latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of 1O2 and •OH, indicate that photooxidation mediated by 1O2 is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by 1O2. These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to singlet-oxygenation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with 1O2, as evidenced by the high relative rate constants of the furan and imidazole models. The nitroacetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis.
The photochemical fates of the histamine H sub(2)-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen ( super(1)O sub(2), O sub(2)( super(1) Delta sub(g))) and hydroxyl radical ( times OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with times OH in water is 6.5 plus or minus 0.5 x 10 super(9) M super(-1) s super(-1). Over the pH range 4-10, cimetidine reacts with super(1)O sub(2) with bimolecular rate constants ranging from 3.3 plus or minus 0.3 x 10 super(6) M super(-1) s super(-1) at low pH to 2.5 plus or minus 0.2 x 10 super(8) M super(-1) s super(-1) in alkaline solutions. The bimolecular rate constants for ranitidine reacting with super(1)O sub(2) in water ranges from 1.6 plus or minus 0.2 x 10 super(7) M super(-1) s super(-1) at pH 6-6.4 plus or minus 0.2 x 10 super(7) M super(-1) s super(-1) at pH 10. Reaction of ranitidine hydrochloride with times OH proceeds with a rate constant of 1.5 plus or minus 0.2 x 10 super(10) M super(-1) s super(-1). Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 degree latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of super(1)O sub(2) and times OH, indicate that photooxidation mediated by super(1)O sub(2) is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by super(1)O sub(2). These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to singlet-oxygenation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with super(1)O sub(2), as evidenced by the high relative rate constants of the furan and imidazole models. The nitro-acetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis.
Author Latch, Douglas E
Arnold, William A
McNeill, Kristopher
Packer, Jennifer L
Stender, Brian L
Author_xml – sequence: 1
  givenname: Douglas E
  surname: Latch
  fullname: Latch, Douglas E
– sequence: 2
  givenname: Brian L
  surname: Stender
  fullname: Stender, Brian L
– sequence: 3
  givenname: Jennifer L
  surname: Packer
  fullname: Packer, Jennifer L
– sequence: 4
  givenname: William A
  surname: Arnold
  fullname: Arnold, William A
– sequence: 5
  givenname: Kristopher
  surname: McNeill
  fullname: McNeill, Kristopher
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15043021$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12966980$$D View this record in MEDLINE/PubMed
BookMark eNqF0ltrFDEUAOAgFbutPvgHZBAUfBibe2Z8k6XrhYqrVim-hEzmDJu6k9QkI_rmq3_TX2LKrl2oQp9y4Tsnl3MO0J4PHhC6T_BTgik5goQZx6qht9CMCIpr0Qiyh2YYE1a3TJ7to4OUzjHGlOHmDtontJWybfAMfVquQg52BaOzZl0tTIYqDNVyZeJoLEz5cjtVzld5BdWx_-Zi8CP4_Oz3z1_V3I2QXe88VMb31Xvj3WZ5F90eShzc246H6OPi-HT-sj55--LV_PlJbQTjuVZUtowqEFy1xGAGg1WdaAiYvswpHywjA2YNH3jDaGeFEYS3wDvVd9QMkh2ix5u8FzF8nSBlPbpkYb02HsKUtGKSi4bTGyGRREolm5shl1JQ1Rb48Bo8D1P05bW6_DKh5VxR0IMtmroRen0R3WjiD_23AAU82gKTyk8P0Xjr0s4JzFkpcXFPNs7GkFKEYUewvmwCfdUExR5ds9Zlk13wORq3_m9EvYlwKcP3q9QmftFSMSX06fKDfn32ZiE_83da7m5tbNo9-9-8fwA8osxu
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_jhazmat_2013_04_047
crossref_primary_10_1016_j_jphotochem_2018_04_050
crossref_primary_10_1016_j_watres_2014_08_017
crossref_primary_10_1016_j_watres_2010_08_012
crossref_primary_10_1016_j_watres_2010_08_015
crossref_primary_10_1021_es300217h
crossref_primary_10_1016_j_emcon_2022_04_001
crossref_primary_10_1016_j_chemosphere_2016_04_071
crossref_primary_10_1016_j_scitotenv_2023_162210
crossref_primary_10_1016_j_envpol_2013_12_007
crossref_primary_10_1021_acs_est_9b07246
crossref_primary_10_1021_es803325j
crossref_primary_10_1016_j_jhazmat_2023_131436
crossref_primary_10_1111_j_1745_6592_2004_tb00713_x
crossref_primary_10_1021_acs_est_1c07129
crossref_primary_10_1016_j_jes_2019_05_017
crossref_primary_10_1016_j_jhazmat_2020_122568
crossref_primary_10_1021_acs_est_0c07132
crossref_primary_10_1021_es504211x
crossref_primary_10_1016_j_chemosphere_2015_10_074
crossref_primary_10_1021_acs_est_9b01037
crossref_primary_10_1016_j_jphotochemrev_2019_100319
crossref_primary_10_1016_j_trac_2014_08_003
crossref_primary_10_1021_acsami_2c03607
crossref_primary_10_1021_acsestwater_2c00371
crossref_primary_10_1021_acs_est_1c01942
crossref_primary_10_1016_j_watres_2025_123288
crossref_primary_10_1016_j_watres_2013_07_038
crossref_primary_10_1016_j_jhazmat_2021_127398
crossref_primary_10_1016_j_trac_2019_115686
crossref_primary_10_1016_j_chemosphere_2021_133352
crossref_primary_10_1016_j_scitotenv_2021_152647
crossref_primary_10_1021_acs_est_9b07380
crossref_primary_10_1016_j_scitotenv_2016_03_026
crossref_primary_10_1021_es902852v
crossref_primary_10_1021_es300041f
crossref_primary_10_1039_C5EM00045A
crossref_primary_10_1021_acs_est_8b03258
crossref_primary_10_1016_j_watres_2018_10_056
crossref_primary_10_1021_acs_est_8b01512
crossref_primary_10_1021_acs_est_5b00466
crossref_primary_10_1016_j_wse_2019_12_005
crossref_primary_10_1016_j_envpol_2017_08_032
crossref_primary_10_1016_j_watres_2022_118971
crossref_primary_10_1016_j_envint_2008_12_002
crossref_primary_10_1016_j_jphotobiol_2014_11_004
crossref_primary_10_1016_j_watres_2010_08_024
crossref_primary_10_1080_00032719_2014_966377
crossref_primary_10_1007_s44169_023_00048_8
crossref_primary_10_1039_C5EM00305A
crossref_primary_10_1016_j_chemosphere_2010_02_014
crossref_primary_10_1021_acs_est_8b02835
crossref_primary_10_1016_j_jhazmat_2014_12_004
crossref_primary_10_1021_es8031727
crossref_primary_10_1039_b416925e
crossref_primary_10_1016_j_watres_2013_07_009
crossref_primary_10_1016_j_jpba_2012_12_019
crossref_primary_10_1007_s11270_023_06858_9
crossref_primary_10_1021_acs_est_9b03007
crossref_primary_10_1080_01919510600985937
crossref_primary_10_1021_es301205a
crossref_primary_10_1016_j_scitotenv_2012_03_031
crossref_primary_10_1021_acs_est_1c04608
crossref_primary_10_1016_j_colsurfa_2022_128395
crossref_primary_10_1897_04_243R_1
crossref_primary_10_1039_D1EM00545F
crossref_primary_10_1039_C8EN00593A
crossref_primary_10_1016_j_trac_2018_12_007
crossref_primary_10_1007_s11783_014_0680_y
crossref_primary_10_1007_s43153_024_00496_2
crossref_primary_10_1016_j_watres_2022_118552
crossref_primary_10_1021_acs_est_5b06016
crossref_primary_10_1016_j_scitotenv_2024_176821
crossref_primary_10_1021_acs_est_7b04016
crossref_primary_10_1071_EN13218
crossref_primary_10_1021_es404240x
crossref_primary_10_1016_j_chemosphere_2011_02_093
crossref_primary_10_1016_j_seppur_2014_12_031
crossref_primary_10_1021_acs_est_8b06410
crossref_primary_10_1039_C8EM00473K
crossref_primary_10_1089_ees_2012_0239
crossref_primary_10_1016_j_envpol_2019_02_047
crossref_primary_10_1016_j_jphotochem_2023_114954
crossref_primary_10_1016_j_talanta_2013_01_042
crossref_primary_10_1016_j_jhazmat_2021_125842
crossref_primary_10_1021_es0606778
crossref_primary_10_1016_j_chemosphere_2011_01_048
crossref_primary_10_1007_s11270_019_4293_8
crossref_primary_10_1016_j_chemosphere_2021_129791
crossref_primary_10_1016_j_watres_2021_117495
crossref_primary_10_1039_C7EM00208D
crossref_primary_10_1021_es505712e
crossref_primary_10_1002_ange_201002228
crossref_primary_10_1007_s12302_008_0010_8
crossref_primary_10_1039_C9EM00300B
crossref_primary_10_1016_j_cattod_2020_05_017
crossref_primary_10_1016_j_envpol_2014_06_020
crossref_primary_10_1016_j_chemosphere_2022_134879
crossref_primary_10_1016_j_watres_2020_116791
crossref_primary_10_1039_C8RA03512A
crossref_primary_10_1002_anie_201002228
crossref_primary_10_1016_j_jece_2020_104522
crossref_primary_10_1021_es301105e
crossref_primary_10_1002_jms_867
crossref_primary_10_1039_c3em00615h
crossref_primary_10_1016_j_chemosphere_2005_03_095
crossref_primary_10_1016_j_jhazmat_2013_02_035
crossref_primary_10_1021_acs_est_6b02912
crossref_primary_10_1016_j_cej_2017_11_070
crossref_primary_10_1016_j_watres_2007_07_026
crossref_primary_10_1080_10643380590956966
crossref_primary_10_4491_eer_2005_10_6_269
crossref_primary_10_1007_s11164_022_04778_7
crossref_primary_10_1016_j_jhazmat_2012_07_017
crossref_primary_10_1016_j_watres_2012_03_025
crossref_primary_10_1039_b801591k
crossref_primary_10_1021_ac048293s
crossref_primary_10_1016_j_ese_2020_100051
crossref_primary_10_1021_acs_est_3c01726
crossref_primary_10_1021_acs_est_5b04314
crossref_primary_10_1016_j_watres_2022_118236
crossref_primary_10_1021_es0353053
crossref_primary_10_1897_04_236R_1
crossref_primary_10_1021_es403925g
crossref_primary_10_1016_j_scitotenv_2020_141186
crossref_primary_10_1016_j_chemosphere_2018_06_091
crossref_primary_10_1016_j_scitotenv_2020_138335
crossref_primary_10_1039_C6EM00122J
crossref_primary_10_1016_j_comptc_2022_113845
crossref_primary_10_1007_s00027_012_0251_x
crossref_primary_10_1007_s11356_016_8207_7
crossref_primary_10_1039_C3EM00573A
crossref_primary_10_1039_C7EM00079K
crossref_primary_10_1007_s11356_015_5897_1
crossref_primary_10_1016_j_envpol_2015_10_016
crossref_primary_10_1021_es049509a
crossref_primary_10_1039_b506971h
crossref_primary_10_2175_106143005X82244
crossref_primary_10_1021_es048264z
crossref_primary_10_1021_jp803229a
crossref_primary_10_1016_j_seppur_2023_125576
crossref_primary_10_1016_j_watres_2016_11_049
crossref_primary_10_1016_j_watres_2018_11_009
crossref_primary_10_1021_es801847g
crossref_primary_10_1039_C3EM00502J
crossref_primary_10_1039_D0EM00056F
crossref_primary_10_1007_s11434_011_4887_z
crossref_primary_10_1021_acs_est_0c00817
crossref_primary_10_3390_w16050635
crossref_primary_10_1039_C8RA03140A
crossref_primary_10_1016_j_envpol_2008_10_009
crossref_primary_10_1021_es702245n
crossref_primary_10_1016_j_jhazmat_2024_134033
crossref_primary_10_1039_C7EM00324B
crossref_primary_10_1021_acs_chemrev_0c00781
crossref_primary_10_1021_es500535a
crossref_primary_10_1016_j_jhazmat_2018_07_100
crossref_primary_10_1007_s11356_021_15250_1
crossref_primary_10_1016_j_watres_2016_03_053
crossref_primary_10_1021_es0494757
crossref_primary_10_1371_journal_pone_0135400
crossref_primary_10_1016_j_jwpe_2025_107461
crossref_primary_10_1016_j_scitotenv_2023_162525
crossref_primary_10_1021_es1028475
crossref_primary_10_3390_nano11082134
crossref_primary_10_1007_s11356_021_16183_5
crossref_primary_10_1021_es3023094
crossref_primary_10_1016_j_chemosphere_2014_04_035
crossref_primary_10_1016_j_jchromb_2013_01_020
crossref_primary_10_1021_es304334w
crossref_primary_10_1039_C9EM00504H
crossref_primary_10_1016_j_gca_2017_03_036
crossref_primary_10_1021_es200411a
crossref_primary_10_1007_s11356_014_2553_0
crossref_primary_10_1021_es048331p
crossref_primary_10_1021_acs_est_4c06993
crossref_primary_10_1007_s11356_011_0536_y
crossref_primary_10_1016_j_chemosphere_2020_129200
crossref_primary_10_1021_acs_jchemed_0c01398
crossref_primary_10_1007_s12247_021_09578_x
crossref_primary_10_1016_j_envpol_2016_03_018
crossref_primary_10_1016_j_chemosphere_2014_09_084
crossref_primary_10_1021_es800185d
crossref_primary_10_2134_jeq2017_05_0181
crossref_primary_10_1016_j_watres_2017_04_049
crossref_primary_10_1246_cl_2012_877
crossref_primary_10_1016_j_jhazmat_2018_07_041
crossref_primary_10_1016_j_chemosphere_2009_04_028
crossref_primary_10_1021_acs_est_0c02192
crossref_primary_10_1016_j_watres_2010_10_005
crossref_primary_10_1021_acs_est_5b03498
crossref_primary_10_1039_C6EM00646A
crossref_primary_10_1021_es048940x
crossref_primary_10_1039_D1EM00062D
crossref_primary_10_1016_j_watres_2024_122685
crossref_primary_10_1016_j_apcatb_2016_04_015
crossref_primary_10_1016_j_watres_2016_12_016
crossref_primary_10_1021_es5028663
crossref_primary_10_1016_j_chemosphere_2020_127495
crossref_primary_10_1016_j_chemosphere_2017_12_095
crossref_primary_10_1016_j_jhazmat_2015_07_036
crossref_primary_10_1039_D1EM00345C
crossref_primary_10_1016_j_jphotochem_2013_10_013
crossref_primary_10_1021_acsestwater_4c00880
crossref_primary_10_1899_11_089
crossref_primary_10_1016_j_tet_2005_04_017
crossref_primary_10_1016_j_chemosphere_2017_08_110
crossref_primary_10_1177_1178630218795836
crossref_primary_10_1016_j_cej_2021_128462
crossref_primary_10_1080_02772241003636505
crossref_primary_10_1021_acs_est_0c02061
crossref_primary_10_1016_j_chemosphere_2020_128338
crossref_primary_10_1039_b416956e
crossref_primary_10_1007_s44246_022_00022_4
crossref_primary_10_1016_j_chemosphere_2017_01_083
crossref_primary_10_1016_j_chemosphere_2019_07_008
crossref_primary_10_1016_j_watres_2020_116278
crossref_primary_10_1039_C5EM00204D
crossref_primary_10_1021_es301929e
crossref_primary_10_1111_j_1751_1097_2010_00748_x
crossref_primary_10_1016_j_scitotenv_2024_170414
crossref_primary_10_1021_acs_est_6b01291
crossref_primary_10_1021_acs_est_9b02462
crossref_primary_10_1016_j_saa_2008_06_007
Cites_doi 10.1021/es00143a001
10.1063/1.555805
10.1111/j.1751-1097.1990.tb01684.x
10.1111/j.2042-7158.1985.tb04922.x
10.1016/S0045-6535(97)00354-8
10.1016/S0045-6535(99)00438-5
10.1351/pac197127040635
10.1016/0009-2797(93)90116-G
10.1021/ja00379a024
10.1063/1.555965
10.1021/ja00756a001
10.1002/(SICI)1521-401X(199809)26:5<272::AID-AHEH272>3.0.CO;2-O
10.1021/es9802908
10.1021/es00105a017
10.1289/ehp.99107s6907
10.1016/S0043-1354(98)00099-2
10.1111/j.1751-1097.1990.tb01964.x
10.1111/j.1432-1033.1986.tb09441.x
10.1016/S0045-6535(98)00540-2
10.1016/S0140-6736(00)02270-4
10.1016/S0048-9697(98)00339-8
10.1016/S0040-4020(01)83290-7
10.1021/es020136s
10.1002/cber.19530860118
10.1021/ba-1988-0219.ch022
10.1021/es00016a025
10.1016/S0378-5173(99)00073-3
10.1111/j.1365-2362.1994.tb02378.x
10.1006/rtph.1998.1253
10.1007/978-94-007-0874-7_8
10.1016/0003-9861(88)90098-7
10.1016/0024-3205(77)90329-0
ContentType Journal Article
Copyright Copyright © 2003 American Chemical Society
2003 INIST-CNRS
Copyright American Chemical Society Aug 1, 2003
Copyright_xml – notice: Copyright © 2003 American Chemical Society
– notice: 2003 INIST-CNRS
– notice: Copyright American Chemical Society Aug 1, 2003
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7QH
7TV
7UA
F1W
H97
L.G
7X8
DOI 10.1021/es0340782
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Aqualine
Pollution Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Environment Abstracts
MEDLINE
Biotechnology Research Abstracts

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 3350
ExternalDocumentID 424041491
12966980
15043021
10_1021_es0340782
ark_67375_TPS_JXMF6Z4Q_6
b377368787
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
186
1AW
3R3
4.4
42X
4R4
53G
55A
5GY
5VS
63O
7~N
85S
A
AABXI
ABDEX
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADKFC
AEESW
AENEX
AETEA
AFEFF
AFMIJ
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
K78
LG6
MS
NHB
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VOH
VQA
W1F
WH7
X
XFK
XZL
YZZ
ZCG
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
ABJNI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
MS~
MW2
UBC
XSW
YV5
ZCA
~A~
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
.HR
1WB
8WZ
A6W
ABHMW
ACKIV
IQODW
MVM
OHT
RNS
TAE
UBX
UBY
VJK
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7QH
7TV
7UA
F1W
H97
L.G
7X8
ID FETCH-LOGICAL-a534t-7269327e54791a03efc7b581ead3ef24fc31f0384f4832bc5a5149e4b7db2af63
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Fri Jul 11 06:35:14 EDT 2025
Fri Jul 11 03:23:20 EDT 2025
Thu Jul 10 19:00:06 EDT 2025
Fri Jul 25 03:58:52 EDT 2025
Wed Feb 19 02:35:08 EST 2025
Mon Jul 21 09:12:36 EDT 2025
Tue Jul 01 03:25:50 EDT 2025
Thu Apr 24 22:55:38 EDT 2025
Wed Oct 30 09:37:42 EDT 2024
Thu Aug 27 13:43:09 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Drug
Pollutant behavior
Cimetidine
Free radical reaction
Chemical reaction kinetics
Persistence
Oxygen molecules
Ranitidine
Reaction mechanism
Oxidation
Water pollution
Antagonist
Solar radiation
Singlet
Hydroxyl
H2 Histamine receptor
Organic compounds
Photochemical degradation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a534t-7269327e54791a03efc7b581ead3ef24fc31f0384f4832bc5a5149e4b7db2af63
Notes istex:29289E4A823F58D564F85375812ECAB447FE9E69
ark:/67375/TPS-JXMF6Z4Q-6
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 12966980
PQID 230124585
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_73645842
proquest_miscellaneous_16166768
proquest_miscellaneous_14665279
proquest_journals_230124585
pubmed_primary_12966980
pascalfrancis_primary_15043021
crossref_primary_10_1021_es0340782
crossref_citationtrail_10_1021_es0340782
istex_primary_ark_67375_TPS_JXMF6Z4Q_6
acs_journals_10_1021_es0340782
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-08-01
PublicationDateYYYYMMDD 2003-08-01
PublicationDate_xml – month: 08
  year: 2003
  text: 2003-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2003
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Dulin D. (es0340782b00064/es0340782b00064_1) 1982; 16
Wilkinson F. (es0340782b00048/es0340782b00048_1) 1995; 24
Heberer T. (es0340782b00010/es0340782b00010_1) 2000
Zbaida S. (es0340782b00040/es0340782b00040_1) 1986; 154
Bavin P. M. G. (es0340782b00044/es0340782b00044_1) 1984; 13
Stan H.-J. (es0340782b00023/es0340782b00023_1) 1994; 83
Ternes T. (es0340782b00006/es0340782b00006_1) 2000
Hartman P. E. (es0340782b00050/es0340782b00050_1) 1990; 51
Foote C. S. (es0340782b00053/es0340782b00053_1) 1964; 86
Ternes T. A. (es0340782b00014/es0340782b00014_1) 1998; 90
Ackerman R. A. (es0340782b00030/es0340782b00030_1) 1971; 16
Larson R. A. (es0340782b00028/es0340782b00028_1) 1999; 2
Graziano M. L. (es0340782b00056/es0340782b00056_1) 1980; 1955
Haag W. R. (es0340782b00038/es0340782b00038_1) 1992; 26
Tang W. Z. (es0340782b00039/es0340782b00039_1) 1996; 33
Kang P. (es0340782b00052/es0340782b00052_1) 2002; 124
Sedlak D. L. (es0340782b00037/es0340782b00037_1) 1991; 25
Ternes T. A. (es0340782b00013/es0340782b00013_1) 1998; 32
Stumpf M. (es0340782b00012/es0340782b00012_1) 1999; 225
Castela-Papin N. (es0340782b00045/es0340782b00045_1) 1999; 182
Jorgensen S. E. (es0340782b00003/es0340782b00003_1) 2000; 40
Nonell S. (es0340782b00035/es0340782b00035_1) 1990; 51
Ching T. L. (es0340782b00060/es0340782b00060_1) 1993; 86
Brezonik P. L. (es0340782b00062/es0340782b00062_1) 1998; 32
Buser H.-R. (es0340782b00015/es0340782b00015_1) 1998; 32
Kuzel R. A. (es0340782b00033/es0340782b00033_1) 1994; 6
Zbaida S. (es0340782b00041/es0340782b00041_1) 1988; 261
Stan H. (es0340782b00005/es0340782b00005_1) 1997; 25
Heberer T. (es0340782b00019/es0340782b00019_1) 1998; 26
Graziano M. L. (es0340782b00057/es0340782b00057_1) 1981; 720
Meyer M. T. (es0340782b00021/es0340782b00021_1) 2000
Larson R. A. (es0340782b00029/es0340782b00029_1) 1994
Heberer T. (es0340782b00017/es0340782b00017_1) 1996; 86
Metcalfe C. (es0340782b00011/es0340782b00011_1) 2000
Foote C. S. (es0340782b00054/es0340782b00054_1) 1967; 23
Zepp R. G. (es0340782b00047/es0340782b00047_1) 1977; 267
Haag W. R. (es0340782b00043/es0340782b00043_1) 1987; 45
Nonell S. (es0340782b00036/es0340782b00036_1) 2000; 319
Hovey M. C. (es0340782b00059/es0340782b00059_1) 1982; 104
Mill T. (es0340782b00063/es0340782b00063_1) 1999; 38
Aubry J.-M. (es0340782b00031/es0340782b00031_1) 1995; 117
Jensen D. E. (es0340782b00032/es0340782b00032_1) 1997; 53
Graziano M. L. (es0340782b00058/es0340782b00058_1) 1982; 2007
Zuccato E. (es0340782b00025/es0340782b00025_1) 2000; 355
Halling-Sorensen B. (es0340782b00007/es0340782b00007_1) 1998; 36
Daughton C. G. (es0340782b00024/es0340782b00024_1) 2000
Hignite C. (es0340782b00008/es0340782b00008_1) 1977; 20
Buser H.-R. (es0340782b00016/es0340782b00016_1) 1998; 32
Bredereck H. (es0340782b00034/es0340782b00034_1) 1953; 86
Nipales N. S. (es0340782b00022/es0340782b00022_1) 2000
Buser H.-R. (es0340782b00009/es0340782b00009_1) 1999; 33
Chen R. (es0340782b00042/es0340782b00042_1) 1997; 31
Holm J. V. (es0340782b00020/es0340782b00020_1) 1995; 29
Haag W. R. (es0340782b00065/es0340782b00065_1) 1986; 20
Foote C. S. (es0340782b00055/es0340782b00055_1) 1971; 27
Leifer A. (es0340782b00066/es0340782b00066_1) 1988
Buxton G. V. (es0340782b00049/es0340782b00049_1) 1988; 17
Kolpin D. W. (es0340782b00026/es0340782b00026_1) 2002; 36
Christensen F. M. (es0340782b00001/es0340782b00001_1) 1998; 28
es0340782b00027/es0340782b00027_1
Daughton C. G. (es0340782b00002/es0340782b00002_1) 1999; 107
Merkel P. B. (es0340782b00046/es0340782b00046_1) 1972; 94
Kang P. (es0340782b00051/es0340782b00051_1) 2000; 41
Lapenna D. (es0340782b00061/es0340782b00061_1) 1994; 24
es0340782b00067/es0340782b00067_1
Heberer T. (es0340782b00018/es0340782b00018_1) 1997; 6
Richardson M. L. (es0340782b00004/es0340782b00004_1) 1985; 37
References_xml – volume: 20
  start-page: 8
  year: 1986
  ident: es0340782b00065/es0340782b00065_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00143a001
– volume: 17
  start-page: 886
  year: 1988
  ident: es0340782b00049/es0340782b00049_1
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555805
– volume: 720
  start-page: 1
  year: 1981
  ident: es0340782b00057/es0340782b00057_1
  publication-title: J. Chem. Soc., Chem. Commun.
– volume: 45
  start-page: 21
  year: 1987
  ident: es0340782b00043/es0340782b00043_1
  publication-title: Photochem. Photobiol.
– volume: 51
  start-page: 66
  year: 1990
  ident: es0340782b00050/es0340782b00050_1
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1990.tb01684.x
– volume: 25
  start-page: M20
  year: 1997
  ident: es0340782b00005/es0340782b00005_1
  publication-title: Analusis
– volume: 37
  start-page: 12
  year: 1985
  ident: es0340782b00004/es0340782b00004_1
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/j.2042-7158.1985.tb04922.x
– volume: 36
  start-page: 394
  year: 1998
  ident: es0340782b00007/es0340782b00007_1
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(97)00354-8
– volume: 40
  start-page: 699
  year: 2000
  ident: es0340782b00003/es0340782b00003_1
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(99)00438-5
– volume: 32
  start-page: 192
  year: 1998
  ident: es0340782b00016/es0340782b00016_1
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 14
  year: 1994
  ident: es0340782b00033/es0340782b00033_1
  publication-title: J. Chirality
– volume: 27
  start-page: 45
  year: 1971
  ident: es0340782b00055/es0340782b00055_1
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac197127040635
– volume: 86
  start-page: 27
  year: 1993
  ident: es0340782b00060/es0340782b00060_1
  publication-title: Chem.-Biol. Interact.
  doi: 10.1016/0009-2797(93)90116-G
– volume: 104
  start-page: 202
  year: 1982
  ident: es0340782b00059/es0340782b00059_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00379a024
– volume: 267
  start-page: 3
  year: 1977
  ident: es0340782b00047/es0340782b00047_1
  publication-title: Nature
– volume: 24
  start-page: 1021
  year: 1995
  ident: es0340782b00048/es0340782b00048_1
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555965
– volume-title: Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem.
  year: 2000
  ident: es0340782b00010/es0340782b00010_1
– volume: 1955
  start-page: 9
  year: 1980
  ident: es0340782b00056/es0340782b00056_1
  publication-title: J. Chem. Soc., Perkin Trans. 1
– volume-title: Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem.
  year: 2000
  ident: es0340782b00022/es0340782b00022_1
– volume: 94
  start-page: 1
  year: 1972
  ident: es0340782b00046/es0340782b00046_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00756a001
– volume: 26
  start-page: 278
  year: 1998
  ident: es0340782b00019/es0340782b00019_1
  publication-title: Acta Hydrochim. Hydrobiol.
  doi: 10.1002/(SICI)1521-401X(199809)26:5<272::AID-AHEH272>3.0.CO;2-O
– volume: 29
  start-page: 20
  year: 1995
  ident: es0340782b00020/es0340782b00020_1
  publication-title: Environ. Sci. Technol.
– volume: 86
  start-page: 80
  year: 1964
  ident: es0340782b00053/es0340782b00053_1
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 3010
  year: 1998
  ident: es0340782b00062/es0340782b00062_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9802908
– volume: 53
  start-page: 1295
  year: 1997
  ident: es0340782b00032/es0340782b00032_1
  publication-title: Biochem. Pharmacol.
– volume: 2
  start-page: 137
  year: 1999
  ident: es0340782b00028/es0340782b00028_1
  publication-title: Handb. Environ. Chem.
– volume: 16
  start-page: 20
  year: 1982
  ident: es0340782b00064/es0340782b00064_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00105a017
– volume: 319
  start-page: 49
  year: 2000
  ident: es0340782b00036/es0340782b00036_1
  publication-title: Methods Enzymol.
– volume: 90
  start-page: 309
  year: 1998
  ident: es0340782b00014/es0340782b00014_1
  publication-title: Vom Wasser
– volume: 107
  start-page: 938
  year: 1999
  ident: es0340782b00002/es0340782b00002_1
  publication-title: Environ. Health Perspect. Suppl.
  doi: 10.1289/ehp.99107s6907
– volume: 32
  start-page: 3260
  year: 1998
  ident: es0340782b00013/es0340782b00013_1
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00099-2
– volume: 83
  start-page: 68
  year: 1994
  ident: es0340782b00023/es0340782b00023_1
  publication-title: Vom Wasser
– volume: 51
  start-page: 6
  year: 1990
  ident: es0340782b00035/es0340782b00035_1
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1990.tb01964.x
– volume-title: Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem.
  year: 2000
  ident: es0340782b00021/es0340782b00021_1
– volume: 154
  start-page: 5
  year: 1986
  ident: es0340782b00040/es0340782b00040_1
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1986.tb09441.x
– volume: 38
  start-page: 1390
  year: 1999
  ident: es0340782b00063/es0340782b00063_1
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(98)00540-2
– volume: 117
  start-page: 64
  year: 1995
  ident: es0340782b00031/es0340782b00031_1
  publication-title: J. Am. Chem. Soc.
– volume: 355
  start-page: 1790
  year: 2000
  ident: es0340782b00025/es0340782b00025_1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)02270-4
– volume-title: Meet.-Am. Chem. Soc., Div. Environ. Chem.
  year: 2000
  ident: es0340782b00024/es0340782b00024_1
– volume: 225
  start-page: 141
  year: 1999
  ident: es0340782b00012/es0340782b00012_1
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(98)00339-8
– volume: 23
  start-page: 99
  year: 1967
  ident: es0340782b00054/es0340782b00054_1
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(01)83290-7
– volume: 2007
  start-page: 12
  year: 1982
  ident: es0340782b00058/es0340782b00058_1
  publication-title: J. Chem. Soc., Perkin Trans. 1
– volume: 36
  start-page: 1211
  year: 2002
  ident: es0340782b00026/es0340782b00026_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es020136s
– volume-title: Meet.-Am. Chem. Soc., Div. Environ. Chem.
  year: 2000
  ident: es0340782b00006/es0340782b00006_1
– volume: 6
  start-page: 443
  year: 1997
  ident: es0340782b00018/es0340782b00018_1
  publication-title: Fresenius Environ. Bull.
– volume: 124
  start-page: 9638
  year: 2002
  ident: es0340782b00052/es0340782b00052_1
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 2406
  year: 1997
  ident: es0340782b00042/es0340782b00042_1
  publication-title: J. Environ. Sci. Technol.
– volume: 16
  start-page: A34
  year: 1971
  ident: es0340782b00030/es0340782b00030_1
  publication-title: Am. Chem. Soc., Div. Petrol. Chem., Prepr.
– volume-title: Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem.
  year: 2000
  ident: es0340782b00011/es0340782b00011_1
– volume: 86
  start-page: 31
  year: 1996
  ident: es0340782b00017/es0340782b00017_1
  publication-title: Vom Wasser
– volume-title: Reaction Mechanisms in Environmental Organic Chemistry
  year: 1994
  ident: es0340782b00029/es0340782b00029_1
– volume: 26
  start-page: 1013
  year: 1992
  ident: es0340782b00038/es0340782b00038_1
  publication-title: Environ. Sci. Technol.
– volume: 41
  start-page: 9626
  year: 2000
  ident: es0340782b00051/es0340782b00051_1
  publication-title: Tetrahedron Lett.
– volume: 32
  start-page: 3456
  year: 1998
  ident: es0340782b00015/es0340782b00015_1
  publication-title: Environ. Sci. Technol.
– volume: 86
  start-page: 96
  year: 1953
  ident: es0340782b00034/es0340782b00034_1
  publication-title: Chem. Ber.
  doi: 10.1002/cber.19530860118
– ident: es0340782b00067/es0340782b00067_1
  doi: 10.1021/ba-1988-0219.ch022
– volume: 25
  start-page: 782
  year: 1991
  ident: es0340782b00037/es0340782b00037_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00016a025
– volume: 182
  start-page: 119
  year: 1999
  ident: es0340782b00045/es0340782b00045_1
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(99)00073-3
– volume: 24
  start-page: 81
  year: 1994
  ident: es0340782b00061/es0340782b00061_1
  publication-title: Eur. J. Clin. Invest.
  doi: 10.1111/j.1365-2362.1994.tb02378.x
– volume: 28
  start-page: 221
  year: 1998
  ident: es0340782b00001/es0340782b00001_1
  publication-title: Regul. Toxicol. Pharmacol.
  doi: 10.1006/rtph.1998.1253
– volume: 33
  start-page: 2535
  year: 1999
  ident: es0340782b00009/es0340782b00009_1
  publication-title: Environ. Sci. Technol.
– ident: es0340782b00027/es0340782b00027_1
  doi: 10.1007/978-94-007-0874-7_8
– volume: 261
  start-page: 15
  year: 1988
  ident: es0340782b00041/es0340782b00041_1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(88)90098-7
– volume: 13
  start-page: 82
  year: 1984
  ident: es0340782b00044/es0340782b00044_1
  publication-title: Anal. Profiles Drug Subst.
– volume-title: The Kinetics of Environmental Aquatic Photochemistry: Theory and Practice
  year: 1988
  ident: es0340782b00066/es0340782b00066_1
– volume: 33
  start-page: 1635
  year: 1996
  ident: es0340782b00039/es0340782b00039_1
  publication-title: Chemosphere
– volume: 20
  start-page: 41
  year: 1977
  ident: es0340782b00008/es0340782b00008_1
  publication-title: Life Sci.
  doi: 10.1016/0024-3205(77)90329-0
SSID ssj0002308
Score 2.2547133
Snippet The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant...
The photochemical fate of the pharmaceuticals, cimetidine and ranitidine, which display disparate degradation mechanisms, was investigated. Photolysis...
The photochemical fates of the histamine H sub(2)-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant...
SourceID proquest
pubmed
pascalfrancis
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3342
SubjectTerms Applied sciences
Biological and physicochemical phenomena
Chemical reactions
cimetidine
Cimetidine - analysis
Cimetidine - chemistry
Earth sciences
Earth, ocean, space
Electrons
Engineering and environment geology. Geothermics
Environmental Monitoring
Environmental Pollutants
Exact sciences and technology
Experiments
Half-Life
Histamine H2 Antagonists - analysis
Histamine H2 Antagonists - chemistry
Hydroxyl Radical - chemistry
Natural water pollution
Oxidants - chemistry
Oxidation
Pharmaceuticals
Photochemistry
Pollution
Pollution, environment geology
ranitidine
Ranitidine - analysis
Ranitidine - chemistry
Water pollution
Water treatment and pollution
Title Photochemical Fate of Pharmaceuticals in the Environment:  Cimetidine and Ranitidine
URI http://dx.doi.org/10.1021/es0340782
https://api.istex.fr/ark:/67375/TPS-JXMF6Z4Q-6/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/12966980
https://www.proquest.com/docview/230124585
https://www.proquest.com/docview/14665279
https://www.proquest.com/docview/16166768
https://www.proquest.com/docview/73645842
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELaq9gIHHoXCtlAsQIhLysbPuLdq6aqqVLTQFq24RLZjq6vSLGqyEuLEtX-zv6TjvHYruuWWKJORPZmxv8mMZxB6T6gmVkgdudi7iCXcRDozInIMwC0ACBXbcDj56Is4OGWHYz5eQe-WRPBJ_MkVfRqCTbDOrhGRyOBh7Q2Ou-UWMHTStilQVIzb8kGLr4atxxa3tp61IMXfIRVSFyANX7exWI4zq_1m-Bh9bk_t1Gkm5zuz0uzYP_8WcbxvKk_QowZv4r1aQZ6iFZevo4cLVQjX0cb-_LAbkDbWXjxD30dn0zJ01KpKCuAhwFI89Xh0tvgbvMCTHAOKxAtcdq__XuHB5MKVE9gaHdZ5hr-FOhvV7XN0Otw_GRxETR-GSHPKykgSAShPOs6kinWfOm-l4UkMSgjXhHlLY9-nCfMM1gdjuQYUphwzMjNEe0E30Go-zd1LhMH7oo5yLaTxwE0qnmXWUuMUVZlhqoe24UOljR0VaRUiJ3HaSa6HPrbfMLVNFfPQTOPnXaRvO9JfdemOu4g-VIrQUejL85DrJnl6MjpOD8dHQ_GDfU0FjOyWpsxZhhpwwLOHtlrVmY8flBMAFLhkPfSmewoGHKIyOnfTWRF8L8GJVPdQiDhkIifLKWQIJicMZvOi1tn56Aj4syrpb_5PsFvoQZWnWOU2vkKr5eXMvQa8VZrtyt5uAEuyI0s
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbQ9gA8DBiMlcFmIYR4yWjiXzFvU7WqjHUqrEMVL5HtOFq1LUVLKqE97ZV_k7-Es5MmHdqAt1a9ni7Xs_1d7_wdQm8ioiLDhQpsmNmAxkwHKtU8sBTALQAIGRp3OXl4xAcn9GDCJjVNjrsLA0YUoKnwRfyWXSB8b4sucTUn2G5XQUfkEq293nGz6wKUjhfTCiThkwWL0PJX3Qlkihsn0Kpz5g_XEakKcEpWTbO4G276Y6f_qJpf5A323SZnu_NS75qrP7gc_--JHqO1Gn3ivSpcnqB7Nl9HD5c4CdfRxn579Q1E67VfPEVfR6ez0s3X8gQDuA8gFc8yPDpd_lO8wNMcA6bES1o-_Lr-iXvTC1tO4aC0WOUp_uJYN_zbZ-ikvz_uDYJ6KkOgGKFlICIOmE9YRoUMVZfYzAjN4hBCEl5HNDMkzLokphmF3UIbpgCTSUu1SHWkMk420Eo-y-0mwpCLEUuY4kJnoE1IlqbGEG0lkammsoO2wXFJvaqKxBfMozBpPNdB7xY_ZWJqTnM3WuP8NtHXjej3isjjNqG3Ph4aCXV55jrfBEvGo-PkYDLs82_0c8LBshsB06p0jHCgs4O2FhHU2g8xCnAKErQO2mk-heXsajQqt7N54TIxF9zyLxI8dH3J8d0SwpWWYwpP87wK3da6CLJbGXdf_MuxO-j-YDw8TA4_Hn3aQg98B6PvenyJVsrLuX0FSKzU234J_gZLlCus
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fTxNBEN4YSIw-iKJoQWFjjPHlsHf769Y3UrkgClYB0_hy2d3bDQ1yJdw1ITzx6r_pX-Ls9notBtS3Np1O5qazu990Zr9B6FVCVGK4UJGNnY1oynSkCs0jSwHcAoCQsfGXk_f2-c4R3R2wQZMo-rswYEQFmqpQxPer-qxwDcNA_NZWXeLrTrDlLvpynU-2tnoH7c4LcDqdTiyQhA-mTELzX_WnkKmunUKL3qEXvitSVeAYN5locTvkDEdPtoQ-t0aHjpOTzXGtN83lH3yO__9UD9GDBoXirUnYPEJ3bLmM7s9xEy6jle3ZFTgQbfaA6jH61j8e1X7OViAawBmAVTxyuH88_-d4hYclBmyJ57S8-3X1E_eGp7YewoFpsSoL_NWzb4S3T9BRtn3Y24ma6QyRYoTWkUg4YD9hGRUyVl1inRGapTGEJrxOqDMkdl2SUkdh19CGKcBm0lItCp0ox8kKWihHpX2GMORkxBKmuNAOtAnJisIYoq0kstBUdtA6OC9vVleVh8J5Euet5zrozfTnzE3Dbe5HbPy4SfRlK3o2IfS4Seh1iIlWQp2f-A44wfLD_kG-O9jL-Hf6Jedg2bWgman0zHCgs4PWplE0sx_iFGAVJGodtNF-Csva12pUaUfjymdknCVC_kWCx74_Ob1dQvgSc0rhaZ5OwndmXQJZrky7q_9y7Aa623-f5Z8-7H9cQ_dCI2NofnyOFurzsX0BgKzW62EV_gb03C4v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photochemical+Fate+of+Pharmaceuticals+in+the+Environment%3A%E2%80%89+Cimetidine+and+Ranitidine&rft.jtitle=Environmental+science+%26+technology&rft.au=LATCH%2C+Douglas+E.&rft.au=STENDER%2C+Brian+L.&rft.au=PACKER%2C+Jennifer+L.&rft.au=ARNOLD%2C+William+A.&rft.date=2003-08-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=37&rft.issue=15&rft.spage=3342&rft.epage=3350&rft_id=info:doi/10.1021%2Fes0340782&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_TPS_JXMF6Z4Q_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon