Effects of pH and Oxidants on the First Steps of Polydopamine Formation: A Thermodynamic Approach
We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV–vis and electrochemical studies. The model is applicable to other catecholamines and various experimental conditions. The results show that the decisive...
Saved in:
Published in | The journal of physical chemistry. B Vol. 122; no. 24; pp. 6314 - 6327 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV–vis and electrochemical studies. The model is applicable to other catecholamines and various experimental conditions. The results show that the decisive physicochemical parameters in autoxidation are the pK values of the semiquinone and the amino group in the oxidized quinone. Addition of Ce(IV) or Fe(III) enhances dopamine oxidation in acidic media in aerobic and anaerobic conditions by the direct oxidation of dopamine and, in the presence of oxygen, also by the autoxidation of the formed semiquinone. At pH 4.5, the enhancement of the one-electron oxidation of dopamine explains the overall reaction enhancement, but at a lower pH, cyclization becomes rate-determining. Oxidation by Cu(II) at reasonable rates requires the presence of oxygen or chloride ions. |
---|---|
AbstractList | We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV–vis and electrochemical studies. The model is applicable to other catecholamines and various experimental conditions. The results show that the decisive physicochemical parameters in autoxidation are the pK values of the semiquinone and the amino group in the oxidized quinone. Addition of Ce(IV) or Fe(III) enhances dopamine oxidation in acidic media in aerobic and anaerobic conditions by the direct oxidation of dopamine and, in the presence of oxygen, also by the autoxidation of the formed semiquinone. At pH 4.5, the enhancement of the one-electron oxidation of dopamine explains the overall reaction enhancement, but at a lower pH, cyclization becomes rate-determining. Oxidation by Cu(II) at reasonable rates requires the presence of oxygen or chloride ions. We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV-vis and electrochemical studies. The model is applicable to other catecholamines and various experimental conditions. The results show that the decisive physicochemical parameters in autoxidation are the p K values of the semiquinone and the amino group in the oxidized quinone. Addition of Ce(IV) or Fe(III) enhances dopamine oxidation in acidic media in aerobic and anaerobic conditions by the direct oxidation of dopamine and, in the presence of oxygen, also by the autoxidation of the formed semiquinone. At pH 4.5, the enhancement of the one-electron oxidation of dopamine explains the overall reaction enhancement, but at a lower pH, cyclization becomes rate-determining. Oxidation by Cu(II) at reasonable rates requires the presence of oxygen or chloride ions.We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV-vis and electrochemical studies. The model is applicable to other catecholamines and various experimental conditions. The results show that the decisive physicochemical parameters in autoxidation are the p K values of the semiquinone and the amino group in the oxidized quinone. Addition of Ce(IV) or Fe(III) enhances dopamine oxidation in acidic media in aerobic and anaerobic conditions by the direct oxidation of dopamine and, in the presence of oxygen, also by the autoxidation of the formed semiquinone. At pH 4.5, the enhancement of the one-electron oxidation of dopamine explains the overall reaction enhancement, but at a lower pH, cyclization becomes rate-determining. Oxidation by Cu(II) at reasonable rates requires the presence of oxygen or chloride ions. We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV–vis and electrochemical studies. The model is applicable to other catecholamines and various experimental conditions. The results show that the decisive physicochemical parameters in autoxidation are the p K values of the semiquinone and the amino group in the oxidized quinone. Addition of Ce(IV) or Fe(III) enhances dopamine oxidation in acidic media in aerobic and anaerobic conditions by the direct oxidation of dopamine and, in the presence of oxygen, also by the autoxidation of the formed semiquinone. At pH 4.5, the enhancement of the one-electron oxidation of dopamine explains the overall reaction enhancement, but at a lower pH, cyclization becomes rate-determining. Oxidation by Cu(II) at reasonable rates requires the presence of oxygen or chloride ions. We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV–vis and electrochemical studies. The model is applicable to other catecholamines and various experimental conditions. The results show that the decisive physicochemical parameters in autoxidation are the pK values of the semiquinone and the amino group in the oxidized quinone. Addition of Ce(IV) or Fe(III) enhances dopamine oxidation in acidic media in aerobic and anaerobic conditions by the direct oxidation of dopamine and, in the presence of oxygen, also by the autoxidation of the formed semiquinone. At pH 4.5, the enhancement of the one-electron oxidation of dopamine explains the overall reaction enhancement, but at a lower pH, cyclization becomes rate-determining. Oxidation by Cu(II) at reasonable rates requires the presence of oxygen or chloride ions. We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV-vis and electrochemical studies. The model is applicable to other catecholamines and various experimental conditions. The results show that the decisive physicochemical parameters in autoxidation are the p K values of the semiquinone and the amino group in the oxidized quinone. Addition of Ce(IV) or Fe(III) enhances dopamine oxidation in acidic media in aerobic and anaerobic conditions by the direct oxidation of dopamine and, in the presence of oxygen, also by the autoxidation of the formed semiquinone. At pH 4.5, the enhancement of the one-electron oxidation of dopamine explains the overall reaction enhancement, but at a lower pH, cyclization becomes rate-determining. Oxidation by Cu(II) at reasonable rates requires the presence of oxygen or chloride ions. |
Author | Marttila, Lauri Ouvinen, Tuomo Lukkari, Jukka Salomäki, Mikko Kivelä, Henri |
AuthorAffiliation | Department of Chemistry University of Turku Graduate School (UTUGS) Turku University Centre for Surfaces and Materials (MatSurf) Doctoral Programme in Physical and Chemical Sciences |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Turku University Centre for Surfaces and Materials (MatSurf) – name: Doctoral Programme in Physical and Chemical Sciences – name: University of Turku Graduate School (UTUGS) |
Author_xml | – sequence: 1 givenname: Mikko orcidid: 0000-0001-6190-2073 surname: Salomäki fullname: Salomäki, Mikko organization: Turku University Centre for Surfaces and Materials (MatSurf) – sequence: 2 givenname: Lauri orcidid: 0000-0002-8221-0954 surname: Marttila fullname: Marttila, Lauri organization: University of Turku Graduate School (UTUGS) – sequence: 3 givenname: Henri orcidid: 0000-0003-1414-8893 surname: Kivelä fullname: Kivelä, Henri organization: Turku University Centre for Surfaces and Materials (MatSurf) – sequence: 4 givenname: Tuomo surname: Ouvinen fullname: Ouvinen, Tuomo organization: University of Turku Graduate School (UTUGS) – sequence: 5 givenname: Jukka orcidid: 0000-0002-9409-7995 surname: Lukkari fullname: Lukkari, Jukka email: jukka.lukkari@utu.fi organization: Turku University Centre for Surfaces and Materials (MatSurf) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29787272$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctrFTEUxoNU7Mu9K8nShfeaxySZuhAupbVCoYLtOpxJMt6UmWRMcov3vzf3YVHB0kU44Xy_73CS7xgdhBgcQm8omVPC6AcweX4_mW7edoRx0rxAR1QwMqtHHezvkhJ5iI5zvieECdbKV-iQnalWMcWOEFz0vTMl49jj6QpDsPjmp7cQNq2Ay9LhS59ywd-Km7bU1zisbZxg9KFqMY1QfAwf8QLfLl0ao12Hqhm8mKYUwSxP0csehuxe7-sJuru8uD2_ml3ffP5yvriegeCszCTpFHTWcgWWEt4wyikoYRVrne0slc70QgquDIWW9n0jbNsQs6mKdkzyE_RpN3dadaOzxoWSYNBT8iOktY7g9d9K8Ev9PT5oSQWRragD3u0HpPhj5XLRo8_GDQMEF1dZM0ple0b4c1DScFq_mKuKvv1zrcd9fkdQAbIDTIo5J9c_IpToTcq6pqw3Ket9ytUi_7EYX7Yx1If54Snj-51xq8RVCjWR_-O_AKM2vaI |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2022_153680 crossref_primary_10_1002_marc_202200581 crossref_primary_10_1021_acsnanoscienceau_2c00040 crossref_primary_10_1016_j_xcrp_2021_100373 crossref_primary_10_1039_D1TC05400G crossref_primary_10_1039_C8TB02310G crossref_primary_10_3389_fbioe_2022_952500 crossref_primary_10_1007_s12274_023_6398_z crossref_primary_10_1007_s11706_021_0534_z crossref_primary_10_1016_j_cej_2025_159314 crossref_primary_10_1021_acsomega_2c05289 crossref_primary_10_1002_chir_23695 crossref_primary_10_1007_s00203_024_04080_7 crossref_primary_10_1016_j_arabjc_2022_104153 crossref_primary_10_1016_j_saa_2022_122109 crossref_primary_10_1063_5_0151626 crossref_primary_10_1016_j_actbio_2020_03_021 crossref_primary_10_1021_acs_jpcb_1c06836 crossref_primary_10_1021_acs_joc_1c02308 crossref_primary_10_3390_ijms23105483 crossref_primary_10_1039_D3AN01467C crossref_primary_10_1021_acsami_1c08676 crossref_primary_10_1021_acs_chemmater_4c00113 crossref_primary_10_1021_acsomega_9b02637 crossref_primary_10_1021_acsanm_9b00791 crossref_primary_10_1039_D2MA00482H crossref_primary_10_1021_acs_langmuir_4c02460 crossref_primary_10_1016_j_electacta_2022_140000 crossref_primary_10_3389_fbioe_2022_1005413 crossref_primary_10_2217_nnm_2020_0312 crossref_primary_10_1016_j_mtadv_2023_100398 crossref_primary_10_1007_s12257_021_0022_4 crossref_primary_10_1021_acsomega_2c02986 crossref_primary_10_1021_acsbiomaterials_9b00281 crossref_primary_10_1016_j_cej_2021_133274 crossref_primary_10_1002_adfm_202008821 crossref_primary_10_1007_s00216_021_03192_z crossref_primary_10_1016_j_chroma_2020_461403 crossref_primary_10_1002_adfm_202200775 crossref_primary_10_1016_j_apsusc_2020_147675 crossref_primary_10_1021_jacs_4c05397 crossref_primary_10_1021_acs_jchemed_2c00319 crossref_primary_10_3390_nano13050933 crossref_primary_10_1016_j_ijbiomac_2025_141761 crossref_primary_10_1007_s00216_023_04522_z crossref_primary_10_1016_j_cej_2023_143350 crossref_primary_10_1016_j_colsurfa_2023_131855 crossref_primary_10_1039_D5MA00081E crossref_primary_10_1016_j_cca_2021_08_009 crossref_primary_10_1016_j_eurpolymj_2024_113530 crossref_primary_10_1021_acs_chemrev_0c01180 crossref_primary_10_1039_D3NH00275F crossref_primary_10_1002_ange_202318169 crossref_primary_10_3390_molecules28093844 crossref_primary_10_1039_D3TB03068G crossref_primary_10_1016_j_polymer_2024_127233 crossref_primary_10_1021_acsami_1c19575 crossref_primary_10_1016_j_ceja_2024_100638 crossref_primary_10_1039_D0CS00908C crossref_primary_10_3389_fchem_2019_00618 crossref_primary_10_1021_acsomega_0c00676 crossref_primary_10_1002_adma_202109509 crossref_primary_10_1021_acsanm_0c01981 crossref_primary_10_1016_j_jddst_2025_106635 crossref_primary_10_1016_j_electacta_2023_143551 crossref_primary_10_2147_DDDT_S419897 crossref_primary_10_1016_j_porgcoat_2025_109112 crossref_primary_10_1039_D2RA06669F crossref_primary_10_1016_j_memsci_2024_122779 crossref_primary_10_1039_D0CC02569K crossref_primary_10_1016_j_porgcoat_2022_107359 crossref_primary_10_1021_acsnano_4c05965 crossref_primary_10_1002_marc_202200946 crossref_primary_10_1016_j_mtchem_2022_100935 crossref_primary_10_1016_j_cej_2022_140444 crossref_primary_10_3390_chemosensors11070382 crossref_primary_10_1016_j_microc_2024_111141 crossref_primary_10_1039_D1NR08338D crossref_primary_10_1039_D3NJ01008B crossref_primary_10_1002_admi_202202503 crossref_primary_10_1021_acs_inorgchem_2c04076 crossref_primary_10_1631_jzus_B2300839 crossref_primary_10_1016_j_colsurfa_2020_125196 crossref_primary_10_1021_acsapm_3c00365 crossref_primary_10_1016_j_ijbiomac_2022_12_151 crossref_primary_10_1016_j_bioelechem_2024_108826 crossref_primary_10_3390_nano13091549 crossref_primary_10_1007_s12640_019_00149_0 crossref_primary_10_1016_j_apsusc_2020_146821 crossref_primary_10_1021_acsami_4c10816 crossref_primary_10_1016_j_microc_2023_109591 crossref_primary_10_1016_j_smaim_2021_12_006 crossref_primary_10_1016_j_ijbiomac_2024_135553 crossref_primary_10_1088_2399_7532_abf0fa crossref_primary_10_1002_anie_202318169 crossref_primary_10_1021_acsami_1c14182 crossref_primary_10_1007_s40843_024_3139_3 crossref_primary_10_1016_j_matchemphys_2020_123302 crossref_primary_10_1021_acsami_3c18976 crossref_primary_10_1039_D1AN00768H crossref_primary_10_1093_mtomcs_mfae055 crossref_primary_10_1016_j_aca_2021_339403 crossref_primary_10_1002_adtp_201900067 crossref_primary_10_1039_D0RA02713H crossref_primary_10_1039_D2RA01276F crossref_primary_10_3389_fbioe_2022_1037322 crossref_primary_10_1016_j_progpolymsci_2024_101857 crossref_primary_10_1039_C9CP05527D crossref_primary_10_1039_D2GC00981A crossref_primary_10_1007_s13738_022_02711_8 crossref_primary_10_1007_s11356_023_25913_w crossref_primary_10_1039_D1CP00966D crossref_primary_10_3390_biomimetics3030026 crossref_primary_10_3390_ijms21144873 crossref_primary_10_3390_molecules29204859 crossref_primary_10_1016_j_jcat_2022_05_017 crossref_primary_10_1002_kin_21367 crossref_primary_10_1007_s10895_024_03690_0 crossref_primary_10_1021_acs_jpcc_3c05105 crossref_primary_10_1016_j_scp_2021_100588 crossref_primary_10_1016_j_jiec_2022_04_006 crossref_primary_10_3390_nano12132230 crossref_primary_10_3389_fchem_2019_00407 crossref_primary_10_1016_j_ultsonch_2021_105571 crossref_primary_10_1038_s41531_023_00485_1 crossref_primary_10_3390_ijms242015384 crossref_primary_10_1016_j_electacta_2021_138515 crossref_primary_10_1016_j_matlet_2023_135073 crossref_primary_10_1021_acsami_3c03337 crossref_primary_10_1016_j_colsurfa_2023_131810 crossref_primary_10_1021_acsabm_9b00747 crossref_primary_10_1039_C9NR07770G crossref_primary_10_1016_j_colsurfa_2023_133038 crossref_primary_10_1002_adtp_202000114 crossref_primary_10_1021_acsami_3c05236 crossref_primary_10_1002_ejoc_201900445 crossref_primary_10_1016_j_cej_2021_133262 crossref_primary_10_1016_j_memsci_2024_123686 crossref_primary_10_1038_s41467_023_36552_7 crossref_primary_10_1002_smll_202202729 crossref_primary_10_3390_coatings11111385 crossref_primary_10_1038_s41598_021_81185_9 crossref_primary_10_1016_j_ijbiomac_2024_129266 crossref_primary_10_3390_ph17111415 crossref_primary_10_1039_D3AN00270E crossref_primary_10_1016_j_jconrel_2024_12_051 crossref_primary_10_1016_j_apsusc_2022_155759 crossref_primary_10_1002_ppsc_202200132 crossref_primary_10_1016_j_snb_2022_131664 crossref_primary_10_3389_fbioe_2021_737074 crossref_primary_10_1021_acs_inorgchem_2c00996 crossref_primary_10_3390_ijms241411636 crossref_primary_10_1021_acs_chemmater_9b03655 crossref_primary_10_1002_btm2_10385 crossref_primary_10_1002_adfm_201909954 crossref_primary_10_1021_acs_est_4c06733 crossref_primary_10_1021_acs_jpcb_4c03002 crossref_primary_10_1002_app_50642 crossref_primary_10_1021_acsami_0c19396 crossref_primary_10_1016_j_ijbiomac_2019_10_177 crossref_primary_10_1021_acs_jpcb_8b11994 crossref_primary_10_3389_fnmol_2018_00467 crossref_primary_10_1002_adfm_202007993 crossref_primary_10_1038_s43246_024_00602_4 crossref_primary_10_1016_j_biomaterials_2024_123029 crossref_primary_10_1088_1757_899X_1195_1_012051 crossref_primary_10_1021_acsnano_2c06406 crossref_primary_10_1039_D2CP05439F |
Cites_doi | 10.1074/jbc.R800080200 10.1007/s00706-011-0676-2 10.1016/0891-5849(90)90148-C 10.1021/bm101281b 10.1021/acs.jpcb.7b07941 10.1021/jp101723s 10.1016/j.freeradbiomed.2010.05.009 10.1021/ic010978c 10.1002/9783527650965 10.1021/jo00152a029 10.1021/am5086269 10.1002/anie.200462468 10.1126/science.1147241 10.1021/bm4008138 10.1034/j.1600-0749.2003.00082.x 10.1021/cr100038y 10.1021/bm501139h 10.1074/jbc.M610893200 10.1039/9781782622208-00001 10.1016/j.ijpharm.2014.04.051 10.1039/p29950000259 10.1021/ja505412p 10.1021/nn500722y 10.1007/s11010-014-2232-y 10.1073/pnas.1314345110 10.1016/0304-4165(85)90048-0 10.1016/j.ccr.2010.01.009 10.1093/oso/9780195393354.001.0001 10.1039/c0py00215a 10.2109/jcersj2.121.123 10.1021/la4029782 10.1111/jnc.12686 10.1155/2014/498276 10.1002/adma.200703141 10.1016/0925-4439(96)00020-8 10.1016/S0162-0134(01)00406-8 10.1021/acs.chemmater.6b01587 10.1111/pcmr.12254 10.1039/b516250p 10.1021/la104981s 10.1524/zpch.1971.74.3_6.319 10.1002/adfm.201202127 10.1002/hlca.19680510636 10.1111/jnc.13615 10.1039/c39760000734 10.1021/acsami.6b01664 10.1021/acs.inorgchem.5b02543 10.1002/adma.201504650 10.1021/bm501773c 10.1016/S0020-1693(00)89367-6 10.1021/nn305305d 10.1016/S1386-1425(03)00138-0 10.1002/chem.200305407 10.1021/ja00316a039 10.1021/la4020288 10.1021/acsami.7b09662 10.1021/ar500273y 10.1111/j.1600-0749.1993.tb00612.x 10.5012/bkcs.2012.33.11.3788 10.1021/jp9920141 10.1039/c001397h 10.1021/cr400407a 10.1016/j.jcis.2004.01.001 10.1016/j.freeradbiomed.2010.04.011 10.1016/S0022-0728(83)80110-7 10.1021/j100686a021 10.1039/C4CS00185K 10.1002/cphc.201402417 10.1039/B315811J 10.1038/srep41532 10.1021/acs.langmuir.6b00402 10.1111/j.1600-0749.2006.00345.x 10.1021/ar100079y 10.1016/j.jinorgbio.2014.03.018 10.1021/acs.langmuir.5b02757 10.1002/adfm.201201156 10.1021/la8007816 10.1016/S1386-1425(98)00164-4 |
ContentType | Journal Article |
Copyright | Copyright © 2018 American Chemical Society 2018 American Chemical Society |
Copyright_xml | – notice: Copyright © 2018 American Chemical Society 2018 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.jpcb.8b02304 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 6327 |
ExternalDocumentID | PMC6150685 29787272 10_1021_acs_jpcb_8b02304 d012928308 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 123 29L 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI ZHY --- -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a532t-60b7abdd37ad10342131a75d728edbd16ecf56537c1a81ff45d840cf45d71b263 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Thu Aug 21 14:12:25 EDT 2025 Thu Jul 10 19:56:23 EDT 2025 Fri Jul 11 08:24:06 EDT 2025 Thu Jan 02 22:59:41 EST 2025 Tue Jul 01 01:00:22 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Thu Aug 27 13:42:08 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a532t-60b7abdd37ad10342131a75d728edbd16ecf56537c1a81ff45d840cf45d71b263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1414-8893 0000-0002-8221-0954 0000-0002-9409-7995 0000-0001-6190-2073 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6150685 |
PMID | 29787272 |
PQID | 2043178737 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6150685 proquest_miscellaneous_2116890385 proquest_miscellaneous_2043178737 pubmed_primary_29787272 crossref_primary_10_1021_acs_jpcb_8b02304 crossref_citationtrail_10_1021_acs_jpcb_8b02304 acs_journals_10_1021_acs_jpcb_8b02304 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-21 |
PublicationDateYYYYMMDD | 2018-06-21 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref16/cit16 ref52/cit52 Sucha L. (ref78/cit78) 1972 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 Cicoira F. (ref5/cit5) 2013 ref21/cit21 Angerstein-Kozlowska H. (ref50/cit50) 1984; 9 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 Bard A. J. (ref61/cit61) 2001 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 Schweitzer G. K. (ref80/cit80) 2010 ref12/cit12 ref15/cit15 Valentine J. S. (ref57/cit57) 1994 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 Krumova K. (ref56/cit56) 2016; 1 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref71/cit71 doi: 10.1074/jbc.R800080200 – ident: ref76/cit76 doi: 10.1007/s00706-011-0676-2 – ident: ref58/cit58 doi: 10.1016/0891-5849(90)90148-C – ident: ref8/cit8 doi: 10.1021/bm101281b – ident: ref29/cit29 doi: 10.1021/acs.jpcb.7b07941 – ident: ref75/cit75 doi: 10.1021/jp101723s – ident: ref53/cit53 doi: 10.1016/j.freeradbiomed.2010.05.009 – ident: ref81/cit81 doi: 10.1021/ic010978c – start-page: 113 volume-title: Organic Electronics: Emerging Concepts and Technologies year: 2013 ident: ref5/cit5 doi: 10.1002/9783527650965 – ident: ref45/cit45 doi: 10.1021/jo00152a029 – ident: ref15/cit15 doi: 10.1021/am5086269 – ident: ref70/cit70 doi: 10.1002/anie.200462468 – ident: ref20/cit20 doi: 10.1126/science.1147241 – ident: ref16/cit16 doi: 10.1021/bm4008138 – ident: ref47/cit47 doi: 10.1034/j.1600-0749.2003.00082.x – ident: ref60/cit60 doi: 10.1021/cr100038y – ident: ref31/cit31 doi: 10.1021/bm501139h – ident: ref35/cit35 doi: 10.1074/jbc.M610893200 – volume: 1 start-page: 1 volume-title: Singlet Oxygen: Applications in Biosciences and Nanosciences year: 2016 ident: ref56/cit56 doi: 10.1039/9781782622208-00001 – ident: ref6/cit6 doi: 10.1016/j.ijpharm.2014.04.051 – ident: ref46/cit46 doi: 10.1039/p29950000259 – ident: ref17/cit17 doi: 10.1021/ja505412p – ident: ref18/cit18 doi: 10.1021/nn500722y – ident: ref9/cit9 doi: 10.1007/s11010-014-2232-y – ident: ref10/cit10 doi: 10.1073/pnas.1314345110 – ident: ref51/cit51 doi: 10.1016/0304-4165(85)90048-0 – ident: ref73/cit73 doi: 10.1016/j.ccr.2010.01.009 – volume-title: The Aqueous Chemistry of the Elements year: 2010 ident: ref80/cit80 doi: 10.1093/oso/9780195393354.001.0001 – ident: ref38/cit38 doi: 10.1039/c0py00215a – volume-title: Solution Equilibria in Analytical Chemistry year: 1972 ident: ref78/cit78 – ident: ref12/cit12 doi: 10.2109/jcersj2.121.123 – ident: ref41/cit41 doi: 10.1021/la4029782 – ident: ref68/cit68 doi: 10.1111/jnc.12686 – ident: ref1/cit1 doi: 10.1155/2014/498276 – ident: ref32/cit32 doi: 10.1002/adma.200703141 – ident: ref42/cit42 doi: 10.1016/0925-4439(96)00020-8 – ident: ref34/cit34 doi: 10.1016/S0162-0134(01)00406-8 – ident: ref39/cit39 doi: 10.1021/acs.chemmater.6b01587 – ident: ref27/cit27 doi: 10.1111/pcmr.12254 – ident: ref44/cit44 doi: 10.1039/b516250p – ident: ref40/cit40 doi: 10.1021/la104981s – ident: ref69/cit69 doi: 10.1524/zpch.1971.74.3_6.319 – ident: ref28/cit28 doi: 10.1002/adfm.201202127 – ident: ref52/cit52 doi: 10.1002/hlca.19680510636 – ident: ref49/cit49 doi: 10.1111/jnc.13615 – ident: ref66/cit66 doi: 10.1039/c39760000734 – ident: ref19/cit19 doi: 10.1021/acsami.6b01664 – ident: ref72/cit72 doi: 10.1021/acs.inorgchem.5b02543 – ident: ref11/cit11 doi: 10.1002/adma.201504650 – ident: ref13/cit13 doi: 10.1021/bm501773c – ident: ref65/cit65 doi: 10.1016/S0020-1693(00)89367-6 – ident: ref25/cit25 doi: 10.1021/nn305305d – ident: ref54/cit54 doi: 10.1016/S1386-1425(03)00138-0 – ident: ref82/cit82 doi: 10.1002/chem.200305407 – ident: ref67/cit67 doi: 10.1021/ja00316a039 – ident: ref21/cit21 doi: 10.1021/la4020288 – ident: ref26/cit26 doi: 10.1021/acsami.7b09662 – ident: ref22/cit22 doi: 10.1021/ar500273y – ident: ref3/cit3 doi: 10.1111/j.1600-0749.1993.tb00612.x – ident: ref7/cit7 doi: 10.5012/bkcs.2012.33.11.3788 – ident: ref62/cit62 doi: 10.1021/jp9920141 – ident: ref79/cit79 doi: 10.1039/c001397h – ident: ref23/cit23 doi: 10.1021/cr400407a – ident: ref63/cit63 doi: 10.1016/j.jcis.2004.01.001 – volume: 9 start-page: 15 volume-title: Comprehensive Treatise of Electrochemistry year: 1984 ident: ref50/cit50 – ident: ref55/cit55 doi: 10.1016/j.freeradbiomed.2010.04.011 – ident: ref59/cit59 doi: 10.1016/S0022-0728(83)80110-7 – ident: ref64/cit64 doi: 10.1021/j100686a021 – ident: ref36/cit36 doi: 10.1039/C4CS00185K – ident: ref14/cit14 doi: 10.1002/cphc.201402417 – ident: ref77/cit77 doi: 10.1039/B315811J – ident: ref30/cit30 doi: 10.1038/srep41532 – ident: ref33/cit33 doi: 10.1021/acs.langmuir.6b00402 – ident: ref4/cit4 doi: 10.1111/j.1600-0749.2006.00345.x – ident: ref2/cit2 doi: 10.1021/ar100079y – ident: ref48/cit48 doi: 10.1016/j.jinorgbio.2014.03.018 – ident: ref37/cit37 doi: 10.1021/acs.langmuir.5b02757 – ident: ref24/cit24 doi: 10.1002/adfm.201201156 – ident: ref74/cit74 doi: 10.1021/la8007816 – ident: ref43/cit43 doi: 10.1016/S1386-1425(98)00164-4 – start-page: 253 volume-title: Bioinorganic Chemistry year: 1994 ident: ref57/cit57 – volume-title: Electrochemical Methods. Fundamentals and Applications year: 2001 ident: ref61/cit61 |
SSID | ssj0025286 |
Score | 2.611002 |
Snippet | We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV–vis and... We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV-vis and... We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV–vis and... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6314 |
SubjectTerms | anaerobic conditions autoxidation chlorides copper dopamine electrochemistry ions iron oxidants oxygen physical chemistry quinones thermodynamics ultraviolet-visible spectroscopy |
Title | Effects of pH and Oxidants on the First Steps of Polydopamine Formation: A Thermodynamic Approach |
URI | http://dx.doi.org/10.1021/acs.jpcb.8b02304 https://www.ncbi.nlm.nih.gov/pubmed/29787272 https://www.proquest.com/docview/2043178737 https://www.proquest.com/docview/2116890385 https://pubmed.ncbi.nlm.nih.gov/PMC6150685 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEF5a95Be0kf6cF9soTnkIEe70j7cmzE1ptAmkAZyE_sScZtIJrIhya_vjB5OnRTjk0CaldjR7M43zOw3hHwJLkjvRBLlIbZR6kUeGWZC5CTTVsbKDTkeTv7xU05P0-9n4uyOJud-Bp-zQ-Oqwe-5swNtES-nj8kTLmENIwwan6yCK8Hrro7gjjAciruU5P_egI7IVeuO6AG6vF8k-Y_XmTxr2hdVNVkhFpv8GSwXduBuH1I5bjGh52S3BZ901FjLC_IoFC_Jzrjr-bZHTENmXNEyp_MpNYWnR9czj7UytCwogEU6mQFepFgcVksdlxc3HgLvS0CrdNKdhPxKRxQM8Oqy9E3HezpquctfkdPJt1_jadQ2YYiMSPgikrFVxnqfKOMZ8gWyhBklvOI6eOuZDC4HUJgox4xmeZ4KDzGjw6tilsvkNekVZRHeEup5bKTgATaRJFXcaD6UQwgPRZAh6BD6ZB90k7WLqMrq_DhnWX0TFJa1CuuTw-7PZa5lMseGGhcbRhysRswbFo8Nsp87Y8hA-5g_MUUol1WGx4gZbHCJ2iDDmNRDTLf2yZvGgFZf5BCxY967T9Saaa0EkOp7_UkxO68pv5G2X2rxbksNvSdPAdhpLGnj7APpLa6W4SOAp4X9VK-av0PbFj4 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VciiX8qYLBYwEBw7Zxk782N5WK1YLtAVBK_UW-RWxfSSrZlei_HrG2SSwBa3gFMkZO854bH-jGX8GeO2tF87yJMp9bKLU8TzSVPvICqqMiKUdsHA4-fBITE7SD6f8dANoexYGO1FhS1UdxP_FLkD3QtnZzJq-MgE2p7fgNmIRFox6OPra-Vic1Zc74q4UvKK4jUz-rYWwH9lqdT_6A2TezJX8bfMZ34UvXbfrnJPz_mJu-vbHDUbH__qve7DdQFEyXNrOfdjwxQPYGrU3wD0EvaQ2rkiZk9mE6MKRT9-nLmTOkLIgCB3JeIrokYRUsVrqc3lx7dANv0TsSsbtuch9MiRojleXpbsu8J0lw4bJ_BGcjN8djyZRcyVDpHnC5pGIjdTGuURqRwN7IE2oltxJprwzjgpvcxyWRFqqFc3zlDv0IG14SmqYSB7DZlEWfgeIY7HGAfS4pCSpZFqxgRigs8i98F5534M3qJusmVJVVkfLGc3qQlRY1iisB3vtAGa24TUP12tcrKnxtqsxW3J6rJF91dpEhtoP0RRd-HJRZeFQMcXlLpFrZCgVahCCrz14srSj7osM_fcQBe-BXLGwTiAQf6--KabfagLwQOIvFH_6jxp6CVuT48OD7OD90cdncAchnwrJbozuwub8auGfI6yamxf1RPoJnYoenw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tiwRceD_K00hw4JBu7NR2yq0qROW1rASL9hb5FVHYTapNK7H8embSJKILquAUyRk7znhsz2hmvgF4FlxQ3skkKkJso5GXRWS4CZFTPLUq1m4sKDn5w76aHY7eHsmjHZBdLgxOosaR6saJT7t64YsWYYDvUfu3hbPD1JLqPLoAF8lrR4I9mX7q7SwpmgKPeDORZRR33sm_jUB3kqs376Q_FM3z8ZK_XUDZNfjST72JO_k-XC3t0P08h-r43_92Ha62KimbrGXoBuyE8iZcnnaV4G6BWUMc16wq2GLGTOnZxx9zTxE0rCoZqpAsm6MWyShkrKE6qI7PPJrjJ6jDsqzLj3zJJgzF8vSk8mclvnNs0iKa34bD7PXn6SxqSzNERiZiGanYamO9T7TxnFAEecKNll6LNHjruQquwKVJtOMm5UUxkh4tSUdPza1QyR3YLasy3APmRWyUFAGPlmSkhUnFWI3RaJRBhZCGMIDnyJu83Vp13njNBc-bRmRY3jJsAHvdIuauxTenMhvHW3q86Hss1tgeW2ifdnKRI_fJq2LKUK3qnJKLOR57id5Cw7lKx-SEHcDdtSz1XxRox5M3fAB6Q8p6AgIA33xTzr82QOAE5q9Sef8fOfQELh28yvL3b_bfPYArqPmlFPMm-EPYXZ6uwiPUrpb2cbOXfgHJ0yEi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+pH+and+Oxidants+on+the+First+Steps+of+Polydopamine+Formation%3A+A+Thermodynamic+Approach&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Salom%C3%A4ki%2C+Mikko&rft.au=Marttila%2C+Lauri&rft.au=Kivel%C3%A4%2C+Henri&rft.au=Ouvinen%2C+Tuomo&rft.date=2018-06-21&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=122&rft.issue=24&rft.spage=6314&rft.epage=6327&rft_id=info:doi/10.1021%2Facs.jpcb.8b02304&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcb_8b02304 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |