Measurement of DNA Concentration as a Normalization Strategy for Metabolomic Data from Adherent Cell Lines

Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and interpretation of such studies depend on appropriate normalization of the data; ineffective or poorly chosen normalization methods can lead to frankl...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 85; no. 20; pp. 9536 - 9542
Main Authors Silva, Leslie P., Lorenzi, Philip L., Purwaha, Preeti, Yong, Valeda, Hawke, David H., Weinstein, John N.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and interpretation of such studies depend on appropriate normalization of the data; ineffective or poorly chosen normalization methods can lead to frankly erroneous conclusions. That is a recurrent challenge because robust, reliable methods for normalization of data from cells have not been established. In this study, we have compared several methods for normalization of metabolomic data from cell extracts. Total protein concentration, cell count, and DNA concentration exhibited strong linear correlations with seeded cell number, but DNA concentration was found to be the most generally useful method for the following reasons: (1) DNA concentration showed the greatest consistency across a range of cell numbers; (2) DNA concentration was the closest to proportional with cell number; (3) DNA samples could be collected from the same dish as the metabolites; and (4) cell lines that grew in clumps were difficult to count accurately. We therefore conclude that DNA concentration is a widely applicable method for normalizing metabolomic data from adherent cell lines.
AbstractList Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and interpretation of such studies depend on appropriate normalization of the data; ineffective or poorly chosen normalization methods can lead to frankly erroneous conclusions. That is a recurrent challenge because robust, reliable methods for normalization of data from cells have not been established. In this study, we have compared several methods for normalization of metabolomic data from cell extracts. Total protein concentration, cell count, and DNA concentration exhibited strong linear correlations with seeded cell number, but DNA concentration was found to be the most generally useful method for the following reasons: (1) DNA concentration showed the greatest consistency across a range of cell numbers; (2) DNA concentration was the closest to proportional with cell number; (3) DNA samples could be collected from the same dish as the metabolites; and (4) cell lines that grew in clumps were difficult to count accurately. We therefore conclude that DNA concentration is a widely applicable method for normalizing metabolomic data from adherent cell lines.
Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and interpretation of such studies depend on appropriate normalization of the data; ineffective or poorly chosen normalization methods can lead to frankly erroneous conclusions. That is a recurrent challenge because robust, reliable methods for normalization of data from cells have not been established. In this study, we have compared several methods for normalization of metabolomic data from cell extracts. Total protein concentration, cell count, and DNA concentration exhibited strong linear correlations with seeded cell number, but DNA concentration was found to be the most generally useful method for the following reasons: (1) DNA concentration showed the greatest consistency across a range of cell numbers; (2) DNA concentration was the closest to proportional with cell number; (3) DNA samples could be collected from the same dish as the metabolites; and (4) cell lines that grew in clumps were difficult to count accurately. We therefore conclude that DNA concentration is a widely applicable method for normalizing metabolomic data from adherent cell lines. [PUBLICATION ABSTRACT]
Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and interpretation of such studies depend on appropriate normalization of the data; ineffective or poorly chosen normalization methods can lead to frankly erroneous conclusions. That is a recurrent challenge because robust, reliable methods for normalization of data from cells have not been established. In this study, we have compared several methods for normalization of metabolomic data from cell extracts. Total protein concentration, cell count, and DNA concentration exhibited strong linear correlations with seeded cell number, but DNA concentration was found to be the most generally useful method for the following reasons: (1) DNA concentration showed the greatest consistency across a range of cell numbers; (2) DNA concentration was the closest to proportional with cell number; (3) DNA samples could be collected from the same dish as the metabolites; and (4) cell lines that grew in clumps were difficult to count accurately. We therefore conclude that DNA concentration is a widely applicable method for normalizing metabolomic data from adherent cell lines.Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and interpretation of such studies depend on appropriate normalization of the data; ineffective or poorly chosen normalization methods can lead to frankly erroneous conclusions. That is a recurrent challenge because robust, reliable methods for normalization of data from cells have not been established. In this study, we have compared several methods for normalization of metabolomic data from cell extracts. Total protein concentration, cell count, and DNA concentration exhibited strong linear correlations with seeded cell number, but DNA concentration was found to be the most generally useful method for the following reasons: (1) DNA concentration showed the greatest consistency across a range of cell numbers; (2) DNA concentration was the closest to proportional with cell number; (3) DNA samples could be collected from the same dish as the metabolites; and (4) cell lines that grew in clumps were difficult to count accurately. We therefore conclude that DNA concentration is a widely applicable method for normalizing metabolomic data from adherent cell lines.
Author Lorenzi, Philip L.
Purwaha, Preeti
Weinstein, John N.
Silva, Leslie P.
Hawke, David H.
Yong, Valeda
AuthorAffiliation University of Texas MD Anderson Cancer Center
Department of Pathology
Department of Bioinformatics and Computational Biology
AuthorAffiliation_xml – name: University of Texas MD Anderson Cancer Center
– name: Department of Pathology
– name: Department of Bioinformatics and Computational Biology
– name: Department of Pathology, University of Texas MD Anderson Cancer Center, 7435 Fannin St., Houston, TX, 77054, United States
– name: Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, United States
Author_xml – sequence: 1
  givenname: Leslie P.
  surname: Silva
  fullname: Silva, Leslie P.
– sequence: 2
  givenname: Philip L.
  surname: Lorenzi
  fullname: Lorenzi, Philip L.
  email: pllorenzi@mdanderson.org
– sequence: 3
  givenname: Preeti
  surname: Purwaha
  fullname: Purwaha, Preeti
– sequence: 4
  givenname: Valeda
  surname: Yong
  fullname: Yong, Valeda
– sequence: 5
  givenname: David H.
  surname: Hawke
  fullname: Hawke, David H.
– sequence: 6
  givenname: John N.
  surname: Weinstein
  fullname: Weinstein, John N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24011029$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URLeFA18AWUJIcAgd27HXuSCtti0gbcsBOFuTxGm9SuxiJ5XKpydpyqoUpHLyn_nN08zTOyB7PnhLyEsG7xlwdoRVDkzK4voJWTDJIVNa8z2yAACR8SXAPjlIaQvAGDD1jOzzfLryYkG2ZxbTEG1nfU9DQ4_PV3QdfDU-I_YueIqJIj0PscPW_Zy_vk41e3FDmxDpme2xDG3oXEWPsUfaxNDRVX1p46S5tm1LN87b9Jw8bbBN9sXdeUi-n558W3_KNl8-fl6vNhlKwftMMSxkLWTd1BIQLVYoykLyafZyqbXOsWmqUqkaSiYLbYWwnNeqbJYIoKw4JB9m3auh7Gw9r9Kaq-g6jDcmoDN_Vry7NBfh2gittOJyFHh7JxDDj8Gm3nQuVeMe6G0YkuGTr8DVMn8UZarggnMQ7HE0V1poYFz9B5qLnAtQ0wCvH6DbMEQ_-ntLacWEnARf3bdk58XvHIzAuxmoYkgp2maHMDBTxswuYyN79ICtXH8bjNFN1_6z483cgVW6N99f3C9-hN3I
CODEN ANCHAM
CitedBy_id crossref_primary_10_1208_s12248_025_01033_w
crossref_primary_10_1016_j_snb_2020_128904
crossref_primary_10_1128_JCM_01894_17
crossref_primary_10_3390_cimb43010021
crossref_primary_10_1172_JCI120654
crossref_primary_10_1038_s41419_019_1498_0
crossref_primary_10_3390_life14091119
crossref_primary_10_1016_j_mito_2020_09_002
crossref_primary_10_1016_j_tice_2017_09_002
crossref_primary_10_1021_ac501451v
crossref_primary_10_1021_acs_jproteome_6b00076
crossref_primary_10_1038_s44319_024_00278_4
crossref_primary_10_1021_ac503359v
crossref_primary_10_3390_metabo11100692
crossref_primary_10_1007_s00216_020_02594_9
crossref_primary_10_1021_acs_analchem_2c03488
crossref_primary_10_1016_j_bioactmat_2022_07_014
crossref_primary_10_1016_j_plipres_2025_101330
crossref_primary_10_1016_j_exger_2019_110691
crossref_primary_10_3390_metabo14050268
crossref_primary_10_1016_j_bpj_2017_12_042
crossref_primary_10_1016_j_jchromb_2023_123787
crossref_primary_10_3389_fphar_2023_1155271
crossref_primary_10_1074_jbc_RA119_011081
crossref_primary_10_1039_D2CC03598G
crossref_primary_10_3390_ijms20235952
crossref_primary_10_4155_bio_14_235
crossref_primary_10_1016_j_aca_2020_12_025
crossref_primary_10_1016_j_exger_2023_112091
crossref_primary_10_1016_j_bbamcr_2020_118741
crossref_primary_10_18632_aging_203858
crossref_primary_10_1038_s41467_018_08015_x
crossref_primary_10_1016_j_chroma_2015_12_007
crossref_primary_10_1099_jgv_0_001593
crossref_primary_10_3390_metabo14070362
crossref_primary_10_3390_metabo13030311
crossref_primary_10_1016_j_aca_2017_03_033
crossref_primary_10_1038_s41416_019_0670_8
crossref_primary_10_3390_biology12040528
crossref_primary_10_1002_jssc_201900934
crossref_primary_10_1007_s10545_018_0154_7
crossref_primary_10_1021_acs_analchem_0c04363
crossref_primary_10_1007_s11306_017_1280_1
crossref_primary_10_1021_acs_analchem_5b01869
crossref_primary_10_1093_bioinformatics_btac355
crossref_primary_10_1016_j_exger_2018_02_012
crossref_primary_10_1016_j_ab_2021_114129
crossref_primary_10_1155_2019_5432792
crossref_primary_10_1007_s11306_014_0634_1
crossref_primary_10_1074_mcp_M113_037309
crossref_primary_10_1002_dta_3184
crossref_primary_10_1089_rej_2022_0043
crossref_primary_10_1152_ajpregu_00421_2015
crossref_primary_10_15171_bi_2019_20
crossref_primary_10_1089_scd_2023_0142
crossref_primary_10_1098_rsta_2015_0363
crossref_primary_10_1016_j_jff_2019_103674
crossref_primary_10_1038_nchembio_2342
crossref_primary_10_1016_j_abb_2014_09_002
crossref_primary_10_1007_s11306_016_1104_8
crossref_primary_10_3390_cancers13122877
crossref_primary_10_1002_cem_3636
crossref_primary_10_1089_scd_2016_0315
crossref_primary_10_1186_s12967_015_0576_z
crossref_primary_10_1016_j_talanta_2019_120260
crossref_primary_10_1186_s12989_016_0160_6
crossref_primary_10_1007_s00204_021_03204_y
crossref_primary_10_1128_mSphere_00097_18
crossref_primary_10_1016_j_aca_2018_04_034
crossref_primary_10_1007_s00018_017_2582_1
crossref_primary_10_1016_j_actbio_2019_02_017
crossref_primary_10_1039_C8NR05946B
crossref_primary_10_1177_1469066720918446
crossref_primary_10_3390_ijms26051976
crossref_primary_10_18705_2782_3806_2024_4_3_268_275
crossref_primary_10_1152_ajpregu_00008_2016
crossref_primary_10_1016_j_xpro_2023_102736
crossref_primary_10_3168_jds_2016_11599
Cites_doi 10.1021/pr060611b
10.1021/ac051437y
10.2174/156802612801319070
10.4161/cc.21411
10.1038/nprot.2011.366
10.1021/ac102981k
10.1002/rcm.3313
10.1021/ac3005567
10.1007/s00216-011-4981-8
10.1371/journal.pone.0019963
10.1007/s00216-012-6412-x
10.1021/ac201065j
10.1371/journal.pone.0041156
10.1038/nprot.2011.335
10.1038/nrm3314
10.1002/jssc.201100532
10.1021/pr400161k
10.1007/s11306-010-0216-9
10.1158/1078-0432.CCR-08-1059
10.1016/j.ab.2010.04.031
10.1007/s00216-012-6039-y
10.1021/ac901536h
10.1021/ac3013362
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright American Chemical Society Oct 15, 2013
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: Copyright American Chemical Society Oct 15, 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
5PM
DOI 10.1021/ac401559v
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Materials Research Database
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 9542
ExternalDocumentID PMC3868625
3105618541
24011029
10_1021_ac401559v
b537399500
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA143883
– fundername: NCI NIH HHS
  grantid: U24 CA143883
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: CA083639,
– fundername: NCI NIH HHS
  grantid: P50 CA083639
– fundername: National Cancer Institute : NCI
  grantid: P50 CA083639 || CA
– fundername: National Cancer Institute : NCI
  grantid: U24 CA143883 || CA
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
53G
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
ABFRP
ABHFT
ABHMW
ABJNI
ABMVS
ABOCM
ABPPZ
ABPTK
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
EBS
ED~
EJD
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LG6
LMP
P2P
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X6Y
XFK
XSW
YZZ
ZCA
~02
AAHBH
AAYXX
ABBLG
ABLBI
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a532t-61a95d35dfd50aaeaca3b9521101b78884affcb66d0b1598e33e22d6bf7a006e3
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Thu Aug 21 14:09:54 EDT 2025
Fri Jul 11 05:56:51 EDT 2025
Thu Jul 10 23:13:54 EDT 2025
Thu Jul 10 21:06:00 EDT 2025
Fri Jul 11 11:49:27 EDT 2025
Mon Jun 30 10:27:31 EDT 2025
Mon Jun 09 02:52:00 EDT 2025
Tue Jul 01 02:48:54 EDT 2025
Thu Apr 24 22:50:41 EDT 2025
Thu Dec 07 09:20:07 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a532t-61a95d35dfd50aaeaca3b9521101b78884affcb66d0b1598e33e22d6bf7a006e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1021/ac401559v
PMID 24011029
PQID 1443861356
PQPubID 45400
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3868625
proquest_miscellaneous_2000302674
proquest_miscellaneous_1692322031
proquest_miscellaneous_1468380126
proquest_miscellaneous_1443423064
proquest_journals_1443861356
pubmed_primary_24011029
crossref_primary_10_1021_ac401559v
crossref_citationtrail_10_1021_ac401559v
acs_journals_10_1021_ac401559v
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-15
PublicationDateYYYYMMDD 2013-10-15
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Barakat K. (ref25/cit25) 2012; 12
Patti G. (ref4/cit4) 2012; 13
Veselkov K. A. (ref8/cit8) 2011; 83
Kotarsky H. (ref10/cit10) 2012; 7
Smith C. A. (ref21/cit21) 2006; 78
Hirayama A. (ref11/cit11) 2012; 404
Spratlin J. L. (ref1/cit1) 2009; 15
Du Y. (ref14/cit14) 2012; 84
ref23/cit23
Dietmair S. (ref9/cit9) 2010; 404
Manna S. K. (ref13/cit13) 2013; 12
Simpson R. (ref17/cit17) 2006
Yanes O. (ref3/cit3) 2011; 83
Sellick C. A. (ref24/cit24) 2011; 6
Vuckovic D. (ref2/cit2) 2012; 403
Patti G. (ref12/cit12) 2011; 34
Cao B. (ref19/cit19) 2011; 400
Plumb R. (ref5/cit5) 2007; 21
Sellick C. A. (ref18/cit18) 2010; 6
ref22/cit22
Fong M. Y. (ref16/cit16) 2011; 5
Bennett M. J. (ref26/cit26) 2012; 11
Rainville P. D. (ref7/cit7) 2007; 6
Evans A. M. (ref15/cit15) 2009; 81
Beltran A. (ref20/cit20) 2012; 84
Dunn W. B. (ref6/cit6) 2011; 6
References_xml – volume: 6
  start-page: 552
  year: 2007
  ident: ref7/cit7
  publication-title: J. Proteome Res.
  doi: 10.1021/pr060611b
– volume: 78
  start-page: 779
  issue: 3
  year: 2006
  ident: ref21/cit21
  publication-title: Anal. Chem.
  doi: 10.1021/ac051437y
– volume: 12
  start-page: 1376
  issue: 12
  year: 2012
  ident: ref25/cit25
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/156802612801319070
– volume: 11
  start-page: 0
  issue: 16
  year: 2012
  ident: ref26/cit26
  publication-title: Cell Cycle
  doi: 10.4161/cc.21411
– volume: 6
  start-page: 1241
  issue: 8
  year: 2011
  ident: ref24/cit24
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.366
– volume: 83
  start-page: 2152
  year: 2011
  ident: ref3/cit3
  publication-title: Anal. Chem.
  doi: 10.1021/ac102981k
– volume: 21
  start-page: 4079
  year: 2007
  ident: ref5/cit5
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.3313
– volume: 84
  start-page: 5838
  year: 2012
  ident: ref20/cit20
  publication-title: Anal. Chem.
  doi: 10.1021/ac3005567
– volume: 400
  start-page: 2983
  year: 2011
  ident: ref19/cit19
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-011-4981-8
– volume: 5
  start-page: e19963
  year: 2011
  ident: ref16/cit16
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019963
– ident: ref22/cit22
– volume: 404
  start-page: 3101
  issue: 10
  year: 2012
  ident: ref11/cit11
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-012-6412-x
– year: 2006
  ident: ref17/cit17
  publication-title: Cold Spring Harbor Protoc.
– ident: ref23/cit23
– volume: 83
  start-page: 5864
  year: 2011
  ident: ref8/cit8
  publication-title: Anal. Chem.
  doi: 10.1021/ac201065j
– volume: 7
  start-page: 1
  issue: 7
  year: 2012
  ident: ref10/cit10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0041156
– volume: 6
  start-page: 1060
  issue: 7
  year: 2011
  ident: ref6/cit6
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.335
– volume: 13
  start-page: 263
  year: 2012
  ident: ref4/cit4
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3314
– volume: 34
  start-page: 3460
  issue: 1
  year: 2011
  ident: ref12/cit12
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201100532
– volume: 12
  start-page: 2269
  year: 2013
  ident: ref13/cit13
  publication-title: J. Proteome Res.
  doi: 10.1021/pr400161k
– volume: 6
  start-page: 427
  year: 2010
  ident: ref18/cit18
  publication-title: Metabolomics
  doi: 10.1007/s11306-010-0216-9
– volume: 15
  start-page: 431
  issue: 2
  year: 2009
  ident: ref1/cit1
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-08-1059
– volume: 404
  start-page: 155
  year: 2010
  ident: ref9/cit9
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2010.04.031
– volume: 403
  start-page: 1523
  year: 2012
  ident: ref2/cit2
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-012-6039-y
– volume: 81
  start-page: 6656
  year: 2009
  ident: ref15/cit15
  publication-title: Anal. Chem.
  doi: 10.1021/ac901536h
– volume: 84
  start-page: 6355
  year: 2012
  ident: ref14/cit14
  publication-title: Anal. Chem.
  doi: 10.1021/ac3013362
SSID ssj0011016
Score 2.425178
Snippet Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9536
SubjectTerms Biochemistry
Biotechnology
Bulging
Cell Adhesion
Cell adhesion & migration
Cell Count
Cell Line, Tumor
Clumps
Consistency
Correlation
Correlation analysis
Counting
Deoxyribonucleic acid
DNA
DNA - analysis
Extraction processes
Humans
Linear Models
Metabolites
metabolomics
Metabolomics - methods
protein content
Strategy
Time Factors
Title Measurement of DNA Concentration as a Normalization Strategy for Metabolomic Data from Adherent Cell Lines
URI http://dx.doi.org/10.1021/ac401559v
https://www.ncbi.nlm.nih.gov/pubmed/24011029
https://www.proquest.com/docview/1443861356
https://www.proquest.com/docview/1443423064
https://www.proquest.com/docview/1468380126
https://www.proquest.com/docview/1692322031
https://www.proquest.com/docview/2000302674
https://pubmed.ncbi.nlm.nih.gov/PMC3868625
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6VcgAOPAqUQKmWx4FLSjLrXdvHyKGqEM0FKvUW7csq1HIQcZDg1zPjFwltw9Ue29qd2d3v87wA3uZWGxWHdDhKQjSMkPfBPHfEWqWXVo1cEuoA2Zk-OYs-nqvzHXhzgwcfx--Ni_hcT3_egtuok5gZ1iT73LsKmH52bfHYi9qVD1p_lI8et9w8eq7gyX_DItfOmeMHMO2ydZrwksujVWWP3O-rxRu3DeEh3G9xppg0hvEIdkK5B3eyrr3bHtxbq0T4GL6d_v1XKBa5mM4mIuOMxrItqyvMUhgxY4RbtKmboq1s-0sQ8BWnoSJ7KjjJWUxNZQQnroiJv-B8wkpkoSjEJ46xfwJnxx--ZCfDtg3D0CiJFZFLkyovlc-9GhlDO7WRNlXMHMeWGXRkSLtWaz-yBI6SIGVA9NrmsaE1HeRT2C0XZXgGQnuHKtBlRSxtHDCx6LxKg0MvY5mrARySnubtMlrOaw85juf9BA7gXafCuWuLmHMvjeI60de96Pemcsd1QgedHax9NYpkQjBH6QG86m-TetiXYsqwWDUyUU3ftsnoRDIC2PYeTQgbkbbWm2WwJq6oY_rWfmOi_YgIkJEeMB1AvGG8vQCXD9-8U369qMuI0xiJzqrn_5vzF3AXuQcIh_GoA9itfqzCS0JilT2sV-IfmBYt1g
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwEN6BcigceJRXoBTBcOCSNpEs2T5mXDoBklxoZ3rzSJY8pfU4DHaYgV_PrvxoUkrhGm9sS1pJ32ftfgvwLjdKy9DFw1HkgmHAaR3M8wxZq7DCyFEWOR8gu1DTk-DTqTxtZXIoFwZfosI7Vf4Q_1JdYHygs4C29_jHbbiDIIQT0ZokX_oTA2KhXXU8OkztVITW_0o7UFZt7kB_wMqr0ZFr283Rg6ZukX9RH2Vysb-qzX7264qG4_-15CHcb1EnmzRu8ghuuXIHtpOu2NsO3FvTJXwM5_PLL4dsmbPDxYQllN9YtiK7TFdMswXh3aJN5GStzu1PhjCYzV2N3lVQyjM71LVmlMbCJvaMsgtrlriiYDOKuH8CJ0cfjpPpsC3KMNRS8Bqppo6lFdLmVo60xnVbCxNL4pFjQ3w60DjWRik7MgiVIieE49wqk4caZ7gTT2GrXJbuOTBlMy4d_iyRs40djwzPrIxdxq0IRS4HsIf9l7aTqkr9eTkfp30HDuB9N5Jp1kqaU2WN4jrTt73pt0bH4zqj3c4d1p4aBCJC0CPVAN70l3F46GRFl265amwCT-ZuslGRIDxw030U4m3OcaH9uw33NJarEJ_1rPHUvkUIz3AceDyAcMOHewMSE9-8Un4986Li2EYkt_LFv_r8NWxPj-ezdPZx8fkl3OVUHYQCfOQubNXfV-4VYrTa7PnJ-RuqLjY3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BkXgceJRXoJQFceCSkux61_YxcogKtAEJKvVm7csqYDkVdpDg1zPjrE1SSuEaT2zv-_s8M98AvCiM0jL26XCU-GgYcdoHi8IiaxVOGDmyiW8DZOdq_yh6eyyPA1GkXBh8iRrvVLdOfFrVp64ICgPjV9pGdMSn3y_DFXLXEdmaZB97rwEx0a5CHjlUOyWh9b_SKWTrzVPoD2h5NkJy7ciZ3YL3_cu2kSZf95aN2bM_z-g4_n9rbsPNgD7ZZDVd7sAlX23Dtawr-rYNN9b0Ce_Cl8PfXxDZomDT-YRllOdYBbFdpmum2ZxwbxkSOlnQu_3BEA6zQ9_gLCsp9ZlNdaMZpbOwiTuhLMOGZb4s2QFF3t-Do9nrT9n-MBRnGGopeIOUU6fSCekKJ0da4_6thUkl8cmxIV4daRxzo5QbGYRMiRfCc-6UKWKNK92L-7BVLSr_EJhylkuPP0vkbmPPE8Otk6m33IlYFHIAu9iHeVhcdd76zfk47ztwAC-70cxtkDanChvleabPe9PTlZ7HeUY73ZRYe2oUiQTBj1QDeNZfxuEhD4uu_GK5solaUneRjUoE4YKL7qMQd3OOG-7fbXhLZ7mK8VkPVrO1bxHCNBwHng4g3pjHvQGJim9eqT6ftOLi2EYkufLRv_r8KVz9MJ3lB2_m7x7DdU5FQijOR-7AVvNt6Z8gVGvMbrs-fwGVozi6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+DNA+concentration+as+a+normalization+strategy+for+metabolomic+data+from+adherent+cell+lines&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Silva%2C+Leslie+P.&rft.au=Lorenzi%2C+Philip+L.&rft.au=Purwaha%2C+Preeti&rft.au=Yong%2C+Valeda&rft.date=2013-10-15&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=85&rft.issue=20&rft_id=info:doi/10.1021%2Fac401559v&rft_id=info%3Apmid%2F24011029&rft.externalDocID=PMC3868625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon