SARS-CoV-2 Bearing a Mutation at the S1/S2 Cleavage Site Exhibits Attenuated Virulence and Confers Protective Immunity

SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike pr...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 12; no. 4; p. e0141521
Main Authors Sasaki, Michihito, Toba, Shinsuke, Itakura, Yukari, Chambaro, Herman M., Kishimoto, Mai, Tabata, Koshiro, Intaruck, Kittiya, Uemura, Kentaro, Sanaki, Takao, Sato, Akihiko, Hall, William W., Orba, Yasuko, Sawa, Hirofumi
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 31.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. IMPORTANCE SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection.
AbstractList Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection.
SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. IMPORTANCE SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection.
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens.
ABSTRACT Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. IMPORTANCE SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection.
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. IMPORTANCE SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection.Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. IMPORTANCE SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection.
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. IMPORTANCE SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection.
Author Tabata, Koshiro
Toba, Shinsuke
Intaruck, Kittiya
Chambaro, Herman M.
Kishimoto, Mai
Sanaki, Takao
Sasaki, Michihito
Itakura, Yukari
Sato, Akihiko
Orba, Yasuko
Uemura, Kentaro
Sawa, Hirofumi
Hall, William W.
Author_xml – sequence: 1
  givenname: Michihito
  orcidid: 0000-0003-1607-2175
  surname: Sasaki
  fullname: Sasaki, Michihito
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
– sequence: 2
  givenname: Shinsuke
  surname: Toba
  fullname: Toba, Shinsuke
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, Shionogi & Co., Ltd., Osaka, Japan
– sequence: 3
  givenname: Yukari
  surname: Itakura
  fullname: Itakura, Yukari
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
– sequence: 4
  givenname: Herman M.
  surname: Chambaro
  fullname: Chambaro, Herman M.
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
– sequence: 5
  givenname: Mai
  surname: Kishimoto
  fullname: Kishimoto, Mai
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
– sequence: 6
  givenname: Koshiro
  surname: Tabata
  fullname: Tabata, Koshiro
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
– sequence: 7
  givenname: Kittiya
  surname: Intaruck
  fullname: Intaruck, Kittiya
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
– sequence: 8
  givenname: Kentaro
  surname: Uemura
  fullname: Uemura, Kentaro
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, Shionogi & Co., Ltd., Osaka, Japan, Laboratory of Biomolecular Science, Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
– sequence: 9
  givenname: Takao
  surname: Sanaki
  fullname: Sanaki, Takao
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, Shionogi & Co., Ltd., Osaka, Japan
– sequence: 10
  givenname: Akihiko
  surname: Sato
  fullname: Sato, Akihiko
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, Shionogi & Co., Ltd., Osaka, Japan
– sequence: 11
  givenname: William W.
  surname: Hall
  fullname: Hall, William W.
  organization: International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, National Virus Reference Laboratory, School of Medicine, University College of Dublin, Ireland, Global Virus Network, Baltimore, Maryland, USA
– sequence: 12
  givenname: Yasuko
  surname: Orba
  fullname: Orba, Yasuko
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
– sequence: 13
  givenname: Hirofumi
  surname: Sawa
  fullname: Sawa, Hirofumi
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, Global Virus Network, Baltimore, Maryland, USA, One Health Research Center, Hokkaido University, Sapporo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34425707$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhiNUREvpkSvyESGl9WcSX5C2qwIrFYFY6NWadSa7XiV2sZ0V_fek3Ra1CHzx2H7n0cjPy-LAB49F8ZrRU8Z4czacu3BKmWSq5OxZccSZomWtGDt4VB8WJylt6bSEYI2gL4pDISVXNa2Pit1y9m1ZzsNVyck5QnR-TYB8HjNkFzyBTPIGyZKdLTmZ9wg7WE9Hl5Fc_Nq4lcuJzHJGP0LGlly5OPboLRLwLZkH32FM5GsMGW12OySLYRi9yzeviucd9AlP7vfj4seHi-_zT-Xll4-L-eyyBCV4LmXTCOC1FnKldUtlq7Racd5xTqWGSjNmRSMqZrvO1pVt6hasrYWmHa9VNVXHxWLPbQNszXV0A8QbE8CZu4sQ1wZidrZHYyupKQOs0YK0WjfYUtqiYo0UHQU6sd7vWdfjasDWos8R-ifQpy_ebcw67EwjacW1nABv7wEx_BwxZTO4ZLHvwWMYk-GqkmxS06gp-m4fhTRwsw1j9NM3GUbNrXdz693ceTecTeE3jwf7M9GD5Skg9gEbQ0oRO2PdXvA0p-v_iy3_6noA_zv_G-a6yQg
CitedBy_id crossref_primary_10_3390_v16020177
crossref_primary_10_1016_j_xinn_2022_100221
crossref_primary_10_3390_ijms23115966
crossref_primary_10_1093_gpbjnl_qzae041
crossref_primary_10_3389_fimmu_2023_1197588
crossref_primary_10_1007_s12033_025_01409_5
crossref_primary_10_1016_j_csbj_2023_03_010
crossref_primary_10_1128_spectrum_02692_24
crossref_primary_10_1093_infdis_jiac134
crossref_primary_10_1016_j_micres_2024_127659
crossref_primary_10_1016_j_bcp_2022_115377
crossref_primary_10_1016_j_ymthe_2023_05_004
crossref_primary_10_1038_s41467_022_34571_4
crossref_primary_10_3390_v14061308
crossref_primary_10_1126_scitranslmed_abq4064
crossref_primary_10_1038_s41392_022_01105_9
crossref_primary_10_3390_v14050991
crossref_primary_10_3390_v13112236
crossref_primary_10_3390_biomedinformatics4020084
crossref_primary_10_1016_j_biopha_2022_113124
crossref_primary_10_1093_ve_veac063
crossref_primary_10_1016_j_vaccine_2022_12_019
crossref_primary_10_1128_spectrum_01164_24
crossref_primary_10_3390_v14040783
crossref_primary_10_1016_j_virusres_2022_198857
crossref_primary_10_1371_journal_pone_0276115
crossref_primary_10_3389_fimmu_2022_872047
crossref_primary_10_1016_j_virs_2023_10_001
crossref_primary_10_3390_immuno4030015
crossref_primary_10_1620_tjem_2022_J049
crossref_primary_10_3390_ijms24054791
Cites_doi 10.7883/yoken.JJID.2020.061
10.1038/s41591-020-01227-z
10.1016/j.cell.2020.06.011
10.1080/22221751.2020.1756700
10.1016/j.cyto.2005.07.002
10.1016/j.molcel.2020.04.022
10.1016/j.cell.2021.02.033
10.3389/fpubh.2015.00269
10.1093/cid/ciaa953
10.1080/22221751.2020.1858177
10.1016/j.cytogfr.2020.05.009
10.1146/annurev-pharmtox-121120-012309
10.1093/cid/ciaa325
10.1038/s41586-021-03237-4
10.1128/JVI.00790-20
10.1099/jgv.0.001481
10.1016/j.coviro.2021.03.009
10.1038/s41577-020-0331-4
10.1099/jgv.0.001439
10.1016/j.cell.2021.02.042
10.1099/jgv.0.001453
10.1172/JCI140766
10.1038/s41577-020-0311-8
10.1371/journal.pbio.3001006
10.1016/j.cell.2021.03.036
10.1038/s41586-020-2342-5
10.1038/s41467-021-21171-x
10.1016/j.jim.2011.02.004
10.1016/j.cell.2021.03.013
10.1056/NEJMra2026131
10.1038/s41401-020-0485-4
10.1038/s41467-020-19967-4
10.1038/s41564-021-00908-w
10.1128/JVI.02422-20
10.1038/s41586-020-2895-3
10.1016/j.xcrm.2020.100059
10.1073/pnas.2009799117
10.1016/j.chom.2021.02.019
10.1038/s41467-021-21213-4
10.1038/s41591-021-01294-w
10.1186/s13073-020-00763-0
10.1126/science.abe8499
10.1016/j.cell.2020.05.027
10.7554/eLife.64508
10.1371/journal.ppat.1009233
10.1016/j.xcrm.2020.100121
10.1056/NEJMc2100362
ContentType Journal Article
Copyright Copyright © 2021 Sasaki et al.
Copyright © 2021 Sasaki et al. 2021 Sasaki et al.
Copyright_xml – notice: Copyright © 2021 Sasaki et al.
– notice: Copyright © 2021 Sasaki et al. 2021 Sasaki et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/mBio.01415-21
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Meng, Xiang-Jin
Weger-Lucarelli, James
Editor_xml – sequence: 1
  givenname: James
  surname: Weger-Lucarelli
  fullname: Weger-Lucarelli, James
– sequence: 2
  givenname: Xiang-Jin
  surname: Meng
  fullname: Meng, Xiang-Jin
ExternalDocumentID oai_doaj_org_article_c64901ae7eca4c998ed00de51843f0a0
PMC8406294
mBio01415-21
34425707
10_1128_mBio_01415_21
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP21wm0125008
– fundername: The Atlantic Philanthropies Director Gift Fund
– fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  grantid: 16H06429
– fundername: MEXT | Japan Science and Technology Agency (JST)
  grantid: JPMJMS2025
– fundername: MEXT | Japan Science and Technology Agency (JST)
  grantid: JPMJMS2025
  funderid: https://doi.org/10.13039/501100002241
– fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP21wm0125008; PJ21wm0225003; PJ21fk0108104; PJ20fk0108509; PJ20fk0108251
  funderid: https://doi.org/10.13039/100009619
– fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  grantid: 16H06429; 16H06431; 16K21723
  funderid: https://doi.org/10.13039/501100001700
– fundername: ;
– fundername: ;
  grantid: JPMJMS2025
– fundername: ;
  grantid: 16H06429; 16H06431; 16K21723
– fundername: ;
  grantid: JP21wm0125008; PJ21wm0225003; PJ21fk0108104; PJ20fk0108509; PJ20fk0108251
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
-
0R
ADACO
BXI
HZ
7X8
5PM
ID FETCH-LOGICAL-a532t-4883a27934b99d04d595b22f22049a6911c38361cffc76c87dacc7390f2756c73
IEDL.DBID M48
ISSN 2150-7511
IngestDate Wed Aug 27 01:29:15 EDT 2025
Thu Aug 21 13:55:45 EDT 2025
Fri Jul 11 01:56:04 EDT 2025
Tue Dec 28 13:57:59 EST 2021
Wed Feb 19 02:27:19 EST 2025
Thu Apr 24 23:12:19 EDT 2025
Tue Jul 01 01:52:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords neutralizing antibodies
SARS-CoV-2
attenuation
furin cleavage site
spike
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a532t-4883a27934b99d04d595b22f22049a6911c38361cffc76c87dacc7390f2756c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1607-2175
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.01415-21
PMID 34425707
PQID 2564134485
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_c64901ae7eca4c998ed00de51843f0a0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8406294
proquest_miscellaneous_2564134485
asm2_journals_10_1128_mBio_01415_21
pubmed_primary_34425707
crossref_citationtrail_10_1128_mBio_01415_21
crossref_primary_10_1128_mBio_01415_21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-31
PublicationDateYYYYMMDD 2021-08-31
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
Gubernatorova, EO, Gorshkova, EA, Polinova, AI, Drutskaya, MS (B1) 2020; 53
Pizzorno, A, Padey, B, Julien, T, Trouillet-Assant, S, Traversier, A, Errazuriz-Cerda, E, Fouret, J, Dubois, J, Gaymard, A, Lescure, F-X, Dulière, V, Brun, P, Constant, S, Poissy, J, Lina, B, Yazdanpanah, Y, Terrier, O, Rosa-Calatrava, M (B30) 2020; 1
Sia, SF, Yan, L-M, Chin, AWH, Fung, K, Choy, K-T, Wong, AYL, Kaewpreedee, P, Perera, RAPM, Poon, LLM, Nicholls, JM, Peiris, M, Yen, H-L (B7) 2020; 583
Johnson, BA, Xie, X, Bailey, AL, Kalveram, B, Lokugamage, KG, Muruato, A, Zou, J, Zhang, X, Juelich, T, Smith, JK, Zhang, L, Bopp, N, Schindewolf, C, Vu, M, Vanderheiden, A, Winkler, ES, Swetnam, D, Plante, JA, Aguilar, P, Plante, KS, Popov, V, Lee, B, Weaver, SC, Suthar, MS, Routh, AL, Ren, P, Ku, Z, An, Z, Debbink, K, Diamond, MS, Shi, P-Y, Freiberg, AN, Menachery, VD (B13) 2021; 591
Hajj Hussein, I, Chams, N, Chams, S, El Sayegh, S, Badran, R, Raad, M, Gerges-Geagea, A, Leone, A, Jurjus, A (B42) 2015; 3
Chan, JF-W, Zhang, AJ, Yuan, S, Poon, VK-M, Chan, CC-S, Lee, AC-Y, Chan, W-M, Fan, Z, Tsoi, H-W, Wen, L, Liang, R, Cao, J, Chen, Y, Tang, K, Luo, C, Cai, J-P, Kok, K-H, Chu, H, Chan, K-H, Sridhar, S, Chen, Z, Chen, H, To, KK-W, Yuen, K-Y (B8) 2020; 71
Muus, C, Luecken, MD, Eraslan, G, Sikkema, L, Waghray, A, Heimberg, G, Kobayashi, Y, Vaishnav, ED, Subramanian, A, Smillie, C, Jagadeesh, KA, Duong, ET, Fiskin, E, Triglia, ET, Ansari, M, Cai, P, Lin, B, Buchanan, J, Chen, S, Shu, J, Haber, AL, Chung, H, Montoro, DT, Adams, T, Aliee, H, Allon, SJ, Andrusivova, Z, Angelidis, I, Ashenberg, O, Bassler, K, Bécavin, C, Benhar, I, Bergenstråhle, J, Bergenstråhle, L, Bolt, L, Braun, E, Bui, LT, Callori, S, Chaffin, M, Chichelnitskiy, E, Chiou, J, Conlon, TM, Cuoco, MS, Cuomo, ASE, Deprez, M, Duclos, G, Fine, D, Fischer, DS, Ghazanfar, S, Gillich, A (B37) 2021; 27
Shirato, K, Nao, N, Katano, H, Takayama, I, Saito, S, Kato, F, Katoh, H, Sakata, M, Nakatsu, Y, Mori, Y, Kageyama, T, Matsuyama, S, Takeda, M (B45) 2020; 73
Liu, Z, Zheng, H, Lin, H, Li, M, Yuan, R, Peng, J, Xiong, Q, Sun, J, Li, B, Wu, J, Yi, L, Peng, X, Zhang, H, Zhang, W, Hulswit, RJG, Loman, N, Rambaut, A, Ke, C, Bowden, TA, Pybus, OG, Lu, J (B24) 2020; 94
Klimstra, WB, Tilston-Lunel, NL, Nambulli, S, Boslett, J, McMillen, CM, Gilliland, T, Dunn, MD, Sun, C, Wheeler, SE, Wells, A, Hartman, AL, McElroy, AK, Reed, DS, Rennick, LJ, Duprex, WP (B23) 2020; 101
Supasa, P, Zhou, D, Dejnirattisai, W, Liu, C, Mentzer, AJ, Ginn, HM, Zhao, Y, Duyvesteyn, HME, Nutalai, R, Tuekprakhon, A, Wang, B, Paesen, GC, Slon-Campos, J, López-Camacho, C, Hallis, B, Coombes, N, Bewley, KR, Charlton, S, Walter, TS, Barnes, E, Dunachie, SJ, Skelly, D, Lumley, SF, Baker, N, Shaik, I, Humphries, HE, Godwin, K, Gent, N, Sienkiewicz, A, Dold, C, Levin, R, Dong, T, Pollard, AJ, Knight, JC, Klenerman, P, Crook, D, Lambe, T, Clutterbuck, E, Bibi, S, Flaxman, A, Bittaye, M, Belij-Rammerstorfer, S, Gilbert, S, Hall, DR, Williams, MA, Paterson, NG, James, W, Carroll, MW, Fry, EE, Mongkolsapaya, J (B35) 2021; 184
Rosenke, K, Meade-White, K, Letko, M, Clancy, C, Hansen, F, Liu, Y, Okumura, A, Tang-Huau, T-L, Li, R, Saturday, G, Feldmann, F, Scott, D, Wang, Z, Munster, V, Jarvis, MA, Feldmann, H (B9) 2020; 9
Hoffmann, M, Arora, P, Groß, R, Seidel, A, Hörnich, BF, Hahn, AS, Krüger, N, Graichen, L, Hofmann-Winkler, H, Kempf, A, Winkler, MS, Schulz, S, Jäck, H-M, Jahrsdörfer, B, Schrezenmeier, H, Müller, M, Kleger, A, Münch, J, Pöhlmann, S (B36) 2021; 184
Zivcec, M, Safronetz, D, Haddock, E, Feldmann, H, Ebihara, H (B47) 2011; 368
Chen, RE, Zhang, X, Case, JB, Winkler, ES, Liu, Y, VanBlargan, LA, Liu, J, Errico, JM, Xie, X, Suryadevara, N, Gilchuk, P, Zost, SJ, Tahan, S, Droit, L, Turner, JS, Kim, W, Schmitz, AJ, Thapa, M, Wang, D, Boon, ACM, Presti, RM, O’Halloran, JA, Kim, AHJ, Deepak, P, Pinto, D, Fremont, DH, Crowe, JE, Corti, D, Virgin, HW, Ellebedy, AH, Shi, P-Y, Diamond, MS (B32) 2021; 27
Lau, S-Y, Wang, P, Mok, BW-Y, Zhang, AJ, Chu, H, Lee, AC-Y, Deng, S, Chen, P, Chan, K-H, Song, W, Chen, Z, To, KK-W, Chan, JF-W, Yuen, K-Y, Chen, H (B20) 2020; 9
Abdool Karim, SS, de Oliveira, T (B5) 2021; 384
Zhu, Y, Feng, F, Hu, G, Wang, Y, Yu, Y, Zhu, Y, Xu, W, Cai, X, Sun, Z, Han, W, Ye, R, Qu, D, Ding, Q, Huang, X, Chen, H, Xu, W, Xie, Y, Cai, Q, Yuan, Z, Zhang, R (B26) 2021; 12
Merad, M, Martin, JC (B28) 2020; 20
Schuler, BA, Habermann, AC, Plosa, EJ, Taylor, CJ, Jetter, C, Negretti, NM, Kapp, ME, Benjamin, JT, Gulleman, P, Nichols, DS, Braunstein, LZ, Hackett, A, Koval, M, Guttentag, SH, Blackwell, TS, Webber, SA, Banovich, NE, Kropski, JA, Sucre, JM (B38) 2021; 131
Overbergh, L, Kyama, CM, Valckx, D, Debrock, S, Mwenda, JM, Mathieu, C, D’Hooghe, T (B46) 2005; 31
Pohl, MO, Busnadiego, I, Kufner, V, Glas, I, Karakus, U, Schmutz, S, Zaheri, M, Abela, I, Trkola, A, Huber, M, Stertz, S, Hale, BG (B25) 2021; 19
Lee, AC-Y, Zhang, AJ, Chan, JF-W, Li, C, Fan, Z, Liu, F, Chen, Y, Liang, R, Sridhar, S, Cai, J-P, Poon, VK-M, Chan, CC-S, To, KK-W, Yuan, S, Zhou, J, Chu, H, Yuen, K-Y (B29) 2020; 1
Li, F, Han, M, Dai, P, Xu, W, He, J, Tao, X, Wu, Y, Tong, X, Xia, X, Guo, W, Zhou, Y, Li, Y, Zhu, Y, Zhang, X, Liu, Z, Aji, R, Cai, X, Li, Y, Qu, D, Chen, Y, Jiang, S, Wang, Q, Ji, H, Xie, Y, Sun, Y, Lu, L, Gao, D (B39) 2021; 12
Peacock, TP, Goldhill, DH, Zhou, J, Baillon, L, Frise, R, Swann, OC, Kugathasan, R, Penn, R, Brown, JC, Sanchez-David, RY, Braga, L, Williamson, MK, Hassard, JA, Staller, E, Hanley, B, Osborn, M, Giacca, M, Davidson, AD, Matthews, DA, Barclay, WS (B19) 2021; 6
Li, Q, Nie, J, Wu, J, Zhang, L, Ding, R, Wang, H, Zhang, Y, Li, T, Liu, S, Zhang, M, Zhao, C, Liu, H, Nie, L, Qin, H, Wang, M, Lu, Q, Li, X, Liu, J, Liang, H, Shi, Y, Shen, Y, Xie, L, Zhang, L, Qu, X, Xu, W, Huang, W, Wang, Y (B34) 2021; 184
Pandamooz, S, Jurek, B, Meinung, CP, Baharvand, Z, Shahem-Abadi, AS, Haerteis, S (B15) 2021; 62
Sasaki, M, Uemura, K, Sato, A, Toba, S, Sanaki, T, Maenaka, K, Hall, WW, Orba, Y, Sawa, H (B18) 2021; 17
Fahlberg, MD, Blair, RV, Doyle-Meyers, LA, Midkiff, CC, Zenere, G, Russell-Lodrigue, KE, Monjure, CJ, Haupt, EH, Penney, TP, Lehmicke, G, Threeton, BM, Golden, N, Datta, PK, Roy, CJ, Bohm, RP, Maness, NJ, Fischer, T, Rappaport, J, Vaccari, M (B6) 2020; 11
Davidson, AD, Williamson, MK, Lewis, S, Shoemark, D, Carroll, MW, Heesom, KJ, Zambon, M, Ellis, J, Lewis, PA, Hiscox, JA, Matthews, DA (B21) 2020; 12
Lee, C-Y, Lowen, AC (B14) 2021; 48
Garcia-Beltran, WF, Lam, EC, St Denis, K, Nitido, AD, Garcia, ZH, Hauser, BM, Feldman, J, Pavlovic, MN, Gregory, DJ, Poznansky, MC, Sigal, A, Schmidt, AG, Iafrate, AJ, Naranbhai, V, Balazs, AB (B33) 2021; 184
Zhou, D, Chan, JF-W, Zhou, B, Zhou, R, Li, S, Shan, S, Liu, L, Zhang, AJ, Chen, SJ, Chan, CC-S, Xu, H, Poon, VK-M, Yuan, S, Li, C, Chik, KK-H, Chan, CC-Y, Cao, J, Chan, C-Y, Kwan, K-Y, Du, Z, Lau, TT-K, Zhang, Q, Zhou, J, To, KK-W, Zhang, L, Ho, DD, Yuen, K-Y, Chen, Z (B43) 2021; 29
Wong, YC, Lau, SY, Wang To, KK, Mok, BWY, Li, X, Wang, P, Deng, S, Woo, KF, Du, Z, Li, C, Zhou, J, Chan, JFW, Yuen, KY, Chen, H, Chen, Z (B44) 2021; 73
Huang, Y, Yang, C, Xu, XF, Xu, W, Liu, SW (B16) 2020; 41
Plante, JA, Liu, Y, Liu, J, Xia, H, Johnson, BA, Lokugamage, KG, Zhang, X, Muruato, AE, Zou, J, Fontes-Garfias, CR, Mirchandani, D, Scharton, D, Bilello, JP, Ku, Z, An, Z, Kalveram, B, Freiberg, AN, Menachery, VD, Xie, X, Plante, KS, Weaver, SC, Shi, P-Y (B3) 2021; 592
Winstone, H, Lista, MJ, Reid, AC, Bouton, C, Pickering, S, Galao, RP, Kerridge, C, Doores, KJ, Swanson, CM, Neil, SJD (B40) 2021; 95
Kellam, P, Barclay, W (B31) 2020; 101
Hassan, AO, Case, JB, Winkler, ES, Thackray, LB, Kafai, NM, Bailey, AL, McCune, BT, Fox, JM, Chen, RE, Alsoussi, WB, Turner, JS, Schmitz, AJ, Lei, T, Shrihari, S, Keeler, SP, Fremont, DH, Greco, S, McCray, PB, Perlman, S, Holtzman, MJ, Ellebedy, AH, Diamond, MS (B12) 2020; 182
Mykytyn, AZ, Breugem, TI, Riesebosch, S, Schipper, D, van den Doel, PB, Rottier, RJ, Lamers, MM, Haagmans, BL (B41) 2021; 10
Hoffmann, M, Kleine-Weber, H, Pöhlmann, S (B17) 2020; 78
Ogando, NS, Dalebout, TJ, Zevenhoven-Dobbe, JC, Limpens, RWAL, van der Meer, Y, Caly, L, Druce, J, de Vries, JJC, Kikkert, M, Bárcena, M, Sidorov, I, Snijder, EJ (B22) 2020; 101
Fajgenbaum, DC, June, CH (B2) 2020; 383
Imai, M, Iwatsuki-Horimoto, K, Hatta, M, Loeber, S, Halfmann, PJ, Nakajima, N, Watanabe, T, Ujie, M, Takahashi, K, Ito, M, Yamada, S, Fan, S, Chiba, S, Kuroda, M, Guan, L, Takada, K, Armbrust, T, Balogh, A, Furusawa, Y, Okuda, M, Ueki, H, Yasuhara, A, Sakai-Tagawa, Y, Lopes, TJS, Kiso, M, Yamayoshi, S, Kinoshita, N, Ohmagari, N, Hattori, S-I, Takeda, M, Mitsuya, H, Krammer, F, Suzuki, T, Kawaoka, Y (B10) 2020; 117
Tay, MZ, Poh, CM, Rénia, L, MacAry, PA, Ng, LFP (B27) 2020; 20
Hou, YJ, Chiba, S, Halfmann, P, Ehre, C, Kuroda, M, Dinnon, KH, Leist, SR, Schäfer, A, Nakajima, N, Takahashi, K, Lee, RE, Mascenik, TM, Graham, R, Edwards, CE, Tse, LV, Okuda, K, Markmann, AJ, Bartelt, L, de Silva, A, Margolis, DM, Boucher, RC, Randell, SH, Suzuki, T, Gralinski, LE, Kawaoka, Y, Baric, RS (B4) 2020; 370
Jiang, R-D, Liu, M-Q, Chen, Y, Shan, C, Zhou, Y-W, Shen, X-R, Li, Q, Zhang, L, Zhu, Y, Si, H-R, Wang, Q, Min, J, Wang, X, Zhang, W, Li, B, Zhang, H-J, Baric, RS, Zhou, P, Yang, X-L, Shi, Z-L (B11) 2020; 182
References_xml – ident: e_1_3_2_46_2
  doi: 10.7883/yoken.JJID.2020.061
– ident: e_1_3_2_38_2
  doi: 10.1038/s41591-020-01227-z
– ident: e_1_3_2_13_2
  doi: 10.1016/j.cell.2020.06.011
– ident: e_1_3_2_21_2
  doi: 10.1080/22221751.2020.1756700
– ident: e_1_3_2_47_2
  doi: 10.1016/j.cyto.2005.07.002
– ident: e_1_3_2_18_2
  doi: 10.1016/j.molcel.2020.04.022
– ident: e_1_3_2_36_2
  doi: 10.1016/j.cell.2021.02.033
– ident: e_1_3_2_43_2
  doi: 10.3389/fpubh.2015.00269
– ident: e_1_3_2_45_2
  doi: 10.1093/cid/ciaa953
– ident: e_1_3_2_10_2
  doi: 10.1080/22221751.2020.1858177
– ident: e_1_3_2_2_2
  doi: 10.1016/j.cytogfr.2020.05.009
– ident: e_1_3_2_16_2
  doi: 10.1146/annurev-pharmtox-121120-012309
– ident: e_1_3_2_9_2
  doi: 10.1093/cid/ciaa325
– ident: e_1_3_2_14_2
  doi: 10.1038/s41586-021-03237-4
– ident: e_1_3_2_25_2
  doi: 10.1128/JVI.00790-20
– ident: e_1_3_2_24_2
  doi: 10.1099/jgv.0.001481
– ident: e_1_3_2_15_2
  doi: 10.1016/j.coviro.2021.03.009
– ident: e_1_3_2_29_2
  doi: 10.1038/s41577-020-0331-4
– ident: e_1_3_2_32_2
  doi: 10.1099/jgv.0.001439
– ident: e_1_3_2_35_2
  doi: 10.1016/j.cell.2021.02.042
– ident: e_1_3_2_23_2
  doi: 10.1099/jgv.0.001453
– ident: e_1_3_2_39_2
  doi: 10.1172/JCI140766
– ident: e_1_3_2_28_2
  doi: 10.1038/s41577-020-0311-8
– ident: e_1_3_2_26_2
  doi: 10.1371/journal.pbio.3001006
– ident: e_1_3_2_37_2
  doi: 10.1016/j.cell.2021.03.036
– ident: e_1_3_2_8_2
  doi: 10.1038/s41586-020-2342-5
– ident: e_1_3_2_40_2
  doi: 10.1038/s41467-021-21171-x
– ident: e_1_3_2_48_2
  doi: 10.1016/j.jim.2011.02.004
– ident: e_1_3_2_34_2
  doi: 10.1016/j.cell.2021.03.013
– ident: e_1_3_2_3_2
  doi: 10.1056/NEJMra2026131
– ident: e_1_3_2_17_2
  doi: 10.1038/s41401-020-0485-4
– ident: e_1_3_2_7_2
  doi: 10.1038/s41467-020-19967-4
– ident: e_1_3_2_20_2
  doi: 10.1038/s41564-021-00908-w
– ident: e_1_3_2_41_2
  doi: 10.1128/JVI.02422-20
– ident: e_1_3_2_4_2
  doi: 10.1038/s41586-020-2895-3
– ident: e_1_3_2_31_2
  doi: 10.1016/j.xcrm.2020.100059
– ident: e_1_3_2_11_2
  doi: 10.1073/pnas.2009799117
– ident: e_1_3_2_44_2
  doi: 10.1016/j.chom.2021.02.019
– ident: e_1_3_2_27_2
  doi: 10.1038/s41467-021-21213-4
– ident: e_1_3_2_33_2
  doi: 10.1038/s41591-021-01294-w
– ident: e_1_3_2_22_2
  doi: 10.1186/s13073-020-00763-0
– ident: e_1_3_2_5_2
  doi: 10.1126/science.abe8499
– ident: e_1_3_2_12_2
  doi: 10.1016/j.cell.2020.05.027
– ident: e_1_3_2_42_2
  doi: 10.7554/eLife.64508
– ident: e_1_3_2_19_2
  doi: 10.1371/journal.ppat.1009233
– ident: e_1_3_2_30_2
  doi: 10.1016/j.xcrm.2020.100121
– ident: e_1_3_2_6_2
  doi: 10.1056/NEJMc2100362
– volume: 583
  start-page: 834
  year: 2020
  end-page: 838
  ident: B7
  article-title: Pathogenesis and transmission of SARS-CoV-2 in golden hamsters
  publication-title: Nature
  doi: 10.1038/s41586-020-2342-5
– volume: 73
  start-page: e437
  year: 2021
  end-page: e444
  ident: B44
  article-title: Natural transmission of bat-like severe acute respiratory syndrome coronavirus 2 without proline-arginine-arginine-alanine variants in COVID-19 patients
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa953
– volume: 53
  start-page: 13
  year: 2020
  end-page: 24
  ident: B1
  article-title: IL-6: relevance for immunopathology of SARS-CoV-2
  publication-title: Cytokine Growth Factor Rev
  doi: 10.1016/j.cytogfr.2020.05.009
– volume: 591
  start-page: 293
  year: 2021
  end-page: 299
  ident: B13
  article-title: Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis
  publication-title: Nature
  doi: 10.1038/s41586-021-03237-4
– volume: 184
  start-page: 2362
  year: 2021
  end-page: 2371.e9
  ident: B34
  article-title: SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.042
– volume: 10
  year: 2021
  ident: B41
  article-title: SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site
  publication-title: Elife
  doi: 10.7554/eLife.64508
– volume: 384
  start-page: 1866
  year: 2021
  end-page: 1868
  ident: B5
  article-title: New SARS-CoV-2 variants: clinical, public health, and vaccine implications
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2100362
– volume: 31
  start-page: 454
  year: 2005
  end-page: 458
  ident: B46
  article-title: Validation of real-time RT-PCR assays for mRNA quantification in baboons
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2005.07.002
– volume: 29
  start-page: 551
  year: 2021
  end-page: 563.e5
  ident: B43
  article-title: Robust SARS-CoV-2 infection in nasal turbinates after treatment with systemic neutralizing antibodies
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.02.019
– volume: 370
  start-page: 1464
  year: 2020
  end-page: 1468
  ident: B4
  article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo
  publication-title: Science
  doi: 10.1126/science.abe8499
– volume: 182
  start-page: 50
  year: 2020
  end-page: 58.e8
  ident: B11
  article-title: Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.027
– volume: 383
  start-page: 2255
  year: 2020
  end-page: 2273
  ident: B2
  article-title: Cytokine storm
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra2026131
– volume: 62
  year: 2021
  ident: B15
  article-title: Experimental models of SARS-CoV-2 infection: possible platforms to study COVID-19 pathogenesis and potential treatments
  publication-title: Annu Rev Pharmacol Toxicol
  doi: 10.1146/annurev-pharmtox-121120-012309
– volume: 6
  start-page: 899
  year: 2021
  end-page: 909
  ident: B19
  article-title: The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-021-00908-w
– volume: 19
  year: 2021
  ident: B25
  article-title: SARS-CoV-2 variants reveal features critical for replication in primary human cells
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.3001006
– volume: 182
  start-page: 744
  year: 2020
  end-page: 753.e4
  ident: B12
  article-title: A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.011
– volume: 117
  start-page: 16587
  year: 2020
  end-page: 16595
  ident: B10
  article-title: Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2009799117
– volume: 368
  start-page: 24
  year: 2011
  end-page: 35
  ident: B47
  article-title: Validation of assays to monitor immune responses in the Syrian golden hamster (Mesocricetus auratus)
  publication-title: J Immunol Methods
  doi: 10.1016/j.jim.2011.02.004
– volume: 101
  start-page: 791
  year: 2020
  end-page: 797
  ident: B31
  article-title: The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection
  publication-title: J Gen Virol
  doi: 10.1099/jgv.0.001439
– volume: 184
  start-page: 2201
  year: 2021
  end-page: 2211.e7
  ident: B35
  article-title: Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.033
– volume: 27
  start-page: 546
  year: 2021
  end-page: 559
  ident: B37
  article-title: Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics
  publication-title: Nat Med
  doi: 10.1038/s41591-020-01227-z
– volume: 27
  start-page: 717
  year: 2021
  end-page: 726
  ident: B32
  article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01294-w
– volume: 71
  start-page: 2428
  year: 2020
  end-page: 2446
  ident: B8
  article-title: Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa325
– volume: 17
  year: 2021
  ident: B18
  article-title: SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1009233
– volume: 20
  start-page: 363
  year: 2020
  end-page: 374
  ident: B27
  article-title: The trinity of COVID-19: immunity, inflammation and intervention
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-020-0311-8
– volume: 9
  start-page: 2673
  year: 2020
  end-page: 2684
  ident: B9
  article-title: Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection
  publication-title: Emerg Microbes Infect
  doi: 10.1080/22221751.2020.1858177
– volume: 592
  start-page: 116
  year: 2021
  end-page: 121
  ident: B3
  article-title: Spike mutation D614G alters SARS-CoV-2 fitness
  publication-title: Nature
  doi: 10.1038/s41586-020-2895-3
– volume: 101
  start-page: 925
  year: 2020
  end-page: 940
  ident: B22
  article-title: SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology
  publication-title: J Gen Virol
  doi: 10.1099/jgv.0.001453
– volume: 1
  start-page: 100121
  year: 2020
  ident: B29
  article-title: Oral SARS-CoV-2 inoculation establishes subclinical respiratory infection with virus shedding in golden Syrian hamsters
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2020.100121
– volume: 184
  start-page: 2523
  year: 2021
  ident: B33
  article-title: Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.013
– volume: 48
  start-page: 73
  year: 2021
  end-page: 81
  ident: B14
  article-title: Animal models for SARS-CoV-2
  publication-title: Curr Opin Virol
  doi: 10.1016/j.coviro.2021.03.009
– volume: 12
  start-page: 961
  year: 2021
  ident: B26
  article-title: A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21213-4
– volume: 20
  start-page: 355
  year: 2020
  end-page: 362
  ident: B28
  article-title: Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-020-0331-4
– volume: 73
  start-page: 304
  year: 2020
  end-page: 307
  ident: B45
  article-title: Development of genetic diagnostic methods for detection for novel coronavirus 2019(nCoV-2019) in Japan
  publication-title: Jpn J Infect Dis
  doi: 10.7883/yoken.JJID.2020.061
– volume: 78
  start-page: 779
  year: 2020
  end-page: 784.e5
  ident: B17
  article-title: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2020.04.022
– volume: 41
  start-page: 1141
  year: 2020
  end-page: 1149
  ident: B16
  article-title: Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/s41401-020-0485-4
– volume: 101
  start-page: 1156
  year: 2020
  end-page: 1169
  ident: B23
  article-title: SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients
  publication-title: J Gen Virol
  doi: 10.1099/jgv.0.001481
– volume: 94
  year: 2020
  ident: B24
  article-title: Identification of common deletions in the spike protein of severe acute respiratory syndrome coronavirus 2
  publication-title: J Virol
  doi: 10.1128/JVI.00790-20
– volume: 1
  start-page: 100059
  year: 2020
  ident: B30
  article-title: Characterization and treatment of SARS-CoV-2 in nasal and bronchial human airway epithelia
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2020.100059
– volume: 12
  start-page: 68
  year: 2020
  ident: B21
  article-title: Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein
  publication-title: Genome Med
  doi: 10.1186/s13073-020-00763-0
– volume: 95
  year: 2021
  ident: B40
  article-title: The polybasic cleavage site in SARS-CoV-2 spike modulates viral sensitivity to type I interferon and IFITM2
  publication-title: J Virol
  doi: 10.1128/JVI.02422-20
– volume: 11
  start-page: 6078
  year: 2020
  ident: B6
  article-title: Cellular events of acute, resolving or progressive COVID-19 in SARS-CoV-2 infected non-human primates
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19967-4
– volume: 184
  start-page: 2384
  year: 2021
  end-page: 2393.e12
  ident: B36
  article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.036
– volume: 131
  year: 2021
  ident: B38
  article-title: Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 in lung epithelium
  publication-title: J Clin Invest
  doi: 10.1172/JCI140766
– volume: 12
  start-page: 866
  year: 2021
  ident: B39
  article-title: Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21171-x
– volume: 9
  start-page: 837
  year: 2020
  end-page: 842
  ident: B20
  article-title: Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction
  publication-title: Emerg Microbes Infect
  doi: 10.1080/22221751.2020.1756700
– volume: 3
  start-page: 269
  year: 2015
  ident: B42
  article-title: Vaccines through centuries: major cornerstones of global health
  publication-title: Front Public Health
  doi: 10.3389/fpubh.2015.00269
SSID ssj0000331830
Score 2.4449904
Snippet SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens...
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the...
ABSTRACT Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0141521
SubjectTerms Animals
Antibodies, Neutralizing - immunology
Antibodies, Viral - immunology
attenuation
Cell Line
Chlorocebus aethiops
COVID-19 - pathology
Cross Reactions - immunology
Furin - metabolism
furin cleavage site
Humans
Microbial Pathogenesis
neutralizing antibodies
Research Article
SARS-CoV-2
SARS-CoV-2 - genetics
SARS-CoV-2 - immunology
SARS-CoV-2 - pathogenicity
spike
Spike Glycoprotein, Coronavirus - genetics
Vaccines, Attenuated - immunology
Vero Cells
Virulence - genetics
SummonAdditionalLinks – databaseName: Open Access Journals from American Society for Microbiology
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9wwEBYhodCX0rvuhUpLn6rEOytZ9qN3SUhb0pa6G_ImZEkmC4m3xHYg_74j-aAbGuibkccHmhnNN9IchHwAwzNbyhkTQlrGLTiWVhlnaMwhKY2t-tick2_J8Yp_ORNnOwTGXJhhBpt93VyGg_xJsyE9uFysN_s-MlEwnzu-JyDjqIx7eb76_nXaWYnnXk7jsaDm7edw7cV3w5YdCuX6_4Uxb4dK_mV7jh6SBwNopHnP5Udkx9WPyb2-jeTNE3Jd5D8LttycMqALlFy0RlTTk64_Zae6pYjyaDE7KIAuL5y-xjWEFog16aFvj71uG5q3iJ07xJ2Wnq6vupCJRHVtaZ8R2NAffT0HXBvp55BS0t48Jaujw1_LYzb0U2BazKFlqKtzDaiQvMwyG3MrMlECVADoJugElz2D_moyM1VlZGJSabUxcp7Fla8Rj1fPyG69qd0LQlPrE2w5SI3wAN-m41JKbbiT0qAHYiPy3k-yGtmpgq8BqfKsUIEVCmYR-TTyQJmhJLnvjHFxF_nHifx3X4vjLsKFZ-hE5EtohwEUKDVopDIJRyyknXRGc4Nep7NxbJ3wDXCqWMcReTeKg0KV8-counabrlGIEtH0o18rIvK8F4_pUzjs-wLKiMgtwdn6l-079fo8lPVGVztBgX75X1P3itwHH10Tdrdfk932qnNvEB615dtBH_4AiJQKAQ
  priority: 102
  providerName: American Society for Microbiology
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBYjUNjLWLtf3rqisbGnaXEukmU_JqGlG3SMeS19E7Iks0DrjNou9L_fSXJCUlb2sjdjC1tId7rvs07fEfIBDC9sJSdMCGkZt-BYXhecYTCHrDK2jrk5Z9-y03P-9VJcbpX68jlhUR44DtzYZBxDlnbSGc0NkgNn09Q64euU1KkObB1j3haZCmvw1NtquhbVhHx8PV-uPvusRsG8LuhIt9ewE4uCZP_fcOb9dMmt-HPylDwZgCOdxQ7vk0euOSB7sZTk3TNyW85-lGyxumBA52i9GJGopmd93GmnuqOI9Gg5GZdAF1dO3-I6QkvEm_TYl8hedi2ddYife8Sell4sb_pwGonqxtJ4KrCl36OmA66P9Es4VtLdPSfnJ8c_F6dsqKnAtJhCx9BfpxrQKXlVFDblVhSiAqgBkCroDJc-g5w1m5i6NjIzubTaGDkt0trrxOPVCzJqVo17RWhu_SFbDlIjRMC36bSSUhvupDTIQmxC3vtBVoNTtCrwDciVnwoVpkLBJCGf1nOgzCBL7qtjXD3U_OOm-e-ox_FQw7mf0E0jL6MdbqBxqcG41L-MKyHv1uag0O38Xopu3KpvFSJFDP_IbUVCXkbz2HwKb_vagDIhcsdwdvqy-6RZ_grS3ki3Myj46__R-TfkMfgEnPAD_JCMupvevUUE1VVHwVn-AHGrFtg
  priority: 102
  providerName: Directory of Open Access Journals
Title SARS-CoV-2 Bearing a Mutation at the S1/S2 Cleavage Site Exhibits Attenuated Virulence and Confers Protective Immunity
URI https://www.ncbi.nlm.nih.gov/pubmed/34425707
https://journals.asm.org/doi/10.1128/mBio.01415-21
https://www.proquest.com/docview/2564134485
https://pubmed.ncbi.nlm.nih.gov/PMC8406294
https://doaj.org/article/c64901ae7eca4c998ed00de51843f0a0
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdQJ9BeEN8LH5URiCe8JY4TJw8IpdXGABUQoVPfIsd2oFKXQJNM9L_n7CSFTtsLL1GUOB_y3fl-Z_t-h9BLKlmscu6RIOCKMEU1iYqYEXDmNMylKrq9ObNP4emcfVgEi7-UQn0H1leGdqae1Hy9Ovz9a_MWDP5NlwATHZ1PltWh2bAYEJNSvgdOiZtiBrMe6dtB2TfK6w4sm5ef2ke3fGbU15SVHYn6nO74KUvnfxUGvbyV8h_fdHIH3e5BJU46LbiLbujyHrrZlZnc3EcXafI1JdPqjFA8Ac0Gb4UFnrXdKjwWDQYUiFPvKKV4utLiAsYYnAIWxcemfPayqXHSALZuAZcqfLZctzZTCYtS4S5jsMZfOr4HGDvxe5ty0mweoPnJ8bfpKenrLRAR-LQhYMu-oGCwLI9j5TIVxEFOaUEphBEihGFRQjwberIoJA9lxJWQkvuxWxgOeTh7iEZlVeoDhCNlEnAZ5QLgA7xNuDnnQjLNuYQIRTnohenkbJB3ZmMRGmVGKpmVSkY9B70eZJDJnrLcVM5YXdf81bb5z46r47qGEyPQbSNDsW0vVOvvWW-xmQwZYCWhuZaCSYhKtXJdpQNTIKdwheug54M6ZGCSZp1FlLpq6wxQJEADiHsDBz3q1GP7qUHLHMR3FGfnX3bvlMsflvYbQvGQxuzxfz_5BO1TsyPHzog_RaNm3epnAKmafIz2kmT--ePYTknA8d3CG1sD-gNZiyFU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgQviM-R8WXExxPZkqsTJw88pGVTS9eB6DrtzTi2Izp1KVqSof5D_J2ck7SiE5N42VvkWPnw3dm_s-_uR8hbUCzWKffdIODaZRqMG2Uxc3ExhzBVOmtic0ZHYX_CPp8Gpxvk9zIX5szy8s6KXVmc1-f41rDtRnTLRxjtnXen810bnRi44LfBlEOz-IWuWvFx8Anl-g7gYP-413dbNgFXBh0oXdTUjgRUR5bGsfaYDuIgBcgAECTLEI1eobcW-irLFA9VxLVUindiL7MV0vEKn3uLbNlzSnTytpJk8mW42s3xOtY2vGURz6vfifM9_hCsrX01RcC_cO3V8My_1ruD--ReC1Rp0mjWA7Jh8ofkdkNduXhELsfJt7Hbm5-4QLs4PLgCUklHVXOyT2VJEVnSsb83BtqbGXmJ8xYdI76l-5aSe1oWNCkRr1eIdTU9mV5UdfYTlbmmTRZiQb82NSRwPqaDOo2lXDwmkxsZ9SdkM5_n5imhkbZJvQy4REiCT5NeyrlUzHCu0OvRDnljB1m0RliI2r-BSFhRiFoUAnyHfFjKQKi2DLpl45hd1_39qvvPpv7HdR27VqCrTrZsd92AWizaWUCokCH-koYbJZlCT9doz9MmsKQ7mSc9h7xeqoNAM7dnNzI386oQiEwRbqAvHThku1GP1auw2XIRcofwNcVZ-5b1O_n0R11KHN37EGK2819D94rc6R-PDsXh4Gj4jNwFG91T764_J5vlRWVeIDwr05etbVDy_abN8Q8L0UaG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IK4jXI24PJEtcZ04eeAh7VatlI2J0mlvxrEdUWlLpyUZ6h_id3KcS0UnJvGyt8ixHOdc7O_Y5wLwjioW65T7bhBw7TJNjRtlMXNxM6dhqnTW-OYcHIb7M_b5JDjZgN9dLExLwWJbFmf1Rb7V7HOdtfUIo52zwXyxbb0TA5f6rTPlxCx_oalWfBrvIl_fUzra-z7cd9tqAq4M-rR0UVL7kqI4sjSOtcd0EAcppRmlCJJliEqv0FoLfZVliocq4loqxfuxl9kM6fiE496CzfpirAebSTL7Olmd5nh9qxtel8Tz6jxxvcf_oWt7X10i4F-49qp75l_73eg-3GuBKkkayXoAGyZ_CLeb0pXLR3A5Tb5N3eHi2KVkgOTBHZBIclA1N_tElgSRJZn6O1NKhqdGXuK6RaaIb8meLck9LwuSlIjXK8S6mhzPL6o6-onIXJMmCrEgR00OCVyPybgOYymXj2F2I1R_Ar18kZunQCJtg3oZ5RIhCY4mvZRzqZjhXKHVox14a4ksOhEStX1DI2FZIWpWCOo78LHjgVBtGnRbjeP0uu4fVt3Pm_wf13UcWIauOtm03XUDCrFoVwGhQob4SxpulGQKLV2jPU-bwBbdyTzpOfCmEweBam7vbmRuFlUhEJki3EBbOnBgqxGP1aew2dYi5A7wNcFZm8v6m3z-s04ljuZ9SGP27L9I9xruHO2OxJfx4eQ53KXWuac-XH8BvfKiMi8RnZXpq1Y1CPy4aW38A5hGRiI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+Bearing+a+Mutation+at+the+S1%2FS2+Cleavage+Site+Exhibits+Attenuated+Virulence+and+Confers+Protective+Immunity&rft.jtitle=mBio&rft.au=Sasaki%2C+Michihito&rft.au=Toba%2C+Shinsuke&rft.au=Itakura%2C+Yukari&rft.au=Chambaro%2C+Herman+M.&rft.date=2021-08-31&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=12&rft.issue=4&rft_id=info:doi/10.1128%2FmBio.01415-21&rft_id=info%3Apmid%2F34425707&rft.externalDocID=PMC8406294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon