Calour: an Interactive, Microbe-Centric Analysis Tool
Calour allows us to identify interesting microbial patterns and generate novel biological hypotheses by interactively inspecting microbiome studies and incorporating annotation databases and convenient statistical tools. Calour can be used as a first-step tool for microbiome data exploration. Microb...
Saved in:
Published in | mSystems Vol. 4; no. 1 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Calour allows us to identify interesting microbial patterns and generate novel biological hypotheses by interactively inspecting microbiome studies and incorporating annotation databases and convenient statistical tools. Calour can be used as a first-step tool for microbiome data exploration.
Microbiome analyses can be challenging because microbial strains are numerous, and often, confounding factors in the data set are also numerous. Many tools reduce, summarize, and visualize these high-dimensional data to provide insight at the community level. However, they lose the detailed information about each taxon and can be misleading (for example, the well-known horseshoe effect in ordination plots). Thus, multiple methods at different levels of resolution are required to capture the full range of microbial patterns. Here we present Calour, a user-friendly data exploration tool for microbiome analyses. Calour provides a study-centric data model to store and manipulate sample-by-feature tables (with features typically being operational taxonomic units) and their associated metadata. It generates an interactive heatmap, allowing visualization of microbial patterns and exploration using microbial knowledge databases. We demonstrate the use of Calour by exploring publicly available data sets, including the gut and skin microbiota of habitat-switched fire salamander larvae, gut microbiota of
Trichuris muris
-infected mice, skin microbiota of different human body sites, gut microbiota of various ant species, and a metabolome study of mice exposed to intermittent hypoxia and hypercapnia. In these cases, Calour reveals novel patterns and potential contaminants of subgroups of microbes that are otherwise hard to find. Calour is open source under the Berkeley Software Distribution (BSD) license and available from
https://github.com/biocore/calour
.
IMPORTANCE
Calour allows us to identify interesting microbial patterns and generate novel biological hypotheses by interactively inspecting microbiome studies and incorporating annotation databases and convenient statistical tools. Calour can be used as a first-step tool for microbiome data exploration. |
---|---|
AbstractList | Microbiome analyses can be challenging because microbial strains are numerous, and often, confounding factors in the data set are also numerous. Many tools reduce, summarize, and visualize these high-dimensional data to provide insight at the community level. However, they lose the detailed information about each taxon and can be misleading (for example, the well-known horseshoe effect in ordination plots). Thus, multiple methods at different levels of resolution are required to capture the full range of microbial patterns. Here we present Calour, a user-friendly data exploration tool for microbiome analyses. Calour provides a study-centric data model to store and manipulate sample-by-feature tables (with features typically being operational taxonomic units) and their associated metadata. It generates an interactive heatmap, allowing visualization of microbial patterns and exploration using microbial knowledge databases. We demonstrate the use of Calour by exploring publicly available data sets, including the gut and skin microbiota of habitat-switched fire salamander larvae, gut microbiota of Trichuris muris-infected mice, skin microbiota of different human body sites, gut microbiota of various ant species, and a metabolome study of mice exposed to intermittent hypoxia and hypercapnia. In these cases, Calour reveals novel patterns and potential contaminants of subgroups of microbes that are otherwise hard to find. Calour is open source under the Berkeley Software Distribution (BSD) license and available from https://github.com/biocore/calour. IMPORTANCE Calour allows us to identify interesting microbial patterns and generate novel biological hypotheses by interactively inspecting microbiome studies and incorporating annotation databases and convenient statistical tools. Calour can be used as a first-step tool for microbiome data exploration. ABSTRACT Microbiome analyses can be challenging because microbial strains are numerous, and often, confounding factors in the data set are also numerous. Many tools reduce, summarize, and visualize these high-dimensional data to provide insight at the community level. However, they lose the detailed information about each taxon and can be misleading (for example, the well-known horseshoe effect in ordination plots). Thus, multiple methods at different levels of resolution are required to capture the full range of microbial patterns. Here we present Calour, a user-friendly data exploration tool for microbiome analyses. Calour provides a study-centric data model to store and manipulate sample-by-feature tables (with features typically being operational taxonomic units) and their associated metadata. It generates an interactive heatmap, allowing visualization of microbial patterns and exploration using microbial knowledge databases. We demonstrate the use of Calour by exploring publicly available data sets, including the gut and skin microbiota of habitat-switched fire salamander larvae, gut microbiota of Trichuris muris-infected mice, skin microbiota of different human body sites, gut microbiota of various ant species, and a metabolome study of mice exposed to intermittent hypoxia and hypercapnia. In these cases, Calour reveals novel patterns and potential contaminants of subgroups of microbes that are otherwise hard to find. Calour is open source under the Berkeley Software Distribution (BSD) license and available from https://github.com/biocore/calour. IMPORTANCE Calour allows us to identify interesting microbial patterns and generate novel biological hypotheses by interactively inspecting microbiome studies and incorporating annotation databases and convenient statistical tools. Calour can be used as a first-step tool for microbiome data exploration. Microbiome analyses can be challenging because microbial strains are numerous, and often, confounding factors in the data set are also numerous. Many tools reduce, summarize, and visualize these high-dimensional data to provide insight at the community level. However, they lose the detailed information about each taxon and can be misleading (for example, the well-known horseshoe effect in ordination plots). Thus, multiple methods at different levels of resolution are required to capture the full range of microbial patterns. Here we present Calour, a user-friendly data exploration tool for microbiome analyses. Calour provides a study-centric data model to store and manipulate sample-by-feature tables (with features typically being operational taxonomic units) and their associated metadata. It generates an interactive heatmap, allowing visualization of microbial patterns and exploration using microbial knowledge databases. We demonstrate the use of Calour by exploring publicly available data sets, including the gut and skin microbiota of habitat-switched fire salamander larvae, gut microbiota of Trichuris muris-infected mice, skin microbiota of different human body sites, gut microbiota of various ant species, and a metabolome study of mice exposed to intermittent hypoxia and hypercapnia. In these cases, Calour reveals novel patterns and potential contaminants of subgroups of microbes that are otherwise hard to find. Calour is open source under the Berkeley Software Distribution (BSD) license and available from https://github.com/biocore/calour. IMPORTANCE Calour allows us to identify interesting microbial patterns and generate novel biological hypotheses by interactively inspecting microbiome studies and incorporating annotation databases and convenient statistical tools. Calour can be used as a first-step tool for microbiome data exploration.Microbiome analyses can be challenging because microbial strains are numerous, and often, confounding factors in the data set are also numerous. Many tools reduce, summarize, and visualize these high-dimensional data to provide insight at the community level. However, they lose the detailed information about each taxon and can be misleading (for example, the well-known horseshoe effect in ordination plots). Thus, multiple methods at different levels of resolution are required to capture the full range of microbial patterns. Here we present Calour, a user-friendly data exploration tool for microbiome analyses. Calour provides a study-centric data model to store and manipulate sample-by-feature tables (with features typically being operational taxonomic units) and their associated metadata. It generates an interactive heatmap, allowing visualization of microbial patterns and exploration using microbial knowledge databases. We demonstrate the use of Calour by exploring publicly available data sets, including the gut and skin microbiota of habitat-switched fire salamander larvae, gut microbiota of Trichuris muris-infected mice, skin microbiota of different human body sites, gut microbiota of various ant species, and a metabolome study of mice exposed to intermittent hypoxia and hypercapnia. In these cases, Calour reveals novel patterns and potential contaminants of subgroups of microbes that are otherwise hard to find. Calour is open source under the Berkeley Software Distribution (BSD) license and available from https://github.com/biocore/calour. IMPORTANCE Calour allows us to identify interesting microbial patterns and generate novel biological hypotheses by interactively inspecting microbiome studies and incorporating annotation databases and convenient statistical tools. Calour can be used as a first-step tool for microbiome data exploration. Calour allows us to identify interesting microbial patterns and generate novel biological hypotheses by interactively inspecting microbiome studies and incorporating annotation databases and convenient statistical tools. Calour can be used as a first-step tool for microbiome data exploration. Microbiome analyses can be challenging because microbial strains are numerous, and often, confounding factors in the data set are also numerous. Many tools reduce, summarize, and visualize these high-dimensional data to provide insight at the community level. However, they lose the detailed information about each taxon and can be misleading (for example, the well-known horseshoe effect in ordination plots). Thus, multiple methods at different levels of resolution are required to capture the full range of microbial patterns. Here we present Calour, a user-friendly data exploration tool for microbiome analyses. Calour provides a study-centric data model to store and manipulate sample-by-feature tables (with features typically being operational taxonomic units) and their associated metadata. It generates an interactive heatmap, allowing visualization of microbial patterns and exploration using microbial knowledge databases. We demonstrate the use of Calour by exploring publicly available data sets, including the gut and skin microbiota of habitat-switched fire salamander larvae, gut microbiota of Trichuris muris -infected mice, skin microbiota of different human body sites, gut microbiota of various ant species, and a metabolome study of mice exposed to intermittent hypoxia and hypercapnia. In these cases, Calour reveals novel patterns and potential contaminants of subgroups of microbes that are otherwise hard to find. Calour is open source under the Berkeley Software Distribution (BSD) license and available from https://github.com/biocore/calour . IMPORTANCE Calour allows us to identify interesting microbial patterns and generate novel biological hypotheses by interactively inspecting microbiome studies and incorporating annotation databases and convenient statistical tools. Calour can be used as a first-step tool for microbiome data exploration. ABSTRACTMicrobiome analyses can be challenging because microbial strains are numerous, and often, confounding factors in the data set are also numerous. Many tools reduce, summarize, and visualize these high-dimensional data to provide insight at the community level. However, they lose the detailed information about each taxon and can be misleading (for example, the well-known horseshoe effect in ordination plots). Thus, multiple methods at different levels of resolution are required to capture the full range of microbial patterns. Here we present Calour, a user-friendly data exploration tool for microbiome analyses. Calour provides a study-centric data model to store and manipulate sample-by-feature tables (with features typically being operational taxonomic units) and their associated metadata. It generates an interactive heatmap, allowing visualization of microbial patterns and exploration using microbial knowledge databases. We demonstrate the use of Calour by exploring publicly available data sets, including the gut and skin microbiota of habitat-switched fire salamander larvae, gut microbiota of Trichuris muris-infected mice, skin microbiota of different human body sites, gut microbiota of various ant species, and a metabolome study of mice exposed to intermittent hypoxia and hypercapnia. In these cases, Calour reveals novel patterns and potential contaminants of subgroups of microbes that are otherwise hard to find. Calour is open source under the Berkeley Software Distribution (BSD) license and available from https://github.com/biocore/calour.IMPORTANCE Calour allows us to identify interesting microbial patterns and generate novel biological hypotheses by interactively inspecting microbiome studies and incorporating annotation databases and convenient statistical tools. Calour can be used as a first-step tool for microbiome data exploration. Microbiome analyses can be challenging because microbial strains are numerous, and often, confounding factors in the data set are also numerous. Many tools reduce, summarize, and visualize these high-dimensional data to provide insight at the community level. However, they lose the detailed information about each taxon and can be misleading (for example, the well-known horseshoe effect in ordination plots). Thus, multiple methods at different levels of resolution are required to capture the full range of microbial patterns. Here we present Calour, a user-friendly data exploration tool for microbiome analyses. Calour provides a study-centric data model to store and manipulate sample-by-feature tables (with features typically being operational taxonomic units) and their associated metadata. It generates an interactive heatmap, allowing visualization of microbial patterns and exploration using microbial knowledge databases. We demonstrate the use of Calour by exploring publicly available data sets, including the gut and skin microbiota of habitat-switched fire salamander larvae, gut microbiota of Trichuris muris-infected mice, skin microbiota of different human body sites, gut microbiota of various ant species, and a metabolome study of mice exposed to intermittent hypoxia and hypercapnia. In these cases, Calour reveals novel patterns and potential contaminants of subgroups of microbes that are otherwise hard to find. Calour is open source under the Berkeley Software Distribution (BSD) license and available from https://github.com/biocore/calour. Calour allows us to identify interesting microbial patterns and generate novel biological hypotheses by interactively inspecting microbiome studies and incorporating annotation databases and convenient statistical tools. Calour can be used as a first-step tool for microbiome data exploration. |
Author | Tripathi, Anupriya Sanders, Jon Zhu, Qiyun Jiang, Lingjing Bletz, Molly C. McDonald, Daniel Amir, Amnon Morton, James T. Knight, Rob Xu, Zhenjiang Zech Huang, Shi |
Author_xml | – sequence: 1 givenname: Zhenjiang Zech surname: Xu fullname: Xu, Zhenjiang Zech organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China, Department of Pediatrics, University of California San Diego, La Jolla, California, USA – sequence: 2 givenname: Amnon surname: Amir fullname: Amir, Amnon organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA, Sheba Medical Center, Ramat Gan, Israel – sequence: 3 givenname: Jon surname: Sanders fullname: Sanders, Jon organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA – sequence: 4 givenname: Qiyun surname: Zhu fullname: Zhu, Qiyun organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA – sequence: 5 givenname: James T. surname: Morton fullname: Morton, James T. organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA – sequence: 6 givenname: Molly C. surname: Bletz fullname: Bletz, Molly C. organization: Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA – sequence: 7 givenname: Anupriya surname: Tripathi fullname: Tripathi, Anupriya organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA – sequence: 8 givenname: Shi surname: Huang fullname: Huang, Shi organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA – sequence: 9 givenname: Daniel surname: McDonald fullname: McDonald, Daniel organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA – sequence: 10 givenname: Lingjing surname: Jiang fullname: Jiang, Lingjing organization: Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA – sequence: 11 givenname: Rob surname: Knight fullname: Knight, Rob organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA, Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA, Center for Microbiome Innovation, University of California San Diego, San Diego, California, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30701193$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1r3DAQhkVJyVfzA3ophl56qDczkmVZPQTC0rQLCb0kZzG25VSLbaWSN7D_vtrdbJsE2pOE9MyjGb0n7GD0o2XsPcIMkVfnQ1zHyQ5xBsBLnWP1hh1zoXQuQamDZ_sjdhbjEgCwFAq5PmRHAhQganHM5Jx6vwpfMhqzxTjZQM3kHu3n7MY1wdc2n9txCq7JLkfq19HF7Nb7_h1721Ef7dnTesrurr7ezr_n1z--LeaX1zlJwae8VlLWkqiyGlWha9kKKWrVAgooFEjetaJNbYIEzgWUqq1K6iquO2i7riZxyhY7b-tpaR6CGyisjSdntgc-3BsKk2t6ayTUnWiSTpMquJWEorC2k1gCVo0qk-ti53pY1YNtm81c1L-QvrwZ3U9z7x9NKSQqLpPg05Mg-F8rGyczuNjYvqfR-lU0HJUuNOpq89bHV-gyfXL6wS1VFKJMxkTNdhTFgf8lEMwmYLMP2GwDNlilgg_PR_jT-z7OBKgdkLKLMdjONG6iyfnNRK7_rxpfVe7l_675DU3Zxnc |
CitedBy_id | crossref_primary_10_1038_s41598_024_70960_z crossref_primary_10_1016_j_molmet_2024_101985 crossref_primary_10_1080_19490976_2024_2309682 crossref_primary_10_1002_advs_202404277 |
Cites_doi | 10.1186/2047-217X-1-7 10.1111/mec.12611 10.1016/j.nutres.2017.07.006 10.1128/mSystems.00092-17 10.1111/1750-3841.13166 10.1111/j.2517-6161.1995.tb02031.x 10.1093/bioinformatics/btu494 10.1038/ncomms13699 10.1007/s11306-007-0082-2 10.1890/0012-9658(2002)083[3331:RCATHE]2.0.CO;2 10.1002/0471250953.bi0813s47 10.1073/pnas.1522149113 10.1128/mSystems.00166-16 10.1128/mSystems.00191-16 10.1111/j.1467-9876.2005.00475.x 10.1038/nmeth.f.303 10.1186/2047-217X-2-16 10.1371/journal.pone.0151990 10.1128/mSystems.00020-18 10.1371/journal.pcbi.1004957 10.1371/journal.pone.0125495 10.1038/ismej.2015.235 10.1093/icb/icx088 10.1073/pnas.1409644111 10.1128/mSystems.00031-18 10.1186/1752-0509-5-S2-S15 10.1093/gigascience/gix077 10.1128/mSphere.00237-17 10.1093/bioinformatics/btq675 10.1038/nmeth.3869 10.1093/bioinformatics/btw725 10.1038/nbt.3597 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Xu et al. Copyright © 2019 Xu et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2019 Xu et al. 2019 Xu et al. |
Copyright_xml | – notice: Copyright © 2019 Xu et al. – notice: Copyright © 2019 Xu et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2019 Xu et al. 2019 Xu et al. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1128/msystems.00269-18 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Microbiome Analysis with Calour, Xu et al Microbiome Analysis with Calour |
EISSN | 2379-5077 |
Editor | Segata, Nicola |
Editor_xml | – sequence: 1 givenname: Nicola surname: Segata fullname: Segata, Nicola |
ExternalDocumentID | oai_doaj_org_article_50bf3c3d39a742e5a134eef516018c76 PMC6351725 mSystems00269-18 30701193 10_1128_msystems_00269_18 |
Genre | Journal Article |
GeographicLocations | La Jolla California California United States--US Massachusetts |
GeographicLocations_xml | – name: La Jolla California – name: California – name: United States--US – name: Massachusetts |
GrantInformation_xml | – fundername: Thousand Talent Program of China – fundername: HHS | National Institutes of Health (NIH) funderid: https://doi.org/10.13039/100000002 – fundername: Alfred P. Sloan Foundation funderid: https://doi.org/10.13039/100000879 – fundername: ; |
GroupedDBID | 0R~ 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAGFI AAUOK AAYXX ABUWG ACPRK ADBBV AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION EBS EJD FRP FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE KQ8 LK8 M48 M7P M~E O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC RHI RPM RSF UKHRP 3V. ADRAZ NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-a532t-b755b5aa8e91749b5d353b7d013047052fd3d379050223067d86af829f0dffba3 |
IEDL.DBID | AAUOK |
ISSN | 2379-5077 |
IngestDate | Wed Aug 27 01:31:34 EDT 2025 Thu Aug 21 18:01:35 EDT 2025 Fri Jul 11 07:26:17 EDT 2025 Fri Jul 25 11:59:24 EDT 2025 Sun Aug 11 18:20:29 EDT 2024 Thu Jan 02 23:00:44 EST 2025 Tue Jul 01 02:58:51 EDT 2025 Thu Apr 24 23:02:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | heatmap visualization analysis microbiome contamination |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a532t-b755b5aa8e91749b5d353b7d013047052fd3d379050223067d86af829f0dffba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Citation Xu ZZ, Amir A, Sanders J, Zhu Q, Morton JT, Bletz MC, Tripathi A, Huang S, McDonald D, Jiang L, Knight R. 2019. Calour: an interactive, microbe-centric analysis tool. mSystems 4:e00269-18. https://doi.org/10.1128/mSystems.00269-18. Z.Z.X. and A.A. contributed equally to this work. |
OpenAccessLink | https://journals.asm.org/doi/10.1128/msystems.00269-18 |
PMID | 30701193 |
PQID | 2174436172 |
PQPubID | 2045591 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_50bf3c3d39a742e5a134eef516018c76 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6351725 proquest_miscellaneous_2179491986 proquest_journals_2174436172 asm2_journals_10_1128_msystems_00269_18 pubmed_primary_30701193 crossref_citationtrail_10_1128_msystems_00269_18 crossref_primary_10_1128_msystems_00269_18 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC – name: Washington |
PublicationTitle | mSystems |
PublicationTitleAbbrev | mSystems |
PublicationTitleAlternate | mSystems |
PublicationYear | 2019 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 Holm, JB, Sorobetea, D, Kiilerich, P, Ramayo-Caldas, Y, Estellé, J, Ma, T, Madsen, L, Kristiansen, K, Svensson-Frej, M (B13) 2015; 10 Wang, M, Carver, JJ, Phelan, VV, Sanchez, LM, Garg, N, Peng, Y, Nguyen, DD, Watrous, J, Kapono, CA, Luzzatto-Knaan, T, Porto, C, Bouslimani, A, Melnik, AV, Meehan, MJ, Liu, W-T, Crüsemann, M, Boudreau, PD, Esquenazi, E, Sandoval-Calderón, M, Kersten, RD, Pace, LA, Quinn, RA, Duncan, KR, Hsu, C-C, Floros, DJ, Gavilan, RG, Kleigrewe, K, Northen, T, Dutton, RJ, Parrot, D, Carlson, EE, Aigle, B, Michelsen, CF, Jelsbak, L, Sohlenkamp, C, Pevzner, P, Edlund, A, McLean, J, Piel, J, Murphy, BT, Gerwick, L, Liaw, C-C, Yang, Y-L, Humpf, H-U, Maansson, M, Keyzers, RA, Sims, AC, Johnson, AR, Sidebottom, AM, Sedio, BE, Klitgaard, A (B20) 2016; 34 Weiss, S, Van Treuren, W, Lozupone, C, Faust, K, Friedman, J, Deng, Y, Xia, LC, Xu, ZZ, Ursell, L, Alm, EJ, Birmingham, A, Cram, JA, Fuhrman, JA, Raes, J, Sun, F, Zhou, J, Knight, R (B30) 2016; 10 Morton, JT, Toran, L, Edlund, A, Metcalf, JL, Lauber, C, Knight, R (B6) 2017; 2 Eren, AM, Borisy, GG, Huse, SM, Welch, JLM (B3) 2014; 111 Sanders, JG, Powell, S, Kronauer, DJC, Vasconcelos, HL, Frederickson, ME, Pierce, NE (B18) 2014; 23 Sumner, LW, Amberg, A, Barrett, D, Beale, MH, Beger, R, Daykin, CA, Fan, TW-M, Fiehn, O, Goodacre, R, Griffin, JL, Hankemeier, T, Hardy, N, Harnly, J, Higashi, R, Kopka, J, Lane, AN, Lindon, JC, Marriott, P, Nicholls, AW, Reily, MD, Thaden, JJ, Viant, MR (B23) 2007; 3 Gilbert, PB (B26) 2005; 54 McDonald, D, Hyde, E, Debelius, JW, Morton, JT, Gonzalez, A, Ackermann, G, Aksenov, AA, Behsaz, B, Brennan, C, Chen, Y, Goldasich, LD, Dorrestein, PC, Dunn, RR, Fahimipour, AK, Gaffney, J, Gilbert, JA, Gogul, G, Green, JL, Hugenholtz, P, Humphrey, G, Huttenhower, C, Jackson, MA, Janssen, S, Jeste, DV, Jiang, L, Kelley, ST, Knights, D, Kosciolek, T, Ladau, J, Leach, J, Marotz, C, Meleshko, D, Melnik, AV, Metcalf, JL, Mohimani, H, Montassier, E, Navas-Molina, J, Nguyen, TT, Peddada, S, Pevzner, P, Pollard, KS, Rahnavard, G, Robbins-Pianka, A, Sangwan, N, Shorenstein, J, Smarr, L, Song, SJ, Spector, T, Swafford, AD, Thackray, VG, Thompson, LR (B17) 2018; 3 Murakami, Y, Tanabe, S, Suzuki, T (B22) 2016; 81 Vázquez-Baeza, Y, Pirrung, M, Gonzalez, A, Knight, R (B28) 2013; 2 Parks, DH, Tyson, GW, Hugenholtz, P, Beiko, RG (B10) 2014; 30 Amir, A, McDonald, D, Navas-Molina, JA, Kopylova, E, Morton, JT, Xu, ZZ, Kightley, EP, Thompson, LR, Hyde, ER, Gonzalez, A, Knight, R (B1) 2017; 2 Benjamini, Y, Hochberg, Y (B25) 1995; 57 Barberán, A, Velazquez, HC, Jones, S, Fierer, N (B5) 2017; 2 Jiang, L, Amir, A, Morton, JT, Heller, R, Arias-Castro, E, Knight, R (B11) 2017; 2 Zakrzewski, M, Proietti, C, Ellis, JJ, Hasan, S, Brion, M-J, Berger, B, Krause, L (B8) 2017; 33 Su, G, Morris, JH, Demchak, B, Bader, GD (B32) 2014; 47 Welch, JLM, Rossetti, BJ, Rieken, CW, Dewhirst, FE, Borisy, GG (B16) 2016; 113 Caporaso, JG, Kuczynski, J, Stombaugh, J, Bittinger, K, Bushman, FD, Costello, EK, Fierer, N, Peña, AG, Goodrich, JK, Gordon, JI, Huttley, GA, Kelley, ST, Knights, D, Koenig, JE, Ley, RE, Lozupone, CA, McDonald, D, Muegge, BD, Pirrung, M, Reeder, J, Sevinsky, JR, Turnbaugh, PJ, Walters, WA, Widmann, J, Yatsunenko, T, Zaneveld, J, Knight, R (B27) 2010; 7 Tripathi, A, Melnik, AV, Xue, J, Poulsen, O, Meehan, MJ, Humphrey, G, Jiang, L, Ackermann, G, McDonald, D, Zhou, D, Knight, R, Dorrestein, PC, Haddad, GG (B19) 2018; 3 Moitinho-Silva, L, Nielsen, S, Amir, A, Gonzalez, A, Ackermann, GL, Cerrano, C, Astudillo-Garcia, C, Easson, C, Sipkema, D, Liu, F, Steinert, G, Kotoulas, G, McCormack, GP, Feng, G, Bell, JJ, Vicente, J, Björk, JR, Montoya, JM, Olson, JB, Reveillaud, J, Steindler, L, Pineda, M-C, Marra, MV, Ilan, M, Taylor, MW, Polymenakou, P, Erwin, PM, Schupp, PJ, Simister, RL, Knight, R, Thacker, RW, Costa, R, Hill, RT, Lopez-Legentil, S, Dailianis, T, Ravasi, T, Hentschel, U, Li, Z, Webster, NS, Thomas, T (B4) 2017; 6 Sanders, JG, Łukasik, P, Frederickson, ME, Russell, JA, Koga, R, Knight, R, Pierce, NE (B15) 2017; 57 Huson, DH, Beier, S, Flade, I, Górska, A, El-Hadidi, M, Mitra, S, Ruscheweyh, H-J, Tappu, R (B9) 2016; 12 La Frano, MR, Hernandez-Carretero, A, Weber, N, Borkowski, K, Pedersen, TL, Osborn, O, Newman, JW (B21) 2017; 46 Podani, J, Miklós, I (B7) 2002; 83 Perez, GIP, Gao, Z, Jourdain, R, Ramirez, J, Gany, F, Clavaud, C, Demaude, J, Breton, L, Blaser, MJ (B14) 2016; 11 Xia, LC, Steele, JA, Cram, JA, Cardon, ZG, Simmons, SL, Vallino, JJ, Fuhrman, JA, Sun, F (B29) 2011; 5 Bletz, MC, Goedbloed, DJ, Sanchez, E, Reinhardt, T, Tebbe, CC, Bhuju, S, Geffers, R, Jarek, M, Vences, M, Steinfartz, S (B12) 2016; 7 McDonald, D, Clemente, JC, Kuczynski, J, Rideout, JR, Stombaugh, J, Wendel, D, Wilke, A, Huse, S, Hufnagle, J, Meyer, F, Knight, R, Caporaso, JG (B24) 2012; 1 Smoot, ME, Ono, K, Ruscheinski, J, Wang, P-L, Ideker, T (B31) 2011; 27 Callahan, BJ, McMurdie, PJ, Rosen, MJ, Han, AW, Johnson, AJA, Holmes, SP (B2) 2016; 13 |
References_xml | – ident: e_1_3_2_25_2 doi: 10.1186/2047-217X-1-7 – ident: e_1_3_2_19_2 doi: 10.1111/mec.12611 – ident: e_1_3_2_22_2 doi: 10.1016/j.nutres.2017.07.006 – ident: e_1_3_2_12_2 doi: 10.1128/mSystems.00092-17 – ident: e_1_3_2_23_2 doi: 10.1111/1750-3841.13166 – ident: e_1_3_2_26_2 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_3_2_11_2 doi: 10.1093/bioinformatics/btu494 – ident: e_1_3_2_13_2 doi: 10.1038/ncomms13699 – ident: e_1_3_2_24_2 doi: 10.1007/s11306-007-0082-2 – ident: e_1_3_2_8_2 doi: 10.1890/0012-9658(2002)083[3331:RCATHE]2.0.CO;2 – ident: e_1_3_2_33_2 doi: 10.1002/0471250953.bi0813s47 – ident: e_1_3_2_17_2 doi: 10.1073/pnas.1522149113 – ident: e_1_3_2_7_2 doi: 10.1128/mSystems.00166-16 – ident: e_1_3_2_2_2 doi: 10.1128/mSystems.00191-16 – ident: e_1_3_2_27_2 doi: 10.1111/j.1467-9876.2005.00475.x – ident: e_1_3_2_28_2 doi: 10.1038/nmeth.f.303 – ident: e_1_3_2_29_2 doi: 10.1186/2047-217X-2-16 – ident: e_1_3_2_15_2 doi: 10.1371/journal.pone.0151990 – ident: e_1_3_2_20_2 doi: 10.1128/mSystems.00020-18 – ident: e_1_3_2_10_2 doi: 10.1371/journal.pcbi.1004957 – ident: e_1_3_2_14_2 doi: 10.1371/journal.pone.0125495 – ident: e_1_3_2_31_2 doi: 10.1038/ismej.2015.235 – ident: e_1_3_2_16_2 doi: 10.1093/icb/icx088 – ident: e_1_3_2_4_2 doi: 10.1073/pnas.1409644111 – ident: e_1_3_2_18_2 doi: 10.1128/mSystems.00031-18 – ident: e_1_3_2_30_2 doi: 10.1186/1752-0509-5-S2-S15 – ident: e_1_3_2_5_2 doi: 10.1093/gigascience/gix077 – ident: e_1_3_2_6_2 doi: 10.1128/mSphere.00237-17 – ident: e_1_3_2_32_2 doi: 10.1093/bioinformatics/btq675 – ident: e_1_3_2_3_2 doi: 10.1038/nmeth.3869 – ident: e_1_3_2_9_2 doi: 10.1093/bioinformatics/btw725 – ident: e_1_3_2_21_2 doi: 10.1038/nbt.3597 – volume: 7 start-page: 335 year: 2010 end-page: 336 ident: B27 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat Methods doi: 10.1038/nmeth.f.303 – volume: 6 start-page: 1 year: 2017 end-page: 7 ident: B4 article-title: The sponge microbiome project publication-title: Gigascience doi: 10.1093/gigascience/gix077 – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: B25 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 30 start-page: 3123 year: 2014 end-page: 3124 ident: B10 article-title: STAMP: statistical analysis of taxonomic and functional profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu494 – volume: 83 start-page: 3331 year: 2002 end-page: 3343 ident: B7 article-title: Resemblance coefficients and the horseshoe effect in principal coordinates analysis publication-title: Ecology doi: 10.1890/0012-9658(2002)083[3331:RCATHE]2.0.CO;2 – volume: 11 year: 2016 ident: B14 article-title: Body site is a more determinant factor than human population diversity in the healthy skin microbiome publication-title: PLoS One doi: 10.1371/journal.pone.0151990 – volume: 3 start-page: 211 year: 2007 end-page: 221 ident: B23 article-title: Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI) publication-title: Metabolomics doi: 10.1007/s11306-007-0082-2 – volume: 27 start-page: 431 year: 2011 end-page: 432 ident: B31 article-title: Cytoscape 2.8: new features for data integration and network visualization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq675 – volume: 81 start-page: H216 year: 2016 end-page: H222 ident: B22 article-title: High-fat diet-induced intestinal hyperpermeability is associated with increased bile acids in the large intestine of mice publication-title: J Food Sci doi: 10.1111/1750-3841.13166 – volume: 10 start-page: 1669 year: 2016 end-page: 1681 ident: B30 article-title: Correlation detection strategies in microbial data sets vary widely in sensitivity and precision publication-title: ISME J doi: 10.1038/ismej.2015.235 – volume: 2 year: 2017 ident: B11 article-title: Discrete false-discovery rate improves identification of differentially abundant microbes publication-title: mSystems doi: 10.1128/mSystems.00092-17 – volume: 7 start-page: 13699 year: 2016 ident: B12 article-title: Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions publication-title: Nat Commun doi: 10.1038/ncomms13699 – volume: 113 start-page: E791 year: 2016 end-page: E800 ident: B16 article-title: Biogeography of a human oral microbiome at the micron scale publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1522149113 – volume: 47 start-page: 8.13.1 year: 2014 end-page: 8.13.24 ident: B32 article-title: Biological network exploration with Cytoscape 3 publication-title: Curr Protoc Bioinformatics doi: 10.1002/0471250953.bi0813s47 – volume: 2 year: 2017 ident: B6 article-title: Uncovering the horseshoe effect in microbial analyses publication-title: mSystems doi: 10.1128/mSystems.00166-16 – volume: 2 year: 2017 ident: B5 article-title: Hiding in plain sight: mining bacterial species records for phenotypic trait information publication-title: mSphere doi: 10.1128/mSphere.00237-17 – volume: 23 start-page: 1268 year: 2014 end-page: 1283 ident: B18 article-title: Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes publication-title: Mol Ecol doi: 10.1111/mec.12611 – volume: 1 start-page: 7 year: 2012 ident: B24 article-title: The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome publication-title: Gigascience doi: 10.1186/2047-217X-1-7 – volume: 2 start-page: 16 year: 2013 ident: B28 article-title: EMPeror: a tool for visualizing high-throughput microbial community data publication-title: Gigascience doi: 10.1186/2047-217X-2-16 – volume: 13 start-page: 581 year: 2016 end-page: 583 ident: B2 article-title: DADA2: high-resolution sample inference from Illumina amplicon data publication-title: Nat Methods doi: 10.1038/nmeth.3869 – volume: 10 year: 2015 ident: B13 article-title: Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of lactobacilli publication-title: PLoS One doi: 10.1371/journal.pone.0125495 – volume: 12 year: 2016 ident: B9 article-title: MEGAN community edition - interactive exploration and analysis of large-scale microbiome sequencing data publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004957 – volume: 3 year: 2018 ident: B17 article-title: American Gut: an open platform for citizen science microbiome research publication-title: mSystems doi: 10.1128/mSystems.00031-18 – volume: 3 year: 2018 ident: B19 article-title: Intermittent hypoxia and hypercapnia, a hallmark of obstructive sleep apnea, alters the gut microbiome and metabolome publication-title: mSystems doi: 10.1128/mSystems.00020-18 – volume: 46 start-page: 11 year: 2017 end-page: 21 ident: B21 article-title: Diet-induced obesity and weight loss alter bile acid concentrations and bile acid-sensitive gene expression in insulin target tissues of C57BL/6J mice publication-title: Nutr Res doi: 10.1016/j.nutres.2017.07.006 – volume: 34 start-page: 828 year: 2016 end-page: 837 ident: B20 article-title: Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking publication-title: Nat Biotechnol doi: 10.1038/nbt.3597 – volume: 33 start-page: 782 year: 2017 end-page: 783 ident: B8 article-title: Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw725 – volume: 57 start-page: 705 year: 2017 end-page: 722 ident: B15 article-title: Dramatic differences in gut bacterial densities correlate with diet and habitat in rainforest ants publication-title: Integr Comp Biol doi: 10.1093/icb/icx088 – volume: 2 year: 2017 ident: B1 article-title: Deblur rapidly resolves single-nucleotide community sequence patterns publication-title: mSystems doi: 10.1128/mSystems.00191-16 – volume: 5 start-page: S15 year: 2011 ident: B29 article-title: Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates publication-title: BMC Syst Biol doi: 10.1186/1752-0509-5-S2-S15 – volume: 111 start-page: E2875 year: 2014 end-page: E2884 ident: B3 article-title: Oligotyping analysis of the human oral microbiome publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1409644111 – volume: 54 start-page: 143 year: 2005 end-page: 158 ident: B26 article-title: A modified false discovery rate multiple-comparisons procedure for discrete data, applied to human immunodeficiency virus genetics publication-title: J R Stat Soc Ser C Appl Stat doi: 10.1111/j.1467-9876.2005.00475.x |
SSID | ssj0001637129 |
Score | 2.206738 |
Snippet | Calour allows us to identify interesting microbial patterns and generate novel biological hypotheses by interactively inspecting microbiome studies and... Microbiome analyses can be challenging because microbial strains are numerous, and often, confounding factors in the data set are also numerous. Many tools... ABSTRACTMicrobiome analyses can be challenging because microbial strains are numerous, and often, confounding factors in the data set are also numerous. Many... ABSTRACT Microbiome analyses can be challenging because microbial strains are numerous, and often, confounding factors in the data set are also numerous. Many... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | analysis Application programming interface Contaminants contamination Datasets Experiments Exploration heatmap Hypercapnia Hypotheses Hypoxia Intestinal microflora Metadata Methods and Protocols microbiome Microbiomes Microbiota Microorganisms Novel Systems Biology Techniques Ordination Skin Statistical methods Taxonomy Visualization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yEHwRv61fVBAEsaxtmjbxTYcigj4p7K1cmgQHsxM3H_zvvUu7uYnoi6_NJU0ul9xX-B1jJwWATXND8S-nKc1YRVrkNrJ57AxqhEo4yujeP-S3T9ldX_TnSn3Rm7AGHrhhXFfE2vGKG64AvTgrIOGZtU4k6EnIqvBg26jz5pwpH13JeYGarE1j4h3cfWmQkccUQclVREU-OjB-SRf0kYft_8nW_P5kck4H3ayx1dZ4DC-bSa-zJVtvsOWmnOTHJhM9GCLJRQh16CN94C-z8_CeXt1pG_lQ7qAKp0gk4eNoNNxiTzfXj73bqC2LEIHg6STShRBaAEiLrlamtDBccF0YykFmRSxSZ5BdBLyF-pk8AiNzcDJVLjbOaeDbrFOParvLQmMAUJ_b3GiVaRxMghQOtNXIdK5MwE6JR2Ur1-PSuwypLKfcLD03y0QGLJ6ysaxadHEqcjH8rcvZrMtrA63xG_EV7c2MkFCx_QeUlbKVlfIvWQnYwXRnv5ZEPlnGyZAL2PGsGQ8ZZU6gtqN3T6MylSiJQ-w0gjCbCV2aCZrBASsWRGRhqost9eDZA3mjsYe_FXv_sbZ9toK2nGqiQwesM3l7t4doL030kT8an00HEzs priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbplkIvoenTaRpcKBRKTbyW9eqlNCEhBNJTAnszI0tqA7t2mt0c8u8zI2t3u6Xs1RrJeozmKb5h7JMC8JV0FP8KltKMbWGF9IWXZXCoEVoRKKN7-VOeX9cXEzFJAbd5ela5lIlRULu-pRj5EZnONSd9-_32T0FVoyi7mkpoPGFPCbqMuFpN1DrGIrlCfZaSmSiJj2YJB5ziKNIUVOpjBPNZtaGVInj__yzOfx9O_qWJzl6w3WRC5j-GM99jO757yZ4NRSUfXjFxAlMk-ZZDl8d4H0SR9jW_pLd31hcxoHvT5ks8kvyq76ev2fXZ6dXJeZGKIxQgeLUorBLCCgDt0eGqjRWOC26Vo0xkrUpRBccdJ_gt1NLkFzgtIejKhNKFYIG_YaOu7_w7ljsHgFrdS2dNbXEwDVoEsN7awLlxGftMe9Qk7p430XGodDMb0KbnTdzNZqwzVi63sWkTxjiVuphu6_Jl1eV2ANjYRnxMZ7MiJGzs-KG_-9Wkq9aIEqfd4uINoN_vBYx57X0QY_Q9datkxg6WJ7te0pq9MvZx1YxXjfIn0Pn-PtKY2oyNxiHeDoywmgmJTmRBnjG1wSIbU91s6W5-RzhvNPnwt2J_-7Tes-doq5kh-nPARou7e_8B7aGFPYxM_whKYgrp priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals (OA) dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_OE8EX8dvqKRUEQay2TdMkgogeHoewPt3CvZVJk-jBXqu7e-D9986k7erKcvjaTtJkMsl8pb8BeKEQfVk7jn8Fy2nGNrOy9pmv8-BII7QycEZ39rU-nldfTuXpHkzlrUYGrna6dlxPar5cvPn18_IDbfj3ww8w-u35AHq84uBIbbJCX4PrpJgUFzSYjdZ-DLnUQpF6G3ObO1vSwYyr83JLSUUs_10G6L_3KP9STEe34dZoUaYfBxG4A3u-uws3hhqTl_dAHuKCSN6l2KUx_IfxhHudzvgqnvVZjO-etekET5Ke9P3iPsyPPp8cHmdjrYQMpSjXmVVSWomoPflflbHSCSmscpyYrFQuy-CEE4zGRUqb3QSnawy6NCF3IVgUD2C_6zv_CFLnEEnJ-9pZU1nqTKOWAa23NghhXAIvmUfNtFZN9CNK3UzcbCI3m0InkE9sbNoRcpwrXyyuavJq0-THgLdxFfEnXpsNIUNlxwf98lsz7rxG5jTsliZvUFWll1iIyvsgC3JFdavqBA6mlf0zJXbUKsHWXQLPN69p53E6BTvfX0QaU5nCaOri4SAIm5HwSVqQbZyA2hKRraFuv-nOvkd0b7IA6bPy8X9z-QncJCvODHGhA9hfLy_8U7KU1vZZlP_fMyQTQQ priority: 102 providerName: Scholars Portal |
Title | Calour: an Interactive, Microbe-Centric Analysis Tool |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30701193 https://journals.asm.org/doi/10.1128/msystems.00269-18 https://www.proquest.com/docview/2174436172 https://www.proquest.com/docview/2179491986 https://pubmed.ncbi.nlm.nih.gov/PMC6351725 https://doaj.org/article/50bf3c3d39a742e5a134eef516018c76 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1ra9RAcOgDwS_i22g9IgiCGE2yj-z67VpainJVpAf3Lcxmd2nhmhPv-sF_7-zmUU9K8UsC2dnXzM7OazML8LZCdKW0wf_lTQgzNpkR0mVO5t6SRGiEDxHd2Zk8nfMvC7HYATn8C9NjcP0R11cxkD9ydqk-XXXZjdfBCyJ1Vqhd2Bel5sSQ-9Pp_NvXG--KZBVJsj6MeWtd2oOpj3JLHsW0_bfpmv8emfxLBp08hAe98phOO2o_gh3XPoZ73XWSv5-AOMIlgXxOsU2jpw_jZvYhnYVTd8Zl0ZV72aRDJpL0fLVaPoX5yfH50WnWX4uQoWDlJjOVEEYgKkemFtdGWCaYqWyIQfIqF6W3zLKQeIvkc7AIrJLoVal9br03yJ7BXrtq3QtIrUUkee6kNZobakyhEh6NM8Yzpm0C7wKO6oEqdTQZSlUP2KwjNutCJZAPaKybPrt4uORieVeV92OVn11qjbuADwNtRsCQFTt-oDVS90xWi5yG3dDkNZLF7wQWjDvnRUFWp2oqmcDBQNmbKQWbjLOgyCXwZiwmJguRE2zd6jrCaK4LraiJ591CGEcSNs2C1OAEqq0lsjXU7ZL28iIm8iZlj7oVL_8by6_gPilsunMBHcDe5te1e01K0cZMYLdaVJOeD-h9eHz2_cckuhjoOePqD53KD5A |
linkProvider | American Society for Microbiology |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIgQviG8CA4IEQkJES-I4jpEQgsHUsXVPndS3zI5tmNQmY-2E9k_xN3LnJC1FqG97TWzHH_fxuzvnDuCVUMqmuSH_l9MUZqwizXMb2Tx2BjVCxR1FdEdH-fA4-zbhky343f8LQ9cqe5noBbVpKvKR7xB0zhjp249nPyOqGkXR1b6ERksWB_byF5ps8w_7X_B8X6fp3tfx7jDqqgpEirN0EWnBueZKFRYtlUxqbhhnWhgK4WUi5qkzzDDKW4XqjQC1KXLlilS62DinFcNxr8F1VLwxGXtiIlY-nZwJ1J9d8BQl_86syztOfptcRlRaZKDms3RNC_piAf9DuP9e1PxL8-3dgdsdZA0_tTR2F7ZsfQ9utEUsL-8D31VTbPI-VHXo_YvKi9B34Yju-mkbeQfyaRX2-U_CcdNMH8DxlWzbQxjUTW0fQ2iMUogibG60zDQOVqiCO6Wt1o4xaQJ4Q3tUdtw0L72hkhblrM1uPS_9bpZJEUDcb2NZdTnNqbTGdFOXt8suZ21Cj02NP9PZLBtSLm7_oDn_XnasXfIYp13h4qUSWWq5SlhmreMJ2rpFJfIAtvuTXS1pRc4BvFy-RtameI2qbXPh28hMJrLAIR61hLCcCYnqBMF3AGKNRNamuv6mPv3h04cjxMTP8iebp_UCbg7Ho8PycP_o4CncQpwoW8_TNgwW5xf2GWKxhX7uGSCEk6vmuD_odEZa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBe0MZnYIwggZAQUZM4TmIkhNhHtTFWTWiT9pbZsQ2T2mSsndD-tf113DlJSxHq214T27HPd77f3Tl3AG8yKU2cavJ_WUVhxjJQPDWBSUOrUSOU3FJE93CY7p0kX0_56QrcdP_C0LXK7kx0B7WuS_KR9wk6J4z0bd-21yKOdgafL34FVEGKIq1dOY2GRQ7M9W803yaf9ndwr9_G8WD3eHsvaCsMBJKzeBqojHPFpcwNWi2JUFwzzlSmKZyXZCGPrWaaUQ4rVHUErnWeSpvHwobaWiUZjnsHVjOyinqwurU7PPo-9_CkLENt2oZSUQ_0x20WcvLipCKgQiM9ORnHCzrRlQ74H97999rmX3pwsAYPWgDrf2k4bh1WTPUQ7jYlLa8fAd-WI2zy0ZeV77yN0h2oH_xDuvmnTODcyeel32VD8Y_revQYTm6FcE-gV9WVeQa-1lIipjCpViJROFguc26lMkpZxoT24B3RqGhla1I4syXOi3GT63pSOGoWUe5B2JGxKNsM51RoY7Ssy_tZl4smvceyxlu0N7OGlJnbPagvfxStoBc8xGmXuHghsyQ2XEYsMcbyCC3fvMxSDza6nZ0vac7cHryevUZBp-iNrEx95dqIREQixyGeNowwmwkd3BFCcQ-yBRZZmOrim-r8p0smjoATP8ufL5_WK7iH0lZ82x8evID7CBpF44bagN708sq8RGA2VZutBPhwdttC9wetKEv1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calour%3A+an+Interactive%2C+Microbe-Centric+Analysis+Tool&rft.jtitle=mSystems&rft.au=Xu%2C+Zhenjiang+Zech&rft.au=Amir%2C+Amnon&rft.au=Sanders%2C+Jon&rft.au=Zhu%2C+Qiyun&rft.date=2019-01-01&rft.pub=American+Society+for+Microbiology&rft.eissn=2379-5077&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1128%2Fmsystems.00269-18&rft.externalDocID=mSystems00269-18 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5077&client=summon |