Measurement of DNA Concentration as a Normalization Strategy for Metabolomic Data from Adherent Cell Lines
Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and interpretation of such studies depend on appropriate normalization of the data; ineffective or poorly chosen normalization methods can lead to frankl...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 85; no. 20; pp. 9536 - 9542 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and interpretation of such studies depend on appropriate normalization of the data; ineffective or poorly chosen normalization methods can lead to frankly erroneous conclusions. That is a recurrent challenge because robust, reliable methods for normalization of data from cells have not been established. In this study, we have compared several methods for normalization of metabolomic data from cell extracts. Total protein concentration, cell count, and DNA concentration exhibited strong linear correlations with seeded cell number, but DNA concentration was found to be the most generally useful method for the following reasons: (1) DNA concentration showed the greatest consistency across a range of cell numbers; (2) DNA concentration was the closest to proportional with cell number; (3) DNA samples could be collected from the same dish as the metabolites; and (4) cell lines that grew in clumps were difficult to count accurately. We therefore conclude that DNA concentration is a widely applicable method for normalizing metabolomic data from adherent cell lines. |
---|---|
AbstractList | Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and interpretation of such studies depend on appropriate normalization of the data; ineffective or poorly chosen normalization methods can lead to frankly erroneous conclusions. That is a recurrent challenge because robust, reliable methods for normalization of data from cells have not been established. In this study, we have compared several methods for normalization of metabolomic data from cell extracts. Total protein concentration, cell count, and DNA concentration exhibited strong linear correlations with seeded cell number, but DNA concentration was found to be the most generally useful method for the following reasons: (1) DNA concentration showed the greatest consistency across a range of cell numbers; (2) DNA concentration was the closest to proportional with cell number; (3) DNA samples could be collected from the same dish as the metabolites; and (4) cell lines that grew in clumps were difficult to count accurately. We therefore conclude that DNA concentration is a widely applicable method for normalizing metabolomic data from adherent cell lines. Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and interpretation of such studies depend on appropriate normalization of the data; ineffective or poorly chosen normalization methods can lead to frankly erroneous conclusions. That is a recurrent challenge because robust, reliable methods for normalization of data from cells have not been established. In this study, we have compared several methods for normalization of metabolomic data from cell extracts. Total protein concentration, cell count, and DNA concentration exhibited strong linear correlations with seeded cell number, but DNA concentration was found to be the most generally useful method for the following reasons: (1) DNA concentration showed the greatest consistency across a range of cell numbers; (2) DNA concentration was the closest to proportional with cell number; (3) DNA samples could be collected from the same dish as the metabolites; and (4) cell lines that grew in clumps were difficult to count accurately. We therefore conclude that DNA concentration is a widely applicable method for normalizing metabolomic data from adherent cell lines. [PUBLICATION ABSTRACT] Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and interpretation of such studies depend on appropriate normalization of the data; ineffective or poorly chosen normalization methods can lead to frankly erroneous conclusions. That is a recurrent challenge because robust, reliable methods for normalization of data from cells have not been established. In this study, we have compared several methods for normalization of metabolomic data from cell extracts. Total protein concentration, cell count, and DNA concentration exhibited strong linear correlations with seeded cell number, but DNA concentration was found to be the most generally useful method for the following reasons: (1) DNA concentration showed the greatest consistency across a range of cell numbers; (2) DNA concentration was the closest to proportional with cell number; (3) DNA samples could be collected from the same dish as the metabolites; and (4) cell lines that grew in clumps were difficult to count accurately. We therefore conclude that DNA concentration is a widely applicable method for normalizing metabolomic data from adherent cell lines.Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and interpretation of such studies depend on appropriate normalization of the data; ineffective or poorly chosen normalization methods can lead to frankly erroneous conclusions. That is a recurrent challenge because robust, reliable methods for normalization of data from cells have not been established. In this study, we have compared several methods for normalization of metabolomic data from cell extracts. Total protein concentration, cell count, and DNA concentration exhibited strong linear correlations with seeded cell number, but DNA concentration was found to be the most generally useful method for the following reasons: (1) DNA concentration showed the greatest consistency across a range of cell numbers; (2) DNA concentration was the closest to proportional with cell number; (3) DNA samples could be collected from the same dish as the metabolites; and (4) cell lines that grew in clumps were difficult to count accurately. We therefore conclude that DNA concentration is a widely applicable method for normalizing metabolomic data from adherent cell lines. |
Author | Lorenzi, Philip L. Purwaha, Preeti Weinstein, John N. Silva, Leslie P. Hawke, David H. Yong, Valeda |
AuthorAffiliation | University of Texas MD Anderson Cancer Center Department of Pathology Department of Bioinformatics and Computational Biology |
AuthorAffiliation_xml | – name: University of Texas MD Anderson Cancer Center – name: Department of Pathology – name: Department of Bioinformatics and Computational Biology – name: Department of Pathology, University of Texas MD Anderson Cancer Center, 7435 Fannin St., Houston, TX, 77054, United States – name: Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, United States |
Author_xml | – sequence: 1 givenname: Leslie P. surname: Silva fullname: Silva, Leslie P. – sequence: 2 givenname: Philip L. surname: Lorenzi fullname: Lorenzi, Philip L. email: pllorenzi@mdanderson.org – sequence: 3 givenname: Preeti surname: Purwaha fullname: Purwaha, Preeti – sequence: 4 givenname: Valeda surname: Yong fullname: Yong, Valeda – sequence: 5 givenname: David H. surname: Hawke fullname: Hawke, David H. – sequence: 6 givenname: John N. surname: Weinstein fullname: Weinstein, John N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24011029$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URLeFA18AWUJIcAgd27HXuSCtti0gbcsBOFuTxGm9SuxiJ5XKpydpyqoUpHLyn_nN08zTOyB7PnhLyEsG7xlwdoRVDkzK4voJWTDJIVNa8z2yAACR8SXAPjlIaQvAGDD1jOzzfLryYkG2ZxbTEG1nfU9DQ4_PV3QdfDU-I_YueIqJIj0PscPW_Zy_vk41e3FDmxDpme2xDG3oXEWPsUfaxNDRVX1p46S5tm1LN87b9Jw8bbBN9sXdeUi-n558W3_KNl8-fl6vNhlKwftMMSxkLWTd1BIQLVYoykLyafZyqbXOsWmqUqkaSiYLbYWwnNeqbJYIoKw4JB9m3auh7Gw9r9Kaq-g6jDcmoDN_Vry7NBfh2gittOJyFHh7JxDDj8Gm3nQuVeMe6G0YkuGTr8DVMn8UZarggnMQ7HE0V1poYFz9B5qLnAtQ0wCvH6DbMEQ_-ntLacWEnARf3bdk58XvHIzAuxmoYkgp2maHMDBTxswuYyN79ICtXH8bjNFN1_6z483cgVW6N99f3C9-hN3I |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1208_s12248_025_01033_w crossref_primary_10_1016_j_snb_2020_128904 crossref_primary_10_1128_JCM_01894_17 crossref_primary_10_3390_cimb43010021 crossref_primary_10_1172_JCI120654 crossref_primary_10_1038_s41419_019_1498_0 crossref_primary_10_3390_life14091119 crossref_primary_10_1016_j_mito_2020_09_002 crossref_primary_10_1016_j_tice_2017_09_002 crossref_primary_10_1021_ac501451v crossref_primary_10_1021_acs_jproteome_6b00076 crossref_primary_10_1038_s44319_024_00278_4 crossref_primary_10_1021_ac503359v crossref_primary_10_3390_metabo11100692 crossref_primary_10_1007_s00216_020_02594_9 crossref_primary_10_1021_acs_analchem_2c03488 crossref_primary_10_1016_j_bioactmat_2022_07_014 crossref_primary_10_1016_j_plipres_2025_101330 crossref_primary_10_1016_j_exger_2019_110691 crossref_primary_10_3390_metabo14050268 crossref_primary_10_1016_j_bpj_2017_12_042 crossref_primary_10_1016_j_jchromb_2023_123787 crossref_primary_10_3389_fphar_2023_1155271 crossref_primary_10_1074_jbc_RA119_011081 crossref_primary_10_1039_D2CC03598G crossref_primary_10_3390_ijms20235952 crossref_primary_10_4155_bio_14_235 crossref_primary_10_1016_j_aca_2020_12_025 crossref_primary_10_1016_j_exger_2023_112091 crossref_primary_10_1016_j_bbamcr_2020_118741 crossref_primary_10_18632_aging_203858 crossref_primary_10_1038_s41467_018_08015_x crossref_primary_10_1016_j_chroma_2015_12_007 crossref_primary_10_1099_jgv_0_001593 crossref_primary_10_3390_metabo14070362 crossref_primary_10_3390_metabo13030311 crossref_primary_10_1016_j_aca_2017_03_033 crossref_primary_10_1038_s41416_019_0670_8 crossref_primary_10_3390_biology12040528 crossref_primary_10_1002_jssc_201900934 crossref_primary_10_1007_s10545_018_0154_7 crossref_primary_10_1021_acs_analchem_0c04363 crossref_primary_10_1007_s11306_017_1280_1 crossref_primary_10_1021_acs_analchem_5b01869 crossref_primary_10_1093_bioinformatics_btac355 crossref_primary_10_1016_j_exger_2018_02_012 crossref_primary_10_1016_j_ab_2021_114129 crossref_primary_10_1155_2019_5432792 crossref_primary_10_1007_s11306_014_0634_1 crossref_primary_10_1074_mcp_M113_037309 crossref_primary_10_1002_dta_3184 crossref_primary_10_1089_rej_2022_0043 crossref_primary_10_1152_ajpregu_00421_2015 crossref_primary_10_15171_bi_2019_20 crossref_primary_10_1089_scd_2023_0142 crossref_primary_10_1098_rsta_2015_0363 crossref_primary_10_1016_j_jff_2019_103674 crossref_primary_10_1038_nchembio_2342 crossref_primary_10_1016_j_abb_2014_09_002 crossref_primary_10_1007_s11306_016_1104_8 crossref_primary_10_3390_cancers13122877 crossref_primary_10_1002_cem_3636 crossref_primary_10_1089_scd_2016_0315 crossref_primary_10_1186_s12967_015_0576_z crossref_primary_10_1016_j_talanta_2019_120260 crossref_primary_10_1186_s12989_016_0160_6 crossref_primary_10_1007_s00204_021_03204_y crossref_primary_10_1128_mSphere_00097_18 crossref_primary_10_1016_j_aca_2018_04_034 crossref_primary_10_1007_s00018_017_2582_1 crossref_primary_10_1016_j_actbio_2019_02_017 crossref_primary_10_1039_C8NR05946B crossref_primary_10_1177_1469066720918446 crossref_primary_10_3390_ijms26051976 crossref_primary_10_18705_2782_3806_2024_4_3_268_275 crossref_primary_10_1152_ajpregu_00008_2016 crossref_primary_10_1016_j_xpro_2023_102736 crossref_primary_10_3168_jds_2016_11599 |
Cites_doi | 10.1021/pr060611b 10.1021/ac051437y 10.2174/156802612801319070 10.4161/cc.21411 10.1038/nprot.2011.366 10.1021/ac102981k 10.1002/rcm.3313 10.1021/ac3005567 10.1007/s00216-011-4981-8 10.1371/journal.pone.0019963 10.1007/s00216-012-6412-x 10.1021/ac201065j 10.1371/journal.pone.0041156 10.1038/nprot.2011.335 10.1038/nrm3314 10.1002/jssc.201100532 10.1021/pr400161k 10.1007/s11306-010-0216-9 10.1158/1078-0432.CCR-08-1059 10.1016/j.ab.2010.04.031 10.1007/s00216-012-6039-y 10.1021/ac901536h 10.1021/ac3013362 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American
Chemical Society Copyright American Chemical Society Oct 15, 2013 |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: Copyright American Chemical Society Oct 15, 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 5PM |
DOI | 10.1021/ac401559v |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 9542 |
ExternalDocumentID | PMC3868625 3105618541 24011029 10_1021_ac401559v b537399500 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA143883 – fundername: NCI NIH HHS grantid: U24 CA143883 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: NCI NIH HHS grantid: CA083639, – fundername: NCI NIH HHS grantid: P50 CA083639 – fundername: National Cancer Institute : NCI grantid: P50 CA083639 || CA – fundername: National Cancer Institute : NCI grantid: U24 CA143883 || CA |
GroupedDBID | --- -DZ -~X .DC .K2 23M 4.4 53G 55A 5GY 5RE 5VS 6J9 7~N 85S AABXI ABFRP ABHFT ABHMW ABJNI ABMVS ABOCM ABPPZ ABPTK ABQRX ABUCX ACBEA ACGFO ACGFS ACGOD ACIWK ACJ ACKOT ACNCT ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L EBS ED~ EJD F5P GGK GNL IH9 IHE JG~ KZ1 LG6 LMP P2P PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X6Y XFK XSW YZZ ZCA ~02 AAHBH AAYXX ABBLG ABLBI CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a532t-61a95d35dfd50aaeaca3b9521101b78884affcb66d0b1598e33e22d6bf7a006e3 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Thu Aug 21 14:09:54 EDT 2025 Fri Jul 11 05:56:51 EDT 2025 Thu Jul 10 23:13:54 EDT 2025 Thu Jul 10 21:06:00 EDT 2025 Fri Jul 11 11:49:27 EDT 2025 Mon Jun 30 10:27:31 EDT 2025 Mon Jun 09 02:52:00 EDT 2025 Tue Jul 01 02:48:54 EDT 2025 Thu Apr 24 22:50:41 EDT 2025 Thu Dec 07 09:20:07 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a532t-61a95d35dfd50aaeaca3b9521101b78884affcb66d0b1598e33e22d6bf7a006e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1021/ac401559v |
PMID | 24011029 |
PQID | 1443861356 |
PQPubID | 45400 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3868625 proquest_miscellaneous_2000302674 proquest_miscellaneous_1692322031 proquest_miscellaneous_1468380126 proquest_miscellaneous_1443423064 proquest_journals_1443861356 pubmed_primary_24011029 crossref_primary_10_1021_ac401559v crossref_citationtrail_10_1021_ac401559v acs_journals_10_1021_ac401559v |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-15 |
PublicationDateYYYYMMDD | 2013-10-15 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Barakat K. (ref25/cit25) 2012; 12 Patti G. (ref4/cit4) 2012; 13 Veselkov K. A. (ref8/cit8) 2011; 83 Kotarsky H. (ref10/cit10) 2012; 7 Smith C. A. (ref21/cit21) 2006; 78 Hirayama A. (ref11/cit11) 2012; 404 Spratlin J. L. (ref1/cit1) 2009; 15 Du Y. (ref14/cit14) 2012; 84 ref23/cit23 Dietmair S. (ref9/cit9) 2010; 404 Manna S. K. (ref13/cit13) 2013; 12 Simpson R. (ref17/cit17) 2006 Yanes O. (ref3/cit3) 2011; 83 Sellick C. A. (ref24/cit24) 2011; 6 Vuckovic D. (ref2/cit2) 2012; 403 Patti G. (ref12/cit12) 2011; 34 Cao B. (ref19/cit19) 2011; 400 Plumb R. (ref5/cit5) 2007; 21 Sellick C. A. (ref18/cit18) 2010; 6 ref22/cit22 Fong M. Y. (ref16/cit16) 2011; 5 Bennett M. J. (ref26/cit26) 2012; 11 Rainville P. D. (ref7/cit7) 2007; 6 Evans A. M. (ref15/cit15) 2009; 81 Beltran A. (ref20/cit20) 2012; 84 Dunn W. B. (ref6/cit6) 2011; 6 |
References_xml | – volume: 6 start-page: 552 year: 2007 ident: ref7/cit7 publication-title: J. Proteome Res. doi: 10.1021/pr060611b – volume: 78 start-page: 779 issue: 3 year: 2006 ident: ref21/cit21 publication-title: Anal. Chem. doi: 10.1021/ac051437y – volume: 12 start-page: 1376 issue: 12 year: 2012 ident: ref25/cit25 publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802612801319070 – volume: 11 start-page: 0 issue: 16 year: 2012 ident: ref26/cit26 publication-title: Cell Cycle doi: 10.4161/cc.21411 – volume: 6 start-page: 1241 issue: 8 year: 2011 ident: ref24/cit24 publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.366 – volume: 83 start-page: 2152 year: 2011 ident: ref3/cit3 publication-title: Anal. Chem. doi: 10.1021/ac102981k – volume: 21 start-page: 4079 year: 2007 ident: ref5/cit5 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.3313 – volume: 84 start-page: 5838 year: 2012 ident: ref20/cit20 publication-title: Anal. Chem. doi: 10.1021/ac3005567 – volume: 400 start-page: 2983 year: 2011 ident: ref19/cit19 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-011-4981-8 – volume: 5 start-page: e19963 year: 2011 ident: ref16/cit16 publication-title: PLoS One doi: 10.1371/journal.pone.0019963 – ident: ref22/cit22 – volume: 404 start-page: 3101 issue: 10 year: 2012 ident: ref11/cit11 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-012-6412-x – year: 2006 ident: ref17/cit17 publication-title: Cold Spring Harbor Protoc. – ident: ref23/cit23 – volume: 83 start-page: 5864 year: 2011 ident: ref8/cit8 publication-title: Anal. Chem. doi: 10.1021/ac201065j – volume: 7 start-page: 1 issue: 7 year: 2012 ident: ref10/cit10 publication-title: PLoS One doi: 10.1371/journal.pone.0041156 – volume: 6 start-page: 1060 issue: 7 year: 2011 ident: ref6/cit6 publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.335 – volume: 13 start-page: 263 year: 2012 ident: ref4/cit4 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3314 – volume: 34 start-page: 3460 issue: 1 year: 2011 ident: ref12/cit12 publication-title: J. Sep. Sci. doi: 10.1002/jssc.201100532 – volume: 12 start-page: 2269 year: 2013 ident: ref13/cit13 publication-title: J. Proteome Res. doi: 10.1021/pr400161k – volume: 6 start-page: 427 year: 2010 ident: ref18/cit18 publication-title: Metabolomics doi: 10.1007/s11306-010-0216-9 – volume: 15 start-page: 431 issue: 2 year: 2009 ident: ref1/cit1 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-08-1059 – volume: 404 start-page: 155 year: 2010 ident: ref9/cit9 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2010.04.031 – volume: 403 start-page: 1523 year: 2012 ident: ref2/cit2 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-012-6039-y – volume: 81 start-page: 6656 year: 2009 ident: ref15/cit15 publication-title: Anal. Chem. doi: 10.1021/ac901536h – volume: 84 start-page: 6355 year: 2012 ident: ref14/cit14 publication-title: Anal. Chem. doi: 10.1021/ac3013362 |
SSID | ssj0011016 |
Score | 2.425178 |
Snippet | Metabolomics is a rapidly advancing field, and much of our understanding of the subject has come from research on cell lines. However, the results and... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9536 |
SubjectTerms | Biochemistry Biotechnology Bulging Cell Adhesion Cell adhesion & migration Cell Count Cell Line, Tumor Clumps Consistency Correlation Correlation analysis Counting Deoxyribonucleic acid DNA DNA - analysis Extraction processes Humans Linear Models Metabolites metabolomics Metabolomics - methods protein content Strategy Time Factors |
Title | Measurement of DNA Concentration as a Normalization Strategy for Metabolomic Data from Adherent Cell Lines |
URI | http://dx.doi.org/10.1021/ac401559v https://www.ncbi.nlm.nih.gov/pubmed/24011029 https://www.proquest.com/docview/1443861356 https://www.proquest.com/docview/1443423064 https://www.proquest.com/docview/1468380126 https://www.proquest.com/docview/1692322031 https://www.proquest.com/docview/2000302674 https://pubmed.ncbi.nlm.nih.gov/PMC3868625 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6VcgAOPAqUQKmWx4FLSjLrXdvHyKGqEM0FKvUW7csq1HIQcZDg1zPjFwltw9Ue29qd2d3v87wA3uZWGxWHdDhKQjSMkPfBPHfEWqWXVo1cEuoA2Zk-OYs-nqvzHXhzgwcfx--Ni_hcT3_egtuok5gZ1iT73LsKmH52bfHYi9qVD1p_lI8et9w8eq7gyX_DItfOmeMHMO2ydZrwksujVWWP3O-rxRu3DeEh3G9xppg0hvEIdkK5B3eyrr3bHtxbq0T4GL6d_v1XKBa5mM4mIuOMxrItqyvMUhgxY4RbtKmboq1s-0sQ8BWnoSJ7KjjJWUxNZQQnroiJv-B8wkpkoSjEJ46xfwJnxx--ZCfDtg3D0CiJFZFLkyovlc-9GhlDO7WRNlXMHMeWGXRkSLtWaz-yBI6SIGVA9NrmsaE1HeRT2C0XZXgGQnuHKtBlRSxtHDCx6LxKg0MvY5mrARySnubtMlrOaw85juf9BA7gXafCuWuLmHMvjeI60de96Pemcsd1QgedHax9NYpkQjBH6QG86m-TetiXYsqwWDUyUU3ftsnoRDIC2PYeTQgbkbbWm2WwJq6oY_rWfmOi_YgIkJEeMB1AvGG8vQCXD9-8U369qMuI0xiJzqrn_5vzF3AXuQcIh_GoA9itfqzCS0JilT2sV-IfmBYt1g |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwEN6BcigceJRXoBTBcOCSNpEs2T5mXDoBklxoZ3rzSJY8pfU4DHaYgV_PrvxoUkrhGm9sS1pJ32ftfgvwLjdKy9DFw1HkgmHAaR3M8wxZq7DCyFEWOR8gu1DTk-DTqTxtZXIoFwZfosI7Vf4Q_1JdYHygs4C29_jHbbiDIIQT0ZokX_oTA2KhXXU8OkztVITW_0o7UFZt7kB_wMqr0ZFr283Rg6ZukX9RH2Vysb-qzX7264qG4_-15CHcb1EnmzRu8ghuuXIHtpOu2NsO3FvTJXwM5_PLL4dsmbPDxYQllN9YtiK7TFdMswXh3aJN5GStzu1PhjCYzV2N3lVQyjM71LVmlMbCJvaMsgtrlriiYDOKuH8CJ0cfjpPpsC3KMNRS8Bqppo6lFdLmVo60xnVbCxNL4pFjQ3w60DjWRik7MgiVIieE49wqk4caZ7gTT2GrXJbuOTBlMy4d_iyRs40djwzPrIxdxq0IRS4HsIf9l7aTqkr9eTkfp30HDuB9N5Jp1kqaU2WN4jrTt73pt0bH4zqj3c4d1p4aBCJC0CPVAN70l3F46GRFl265amwCT-ZuslGRIDxw030U4m3OcaH9uw33NJarEJ_1rPHUvkUIz3AceDyAcMOHewMSE9-8Un4986Li2EYkt_LFv_r8NWxPj-ezdPZx8fkl3OVUHYQCfOQubNXfV-4VYrTa7PnJ-RuqLjY3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BkXgceJRXoJQFceCSkux61_YxcogKtAEJKvVm7csqYDkVdpDg1zPjrE1SSuEaT2zv-_s8M98AvCiM0jL26XCU-GgYcdoHi8IiaxVOGDmyiW8DZOdq_yh6eyyPA1GkXBh8iRrvVLdOfFrVp64ICgPjV9pGdMSn3y_DFXLXEdmaZB97rwEx0a5CHjlUOyWh9b_SKWTrzVPoD2h5NkJy7ciZ3YL3_cu2kSZf95aN2bM_z-g4_n9rbsPNgD7ZZDVd7sAlX23Dtawr-rYNN9b0Ce_Cl8PfXxDZomDT-YRllOdYBbFdpmum2ZxwbxkSOlnQu_3BEA6zQ9_gLCsp9ZlNdaMZpbOwiTuhLMOGZb4s2QFF3t-Do9nrT9n-MBRnGGopeIOUU6fSCekKJ0da4_6thUkl8cmxIV4daRxzo5QbGYRMiRfCc-6UKWKNK92L-7BVLSr_EJhylkuPP0vkbmPPE8Otk6m33IlYFHIAu9iHeVhcdd76zfk47ztwAC-70cxtkDanChvleabPe9PTlZ7HeUY73ZRYe2oUiQTBj1QDeNZfxuEhD4uu_GK5solaUneRjUoE4YKL7qMQd3OOG-7fbXhLZ7mK8VkPVrO1bxHCNBwHng4g3pjHvQGJim9eqT6ftOLi2EYkufLRv_r8KVz9MJ3lB2_m7x7DdU5FQijOR-7AVvNt6Z8gVGvMbrs-fwGVozi6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+DNA+concentration+as+a+normalization+strategy+for+metabolomic+data+from+adherent+cell+lines&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Silva%2C+Leslie+P.&rft.au=Lorenzi%2C+Philip+L.&rft.au=Purwaha%2C+Preeti&rft.au=Yong%2C+Valeda&rft.date=2013-10-15&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=85&rft.issue=20&rft_id=info:doi/10.1021%2Fac401559v&rft_id=info%3Apmid%2F24011029&rft.externalDocID=PMC3868625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |