On the cooling of a deep terrestrial magma ocean
Several episodes of complete melting have probably occurred during the first stages of the Earth's evolution. We have developed a numerical model to monitor the thermal and melt fraction evolutions of a cooling and crystallizing magma ocean from an initially fully molten mantle. For this purpos...
Saved in:
Published in | Earth and planetary science letters Vol. 448; pp. 140 - 149 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2016
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several episodes of complete melting have probably occurred during the first stages of the Earth's evolution. We have developed a numerical model to monitor the thermal and melt fraction evolutions of a cooling and crystallizing magma ocean from an initially fully molten mantle. For this purpose, we numerically solve the heat equation in 1D spherical geometry, accounting for turbulent heat transfer, and integrating recent and strong experimental constraints from mineral physics. We have explored different initial magma ocean viscosities, compositions, thermal boundary layer thicknesses and initial core temperatures.
We show that the cooling of a thick terrestrial magma ocean is a fast process, with the entire mantle becoming significantly more viscous within 20 kyr. Due to the slope difference between the adiabats and the melting curves, the solidification of the molten mantle occurs from the bottom up. In the meantime, a crust forms due to the high surface radiative heat flow, the last drop of fully molten silicate is restricted to the upper mantle. Among the studied parameters, the magma ocean lifetime is primarily governed by its viscosity. Depending on the thermal boundary layer thickness at the core–mantle boundary, the thermal coupling between the core and magma ocean can either insulate the core during the magma ocean solidification and favor a hot core or drain the heat out of the core simultaneously with the cooling of the magma ocean. Reasonable thickness for the thermal boundary layer, however, suggests rapid core cooling until the core–mantle boundary temperature results in a sluggish lowermost mantle. Once the crystallization of the lowermost mantle becomes significant, the efficiency of the core heat loss decreases. Since a hotter liquidus favors crystallization at hotter temperatures, a hotter deep mantle liquidus favors heat retention within the core. In the context of an initially fully molten mantle, it is difficult to envision the formation of a basal magma ocean or to prevent a major heat depletion of the core. As a consequence, an Earth's geodynamo sustained only by core cooling during 4 Gyr seems unlikely and other sources of motion need to be invoked.
•We monitor the thermal and melt fraction evolutions of a cooling magma ocean.•We integrate recent and strong experimental constraints from mineral physics.•The solidification of the molten mantle occurs from the bottom up.•The magma ocean lifetime is primarily governed by its viscosity.•Reasonable thickness for the bottom TBL suggests major heat depletion of the core. |
---|---|
AbstractList | Several episodes of complete melting have probably occurred during the first stages of the Earth's evolution. We have developed a numerical model to monitor the thermal and melt fraction evolutions of a cooling and crystallizing magma ocean from an initially fully molten mantle. For this purpose, we numerically solve the heat equation in 1D spherical geometry, accounting for turbulent heat transfer, and integrating recent and strong experimental constraints from mineral physics. We have explored different initial magma ocean viscosities, compositions, thermal boundary layer thicknesses and initial core temperatures. We show that the cooling of a thick terrestrial magma ocean is a fast process, with the entire mantle becoming significantly more viscous within 20 kyr. Due to the slope difference between the adiabats and the melting curves, the solidification of the molten mantle occurs from the bottom up. In the meantime, a crust forms due to the high surface radiative heat flow, the last drop of fully molten silicate is restricted to the upper mantle. Among the studied parameters, the magma ocean lifetime is primarily governed by its viscosity. Depending on the thermal boundary layer thickness at the core-mantle boundary, the thermal coupling between the core and magma ocean can either insulate the core during the magma ocean solidification and favor a hot core or drain the heat out of the core simultaneously with the cooling of the magma ocean. Reasonable thickness for the thermal boundary layer, however, suggests rapid core cooling until the core-mantle boundary temperature results in a sluggish lowermost mantle. Once the crystallization of the lowermost mantle becomes significant, the efficiency of the core heat loss decreases. Since a hotter liquidus favors crystallization at hotter temperatures, a hotter deep mantle liquidus favors heat retention within the core. In the context of an initially fully molten mantle, it is difficult to envision the formation of a basal magma ocean or to prevent a major heat depletion of the core. As a consequence, an Earth's geodynamo sustained only by core cooling during 4 Gyr seems unlikely and other sources of motion need to be invoked. Several episodes of complete melting have probably occurred during the first stages of the Earth's evolution. We have developed a numerical model to monitor the thermal and melt fraction evolutions of a cooling and crystallizing magma ocean from an initially fully molten mantle. For this purpose, we numerically solve the heat equation in 1D spherical geometry, accounting for turbulent heat transfer, and integrating recent and strong experimental constraints from mineral physics. We have explored different initial magma ocean viscosities, compositions, thermal boundary layer thicknesses and initial core temperatures. We show that the cooling of a thick terrestrial magma ocean is a fast process, with the entire mantle becoming significantly more viscous within 20 kyr. Due to the slope difference between the adiabats and the melting curves, the solidification of the molten mantle occurs from the bottom up. In the meantime, a crust forms due to the high surface radiative heat flow, the last drop of fully molten silicate is restricted to the upper mantle. Among the studied parameters, the magma ocean lifetime is primarily governed by its viscosity. Depending on the thermal boundary layer thickness at the core–mantle boundary, the thermal coupling between the core and magma ocean can either insulate the core during the magma ocean solidification and favor a hot core or drain the heat out of the core simultaneously with the cooling of the magma ocean. Reasonable thickness for the thermal boundary layer, however, suggests rapid core cooling until the core–mantle boundary temperature results in a sluggish lowermost mantle. Once the crystallization of the lowermost mantle becomes significant, the efficiency of the core heat loss decreases. Since a hotter liquidus favors crystallization at hotter temperatures, a hotter deep mantle liquidus favors heat retention within the core. In the context of an initially fully molten mantle, it is difficult to envision the formation of a basal magma ocean or to prevent a major heat depletion of the core. As a consequence, an Earth's geodynamo sustained only by core cooling during 4 Gyr seems unlikely and other sources of motion need to be invoked. •We monitor the thermal and melt fraction evolutions of a cooling magma ocean.•We integrate recent and strong experimental constraints from mineral physics.•The solidification of the molten mantle occurs from the bottom up.•The magma ocean lifetime is primarily governed by its viscosity.•Reasonable thickness for the bottom TBL suggests major heat depletion of the core. |
Author | Samuel, H. Monteux, J. Andrault, D. |
Author_xml | – sequence: 1 givenname: J. orcidid: 0000-0002-1059-6165 surname: Monteux fullname: Monteux, J. email: j.monteux@opgc.univ-bpclermont.fr organization: Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS, IRD, Clermont-Ferrand, France – sequence: 2 givenname: D. surname: Andrault fullname: Andrault, D. organization: Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS, IRD, Clermont-Ferrand, France – sequence: 3 givenname: H. surname: Samuel fullname: Samuel, H. organization: Institut de Recherche en Astrophysique et Planétologie, CNRS, Toulouse, France |
BackLink | https://uca.hal.science/hal-01637420$$DView record in HAL |
BookMark | eNqNkE1LAzEQhoMoWD_-gKc96mHXmWSTpuClFL-g0ItCbyGbnW1TtpuabAX_vVsqHsVThvC8wzvPBTvtQkeM3SAUCKjuNwXtUlvwYS5AFoBwwkYotMwBxfKUjQCQ55rj8pxdpLQBACXVZMRg0WX9mjIXQuu7VRaazGY10S7rKUZKffS2zbZ2tbVZcGS7K3bW2DbR9c97yd6fHt9mL_l88fw6m85zK4XocymkJio1uAqBV02Nyo4RsXQgyqpxFrlrNJZaaK0kEU1qFHXF64ltKqFJXLK74961bc0u-q2NXyZYb16mc3P4G04V45LDJw7s7ZHdxfCxH0qbrU-O2tZ2FPbJoOayHCslx_9AQasS1KQcUH5EXQwpRWp-ayCYg3WzMQfr5mDdgBwawRB6OIZocPPpKZrkPHWOah_J9aYO_q_4N_B0ijs |
CitedBy_id | crossref_primary_10_1029_2023JE007805 crossref_primary_10_1016_j_icarus_2022_115265 crossref_primary_10_1051_0004_6361_201935710 crossref_primary_10_1016_j_earscirev_2024_104847 crossref_primary_10_1016_j_precamres_2021_106178 crossref_primary_10_1029_2018JB015452 crossref_primary_10_1016_j_icarus_2024_116124 crossref_primary_10_1016_j_crte_2018_06_003 crossref_primary_10_1016_j_icarus_2019_113551 crossref_primary_10_1029_2018JB016187 crossref_primary_10_1051_0004_6361_202245636 crossref_primary_10_1038_s41467_017_02503_2 crossref_primary_10_1093_gji_ggaa064 crossref_primary_10_1002_2016JE005250 crossref_primary_10_1016_j_pepi_2017_02_009 crossref_primary_10_1029_2018JB016928 crossref_primary_10_1111_gbi_12433 crossref_primary_10_1038_s43017_022_00264_1 crossref_primary_10_3847_1538_4357_aba8a5 crossref_primary_10_1029_2020JE006724 crossref_primary_10_1016_j_gr_2020_11_001 crossref_primary_10_1016_j_pepi_2022_106925 crossref_primary_10_3847_PSJ_acb2ca crossref_primary_10_3847_1538_4357_ab08ed crossref_primary_10_1002_2017GC006937 crossref_primary_10_1029_2021JB022568 crossref_primary_10_1007_s00159_018_0108_y crossref_primary_10_1089_ast_2017_1674 crossref_primary_10_1126_sciadv_abo1036 crossref_primary_10_1038_s41467_022_35171_y crossref_primary_10_1016_j_epsl_2016_03_020 crossref_primary_10_1016_j_epsl_2019_115934 crossref_primary_10_1016_j_epsl_2020_116520 crossref_primary_10_1029_2021GC010295 crossref_primary_10_3847_1538_4357_acea85 crossref_primary_10_1029_2017JE005512 crossref_primary_10_1029_2023JB027722 crossref_primary_10_1029_2023JE008163 crossref_primary_10_1016_j_epsl_2020_116556 crossref_primary_10_1016_j_pepi_2021_106655 crossref_primary_10_1007_s11214_020_00652_3 crossref_primary_10_1016_j_pepi_2017_11_004 crossref_primary_10_1002_2017GC006902 crossref_primary_10_1002_2017GL076177 crossref_primary_10_1016_j_chemgeo_2018_06_003 crossref_primary_10_1029_2021GL093573 crossref_primary_10_1093_gji_ggz549 crossref_primary_10_1016_j_epsl_2024_118651 crossref_primary_10_1038_s41561_017_0053_9 crossref_primary_10_1029_2022JB025355 crossref_primary_10_1007_s11631_021_00514_x crossref_primary_10_1016_j_icarus_2019_05_016 crossref_primary_10_3390_life11111142 crossref_primary_10_3847_1538_4357_ac8792 crossref_primary_10_1016_j_earscirev_2020_103172 crossref_primary_10_1051_0004_6361_202142142 crossref_primary_10_1051_0004_6361_202142141 |
Cites_doi | 10.1016/S0012-821X(02)01044-0 10.1038/nature12163 10.1016/j.epsl.2010.02.033 10.1006/icar.1999.6201 10.1016/j.epsl.2009.04.021 10.1016/j.epsl.2016.03.020 10.1126/science.1225542 10.1016/j.epsl.2014.03.033 10.1016/j.epsl.2013.07.012 10.1016/0012-821X(95)00123-T 10.1016/j.epsl.2005.10.004 10.1016/j.epsl.2008.12.006 10.1126/science.1216351 10.1016/j.lithos.2014.02.017 10.1016/0031-9201(81)90046-7 10.1029/91JB01203 10.1002/zaac.19291780123 10.1029/JB091iB09p09343 10.1016/S0031-9201(96)03229-3 10.1002/jgrb.50374 10.1038/nature09940 10.1111/j.1945-5100.2009.tb01209.x 10.1006/icar.1998.5956 10.1016/j.epsl.2009.08.020 10.1029/2006JB004364 10.1029/2012JB009403 10.1038/nature11294 10.1126/science.1188327 10.1002/jgre.20068 10.1002/jgre.20109 10.1126/science.1192448 10.1016/j.pepi.2015.02.002 10.1016/0019-1035(92)90104-F 10.1016/j.earscirev.2011.10.001 10.1016/j.epsl.2011.02.006 10.1029/JB084iB03p00999 10.1016/j.epsl.2011.08.014 10.1016/j.pepi.2012.02.010 10.1038/nature06355 10.1016/j.pepi.2012.06.008 10.1016/0019-1035(78)90019-2 10.1016/j.epsl.2005.04.044 10.1038/nature01459 10.1029/2008JB005900 10.2113/gselements.7.1.41 10.1111/j.1945-5100.2003.tb00013.x 10.1016/j.pss.2005.04.011 10.1016/j.epsl.2015.06.023 10.1126/science.1113634 10.1126/science.1226073 10.1016/j.gca.2008.11.047 10.1002/2013GC005128 10.1016/j.lithos.2012.06.010 10.1016/0016-7037(66)90090-1 10.1126/science.260.5109.771 10.1038/ngeo2492 10.1016/j.epsl.2009.11.050 10.1146/annurev.aa.09.090171.001543 10.1029/96JB00170 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7TG KL. 8FD H8D L7M 1XC VOOES |
DOI | 10.1016/j.epsl.2016.05.010 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1385-013X |
EndPage | 149 |
ExternalDocumentID | oai_HAL_hal_01637420v1 10_1016_j_epsl_2016_05_010 S0012821X16302199 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABLJU ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMA IHE IMUCA J1W KOM LY3 LZ4 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SHN SPC SPCBC SSE SSZ T5K TN5 WH7 XSW ZMT ~02 ~G- 1RT 29G AAQXK AAXKI AAYXX ABTAH ABXDB ADIYS ADMUD AFJKZ AI. AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HME HVGLF HZ~ H~9 LPU OHT R2- SEP SEW VH1 VJK VOH WUQ XJT XOL ZKB ZY4 7TG KL. 8FD H8D L7M 1XC VOOES |
ID | FETCH-LOGICAL-a533t-5358ee480cb102bfd16a71114c034bfca12cf814838865eee9d13db2d9afb38e3 |
IEDL.DBID | .~1 |
ISSN | 0012-821X |
IngestDate | Thu Oct 24 06:49:41 EDT 2024 Fri Oct 25 10:49:52 EDT 2024 Sat Oct 26 01:07:57 EDT 2024 Thu Sep 26 18:21:19 EDT 2024 Fri Feb 23 02:34:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | early Earth thermal evolution magma ocean numerical modeling Early Earth numerical modeling 38 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a533t-5358ee480cb102bfd16a71114c034bfca12cf814838865eee9d13db2d9afb38e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1059-6165 0000-0002-9921-4572 |
OpenAccessLink | https://uca.hal.science/hal-01637420 |
PQID | 1808640694 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_01637420v1 proquest_miscellaneous_1825476657 proquest_miscellaneous_1808640694 crossref_primary_10_1016_j_epsl_2016_05_010 elsevier_sciencedirect_doi_10_1016_j_epsl_2016_05_010 |
PublicationCentury | 2000 |
PublicationDate | 20160801 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 20160801 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Earth and planetary science letters |
PublicationYear | 2016 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Mosenfelder, Asimow, Frost, Rubie, Ahrens (br0370) 2009; 114 Shuvalov (br0500) 2009; 44 Ke, Solomatov (br0240) 2009; 114 Monteux, Jellinek, Johnson (br0350) 2011; 310 Labrosse, Hernlund, Coltice (br0290) 2007; 450 Čížková, van den Berg, Spakman, Matyska (br0650) 2012; 200 Ringwood (br0450) 1966; 30 Herzberg, Zhang (br0190) 1996; 101 Stixrude, de Koker, Sun, Mookherjee, Karki (br0550) 2009; 278 Ulvrová, Labrosse, Coltice, Råback, Tackley (br0640) 2012; 206 Moyen, Martin (br0380) 2012; 148 Javoy, Kaminski, Guyot, Andrault, Sanloup, Moreira, Labrosse, Jambon, Agrinier, Davaille, Jaupart (br0200) 2010; 293 Press, Teukolsky, Vetterling, Flannery (br0430) 1993 Fiquet, Auzende, Siebert, Corgne, Bureau, Ozawa, Garbarino (br0160) 2010; 329 Monteux, Ricard, Coltice, Dubuffet, Ulvrova (br0340) 2009; 287 Spiegel (br0540) 1971; 9 Boyet, Carlson (br0070) 2005; 309 Ghosh, McSween (br0170) 1998; 134 Simon, Glatzel (br0510) 1929; 178 Martin, Moyen, Guitreau, Blichert-Toft, Le Pennec (br0320) 2014; 198 Yoshino, Walter, Katsura (br0660) 2003; 422 Kushiro (br0270) 1986; 91 Andrault, Petitgirard, Lo Nigro, Devidal, Veronesi, Garbarino, Mezouar (br0050) 2012; 487 Kleine, Rudge (br0250) 2011; 7 Solomatov (br0530) 2000 Tonks, Melosh (br0610) 1992; 100 Abe (br0010) 1997; 100 Liebske, Schmickler, Terasaki, Poe, Suzuki, Funakoshi, Ando, Rubie (br0310) 2005; 240 Hamano, Abe, Genda (br0180) 2013; 497 Karki, Stixrude (br0220) 2010; 328 Carlson, Lugmair (br0090) 2000 Neumann, Breuer, Spohn (br0410) 2014; 395 Svetsov (br0560) 2005; 53 Nakagawa, Tackley (br0390) 2014; 15 Safronov (br0480) 1978; 33 Tonks, Melosh (br0600) 1990 Andrault, Monteux, Le Bars, Samuel (br0060) 2016; 443 Crank (br0100) 1975 Lebrun, Massol, Chassefière, Davaille, Marcq, Sarda, Leblanc, Brandeis (br0300) 2013; 118 Touboul, Puchtel, Walker (br0630) 2012; 335 Nakajima, Stevenson (br0400) 2015; 427 Mosenfelder, Asimow, Ahrens (br0360) 2007; 112 Labrosse (br0280) 2015; 247 Nomura, Ozawa, Tateno, Hirose, Hernlund, Muto, Ishii, Hiraoka (br0420) 2011; 473 Elkins-Tanton, Zaranek, Parmentier, Hess (br0150) 2005; 236 Solomatov (br0520) 2007; vol. 9 Allègre, Poirier, Humler, Hofmann (br0030) 1995; 134 Ćuk, Stewart (br0110) 2012; 338 Elkins-Tanton, Parmentier, Hess (br0140) 2003; 38 Tosi, Plesa, Breuer (br0620) 2013; 118 Davies, Pozzo, Gubbins, Alfè (br0120) 2015; 8 Dziewonski, Anderson (br0130) 1981; 25 Ricard, Šrámek, Dubuffet (br0440) 2009; 284 Kleine, Touboul, Bourdon, Nimmo, Mezger, Palme, Jacobsen, Yin, Halliday (br0260) 2009; 73 Kaula (br0230) 1979; 84 Rubie, Melosh, Reid, Liebske, Righter (br0470) 2003; 205 Andrault, Bolfan-Casanova, Nigro, Bouhifd, Garbarino, Mezouar (br0040) 2011; 304 Agnor, Canup, Levison (br0020) 1999; 142 Thomas, Liu, Agee, Asimow, Lange (br0590) 2012; 117 Samuel, Tackley, Evonuk (br0490) 2010; 290 Tackley (br0570) 2012; 110 Rizo, Boyet, Blichert-Toft, Rosing (br0460) 2013; 377 Miller, Stolper, Ahrens (br0330) 1991; 96 Canup (br0080) 2012; 338 Karato, Wu (br0210) 1993; 260 Thomas, Asimow (br0580) 2013; 118 Karato (10.1016/j.epsl.2016.05.010_br0210) 1993; 260 Abe (10.1016/j.epsl.2016.05.010_br0010) 1997; 100 Nakajima (10.1016/j.epsl.2016.05.010_br0400) 2015; 427 Čížková (10.1016/j.epsl.2016.05.010_br0650) 2012; 200 Tackley (10.1016/j.epsl.2016.05.010_br0570) 2012; 110 Martin (10.1016/j.epsl.2016.05.010_br0320) 2014; 198 Moyen (10.1016/j.epsl.2016.05.010_br0380) 2012; 148 Boyet (10.1016/j.epsl.2016.05.010_br0070) 2005; 309 Kushiro (10.1016/j.epsl.2016.05.010_br0270) 1986; 91 Herzberg (10.1016/j.epsl.2016.05.010_br0190) 1996; 101 Rubie (10.1016/j.epsl.2016.05.010_br0470) 2003; 205 Labrosse (10.1016/j.epsl.2016.05.010_br0280) 2015; 247 Thomas (10.1016/j.epsl.2016.05.010_br0590) 2012; 117 Andrault (10.1016/j.epsl.2016.05.010_br0060) 2016; 443 Miller (10.1016/j.epsl.2016.05.010_br0330) 1991; 96 Tonks (10.1016/j.epsl.2016.05.010_br0600) 1990 Dziewonski (10.1016/j.epsl.2016.05.010_br0130) 1981; 25 Solomatov (10.1016/j.epsl.2016.05.010_br0520) 2007; vol. 9 Davies (10.1016/j.epsl.2016.05.010_br0120) 2015; 8 Ćuk (10.1016/j.epsl.2016.05.010_br0110) 2012; 338 Labrosse (10.1016/j.epsl.2016.05.010_br0290) 2007; 450 Canup (10.1016/j.epsl.2016.05.010_br0080) 2012; 338 Kleine (10.1016/j.epsl.2016.05.010_br0260) 2009; 73 Allègre (10.1016/j.epsl.2016.05.010_br0030) 1995; 134 Mosenfelder (10.1016/j.epsl.2016.05.010_br0370) 2009; 114 Tosi (10.1016/j.epsl.2016.05.010_br0620) 2013; 118 Monteux (10.1016/j.epsl.2016.05.010_br0350) 2011; 310 Rizo (10.1016/j.epsl.2016.05.010_br0460) 2013; 377 Ke (10.1016/j.epsl.2016.05.010_br0240) 2009; 114 Nomura (10.1016/j.epsl.2016.05.010_br0420) 2011; 473 Svetsov (10.1016/j.epsl.2016.05.010_br0560) 2005; 53 Lebrun (10.1016/j.epsl.2016.05.010_br0300) 2013; 118 Neumann (10.1016/j.epsl.2016.05.010_br0410) 2014; 395 Crank (10.1016/j.epsl.2016.05.010_br0100) 1975 Liebske (10.1016/j.epsl.2016.05.010_br0310) 2005; 240 Ghosh (10.1016/j.epsl.2016.05.010_br0170) 1998; 134 Andrault (10.1016/j.epsl.2016.05.010_br0040) 2011; 304 Ringwood (10.1016/j.epsl.2016.05.010_br0450) 1966; 30 Samuel (10.1016/j.epsl.2016.05.010_br0490) 2010; 290 Kleine (10.1016/j.epsl.2016.05.010_br0250) 2011; 7 Karki (10.1016/j.epsl.2016.05.010_br0220) 2010; 328 Javoy (10.1016/j.epsl.2016.05.010_br0200) 2010; 293 Elkins-Tanton (10.1016/j.epsl.2016.05.010_br0140) 2003; 38 Solomatov (10.1016/j.epsl.2016.05.010_br0530) 2000 Ulvrová (10.1016/j.epsl.2016.05.010_br0640) 2012; 206 Hamano (10.1016/j.epsl.2016.05.010_br0180) 2013; 497 Spiegel (10.1016/j.epsl.2016.05.010_br0540) 1971; 9 Fiquet (10.1016/j.epsl.2016.05.010_br0160) 2010; 329 Mosenfelder (10.1016/j.epsl.2016.05.010_br0360) 2007; 112 Agnor (10.1016/j.epsl.2016.05.010_br0020) 1999; 142 Monteux (10.1016/j.epsl.2016.05.010_br0340) 2009; 287 Press (10.1016/j.epsl.2016.05.010_br0430) 1993 Ricard (10.1016/j.epsl.2016.05.010_br0440) 2009; 284 Stixrude (10.1016/j.epsl.2016.05.010_br0550) 2009; 278 Andrault (10.1016/j.epsl.2016.05.010_br0050) 2012; 487 Thomas (10.1016/j.epsl.2016.05.010_br0580) 2013; 118 Touboul (10.1016/j.epsl.2016.05.010_br0630) 2012; 335 Simon (10.1016/j.epsl.2016.05.010_br0510) 1929; 178 Yoshino (10.1016/j.epsl.2016.05.010_br0660) 2003; 422 Nakagawa (10.1016/j.epsl.2016.05.010_br0390) 2014; 15 Elkins-Tanton (10.1016/j.epsl.2016.05.010_br0150) 2005; 236 Shuvalov (10.1016/j.epsl.2016.05.010_br0500) 2009; 44 Kaula (10.1016/j.epsl.2016.05.010_br0230) 1979; 84 Tonks (10.1016/j.epsl.2016.05.010_br0610) 1992; 100 Carlson (10.1016/j.epsl.2016.05.010_br0090) 2000 Safronov (10.1016/j.epsl.2016.05.010_br0480) 1978; 33 |
References_xml | – volume: 290 start-page: 13 year: 2010 end-page: 19 ident: br0490 article-title: Heat partitioning in terrestrial planets during core formation by negative diapirism publication-title: Earth Planet. Sci. Lett. contributor: fullname: Evonuk – volume: 84 start-page: 999 year: 1979 end-page: 1008 ident: br0230 article-title: Thermal evolution of Earth and Moon growing by planetesimal impacts publication-title: J. Geophys. Res. contributor: fullname: Kaula – volume: 30 start-page: 41 year: 1966 end-page: 104 ident: br0450 article-title: Chemical evolution of the terrestrial planets publication-title: Geochim. Cosmochim. Acta contributor: fullname: Ringwood – volume: 198 start-page: 1 year: 2014 end-page: 13 ident: br0320 article-title: Why Archaean TTG cannot be generated by MORB melting in subduction zones publication-title: Lithos contributor: fullname: Le Pennec – volume: 8 start-page: 678 year: 2015 end-page: 685 ident: br0120 article-title: Constraints from material properties on the dynamics and evolution of Earth's core publication-title: Nat. Geosci. contributor: fullname: Alfè – volume: 205 start-page: 239 year: 2003 end-page: 255 ident: br0470 article-title: Mechanisms of metal–silicate equilibration in the terrestrial magma ocean publication-title: Earth Planet. Sci. Lett. contributor: fullname: Righter – volume: 338 start-page: 1047 year: 2012 ident: br0110 article-title: Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning publication-title: Science contributor: fullname: Stewart – volume: 118 start-page: 1155 year: 2013 end-page: 1176 ident: br0300 article-title: Thermal evolution of an early magma ocean in interaction with the atmosphere publication-title: J. Geophys. Res., Planets contributor: fullname: Brandeis – volume: 260 start-page: 771 year: 1993 end-page: 778 ident: br0210 article-title: Rheology of the upper mantle – a synthesis publication-title: Science contributor: fullname: Wu – volume: 117 year: 2012 ident: br0590 article-title: Multi-technique equation of state for Fe publication-title: J. Geophys. Res., Solid Earth contributor: fullname: Lange – start-page: 25 year: 2000 end-page: 44 ident: br0090 article-title: Timescales of Planetesimal Formation and Differentiation Based on Extinct and Extant Radioisotopes contributor: fullname: Lugmair – volume: 377 start-page: 324 year: 2013 end-page: 335 ident: br0460 article-title: Early mantle dynamics inferred from publication-title: Earth Planet. Sci. Lett. contributor: fullname: Rosing – volume: 200 start-page: 56 year: 2012 end-page: 62 ident: br0650 article-title: The viscosity of Earth's lower mantle inferred from sinking speed of subducted lithosphere publication-title: Phys. Earth Planet. Inter. contributor: fullname: Matyska – volume: 422 start-page: 154 year: 2003 end-page: 157 ident: br0660 article-title: Core formation in planetesimals triggered by permeable flow publication-title: Nature contributor: fullname: Katsura – volume: 7 start-page: 41 year: 2011 end-page: 46 ident: br0250 article-title: Chronometry of meteorites and the formation of the Earth and Moon publication-title: Elements contributor: fullname: Rudge – volume: 38 start-page: 1753 year: 2003 end-page: 1771 ident: br0140 article-title: Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars publication-title: Meteorit. Planet. Sci. contributor: fullname: Hess – volume: 427 start-page: 286 year: 2015 end-page: 295 ident: br0400 article-title: Melting and mixing states of the Earth's mantle after the Moon-forming impact publication-title: Earth Planet. Sci. Lett. contributor: fullname: Stevenson – volume: 53 start-page: 1205 year: 2005 end-page: 1220 ident: br0560 article-title: Numerical simulations of very large impacts on the Earth publication-title: Planet. Space Sci. contributor: fullname: Svetsov – volume: 287 start-page: 353 year: 2009 end-page: 362 ident: br0340 article-title: A model of metal–silicate separation on growing planets publication-title: Earth Planet. Sci. Lett. contributor: fullname: Ulvrova – volume: 33 start-page: 3 year: 1978 end-page: 12 ident: br0480 article-title: The heating of the earth during its formation publication-title: Icarus contributor: fullname: Safronov – volume: 338 start-page: 1052 year: 2012 ident: br0080 article-title: Forming a Moon with an Earth-like composition via a giant impact publication-title: Science contributor: fullname: Canup – volume: 114 year: 2009 ident: br0370 article-title: The MgSiO publication-title: J. Geophys. Res., Solid Earth contributor: fullname: Ahrens – start-page: 323 year: 2000 end-page: 338 ident: br0530 article-title: Fluid dynamics of a terrestrial magma ocean publication-title: Origin of the Earth and Moon contributor: fullname: Solomatov – volume: 335 start-page: 1065 year: 2012 end-page: 1069 ident: br0630 article-title: W-182 evidence for long-term preservation of early mantle differentiation products publication-title: Science contributor: fullname: Walker – volume: 100 start-page: 27 year: 1997 end-page: 39 ident: br0010 article-title: Thermal and chemical evolution of the terrestrial magma ocean publication-title: Phys. Earth Planet. Inter. contributor: fullname: Abe – volume: 142 start-page: 219 year: 1999 end-page: 237 ident: br0020 article-title: On the character and consequences of large impacts in the late stage of terrestrial planet formation publication-title: Icarus contributor: fullname: Levison – year: 1975 ident: br0100 article-title: The Mathematics of Diffusion contributor: fullname: Crank – volume: 9 start-page: 323 year: 1971 ident: br0540 article-title: Convection in stars: I. Basic Boussinesq convection publication-title: Annu. Rev. Astron. Astrophys. contributor: fullname: Spiegel – volume: 395 start-page: 267 year: 2014 end-page: 280 ident: br0410 article-title: Differentiation of Vesta: implications for a shallow magma ocean publication-title: Earth Planet. Sci. Lett. contributor: fullname: Spohn – volume: 44 start-page: 1095 year: 2009 end-page: 1105 ident: br0500 article-title: Atmospheric erosion induced by oblique impacts publication-title: Meteorit. Planet. Sci. contributor: fullname: Shuvalov – volume: 473 start-page: 199 year: 2011 end-page: 202 ident: br0420 article-title: Spin crossover and iron-rich silicate melt in the Earth's deep mantle publication-title: Nature contributor: fullname: Hiraoka – volume: 118 start-page: 5738 year: 2013 end-page: 5752 ident: br0580 article-title: Direct shock compression experiments on premolten forsterite and progress toward a consistent high-pressure equation of state for CaO–MgO–Al publication-title: J. Geophys. Res., Solid Earth contributor: fullname: Asimow – volume: 100 start-page: 326 year: 1992 end-page: 346 ident: br0610 article-title: Core formation by giant impacts publication-title: Icarus contributor: fullname: Melosh – volume: vol. 9 year: 2007 ident: br0520 article-title: Magma Oceans and Primordial Mantle Differentiation publication-title: Treatise of Geophysics contributor: fullname: Solomatov – volume: 304 start-page: 251 year: 2011 end-page: 259 ident: br0040 article-title: Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history publication-title: Earth Planet. Sci. Lett. contributor: fullname: Mezouar – volume: 25 start-page: 297 year: 1981 end-page: 356 ident: br0130 article-title: Preliminary reference Earth model publication-title: Phys. Earth Planet. Inter. contributor: fullname: Anderson – volume: 487 start-page: 354 year: 2012 end-page: 357 ident: br0050 article-title: Solid-liquid iron partitioning in Earth's deep mantle publication-title: Nature contributor: fullname: Mezouar – volume: 293 start-page: 259 year: 2010 end-page: 268 ident: br0200 article-title: The chemical composition of the Earth: enstatite chondrite models publication-title: Earth Planet. Sci. Lett. contributor: fullname: Jaupart – volume: 15 start-page: 619 year: 2014 end-page: 633 ident: br0390 article-title: Influence of combined primordial layering and recycled MORB on the coupled thermal evolution of Earth's mantle and core publication-title: Geochem. Geophys. Geosyst. contributor: fullname: Tackley – volume: 236 start-page: 1 year: 2005 end-page: 12 ident: br0150 article-title: Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn publication-title: Earth Planet. Sci. Lett. contributor: fullname: Hess – volume: 497 start-page: 607 year: 2013 end-page: 610 ident: br0180 article-title: Emergence of two types of terrestrial planet on solidification of magma ocean publication-title: Nature contributor: fullname: Genda – volume: 148 start-page: 312 year: 2012 end-page: 336 ident: br0380 article-title: Forty years of TTG research publication-title: Lithos contributor: fullname: Martin – start-page: 151 year: 1990 end-page: 174 ident: br0600 article-title: The Physics of Crystal Settling and Suspension in a Turbulent Magma Ocean contributor: fullname: Melosh – volume: 134 start-page: 187 year: 1998 end-page: 206 ident: br0170 article-title: A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating publication-title: Icarus contributor: fullname: McSween – volume: 450 start-page: 866 year: 2007 end-page: 869 ident: br0290 article-title: A crystallizing dense magma ocean at the base of the Earth's mantle publication-title: Nature contributor: fullname: Coltice – volume: 112 year: 2007 ident: br0360 article-title: Thermodynamic properties of Mg publication-title: J. Geophys. Res., Solid Earth contributor: fullname: Ahrens – volume: 310 start-page: 349 year: 2011 end-page: 359 ident: br0350 article-title: Why might planets and moons have early dynamos? publication-title: Earth Planet. Sci. Lett. contributor: fullname: Johnson – volume: 134 start-page: 515 year: 1995 end-page: 526 ident: br0030 article-title: The chemical composition of the Earth publication-title: Earth Planet. Sci. Lett. contributor: fullname: Hofmann – volume: 329 start-page: 1516 year: 2010 ident: br0160 article-title: Melting of peridotite to 140 gigapascals publication-title: Science contributor: fullname: Garbarino – volume: 114 start-page: 1 year: 2009 end-page: 12 ident: br0240 article-title: Coupled core–mantle thermal evolution of early Mars publication-title: J. Geophys. Res., Planets contributor: fullname: Solomatov – volume: 284 start-page: 144 year: 2009 end-page: 150 ident: br0440 article-title: A multi-phase model of runaway core–mantle segregation in planetary embryos publication-title: Earth Planet. Sci. Lett. contributor: fullname: Dubuffet – volume: 73 start-page: 5150 year: 2009 end-page: 5188 ident: br0260 article-title: Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets publication-title: Geochim. Cosmochim. Acta contributor: fullname: Halliday – volume: 178 start-page: 309 year: 1929 ident: br0510 article-title: Fusion–pressure curve publication-title: Z. Anorg. Allg. Chem. contributor: fullname: Glatzel – volume: 240 start-page: 589 year: 2005 end-page: 604 ident: br0310 article-title: Viscosity of peridotite liquid up to 13 GPa: implications for magma ocean viscosities [rapid communication] publication-title: Earth Planet. Sci. Lett. contributor: fullname: Rubie – volume: 101 start-page: 8271 year: 1996 end-page: 8295 ident: br0190 article-title: Melting experiments on anhydrous peridotite klb-1: compositions of magmas in the upper mantle and transition zone publication-title: J. Geophys. Res., Solid Earth contributor: fullname: Zhang – volume: 110 start-page: 1 year: 2012 end-page: 25 ident: br0570 article-title: Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects publication-title: Earth-Sci. Rev. contributor: fullname: Tackley – volume: 96 start-page: 11,849 year: 1991 ident: br0330 article-title: The equation of state of a molten komatiite: 2. Application to komatiite petrogenesis and the Hadean Mantle publication-title: J. Geophys. Res. contributor: fullname: Ahrens – volume: 278 start-page: 226 year: 2009 end-page: 232 ident: br0550 article-title: Thermodynamics of silicate liquids in the deep Earth publication-title: Earth Planet. Sci. Lett. contributor: fullname: Karki – volume: 91 start-page: 9343 year: 1986 end-page: 9350 ident: br0270 article-title: Viscosity of partial melts in the upper mantle publication-title: J. Geophys. Res. contributor: fullname: Kushiro – volume: 206 start-page: 51 year: 2012 end-page: 66 ident: br0640 article-title: Numerical modelling of convection interacting with a melting and solidification front: application to the thermal evolution of the basal magma ocean publication-title: Phys. Earth Planet. Inter. contributor: fullname: Tackley – volume: 247 start-page: 36 year: 2015 end-page: 55 ident: br0280 article-title: Thermal evolution of the core with a high thermal conductivity publication-title: Phys. Earth Planet. Inter. contributor: fullname: Labrosse – volume: 309 start-page: 576 year: 2005 end-page: 581 ident: br0070 article-title: Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth publication-title: Science contributor: fullname: Carlson – volume: 328 start-page: 740 year: 2010 ident: br0220 article-title: Viscosity of MgSiO publication-title: Science contributor: fullname: Stixrude – volume: 118 start-page: 1512 year: 2013 end-page: 1528 ident: br0620 article-title: Overturn and evolution of a crystallized magma ocean: a numerical parameter study for Mars publication-title: J. Geophys. Res., Planets contributor: fullname: Breuer – volume: 443 start-page: 195 year: 2016 end-page: 203 ident: br0060 article-title: The deep Earth may not be cooling down publication-title: Earth Planet. Sci. Lett. contributor: fullname: Samuel – year: 1993 ident: br0430 article-title: Numerical Recipes in FORTRAN the Art of Scientific Computing contributor: fullname: Flannery – volume: 205 start-page: 239 year: 2003 ident: 10.1016/j.epsl.2016.05.010_br0470 article-title: Mechanisms of metal–silicate equilibration in the terrestrial magma ocean publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(02)01044-0 contributor: fullname: Rubie – volume: 497 start-page: 607 year: 2013 ident: 10.1016/j.epsl.2016.05.010_br0180 article-title: Emergence of two types of terrestrial planet on solidification of magma ocean publication-title: Nature doi: 10.1038/nature12163 contributor: fullname: Hamano – volume: 293 start-page: 259 year: 2010 ident: 10.1016/j.epsl.2016.05.010_br0200 article-title: The chemical composition of the Earth: enstatite chondrite models publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2010.02.033 contributor: fullname: Javoy – volume: 142 start-page: 219 year: 1999 ident: 10.1016/j.epsl.2016.05.010_br0020 article-title: On the character and consequences of large impacts in the late stage of terrestrial planet formation publication-title: Icarus doi: 10.1006/icar.1999.6201 contributor: fullname: Agnor – volume: 284 start-page: 144 year: 2009 ident: 10.1016/j.epsl.2016.05.010_br0440 article-title: A multi-phase model of runaway core–mantle segregation in planetary embryos publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2009.04.021 contributor: fullname: Ricard – volume: 443 start-page: 195 year: 2016 ident: 10.1016/j.epsl.2016.05.010_br0060 article-title: The deep Earth may not be cooling down publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2016.03.020 contributor: fullname: Andrault – volume: 338 start-page: 1047 year: 2012 ident: 10.1016/j.epsl.2016.05.010_br0110 article-title: Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning publication-title: Science doi: 10.1126/science.1225542 contributor: fullname: Ćuk – volume: 395 start-page: 267 year: 2014 ident: 10.1016/j.epsl.2016.05.010_br0410 article-title: Differentiation of Vesta: implications for a shallow magma ocean publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2014.03.033 contributor: fullname: Neumann – volume: 377 start-page: 324 year: 2013 ident: 10.1016/j.epsl.2016.05.010_br0460 article-title: Early mantle dynamics inferred from 142Nd variations in Archean rocks from southwest Greenland publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2013.07.012 contributor: fullname: Rizo – volume: 134 start-page: 515 year: 1995 ident: 10.1016/j.epsl.2016.05.010_br0030 article-title: The chemical composition of the Earth publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(95)00123-T contributor: fullname: Allègre – volume: 240 start-page: 589 year: 2005 ident: 10.1016/j.epsl.2016.05.010_br0310 article-title: Viscosity of peridotite liquid up to 13 GPa: implications for magma ocean viscosities [rapid communication] publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2005.10.004 contributor: fullname: Liebske – volume: 278 start-page: 226 year: 2009 ident: 10.1016/j.epsl.2016.05.010_br0550 article-title: Thermodynamics of silicate liquids in the deep Earth publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2008.12.006 contributor: fullname: Stixrude – volume: 335 start-page: 1065 issue: 6072 year: 2012 ident: 10.1016/j.epsl.2016.05.010_br0630 article-title: W-182 evidence for long-term preservation of early mantle differentiation products publication-title: Science doi: 10.1126/science.1216351 contributor: fullname: Touboul – volume: 198 start-page: 1 year: 2014 ident: 10.1016/j.epsl.2016.05.010_br0320 article-title: Why Archaean TTG cannot be generated by MORB melting in subduction zones publication-title: Lithos doi: 10.1016/j.lithos.2014.02.017 contributor: fullname: Martin – volume: 25 start-page: 297 year: 1981 ident: 10.1016/j.epsl.2016.05.010_br0130 article-title: Preliminary reference Earth model publication-title: Phys. Earth Planet. Inter. doi: 10.1016/0031-9201(81)90046-7 contributor: fullname: Dziewonski – volume: vol. 9 year: 2007 ident: 10.1016/j.epsl.2016.05.010_br0520 article-title: Magma Oceans and Primordial Mantle Differentiation contributor: fullname: Solomatov – volume: 96 start-page: 11,849 year: 1991 ident: 10.1016/j.epsl.2016.05.010_br0330 article-title: The equation of state of a molten komatiite: 2. Application to komatiite petrogenesis and the Hadean Mantle publication-title: J. Geophys. Res. doi: 10.1029/91JB01203 contributor: fullname: Miller – volume: 178 start-page: 309 year: 1929 ident: 10.1016/j.epsl.2016.05.010_br0510 article-title: Fusion–pressure curve publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.19291780123 contributor: fullname: Simon – volume: 91 start-page: 9343 year: 1986 ident: 10.1016/j.epsl.2016.05.010_br0270 article-title: Viscosity of partial melts in the upper mantle publication-title: J. Geophys. Res. doi: 10.1029/JB091iB09p09343 contributor: fullname: Kushiro – volume: 100 start-page: 27 year: 1997 ident: 10.1016/j.epsl.2016.05.010_br0010 article-title: Thermal and chemical evolution of the terrestrial magma ocean publication-title: Phys. Earth Planet. Inter. doi: 10.1016/S0031-9201(96)03229-3 contributor: fullname: Abe – volume: 118 start-page: 5738 year: 2013 ident: 10.1016/j.epsl.2016.05.010_br0580 article-title: Direct shock compression experiments on premolten forsterite and progress toward a consistent high-pressure equation of state for CaO–MgO–Al2O3–SiO2–FeO liquids publication-title: J. Geophys. Res., Solid Earth doi: 10.1002/jgrb.50374 contributor: fullname: Thomas – volume: 473 start-page: 199 year: 2011 ident: 10.1016/j.epsl.2016.05.010_br0420 article-title: Spin crossover and iron-rich silicate melt in the Earth's deep mantle publication-title: Nature doi: 10.1038/nature09940 contributor: fullname: Nomura – volume: 44 start-page: 1095 year: 2009 ident: 10.1016/j.epsl.2016.05.010_br0500 article-title: Atmospheric erosion induced by oblique impacts publication-title: Meteorit. Planet. Sci. doi: 10.1111/j.1945-5100.2009.tb01209.x contributor: fullname: Shuvalov – start-page: 25 year: 2000 ident: 10.1016/j.epsl.2016.05.010_br0090 contributor: fullname: Carlson – volume: 134 start-page: 187 year: 1998 ident: 10.1016/j.epsl.2016.05.010_br0170 article-title: A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating publication-title: Icarus doi: 10.1006/icar.1998.5956 contributor: fullname: Ghosh – volume: 287 start-page: 353 year: 2009 ident: 10.1016/j.epsl.2016.05.010_br0340 article-title: A model of metal–silicate separation on growing planets publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2009.08.020 contributor: fullname: Monteux – volume: 112 year: 2007 ident: 10.1016/j.epsl.2016.05.010_br0360 article-title: Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite publication-title: J. Geophys. Res., Solid Earth doi: 10.1029/2006JB004364 contributor: fullname: Mosenfelder – volume: 117 year: 2012 ident: 10.1016/j.epsl.2016.05.010_br0590 article-title: Multi-technique equation of state for Fe2SiO4 melt and the density of Fe-bearing silicate melts from 0 to 161 GPa publication-title: J. Geophys. Res., Solid Earth doi: 10.1029/2012JB009403 contributor: fullname: Thomas – volume: 487 start-page: 354 year: 2012 ident: 10.1016/j.epsl.2016.05.010_br0050 article-title: Solid-liquid iron partitioning in Earth's deep mantle publication-title: Nature doi: 10.1038/nature11294 contributor: fullname: Andrault – volume: 328 start-page: 740 year: 2010 ident: 10.1016/j.epsl.2016.05.010_br0220 article-title: Viscosity of MgSiO3 liquid at Earth's mantle conditions: implications for an Early magma ocean publication-title: Science doi: 10.1126/science.1188327 contributor: fullname: Karki – year: 1993 ident: 10.1016/j.epsl.2016.05.010_br0430 contributor: fullname: Press – volume: 118 start-page: 1155 year: 2013 ident: 10.1016/j.epsl.2016.05.010_br0300 article-title: Thermal evolution of an early magma ocean in interaction with the atmosphere publication-title: J. Geophys. Res., Planets doi: 10.1002/jgre.20068 contributor: fullname: Lebrun – volume: 118 start-page: 1512 year: 2013 ident: 10.1016/j.epsl.2016.05.010_br0620 article-title: Overturn and evolution of a crystallized magma ocean: a numerical parameter study for Mars publication-title: J. Geophys. Res., Planets doi: 10.1002/jgre.20109 contributor: fullname: Tosi – volume: 329 start-page: 1516 year: 2010 ident: 10.1016/j.epsl.2016.05.010_br0160 article-title: Melting of peridotite to 140 gigapascals publication-title: Science doi: 10.1126/science.1192448 contributor: fullname: Fiquet – volume: 247 start-page: 36 year: 2015 ident: 10.1016/j.epsl.2016.05.010_br0280 article-title: Thermal evolution of the core with a high thermal conductivity publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2015.02.002 contributor: fullname: Labrosse – volume: 100 start-page: 326 year: 1992 ident: 10.1016/j.epsl.2016.05.010_br0610 article-title: Core formation by giant impacts publication-title: Icarus doi: 10.1016/0019-1035(92)90104-F contributor: fullname: Tonks – volume: 110 start-page: 1 year: 2012 ident: 10.1016/j.epsl.2016.05.010_br0570 article-title: Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2011.10.001 contributor: fullname: Tackley – volume: 304 start-page: 251 year: 2011 ident: 10.1016/j.epsl.2016.05.010_br0040 article-title: Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2011.02.006 contributor: fullname: Andrault – volume: 84 start-page: 999 year: 1979 ident: 10.1016/j.epsl.2016.05.010_br0230 article-title: Thermal evolution of Earth and Moon growing by planetesimal impacts publication-title: J. Geophys. Res. doi: 10.1029/JB084iB03p00999 contributor: fullname: Kaula – volume: 310 start-page: 349 year: 2011 ident: 10.1016/j.epsl.2016.05.010_br0350 article-title: Why might planets and moons have early dynamos? publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2011.08.014 contributor: fullname: Monteux – volume: 200 start-page: 56 year: 2012 ident: 10.1016/j.epsl.2016.05.010_br0650 article-title: The viscosity of Earth's lower mantle inferred from sinking speed of subducted lithosphere publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2012.02.010 contributor: fullname: Čížková – start-page: 323 year: 2000 ident: 10.1016/j.epsl.2016.05.010_br0530 article-title: Fluid dynamics of a terrestrial magma ocean contributor: fullname: Solomatov – volume: 450 start-page: 866 year: 2007 ident: 10.1016/j.epsl.2016.05.010_br0290 article-title: A crystallizing dense magma ocean at the base of the Earth's mantle publication-title: Nature doi: 10.1038/nature06355 contributor: fullname: Labrosse – volume: 206 start-page: 51 year: 2012 ident: 10.1016/j.epsl.2016.05.010_br0640 article-title: Numerical modelling of convection interacting with a melting and solidification front: application to the thermal evolution of the basal magma ocean publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2012.06.008 contributor: fullname: Ulvrová – volume: 33 start-page: 3 year: 1978 ident: 10.1016/j.epsl.2016.05.010_br0480 article-title: The heating of the earth during its formation publication-title: Icarus doi: 10.1016/0019-1035(78)90019-2 contributor: fullname: Safronov – volume: 236 start-page: 1 year: 2005 ident: 10.1016/j.epsl.2016.05.010_br0150 article-title: Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2005.04.044 contributor: fullname: Elkins-Tanton – volume: 422 start-page: 154 year: 2003 ident: 10.1016/j.epsl.2016.05.010_br0660 article-title: Core formation in planetesimals triggered by permeable flow publication-title: Nature doi: 10.1038/nature01459 contributor: fullname: Yoshino – volume: 114 year: 2009 ident: 10.1016/j.epsl.2016.05.010_br0370 article-title: The MgSiO3 system at high pressure: thermodynamic properties of perovskite, postperovskite, and melt from global inversion of shock and static compression data publication-title: J. Geophys. Res., Solid Earth doi: 10.1029/2008JB005900 contributor: fullname: Mosenfelder – volume: 114 start-page: 1 issue: 13 year: 2009 ident: 10.1016/j.epsl.2016.05.010_br0240 article-title: Coupled core–mantle thermal evolution of early Mars publication-title: J. Geophys. Res., Planets contributor: fullname: Ke – volume: 7 start-page: 41 year: 2011 ident: 10.1016/j.epsl.2016.05.010_br0250 article-title: Chronometry of meteorites and the formation of the Earth and Moon publication-title: Elements doi: 10.2113/gselements.7.1.41 contributor: fullname: Kleine – volume: 38 start-page: 1753 year: 2003 ident: 10.1016/j.epsl.2016.05.010_br0140 article-title: Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars publication-title: Meteorit. Planet. Sci. doi: 10.1111/j.1945-5100.2003.tb00013.x contributor: fullname: Elkins-Tanton – volume: 53 start-page: 1205 year: 2005 ident: 10.1016/j.epsl.2016.05.010_br0560 article-title: Numerical simulations of very large impacts on the Earth publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2005.04.011 contributor: fullname: Svetsov – volume: 427 start-page: 286 year: 2015 ident: 10.1016/j.epsl.2016.05.010_br0400 article-title: Melting and mixing states of the Earth's mantle after the Moon-forming impact publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2015.06.023 contributor: fullname: Nakajima – volume: 309 start-page: 576 year: 2005 ident: 10.1016/j.epsl.2016.05.010_br0070 article-title: 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth publication-title: Science doi: 10.1126/science.1113634 contributor: fullname: Boyet – volume: 338 start-page: 1052 year: 2012 ident: 10.1016/j.epsl.2016.05.010_br0080 article-title: Forming a Moon with an Earth-like composition via a giant impact publication-title: Science doi: 10.1126/science.1226073 contributor: fullname: Canup – year: 1975 ident: 10.1016/j.epsl.2016.05.010_br0100 contributor: fullname: Crank – volume: 73 start-page: 5150 year: 2009 ident: 10.1016/j.epsl.2016.05.010_br0260 article-title: Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.11.047 contributor: fullname: Kleine – volume: 15 start-page: 619 year: 2014 ident: 10.1016/j.epsl.2016.05.010_br0390 article-title: Influence of combined primordial layering and recycled MORB on the coupled thermal evolution of Earth's mantle and core publication-title: Geochem. Geophys. Geosyst. doi: 10.1002/2013GC005128 contributor: fullname: Nakagawa – volume: 148 start-page: 312 year: 2012 ident: 10.1016/j.epsl.2016.05.010_br0380 article-title: Forty years of TTG research publication-title: Lithos doi: 10.1016/j.lithos.2012.06.010 contributor: fullname: Moyen – volume: 30 start-page: 41 year: 1966 ident: 10.1016/j.epsl.2016.05.010_br0450 article-title: Chemical evolution of the terrestrial planets publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(66)90090-1 contributor: fullname: Ringwood – start-page: 151 year: 1990 ident: 10.1016/j.epsl.2016.05.010_br0600 contributor: fullname: Tonks – volume: 260 start-page: 771 year: 1993 ident: 10.1016/j.epsl.2016.05.010_br0210 article-title: Rheology of the upper mantle – a synthesis publication-title: Science doi: 10.1126/science.260.5109.771 contributor: fullname: Karato – volume: 8 start-page: 678 year: 2015 ident: 10.1016/j.epsl.2016.05.010_br0120 article-title: Constraints from material properties on the dynamics and evolution of Earth's core publication-title: Nat. Geosci. doi: 10.1038/ngeo2492 contributor: fullname: Davies – volume: 290 start-page: 13 year: 2010 ident: 10.1016/j.epsl.2016.05.010_br0490 article-title: Heat partitioning in terrestrial planets during core formation by negative diapirism publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2009.11.050 contributor: fullname: Samuel – volume: 9 start-page: 323 year: 1971 ident: 10.1016/j.epsl.2016.05.010_br0540 article-title: Convection in stars: I. Basic Boussinesq convection publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev.aa.09.090171.001543 contributor: fullname: Spiegel – volume: 101 start-page: 8271 issue: B4 year: 1996 ident: 10.1016/j.epsl.2016.05.010_br0190 article-title: Melting experiments on anhydrous peridotite klb-1: compositions of magmas in the upper mantle and transition zone publication-title: J. Geophys. Res., Solid Earth doi: 10.1029/96JB00170 contributor: fullname: Herzberg |
SSID | ssj0006569 |
Score | 2.5023062 |
Snippet | Several episodes of complete melting have probably occurred during the first stages of the Earth's evolution. We have developed a numerical model to monitor... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 140 |
SubjectTerms | Cooling early Earth Earth Earth Sciences Liquidus Magma magma ocean Mantle Mathematical models numerical modeling Oceans Petrography Sciences of the Universe Thermal boundary layer thermal evolution |
Title | On the cooling of a deep terrestrial magma ocean |
URI | https://dx.doi.org/10.1016/j.epsl.2016.05.010 https://search.proquest.com/docview/1808640694 https://search.proquest.com/docview/1825476657 https://uca.hal.science/hal-01637420 |
Volume | 448 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61IngRn1gfJYo3Wbu7STbZYynW-qoXC72FJJvVCt0W2wpe_O1O9qEo2IO33ZBlw5fJN9-QmQShMwOkn_CEeEz5zKOUaC9OhfKoBgvicai4crXD9_2oN6A3QzasoU5VC-PSKkvuLzg9Z-uypVWi2ZqORq7GF7g1DIagKMBRxa6Ij4L7A5u--PhO8wC9UkjgAFY-9C4LZ4ocLzudue2HICpO7_T_ck4rzy5L8hdZ5x6ou4k2SumI28XotlDNZtto7Sq_mvcdnvJkTjPbQf5DhkHXYTNxN_I84UmKFU6snWIA0d3F4YwOj9XTWGFwXyrbRYPu5WOn55U3I3gK5NncY4QJa6nwjQaBoNMkiBQH1qLGJ1SnRgWhSQVEOkSIiFlr4yQgiQ6TWKWaCEv2UD2bZHYfYaupFUZrzpShwvAYNIviENTw0DKdRg10XkEip8UBGLLKDHuRDkDpAJQ-kwBgA7EKNfljGiUw9NLvTgHirx-4M6977Tvp2qATgfjdfwsa6KSaAQmLwO1sqMxOFjMZCIjM8hreZX0gFuZuo-ngn4M8ROvurUj_O0L1-evCHoMkmetmbnNNtNq-vu31PwHZ4N0y |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IHoRn7g-o3iTYtskTXpcRK26rheFvYUkTVcFu4u7Cv57J30ICnrwVtKEli_JN9-QmQzAsUXSz0VOA65DHjBGTZAWUgfM4AoSaayF9rnDt_0ke2DXAz6YgbM2F8aHVTbcX3N6xdZNy2mD5un46cnn-CK3xtEAFQUaqjSdhXlUAynuzvnu1U3W_yJklCy1Co5w8-OAJnemDvNy44k_gYiS-gLP8Df7NPvoAyV_8HVlhC5WYLlRj6Rb_-AqzLhyDRYuq-q8H_hUxXPayTqEdyVBaUfsyBflGZJRQTTJnRsTxNGX4_Drjrzo4YsmaMF0uQEPF-f3Z1nQFEcINCq0acApl84xGVqDGsEUeZRogcTFbEiZKayOYltIdHaolAl3zqV5RHMT56kuDJWObsJcOSrdFhBnmJPWGMG1ZdKKFGWLFujXiNhxUyQdOGkhUeP6DgzVBoc9Kw-g8gCqkCsEsAO8RU19m0mFJP3nuCOE-OsD_trrrNtTvg07UXThw_eoA4ftDCjcB_5wQ5du9DZRkUTnrErj_asPusPCnzVt__MnD2Axu7_tqd5V_2YHlvybOhpwF-amr29uDxXK1Ow3K_ATiAPf5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+cooling+of+a+deep+terrestrial+magma+ocean&rft.jtitle=Earth+and+planetary+science+letters&rft.au=Monteux%2C+J&rft.au=Andrault%2C+D&rft.au=Samuel%2C+H&rft.date=2016-08-01&rft.issn=0012-821X&rft.volume=448&rft.spage=140&rft.epage=149&rft_id=info:doi/10.1016%2Fj.epsl.2016.05.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-821X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-821X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-821X&client=summon |