Photochemical Fate of Pharmaceuticals in the Environment: Cimetidine and Ranitidine
The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (1O2, O2(1Δg)) and hydroxyl radical (•OH), two transient oxidants formed in sunl...
Saved in:
Published in | Environmental science & technology Vol. 37; no. 15; pp. 3342 - 3350 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.08.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (1O2, O2(1Δg)) and hydroxyl radical (•OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with •OH in water is 6.5 ± 0.5 × 109 M-1 s-1. Over the pH range 4−10, cimetidine reacts with 1O2 with bimolecular rate constants ranging from 3.3 ± 0.3 × 106 M-1 s-1 at low pH to 2.5 ± 0.2 × 108 M-1 s-1 in alkaline solutions. The bimolecular rate constants for ranitidine reacting with 1O2 in water ranges from 1.6 ± 0.2 × 107 M-1 s-1 at pH 6−6.4 ± 0.2 × 107 M-1 s-1 at pH 10. Reaction of ranitidine hydrochloride with •OH proceeds with a rate constant of 1.5 ± 0.2 × 1010 M-1 s-1. Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 ° latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of 1O2 and •OH, indicate that photooxidation mediated by 1O2 is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by 1O2. These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to singlet-oxygenation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with 1O2, as evidenced by the high relative rate constants of the furan and imidazole models. The nitroacetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis. |
---|---|
AbstractList | The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (1O2, O2(1delta(g))) and hydroxyl radical (*OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with *OH in water is 6.5 +/- 0.5 x 10(9) M(-1) s(-1). Over the pH range 4-10, cimetidine reacts with 1O2 with bimolecular rate constants ranging from 3.3 +/- 0.3 x 10(6) M(-1) s(-1) at low pH to 2.5 +/- 0.2 x 10(8) M(-1) s(-1) in alkaline solutions. The bimolecular rate constants for ranitidine reacting with 1O2 in water ranges from 1.6 +/- 0.2 x 10(7) M(-1) s(-1) at pH 6-6.4 +/- 0.2 x 10(7) M(-1) s(-1) at pH 10. Reaction of ranitidine hydrochloride with *OH proceeds with a rate constant of 1.5 +/- 0.2 x 10(10) M(-1) s(-1). Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 degrees latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of 1O2 and *OH, indicate that photooxidation mediated by 1O2 is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by 1O2. These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to singlet-oxygenation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with 1O2, as evidenced by the high relative rate constants of the furan and imidazole models. The nitroacetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis.The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (1O2, O2(1delta(g))) and hydroxyl radical (*OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with *OH in water is 6.5 +/- 0.5 x 10(9) M(-1) s(-1). Over the pH range 4-10, cimetidine reacts with 1O2 with bimolecular rate constants ranging from 3.3 +/- 0.3 x 10(6) M(-1) s(-1) at low pH to 2.5 +/- 0.2 x 10(8) M(-1) s(-1) in alkaline solutions. The bimolecular rate constants for ranitidine reacting with 1O2 in water ranges from 1.6 +/- 0.2 x 10(7) M(-1) s(-1) at pH 6-6.4 +/- 0.2 x 10(7) M(-1) s(-1) at pH 10. Reaction of ranitidine hydrochloride with *OH proceeds with a rate constant of 1.5 +/- 0.2 x 10(10) M(-1) s(-1). Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 degrees latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of 1O2 and *OH, indicate that photooxidation mediated by 1O2 is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by 1O2. These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to singlet-oxygenation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with 1O2, as evidenced by the high relative rate constants of the furan and imidazole models. The nitroacetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis. The photochemical fate of the pharmaceuticals, cimetidine and ranitidine, which display disparate degradation mechanisms, was investigated. Photolysis experiments with sunlight in natural water were performed, as were steady-state photolysis experiments and laser flash photolysis experiments. The second-order rate constant for the reaction of the pharmaceuticals with hydroxyl radical was determined using Fenton's reagent. In Mississippi River water, singlet-oxygenation formed from the interaction of sunlight with dissolved organic carbon appeared to be the dominant decay process for cimetidine, while ranitidine was subject to direct photolysis, and reaction with singlet oxygen was an additional loss process. Chemical reaction was the primary pathway by which ranitidine and cimetidine interacted with singlet oxygen, while the contribution of the physical quenching pathway was negligible. For cimetidine, the data indicated that the dialkylimidazole ring was the most reactive group, while for ranitidine, the furan displayed the highest reactivity. The direct photodegradation rate of ranitidine was insensitive to pH, while the reaction with singlet oxygen exhibited a pH-dependence. The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (1O2, O2(1delta(g))) and hydroxyl radical (*OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with *OH in water is 6.5 +/- 0.5 x 10(9) M(-1) s(-1). Over the pH range 4-10, cimetidine reacts with 1O2 with bimolecular rate constants ranging from 3.3 +/- 0.3 x 10(6) M(-1) s(-1) at low pH to 2.5 +/- 0.2 x 10(8) M(-1) s(-1) in alkaline solutions. The bimolecular rate constants for ranitidine reacting with 1O2 in water ranges from 1.6 +/- 0.2 x 10(7) M(-1) s(-1) at pH 6-6.4 +/- 0.2 x 10(7) M(-1) s(-1) at pH 10. Reaction of ranitidine hydrochloride with *OH proceeds with a rate constant of 1.5 +/- 0.2 x 10(10) M(-1) s(-1). Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 degrees latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of 1O2 and *OH, indicate that photooxidation mediated by 1O2 is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by 1O2. These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to singlet-oxygenation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with 1O2, as evidenced by the high relative rate constants of the furan and imidazole models. The nitroacetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis. The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (102, 02('deltag)) and hydroxyl radical (*OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with *OH in water is 6.5 ± 0.5 x 109 M-1 s-1. Over the pH range 4-10, cimetidine reacts with 102 with bimolecular rate constants ranging from 3.3 ± 0.3 x 106 M-1 s-1 at low pH to 2.5 ± 0.2 x 108 M-1 s-1 in alkaline solutions. The bimolecular rate constants for ranitidine reacting with 102 in water ranges from 1.6 ± 0.2 x 107 M-1 s-I at pH 6-6.4 ± 0.2 x 107 M-1 S-I at pH 10. Reaction of ranitidine hydrochloride with 'OH proceeds with a rate constant of 1.5 ± 0.2 x 1010 M-1 s-1. Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 ' latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of 102 and *OH, indicate that photooxidation mediated by 102 is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by 102. These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to sing let-oxyg e nation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with 102, as evidenced by the high relative rate constants of the furan and imidazole models. The nitroacetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis. [PUBLICATION ABSTRACT] The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen (1O2, O2(1Δg)) and hydroxyl radical (•OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with •OH in water is 6.5 ± 0.5 × 109 M-1 s-1. Over the pH range 4−10, cimetidine reacts with 1O2 with bimolecular rate constants ranging from 3.3 ± 0.3 × 106 M-1 s-1 at low pH to 2.5 ± 0.2 × 108 M-1 s-1 in alkaline solutions. The bimolecular rate constants for ranitidine reacting with 1O2 in water ranges from 1.6 ± 0.2 × 107 M-1 s-1 at pH 6−6.4 ± 0.2 × 107 M-1 s-1 at pH 10. Reaction of ranitidine hydrochloride with •OH proceeds with a rate constant of 1.5 ± 0.2 × 1010 M-1 s-1. Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 ° latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of 1O2 and •OH, indicate that photooxidation mediated by 1O2 is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by 1O2. These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to singlet-oxygenation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with 1O2, as evidenced by the high relative rate constants of the furan and imidazole models. The nitroacetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis. The photochemical fates of the histamine H sub(2)-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant pharmaceuticals displayed high rates of reaction with both singlet oxygen ( super(1)O sub(2), O sub(2)( super(1) Delta sub(g))) and hydroxyl radical ( times OH), two transient oxidants formed in sunlit natural waters. For cimetidine, the bimolecular rate constant for reaction with times OH in water is 6.5 plus or minus 0.5 x 10 super(9) M super(-1) s super(-1). Over the pH range 4-10, cimetidine reacts with super(1)O sub(2) with bimolecular rate constants ranging from 3.3 plus or minus 0.3 x 10 super(6) M super(-1) s super(-1) at low pH to 2.5 plus or minus 0.2 x 10 super(8) M super(-1) s super(-1) in alkaline solutions. The bimolecular rate constants for ranitidine reacting with super(1)O sub(2) in water ranges from 1.6 plus or minus 0.2 x 10 super(7) M super(-1) s super(-1) at pH 6-6.4 plus or minus 0.2 x 10 super(7) M super(-1) s super(-1) at pH 10. Reaction of ranitidine hydrochloride with times OH proceeds with a rate constant of 1.5 plus or minus 0.2 x 10 super(10) M super(-1) s super(-1). Ranitidine was also degraded in direct photolysis experiments with a half-life of 35 min under noon summertime sunlight at 45 degree latitude, while cimetidine was shown to be resistant to direct photolysis. The results of these experiments, combined with the expected steady-state near surface concentrations of super(1)O sub(2) and times OH, indicate that photooxidation mediated by super(1)O sub(2) is the likely degradation pathway for cimetidine in most natural waters, and photodegradation by direct photolysis is expected to be the major pathway for ranitidine, with some degradation caused by super(1)O sub(2). These predictions were verified in studies using Mississippi River water. Model compounds were analyzed by laser flash photolysis experiments to assess which functionalities within ranitidine and cimetidine are most susceptible to singlet-oxygenation and direct photolysis. The heterocyclic moieties of the pharmaceuticals were clearly implicated as the sites of reaction with super(1)O sub(2), as evidenced by the high relative rate constants of the furan and imidazole models. The nitro-acetamidine portion of ranitidine has been shown to be the moiety active in direct photolysis. |
Author | Latch, Douglas E Arnold, William A McNeill, Kristopher Packer, Jennifer L Stender, Brian L |
Author_xml | – sequence: 1 givenname: Douglas E surname: Latch fullname: Latch, Douglas E – sequence: 2 givenname: Brian L surname: Stender fullname: Stender, Brian L – sequence: 3 givenname: Jennifer L surname: Packer fullname: Packer, Jennifer L – sequence: 4 givenname: William A surname: Arnold fullname: Arnold, William A – sequence: 5 givenname: Kristopher surname: McNeill fullname: McNeill, Kristopher |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15043021$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12966980$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ltrFDEUAOAgFbutPvgHZBAUfBibe2Z8k6XrhYqrVim-hEzmDJu6k9QkI_rmq3_TX2LKrl2oQp9y4Tsnl3MO0J4PHhC6T_BTgik5goQZx6qht9CMCIpr0Qiyh2YYE1a3TJ7to4OUzjHGlOHmDtontJWybfAMfVquQg52BaOzZl0tTIYqDNVyZeJoLEz5cjtVzld5BdWx_-Zi8CP4_Oz3z1_V3I2QXe88VMb31Xvj3WZ5F90eShzc246H6OPi-HT-sj55--LV_PlJbQTjuVZUtowqEFy1xGAGg1WdaAiYvswpHywjA2YNH3jDaGeFEYS3wDvVd9QMkh2ix5u8FzF8nSBlPbpkYb02HsKUtGKSi4bTGyGRREolm5shl1JQ1Rb48Bo8D1P05bW6_DKh5VxR0IMtmroRen0R3WjiD_23AAU82gKTyk8P0Xjr0s4JzFkpcXFPNs7GkFKEYUewvmwCfdUExR5ds9Zlk13wORq3_m9EvYlwKcP3q9QmftFSMSX06fKDfn32ZiE_83da7m5tbNo9-9-8fwA8osxu |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2013_04_047 crossref_primary_10_1016_j_jphotochem_2018_04_050 crossref_primary_10_1016_j_watres_2014_08_017 crossref_primary_10_1016_j_watres_2010_08_012 crossref_primary_10_1016_j_watres_2010_08_015 crossref_primary_10_1021_es300217h crossref_primary_10_1016_j_emcon_2022_04_001 crossref_primary_10_1016_j_chemosphere_2016_04_071 crossref_primary_10_1016_j_scitotenv_2023_162210 crossref_primary_10_1016_j_envpol_2013_12_007 crossref_primary_10_1021_acs_est_9b07246 crossref_primary_10_1021_es803325j crossref_primary_10_1016_j_jhazmat_2023_131436 crossref_primary_10_1111_j_1745_6592_2004_tb00713_x crossref_primary_10_1021_acs_est_1c07129 crossref_primary_10_1016_j_jes_2019_05_017 crossref_primary_10_1016_j_jhazmat_2020_122568 crossref_primary_10_1021_acs_est_0c07132 crossref_primary_10_1021_es504211x crossref_primary_10_1016_j_chemosphere_2015_10_074 crossref_primary_10_1021_acs_est_9b01037 crossref_primary_10_1016_j_jphotochemrev_2019_100319 crossref_primary_10_1016_j_trac_2014_08_003 crossref_primary_10_1021_acsami_2c03607 crossref_primary_10_1021_acsestwater_2c00371 crossref_primary_10_1021_acs_est_1c01942 crossref_primary_10_1016_j_watres_2025_123288 crossref_primary_10_1016_j_watres_2013_07_038 crossref_primary_10_1016_j_jhazmat_2021_127398 crossref_primary_10_1016_j_trac_2019_115686 crossref_primary_10_1016_j_chemosphere_2021_133352 crossref_primary_10_1016_j_scitotenv_2021_152647 crossref_primary_10_1021_acs_est_9b07380 crossref_primary_10_1016_j_scitotenv_2016_03_026 crossref_primary_10_1021_es902852v crossref_primary_10_1021_es300041f crossref_primary_10_1039_C5EM00045A crossref_primary_10_1021_acs_est_8b03258 crossref_primary_10_1016_j_watres_2018_10_056 crossref_primary_10_1021_acs_est_8b01512 crossref_primary_10_1021_acs_est_5b00466 crossref_primary_10_1016_j_wse_2019_12_005 crossref_primary_10_1016_j_envpol_2017_08_032 crossref_primary_10_1016_j_watres_2022_118971 crossref_primary_10_1016_j_envint_2008_12_002 crossref_primary_10_1016_j_jphotobiol_2014_11_004 crossref_primary_10_1016_j_watres_2010_08_024 crossref_primary_10_1080_00032719_2014_966377 crossref_primary_10_1007_s44169_023_00048_8 crossref_primary_10_1039_C5EM00305A crossref_primary_10_1016_j_chemosphere_2010_02_014 crossref_primary_10_1021_acs_est_8b02835 crossref_primary_10_1016_j_jhazmat_2014_12_004 crossref_primary_10_1021_es8031727 crossref_primary_10_1039_b416925e crossref_primary_10_1016_j_watres_2013_07_009 crossref_primary_10_1016_j_jpba_2012_12_019 crossref_primary_10_1007_s11270_023_06858_9 crossref_primary_10_1021_acs_est_9b03007 crossref_primary_10_1080_01919510600985937 crossref_primary_10_1021_es301205a crossref_primary_10_1016_j_scitotenv_2012_03_031 crossref_primary_10_1021_acs_est_1c04608 crossref_primary_10_1016_j_colsurfa_2022_128395 crossref_primary_10_1897_04_243R_1 crossref_primary_10_1039_D1EM00545F crossref_primary_10_1039_C8EN00593A crossref_primary_10_1016_j_trac_2018_12_007 crossref_primary_10_1007_s11783_014_0680_y crossref_primary_10_1007_s43153_024_00496_2 crossref_primary_10_1016_j_watres_2022_118552 crossref_primary_10_1021_acs_est_5b06016 crossref_primary_10_1016_j_scitotenv_2024_176821 crossref_primary_10_1021_acs_est_7b04016 crossref_primary_10_1071_EN13218 crossref_primary_10_1021_es404240x crossref_primary_10_1016_j_chemosphere_2011_02_093 crossref_primary_10_1016_j_seppur_2014_12_031 crossref_primary_10_1021_acs_est_8b06410 crossref_primary_10_1039_C8EM00473K crossref_primary_10_1089_ees_2012_0239 crossref_primary_10_1016_j_envpol_2019_02_047 crossref_primary_10_1016_j_jphotochem_2023_114954 crossref_primary_10_1016_j_talanta_2013_01_042 crossref_primary_10_1016_j_jhazmat_2021_125842 crossref_primary_10_1021_es0606778 crossref_primary_10_1016_j_chemosphere_2011_01_048 crossref_primary_10_1007_s11270_019_4293_8 crossref_primary_10_1016_j_chemosphere_2021_129791 crossref_primary_10_1016_j_watres_2021_117495 crossref_primary_10_1039_C7EM00208D crossref_primary_10_1021_es505712e crossref_primary_10_1002_ange_201002228 crossref_primary_10_1007_s12302_008_0010_8 crossref_primary_10_1039_C9EM00300B crossref_primary_10_1016_j_cattod_2020_05_017 crossref_primary_10_1016_j_envpol_2014_06_020 crossref_primary_10_1016_j_chemosphere_2022_134879 crossref_primary_10_1016_j_watres_2020_116791 crossref_primary_10_1039_C8RA03512A crossref_primary_10_1002_anie_201002228 crossref_primary_10_1016_j_jece_2020_104522 crossref_primary_10_1021_es301105e crossref_primary_10_1002_jms_867 crossref_primary_10_1039_c3em00615h crossref_primary_10_1016_j_chemosphere_2005_03_095 crossref_primary_10_1016_j_jhazmat_2013_02_035 crossref_primary_10_1021_acs_est_6b02912 crossref_primary_10_1016_j_cej_2017_11_070 crossref_primary_10_1016_j_watres_2007_07_026 crossref_primary_10_1080_10643380590956966 crossref_primary_10_4491_eer_2005_10_6_269 crossref_primary_10_1007_s11164_022_04778_7 crossref_primary_10_1016_j_jhazmat_2012_07_017 crossref_primary_10_1016_j_watres_2012_03_025 crossref_primary_10_1039_b801591k crossref_primary_10_1021_ac048293s crossref_primary_10_1016_j_ese_2020_100051 crossref_primary_10_1021_acs_est_3c01726 crossref_primary_10_1021_acs_est_5b04314 crossref_primary_10_1016_j_watres_2022_118236 crossref_primary_10_1021_es0353053 crossref_primary_10_1897_04_236R_1 crossref_primary_10_1021_es403925g crossref_primary_10_1016_j_scitotenv_2020_141186 crossref_primary_10_1016_j_chemosphere_2018_06_091 crossref_primary_10_1016_j_scitotenv_2020_138335 crossref_primary_10_1039_C6EM00122J crossref_primary_10_1016_j_comptc_2022_113845 crossref_primary_10_1007_s00027_012_0251_x crossref_primary_10_1007_s11356_016_8207_7 crossref_primary_10_1039_C3EM00573A crossref_primary_10_1039_C7EM00079K crossref_primary_10_1007_s11356_015_5897_1 crossref_primary_10_1016_j_envpol_2015_10_016 crossref_primary_10_1021_es049509a crossref_primary_10_1039_b506971h crossref_primary_10_2175_106143005X82244 crossref_primary_10_1021_es048264z crossref_primary_10_1021_jp803229a crossref_primary_10_1016_j_seppur_2023_125576 crossref_primary_10_1016_j_watres_2016_11_049 crossref_primary_10_1016_j_watres_2018_11_009 crossref_primary_10_1021_es801847g crossref_primary_10_1039_C3EM00502J crossref_primary_10_1039_D0EM00056F crossref_primary_10_1007_s11434_011_4887_z crossref_primary_10_1021_acs_est_0c00817 crossref_primary_10_3390_w16050635 crossref_primary_10_1039_C8RA03140A crossref_primary_10_1016_j_envpol_2008_10_009 crossref_primary_10_1021_es702245n crossref_primary_10_1016_j_jhazmat_2024_134033 crossref_primary_10_1039_C7EM00324B crossref_primary_10_1021_acs_chemrev_0c00781 crossref_primary_10_1021_es500535a crossref_primary_10_1016_j_jhazmat_2018_07_100 crossref_primary_10_1007_s11356_021_15250_1 crossref_primary_10_1016_j_watres_2016_03_053 crossref_primary_10_1021_es0494757 crossref_primary_10_1371_journal_pone_0135400 crossref_primary_10_1016_j_jwpe_2025_107461 crossref_primary_10_1016_j_scitotenv_2023_162525 crossref_primary_10_1021_es1028475 crossref_primary_10_3390_nano11082134 crossref_primary_10_1007_s11356_021_16183_5 crossref_primary_10_1021_es3023094 crossref_primary_10_1016_j_chemosphere_2014_04_035 crossref_primary_10_1016_j_jchromb_2013_01_020 crossref_primary_10_1021_es304334w crossref_primary_10_1039_C9EM00504H crossref_primary_10_1016_j_gca_2017_03_036 crossref_primary_10_1021_es200411a crossref_primary_10_1007_s11356_014_2553_0 crossref_primary_10_1021_es048331p crossref_primary_10_1021_acs_est_4c06993 crossref_primary_10_1007_s11356_011_0536_y crossref_primary_10_1016_j_chemosphere_2020_129200 crossref_primary_10_1021_acs_jchemed_0c01398 crossref_primary_10_1007_s12247_021_09578_x crossref_primary_10_1016_j_envpol_2016_03_018 crossref_primary_10_1016_j_chemosphere_2014_09_084 crossref_primary_10_1021_es800185d crossref_primary_10_2134_jeq2017_05_0181 crossref_primary_10_1016_j_watres_2017_04_049 crossref_primary_10_1246_cl_2012_877 crossref_primary_10_1016_j_jhazmat_2018_07_041 crossref_primary_10_1016_j_chemosphere_2009_04_028 crossref_primary_10_1021_acs_est_0c02192 crossref_primary_10_1016_j_watres_2010_10_005 crossref_primary_10_1021_acs_est_5b03498 crossref_primary_10_1039_C6EM00646A crossref_primary_10_1021_es048940x crossref_primary_10_1039_D1EM00062D crossref_primary_10_1016_j_watres_2024_122685 crossref_primary_10_1016_j_apcatb_2016_04_015 crossref_primary_10_1016_j_watres_2016_12_016 crossref_primary_10_1021_es5028663 crossref_primary_10_1016_j_chemosphere_2020_127495 crossref_primary_10_1016_j_chemosphere_2017_12_095 crossref_primary_10_1016_j_jhazmat_2015_07_036 crossref_primary_10_1039_D1EM00345C crossref_primary_10_1016_j_jphotochem_2013_10_013 crossref_primary_10_1021_acsestwater_4c00880 crossref_primary_10_1899_11_089 crossref_primary_10_1016_j_tet_2005_04_017 crossref_primary_10_1016_j_chemosphere_2017_08_110 crossref_primary_10_1177_1178630218795836 crossref_primary_10_1016_j_cej_2021_128462 crossref_primary_10_1080_02772241003636505 crossref_primary_10_1021_acs_est_0c02061 crossref_primary_10_1016_j_chemosphere_2020_128338 crossref_primary_10_1039_b416956e crossref_primary_10_1007_s44246_022_00022_4 crossref_primary_10_1016_j_chemosphere_2017_01_083 crossref_primary_10_1016_j_chemosphere_2019_07_008 crossref_primary_10_1016_j_watres_2020_116278 crossref_primary_10_1039_C5EM00204D crossref_primary_10_1021_es301929e crossref_primary_10_1111_j_1751_1097_2010_00748_x crossref_primary_10_1016_j_scitotenv_2024_170414 crossref_primary_10_1021_acs_est_6b01291 crossref_primary_10_1021_acs_est_9b02462 crossref_primary_10_1016_j_saa_2008_06_007 |
Cites_doi | 10.1021/es00143a001 10.1063/1.555805 10.1111/j.1751-1097.1990.tb01684.x 10.1111/j.2042-7158.1985.tb04922.x 10.1016/S0045-6535(97)00354-8 10.1016/S0045-6535(99)00438-5 10.1351/pac197127040635 10.1016/0009-2797(93)90116-G 10.1021/ja00379a024 10.1063/1.555965 10.1021/ja00756a001 10.1002/(SICI)1521-401X(199809)26:5<272::AID-AHEH272>3.0.CO;2-O 10.1021/es9802908 10.1021/es00105a017 10.1289/ehp.99107s6907 10.1016/S0043-1354(98)00099-2 10.1111/j.1751-1097.1990.tb01964.x 10.1111/j.1432-1033.1986.tb09441.x 10.1016/S0045-6535(98)00540-2 10.1016/S0140-6736(00)02270-4 10.1016/S0048-9697(98)00339-8 10.1016/S0040-4020(01)83290-7 10.1021/es020136s 10.1002/cber.19530860118 10.1021/ba-1988-0219.ch022 10.1021/es00016a025 10.1016/S0378-5173(99)00073-3 10.1111/j.1365-2362.1994.tb02378.x 10.1006/rtph.1998.1253 10.1007/978-94-007-0874-7_8 10.1016/0003-9861(88)90098-7 10.1016/0024-3205(77)90329-0 |
ContentType | Journal Article |
Copyright | Copyright © 2003 American Chemical Society 2003 INIST-CNRS Copyright American Chemical Society Aug 1, 2003 |
Copyright_xml | – notice: Copyright © 2003 American Chemical Society – notice: 2003 INIST-CNRS – notice: Copyright American Chemical Society Aug 1, 2003 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7QH 7TV 7UA F1W H97 L.G 7X8 |
DOI | 10.1021/es0340782 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts Aqualine Pollution Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Environment Abstracts MEDLINE Biotechnology Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 3350 |
ExternalDocumentID | 424041491 12966980 15043021 10_1021_es0340782 ark_67375_TPS_JXMF6Z4Q_6 b377368787 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 186 1AW 3R3 4.4 42X 4R4 53G 55A 5GY 5VS 63O 7~N 85S A AABXI ABDEX ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS ADKFC AEESW AENEX AETEA AFEFF AFMIJ AFRAH ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 K78 LG6 MS NHB PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UNC UPT UQL VF5 VG9 VOH VQA W1F WH7 X XFK XZL YZZ ZCG --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK ABJNI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ BSCLL CUPRZ GGK MS~ MW2 UBC XSW YV5 ZCA ~A~ AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION .HR 1WB 8WZ A6W ABHMW ACKIV IQODW MVM OHT RNS TAE UBX UBY VJK ZY4 CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7QH 7TV 7UA F1W H97 L.G 7X8 |
ID | FETCH-LOGICAL-a534t-7269327e54791a03efc7b581ead3ef24fc31f0384f4832bc5a5149e4b7db2af63 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Fri Jul 11 06:35:14 EDT 2025 Fri Jul 11 03:23:20 EDT 2025 Thu Jul 10 19:00:06 EDT 2025 Fri Jul 25 03:58:52 EDT 2025 Wed Feb 19 02:35:08 EST 2025 Mon Jul 21 09:12:36 EDT 2025 Tue Jul 01 03:25:50 EDT 2025 Thu Apr 24 22:55:38 EDT 2025 Wed Oct 30 09:37:42 EDT 2024 Thu Aug 27 13:43:09 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Drug Pollutant behavior Cimetidine Free radical reaction Chemical reaction kinetics Persistence Oxygen molecules Ranitidine Reaction mechanism Oxidation Water pollution Antagonist Solar radiation Singlet Hydroxyl H2 Histamine receptor Organic compounds Photochemical degradation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a534t-7269327e54791a03efc7b581ead3ef24fc31f0384f4832bc5a5149e4b7db2af63 |
Notes | istex:29289E4A823F58D564F85375812ECAB447FE9E69 ark:/67375/TPS-JXMF6Z4Q-6 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 12966980 |
PQID | 230124585 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_73645842 proquest_miscellaneous_16166768 proquest_miscellaneous_14665279 proquest_journals_230124585 pubmed_primary_12966980 pascalfrancis_primary_15043021 crossref_primary_10_1021_es0340782 crossref_citationtrail_10_1021_es0340782 istex_primary_ark_67375_TPS_JXMF6Z4Q_6 acs_journals_10_1021_es0340782 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-08-01 |
PublicationDateYYYYMMDD | 2003-08-01 |
PublicationDate_xml | – month: 08 year: 2003 text: 2003-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2003 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Dulin D. (es0340782b00064/es0340782b00064_1) 1982; 16 Wilkinson F. (es0340782b00048/es0340782b00048_1) 1995; 24 Heberer T. (es0340782b00010/es0340782b00010_1) 2000 Zbaida S. (es0340782b00040/es0340782b00040_1) 1986; 154 Bavin P. M. G. (es0340782b00044/es0340782b00044_1) 1984; 13 Stan H.-J. (es0340782b00023/es0340782b00023_1) 1994; 83 Ternes T. (es0340782b00006/es0340782b00006_1) 2000 Hartman P. E. (es0340782b00050/es0340782b00050_1) 1990; 51 Foote C. S. (es0340782b00053/es0340782b00053_1) 1964; 86 Ternes T. A. (es0340782b00014/es0340782b00014_1) 1998; 90 Ackerman R. A. (es0340782b00030/es0340782b00030_1) 1971; 16 Larson R. A. (es0340782b00028/es0340782b00028_1) 1999; 2 Graziano M. L. (es0340782b00056/es0340782b00056_1) 1980; 1955 Haag W. R. (es0340782b00038/es0340782b00038_1) 1992; 26 Tang W. Z. (es0340782b00039/es0340782b00039_1) 1996; 33 Kang P. (es0340782b00052/es0340782b00052_1) 2002; 124 Sedlak D. L. (es0340782b00037/es0340782b00037_1) 1991; 25 Ternes T. A. (es0340782b00013/es0340782b00013_1) 1998; 32 Stumpf M. (es0340782b00012/es0340782b00012_1) 1999; 225 Castela-Papin N. (es0340782b00045/es0340782b00045_1) 1999; 182 Jorgensen S. E. (es0340782b00003/es0340782b00003_1) 2000; 40 Nonell S. (es0340782b00035/es0340782b00035_1) 1990; 51 Ching T. L. (es0340782b00060/es0340782b00060_1) 1993; 86 Brezonik P. L. (es0340782b00062/es0340782b00062_1) 1998; 32 Buser H.-R. (es0340782b00015/es0340782b00015_1) 1998; 32 Kuzel R. A. (es0340782b00033/es0340782b00033_1) 1994; 6 Zbaida S. (es0340782b00041/es0340782b00041_1) 1988; 261 Stan H. (es0340782b00005/es0340782b00005_1) 1997; 25 Heberer T. (es0340782b00019/es0340782b00019_1) 1998; 26 Graziano M. L. (es0340782b00057/es0340782b00057_1) 1981; 720 Meyer M. T. (es0340782b00021/es0340782b00021_1) 2000 Larson R. A. (es0340782b00029/es0340782b00029_1) 1994 Heberer T. (es0340782b00017/es0340782b00017_1) 1996; 86 Metcalfe C. (es0340782b00011/es0340782b00011_1) 2000 Foote C. S. (es0340782b00054/es0340782b00054_1) 1967; 23 Zepp R. G. (es0340782b00047/es0340782b00047_1) 1977; 267 Haag W. R. (es0340782b00043/es0340782b00043_1) 1987; 45 Nonell S. (es0340782b00036/es0340782b00036_1) 2000; 319 Hovey M. C. (es0340782b00059/es0340782b00059_1) 1982; 104 Mill T. (es0340782b00063/es0340782b00063_1) 1999; 38 Aubry J.-M. (es0340782b00031/es0340782b00031_1) 1995; 117 Jensen D. E. (es0340782b00032/es0340782b00032_1) 1997; 53 Graziano M. L. (es0340782b00058/es0340782b00058_1) 1982; 2007 Zuccato E. (es0340782b00025/es0340782b00025_1) 2000; 355 Halling-Sorensen B. (es0340782b00007/es0340782b00007_1) 1998; 36 Daughton C. G. (es0340782b00024/es0340782b00024_1) 2000 Hignite C. (es0340782b00008/es0340782b00008_1) 1977; 20 Buser H.-R. (es0340782b00016/es0340782b00016_1) 1998; 32 Bredereck H. (es0340782b00034/es0340782b00034_1) 1953; 86 Nipales N. S. (es0340782b00022/es0340782b00022_1) 2000 Buser H.-R. (es0340782b00009/es0340782b00009_1) 1999; 33 Chen R. (es0340782b00042/es0340782b00042_1) 1997; 31 Holm J. V. (es0340782b00020/es0340782b00020_1) 1995; 29 Haag W. R. (es0340782b00065/es0340782b00065_1) 1986; 20 Foote C. S. (es0340782b00055/es0340782b00055_1) 1971; 27 Leifer A. (es0340782b00066/es0340782b00066_1) 1988 Buxton G. V. (es0340782b00049/es0340782b00049_1) 1988; 17 Kolpin D. W. (es0340782b00026/es0340782b00026_1) 2002; 36 Christensen F. M. (es0340782b00001/es0340782b00001_1) 1998; 28 es0340782b00027/es0340782b00027_1 Daughton C. G. (es0340782b00002/es0340782b00002_1) 1999; 107 Merkel P. B. (es0340782b00046/es0340782b00046_1) 1972; 94 Kang P. (es0340782b00051/es0340782b00051_1) 2000; 41 Lapenna D. (es0340782b00061/es0340782b00061_1) 1994; 24 es0340782b00067/es0340782b00067_1 Heberer T. (es0340782b00018/es0340782b00018_1) 1997; 6 Richardson M. L. (es0340782b00004/es0340782b00004_1) 1985; 37 |
References_xml | – volume: 20 start-page: 8 year: 1986 ident: es0340782b00065/es0340782b00065_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00143a001 – volume: 17 start-page: 886 year: 1988 ident: es0340782b00049/es0340782b00049_1 publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555805 – volume: 720 start-page: 1 year: 1981 ident: es0340782b00057/es0340782b00057_1 publication-title: J. Chem. Soc., Chem. Commun. – volume: 45 start-page: 21 year: 1987 ident: es0340782b00043/es0340782b00043_1 publication-title: Photochem. Photobiol. – volume: 51 start-page: 66 year: 1990 ident: es0340782b00050/es0340782b00050_1 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1990.tb01684.x – volume: 25 start-page: M20 year: 1997 ident: es0340782b00005/es0340782b00005_1 publication-title: Analusis – volume: 37 start-page: 12 year: 1985 ident: es0340782b00004/es0340782b00004_1 publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.1985.tb04922.x – volume: 36 start-page: 394 year: 1998 ident: es0340782b00007/es0340782b00007_1 publication-title: Chemosphere doi: 10.1016/S0045-6535(97)00354-8 – volume: 40 start-page: 699 year: 2000 ident: es0340782b00003/es0340782b00003_1 publication-title: Chemosphere doi: 10.1016/S0045-6535(99)00438-5 – volume: 32 start-page: 192 year: 1998 ident: es0340782b00016/es0340782b00016_1 publication-title: Environ. Sci. Technol. – volume: 6 start-page: 14 year: 1994 ident: es0340782b00033/es0340782b00033_1 publication-title: J. Chirality – volume: 27 start-page: 45 year: 1971 ident: es0340782b00055/es0340782b00055_1 publication-title: Pure Appl. Chem. doi: 10.1351/pac197127040635 – volume: 86 start-page: 27 year: 1993 ident: es0340782b00060/es0340782b00060_1 publication-title: Chem.-Biol. Interact. doi: 10.1016/0009-2797(93)90116-G – volume: 104 start-page: 202 year: 1982 ident: es0340782b00059/es0340782b00059_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00379a024 – volume: 267 start-page: 3 year: 1977 ident: es0340782b00047/es0340782b00047_1 publication-title: Nature – volume: 24 start-page: 1021 year: 1995 ident: es0340782b00048/es0340782b00048_1 publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555965 – volume-title: Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem. year: 2000 ident: es0340782b00010/es0340782b00010_1 – volume: 1955 start-page: 9 year: 1980 ident: es0340782b00056/es0340782b00056_1 publication-title: J. Chem. Soc., Perkin Trans. 1 – volume-title: Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem. year: 2000 ident: es0340782b00022/es0340782b00022_1 – volume: 94 start-page: 1 year: 1972 ident: es0340782b00046/es0340782b00046_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00756a001 – volume: 26 start-page: 278 year: 1998 ident: es0340782b00019/es0340782b00019_1 publication-title: Acta Hydrochim. Hydrobiol. doi: 10.1002/(SICI)1521-401X(199809)26:5<272::AID-AHEH272>3.0.CO;2-O – volume: 29 start-page: 20 year: 1995 ident: es0340782b00020/es0340782b00020_1 publication-title: Environ. Sci. Technol. – volume: 86 start-page: 80 year: 1964 ident: es0340782b00053/es0340782b00053_1 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 3010 year: 1998 ident: es0340782b00062/es0340782b00062_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es9802908 – volume: 53 start-page: 1295 year: 1997 ident: es0340782b00032/es0340782b00032_1 publication-title: Biochem. Pharmacol. – volume: 2 start-page: 137 year: 1999 ident: es0340782b00028/es0340782b00028_1 publication-title: Handb. Environ. Chem. – volume: 16 start-page: 20 year: 1982 ident: es0340782b00064/es0340782b00064_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00105a017 – volume: 319 start-page: 49 year: 2000 ident: es0340782b00036/es0340782b00036_1 publication-title: Methods Enzymol. – volume: 90 start-page: 309 year: 1998 ident: es0340782b00014/es0340782b00014_1 publication-title: Vom Wasser – volume: 107 start-page: 938 year: 1999 ident: es0340782b00002/es0340782b00002_1 publication-title: Environ. Health Perspect. Suppl. doi: 10.1289/ehp.99107s6907 – volume: 32 start-page: 3260 year: 1998 ident: es0340782b00013/es0340782b00013_1 publication-title: Water Res. doi: 10.1016/S0043-1354(98)00099-2 – volume: 83 start-page: 68 year: 1994 ident: es0340782b00023/es0340782b00023_1 publication-title: Vom Wasser – volume: 51 start-page: 6 year: 1990 ident: es0340782b00035/es0340782b00035_1 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1990.tb01964.x – volume-title: Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem. year: 2000 ident: es0340782b00021/es0340782b00021_1 – volume: 154 start-page: 5 year: 1986 ident: es0340782b00040/es0340782b00040_1 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1986.tb09441.x – volume: 38 start-page: 1390 year: 1999 ident: es0340782b00063/es0340782b00063_1 publication-title: Chemosphere doi: 10.1016/S0045-6535(98)00540-2 – volume: 117 start-page: 64 year: 1995 ident: es0340782b00031/es0340782b00031_1 publication-title: J. Am. Chem. Soc. – volume: 355 start-page: 1790 year: 2000 ident: es0340782b00025/es0340782b00025_1 publication-title: Lancet doi: 10.1016/S0140-6736(00)02270-4 – volume-title: Meet.-Am. Chem. Soc., Div. Environ. Chem. year: 2000 ident: es0340782b00024/es0340782b00024_1 – volume: 225 start-page: 141 year: 1999 ident: es0340782b00012/es0340782b00012_1 publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(98)00339-8 – volume: 23 start-page: 99 year: 1967 ident: es0340782b00054/es0340782b00054_1 publication-title: Tetrahedron doi: 10.1016/S0040-4020(01)83290-7 – volume: 2007 start-page: 12 year: 1982 ident: es0340782b00058/es0340782b00058_1 publication-title: J. Chem. Soc., Perkin Trans. 1 – volume: 36 start-page: 1211 year: 2002 ident: es0340782b00026/es0340782b00026_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es020136s – volume-title: Meet.-Am. Chem. Soc., Div. Environ. Chem. year: 2000 ident: es0340782b00006/es0340782b00006_1 – volume: 6 start-page: 443 year: 1997 ident: es0340782b00018/es0340782b00018_1 publication-title: Fresenius Environ. Bull. – volume: 124 start-page: 9638 year: 2002 ident: es0340782b00052/es0340782b00052_1 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 2406 year: 1997 ident: es0340782b00042/es0340782b00042_1 publication-title: J. Environ. Sci. Technol. – volume: 16 start-page: A34 year: 1971 ident: es0340782b00030/es0340782b00030_1 publication-title: Am. Chem. Soc., Div. Petrol. Chem., Prepr. – volume-title: Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem. year: 2000 ident: es0340782b00011/es0340782b00011_1 – volume: 86 start-page: 31 year: 1996 ident: es0340782b00017/es0340782b00017_1 publication-title: Vom Wasser – volume-title: Reaction Mechanisms in Environmental Organic Chemistry year: 1994 ident: es0340782b00029/es0340782b00029_1 – volume: 26 start-page: 1013 year: 1992 ident: es0340782b00038/es0340782b00038_1 publication-title: Environ. Sci. Technol. – volume: 41 start-page: 9626 year: 2000 ident: es0340782b00051/es0340782b00051_1 publication-title: Tetrahedron Lett. – volume: 32 start-page: 3456 year: 1998 ident: es0340782b00015/es0340782b00015_1 publication-title: Environ. Sci. Technol. – volume: 86 start-page: 96 year: 1953 ident: es0340782b00034/es0340782b00034_1 publication-title: Chem. Ber. doi: 10.1002/cber.19530860118 – ident: es0340782b00067/es0340782b00067_1 doi: 10.1021/ba-1988-0219.ch022 – volume: 25 start-page: 782 year: 1991 ident: es0340782b00037/es0340782b00037_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00016a025 – volume: 182 start-page: 119 year: 1999 ident: es0340782b00045/es0340782b00045_1 publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(99)00073-3 – volume: 24 start-page: 81 year: 1994 ident: es0340782b00061/es0340782b00061_1 publication-title: Eur. J. Clin. Invest. doi: 10.1111/j.1365-2362.1994.tb02378.x – volume: 28 start-page: 221 year: 1998 ident: es0340782b00001/es0340782b00001_1 publication-title: Regul. Toxicol. Pharmacol. doi: 10.1006/rtph.1998.1253 – volume: 33 start-page: 2535 year: 1999 ident: es0340782b00009/es0340782b00009_1 publication-title: Environ. Sci. Technol. – ident: es0340782b00027/es0340782b00027_1 doi: 10.1007/978-94-007-0874-7_8 – volume: 261 start-page: 15 year: 1988 ident: es0340782b00041/es0340782b00041_1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(88)90098-7 – volume: 13 start-page: 82 year: 1984 ident: es0340782b00044/es0340782b00044_1 publication-title: Anal. Profiles Drug Subst. – volume-title: The Kinetics of Environmental Aquatic Photochemistry: Theory and Practice year: 1988 ident: es0340782b00066/es0340782b00066_1 – volume: 33 start-page: 1635 year: 1996 ident: es0340782b00039/es0340782b00039_1 publication-title: Chemosphere – volume: 20 start-page: 41 year: 1977 ident: es0340782b00008/es0340782b00008_1 publication-title: Life Sci. doi: 10.1016/0024-3205(77)90329-0 |
SSID | ssj0002308 |
Score | 2.2547133 |
Snippet | The photochemical fates of the histamine H2-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant... The photochemical fate of the pharmaceuticals, cimetidine and ranitidine, which display disparate degradation mechanisms, was investigated. Photolysis... The photochemical fates of the histamine H sub(2)-receptor antagonists cimetidine and ranitidine were studied. Each of the two environmentally relevant... |
SourceID | proquest pubmed pascalfrancis crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3342 |
SubjectTerms | Applied sciences Biological and physicochemical phenomena Chemical reactions cimetidine Cimetidine - analysis Cimetidine - chemistry Earth sciences Earth, ocean, space Electrons Engineering and environment geology. Geothermics Environmental Monitoring Environmental Pollutants Exact sciences and technology Experiments Half-Life Histamine H2 Antagonists - analysis Histamine H2 Antagonists - chemistry Hydroxyl Radical - chemistry Natural water pollution Oxidants - chemistry Oxidation Pharmaceuticals Photochemistry Pollution Pollution, environment geology ranitidine Ranitidine - analysis Ranitidine - chemistry Water pollution Water treatment and pollution |
Title | Photochemical Fate of Pharmaceuticals in the Environment: Cimetidine and Ranitidine |
URI | http://dx.doi.org/10.1021/es0340782 https://api.istex.fr/ark:/67375/TPS-JXMF6Z4Q-6/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/12966980 https://www.proquest.com/docview/230124585 https://www.proquest.com/docview/14665279 https://www.proquest.com/docview/16166768 https://www.proquest.com/docview/73645842 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELaq9gIHHoXCtlAsQIhLysbPuLdq6aqqVLTQFq24RLZjq6vSLGqyEuLEtX-zv6TjvHYruuWWKJORPZmxv8mMZxB6T6gmVkgdudi7iCXcRDozInIMwC0ACBXbcDj56Is4OGWHYz5eQe-WRPBJ_MkVfRqCTbDOrhGRyOBh7Q2Ou-UWMHTStilQVIzb8kGLr4atxxa3tp61IMXfIRVSFyANX7exWI4zq_1m-Bh9bk_t1Gkm5zuz0uzYP_8WcbxvKk_QowZv4r1aQZ6iFZevo4cLVQjX0cb-_LAbkDbWXjxD30dn0zJ01KpKCuAhwFI89Xh0tvgbvMCTHAOKxAtcdq__XuHB5MKVE9gaHdZ5hr-FOhvV7XN0Otw_GRxETR-GSHPKykgSAShPOs6kinWfOm-l4UkMSgjXhHlLY9-nCfMM1gdjuQYUphwzMjNEe0E30Go-zd1LhMH7oo5yLaTxwE0qnmXWUuMUVZlhqoe24UOljR0VaRUiJ3HaSa6HPrbfMLVNFfPQTOPnXaRvO9JfdemOu4g-VIrQUejL85DrJnl6MjpOD8dHQ_GDfU0FjOyWpsxZhhpwwLOHtlrVmY8flBMAFLhkPfSmewoGHKIyOnfTWRF8L8GJVPdQiDhkIifLKWQIJicMZvOi1tn56Aj4syrpb_5PsFvoQZWnWOU2vkKr5eXMvQa8VZrtyt5uAEuyI0s |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbQ9gA8DBiMlcFmIYR4yWjiXzFvU7WqjHUqrEMVL5HtOFq1LUVLKqE97ZV_k7-Es5MmHdqAt1a9ni7Xs_1d7_wdQm8ioiLDhQpsmNmAxkwHKtU8sBTALQAIGRp3OXl4xAcn9GDCJjVNjrsLA0YUoKnwRfyWXSB8b4sucTUn2G5XQUfkEq293nGz6wKUjhfTCiThkwWL0PJX3Qlkihsn0Kpz5g_XEakKcEpWTbO4G276Y6f_qJpf5A323SZnu_NS75qrP7gc_--JHqO1Gn3ivSpcnqB7Nl9HD5c4CdfRxn579Q1E67VfPEVfR6ez0s3X8gQDuA8gFc8yPDpd_lO8wNMcA6bES1o-_Lr-iXvTC1tO4aC0WOUp_uJYN_zbZ-ikvz_uDYJ6KkOgGKFlICIOmE9YRoUMVZfYzAjN4hBCEl5HNDMkzLokphmF3UIbpgCTSUu1SHWkMk420Eo-y-0mwpCLEUuY4kJnoE1IlqbGEG0lkammsoO2wXFJvaqKxBfMozBpPNdB7xY_ZWJqTnM3WuP8NtHXjej3isjjNqG3Ph4aCXV55jrfBEvGo-PkYDLs82_0c8LBshsB06p0jHCgs4O2FhHU2g8xCnAKErQO2mk-heXsajQqt7N54TIxF9zyLxI8dH3J8d0SwpWWYwpP87wK3da6CLJbGXdf_MuxO-j-YDw8TA4_Hn3aQg98B6PvenyJVsrLuX0FSKzU234J_gZLlCus |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fTxNBEN4YSIw-iKJoQWFjjPHlsHf769Y3UrkgClYB0_hy2d3bDQ1yJdw1ITzx6r_pX-Ls9notBtS3Np1O5qazu990Zr9B6FVCVGK4UJGNnY1oynSkCs0jSwHcAoCQsfGXk_f2-c4R3R2wQZMo-rswYEQFmqpQxPer-qxwDcNA_NZWXeLrTrDlLvpynU-2tnoH7c4LcDqdTiyQhA-mTELzX_WnkKmunUKL3qEXvitSVeAYN5locTvkDEdPtoQ-t0aHjpOTzXGtN83lH3yO__9UD9GDBoXirUnYPEJ3bLmM7s9xEy6jle3ZFTgQbfaA6jH61j8e1X7OViAawBmAVTxyuH88_-d4hYclBmyJ57S8-3X1E_eGp7YewoFpsSoL_NWzb4S3T9BRtn3Y24ma6QyRYoTWkUg4YD9hGRUyVl1inRGapTGEJrxOqDMkdl2SUkdh19CGKcBm0lItCp0ox8kKWihHpX2GMORkxBKmuNAOtAnJisIYoq0kstBUdtA6OC9vVleVh8J5Euet5zrozfTnzE3Dbe5HbPy4SfRlK3o2IfS4Seh1iIlWQp2f-A44wfLD_kG-O9jL-Hf6Jedg2bWgman0zHCgs4PWplE0sx_iFGAVJGodtNF-Csva12pUaUfjymdknCVC_kWCx74_Ob1dQvgSc0rhaZ5OwndmXQJZrky7q_9y7Aa623-f5Z8-7H9cQ_dCI2NofnyOFurzsX0BgKzW62EV_gb03C4v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photochemical+Fate+of+Pharmaceuticals+in+the+Environment%3A%E2%80%89+Cimetidine+and+Ranitidine&rft.jtitle=Environmental+science+%26+technology&rft.au=LATCH%2C+Douglas+E.&rft.au=STENDER%2C+Brian+L.&rft.au=PACKER%2C+Jennifer+L.&rft.au=ARNOLD%2C+William+A.&rft.date=2003-08-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=37&rft.issue=15&rft.spage=3342&rft.epage=3350&rft_id=info:doi/10.1021%2Fes0340782&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_TPS_JXMF6Z4Q_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |