SARS-CoV-2 Bearing a Mutation at the S1/S2 Cleavage Site Exhibits Attenuated Virulence and Confers Protective Immunity
SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike pr...
Saved in:
Published in | mBio Vol. 12; no. 4; p. e0141521 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
31.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism.
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens.
IMPORTANCE
SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection. |
---|---|
AbstractList | Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens.
SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection. SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. IMPORTANCE SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection. Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. ABSTRACT Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. IMPORTANCE SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection. Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. IMPORTANCE SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection.Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. IMPORTANCE SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection. Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. IMPORTANCE SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection. |
Author | Tabata, Koshiro Toba, Shinsuke Intaruck, Kittiya Chambaro, Herman M. Kishimoto, Mai Sanaki, Takao Sasaki, Michihito Itakura, Yukari Sato, Akihiko Orba, Yasuko Uemura, Kentaro Sawa, Hirofumi Hall, William W. |
Author_xml | – sequence: 1 givenname: Michihito orcidid: 0000-0003-1607-2175 surname: Sasaki fullname: Sasaki, Michihito organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan – sequence: 2 givenname: Shinsuke surname: Toba fullname: Toba, Shinsuke organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, Shionogi & Co., Ltd., Osaka, Japan – sequence: 3 givenname: Yukari surname: Itakura fullname: Itakura, Yukari organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan – sequence: 4 givenname: Herman M. surname: Chambaro fullname: Chambaro, Herman M. organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan – sequence: 5 givenname: Mai surname: Kishimoto fullname: Kishimoto, Mai organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan – sequence: 6 givenname: Koshiro surname: Tabata fullname: Tabata, Koshiro organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan – sequence: 7 givenname: Kittiya surname: Intaruck fullname: Intaruck, Kittiya organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan – sequence: 8 givenname: Kentaro surname: Uemura fullname: Uemura, Kentaro organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, Shionogi & Co., Ltd., Osaka, Japan, Laboratory of Biomolecular Science, Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan – sequence: 9 givenname: Takao surname: Sanaki fullname: Sanaki, Takao organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, Shionogi & Co., Ltd., Osaka, Japan – sequence: 10 givenname: Akihiko surname: Sato fullname: Sato, Akihiko organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, Shionogi & Co., Ltd., Osaka, Japan – sequence: 11 givenname: William W. surname: Hall fullname: Hall, William W. organization: International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, National Virus Reference Laboratory, School of Medicine, University College of Dublin, Ireland, Global Virus Network, Baltimore, Maryland, USA – sequence: 12 givenname: Yasuko surname: Orba fullname: Orba, Yasuko organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan – sequence: 13 givenname: Hirofumi surname: Sawa fullname: Sawa, Hirofumi organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan, Global Virus Network, Baltimore, Maryland, USA, One Health Research Center, Hokkaido University, Sapporo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34425707$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1v1DAQhiNUREvpkSvyESGl9WcSX5C2qwIrFYFY6NWadSa7XiV2sZ0V_fek3Ra1CHzx2H7n0cjPy-LAB49F8ZrRU8Z4czacu3BKmWSq5OxZccSZomWtGDt4VB8WJylt6bSEYI2gL4pDISVXNa2Pit1y9m1ZzsNVyck5QnR-TYB8HjNkFzyBTPIGyZKdLTmZ9wg7WE9Hl5Fc_Nq4lcuJzHJGP0LGlly5OPboLRLwLZkH32FM5GsMGW12OySLYRi9yzeviucd9AlP7vfj4seHi-_zT-Xll4-L-eyyBCV4LmXTCOC1FnKldUtlq7Racd5xTqWGSjNmRSMqZrvO1pVt6hasrYWmHa9VNVXHxWLPbQNszXV0A8QbE8CZu4sQ1wZidrZHYyupKQOs0YK0WjfYUtqiYo0UHQU6sd7vWdfjasDWos8R-ifQpy_ebcw67EwjacW1nABv7wEx_BwxZTO4ZLHvwWMYk-GqkmxS06gp-m4fhTRwsw1j9NM3GUbNrXdz693ceTecTeE3jwf7M9GD5Skg9gEbQ0oRO2PdXvA0p-v_iy3_6noA_zv_G-a6yQg |
CitedBy_id | crossref_primary_10_3390_v16020177 crossref_primary_10_1016_j_xinn_2022_100221 crossref_primary_10_3390_ijms23115966 crossref_primary_10_1093_gpbjnl_qzae041 crossref_primary_10_3389_fimmu_2023_1197588 crossref_primary_10_1007_s12033_025_01409_5 crossref_primary_10_1016_j_csbj_2023_03_010 crossref_primary_10_1128_spectrum_02692_24 crossref_primary_10_1093_infdis_jiac134 crossref_primary_10_1016_j_micres_2024_127659 crossref_primary_10_1016_j_bcp_2022_115377 crossref_primary_10_1016_j_ymthe_2023_05_004 crossref_primary_10_1038_s41467_022_34571_4 crossref_primary_10_3390_v14061308 crossref_primary_10_1126_scitranslmed_abq4064 crossref_primary_10_1038_s41392_022_01105_9 crossref_primary_10_3390_v14050991 crossref_primary_10_3390_v13112236 crossref_primary_10_3390_biomedinformatics4020084 crossref_primary_10_1016_j_biopha_2022_113124 crossref_primary_10_1093_ve_veac063 crossref_primary_10_1016_j_vaccine_2022_12_019 crossref_primary_10_1128_spectrum_01164_24 crossref_primary_10_3390_v14040783 crossref_primary_10_1016_j_virusres_2022_198857 crossref_primary_10_1371_journal_pone_0276115 crossref_primary_10_3389_fimmu_2022_872047 crossref_primary_10_1016_j_virs_2023_10_001 crossref_primary_10_3390_immuno4030015 crossref_primary_10_1620_tjem_2022_J049 crossref_primary_10_3390_ijms24054791 |
Cites_doi | 10.7883/yoken.JJID.2020.061 10.1038/s41591-020-01227-z 10.1016/j.cell.2020.06.011 10.1080/22221751.2020.1756700 10.1016/j.cyto.2005.07.002 10.1016/j.molcel.2020.04.022 10.1016/j.cell.2021.02.033 10.3389/fpubh.2015.00269 10.1093/cid/ciaa953 10.1080/22221751.2020.1858177 10.1016/j.cytogfr.2020.05.009 10.1146/annurev-pharmtox-121120-012309 10.1093/cid/ciaa325 10.1038/s41586-021-03237-4 10.1128/JVI.00790-20 10.1099/jgv.0.001481 10.1016/j.coviro.2021.03.009 10.1038/s41577-020-0331-4 10.1099/jgv.0.001439 10.1016/j.cell.2021.02.042 10.1099/jgv.0.001453 10.1172/JCI140766 10.1038/s41577-020-0311-8 10.1371/journal.pbio.3001006 10.1016/j.cell.2021.03.036 10.1038/s41586-020-2342-5 10.1038/s41467-021-21171-x 10.1016/j.jim.2011.02.004 10.1016/j.cell.2021.03.013 10.1056/NEJMra2026131 10.1038/s41401-020-0485-4 10.1038/s41467-020-19967-4 10.1038/s41564-021-00908-w 10.1128/JVI.02422-20 10.1038/s41586-020-2895-3 10.1016/j.xcrm.2020.100059 10.1073/pnas.2009799117 10.1016/j.chom.2021.02.019 10.1038/s41467-021-21213-4 10.1038/s41591-021-01294-w 10.1186/s13073-020-00763-0 10.1126/science.abe8499 10.1016/j.cell.2020.05.027 10.7554/eLife.64508 10.1371/journal.ppat.1009233 10.1016/j.xcrm.2020.100121 10.1056/NEJMc2100362 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Sasaki et al. Copyright © 2021 Sasaki et al. 2021 Sasaki et al. |
Copyright_xml | – notice: Copyright © 2021 Sasaki et al. – notice: Copyright © 2021 Sasaki et al. 2021 Sasaki et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mBio.01415-21 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Meng, Xiang-Jin Weger-Lucarelli, James |
Editor_xml | – sequence: 1 givenname: James surname: Weger-Lucarelli fullname: Weger-Lucarelli, James – sequence: 2 givenname: Xiang-Jin surname: Meng fullname: Meng, Xiang-Jin |
ExternalDocumentID | oai_doaj_org_article_c64901ae7eca4c998ed00de51843f0a0 PMC8406294 mBio01415-21 34425707 10_1128_mBio_01415_21 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP21wm0125008 – fundername: The Atlantic Philanthropies Director Gift Fund – fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT) grantid: 16H06429 – fundername: MEXT | Japan Science and Technology Agency (JST) grantid: JPMJMS2025 – fundername: MEXT | Japan Science and Technology Agency (JST) grantid: JPMJMS2025 funderid: https://doi.org/10.13039/501100002241 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP21wm0125008; PJ21wm0225003; PJ21fk0108104; PJ20fk0108509; PJ20fk0108251 funderid: https://doi.org/10.13039/100009619 – fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT) grantid: 16H06429; 16H06431; 16K21723 funderid: https://doi.org/10.13039/501100001700 – fundername: ; – fundername: ; grantid: JPMJMS2025 – fundername: ; grantid: 16H06429; 16H06431; 16K21723 – fundername: ; grantid: JP21wm0125008; PJ21wm0225003; PJ21fk0108104; PJ20fk0108509; PJ20fk0108251 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF - 0R ADACO BXI HZ 7X8 5PM |
ID | FETCH-LOGICAL-a532t-4883a27934b99d04d595b22f22049a6911c38361cffc76c87dacc7390f2756c73 |
IEDL.DBID | M48 |
ISSN | 2150-7511 |
IngestDate | Wed Aug 27 01:29:15 EDT 2025 Thu Aug 21 13:55:45 EDT 2025 Fri Jul 11 01:56:04 EDT 2025 Tue Dec 28 13:57:59 EST 2021 Wed Feb 19 02:27:19 EST 2025 Thu Apr 24 23:12:19 EDT 2025 Tue Jul 01 01:52:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | neutralizing antibodies SARS-CoV-2 attenuation furin cleavage site spike |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a532t-4883a27934b99d04d595b22f22049a6911c38361cffc76c87dacc7390f2756c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1607-2175 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.01415-21 |
PMID | 34425707 |
PQID | 2564134485 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c64901ae7eca4c998ed00de51843f0a0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8406294 proquest_miscellaneous_2564134485 asm2_journals_10_1128_mBio_01415_21 pubmed_primary_34425707 crossref_citationtrail_10_1128_mBio_01415_21 crossref_primary_10_1128_mBio_01415_21 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-31 |
PublicationDateYYYYMMDD | 2021-08-31 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2021 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 Gubernatorova, EO, Gorshkova, EA, Polinova, AI, Drutskaya, MS (B1) 2020; 53 Pizzorno, A, Padey, B, Julien, T, Trouillet-Assant, S, Traversier, A, Errazuriz-Cerda, E, Fouret, J, Dubois, J, Gaymard, A, Lescure, F-X, Dulière, V, Brun, P, Constant, S, Poissy, J, Lina, B, Yazdanpanah, Y, Terrier, O, Rosa-Calatrava, M (B30) 2020; 1 Sia, SF, Yan, L-M, Chin, AWH, Fung, K, Choy, K-T, Wong, AYL, Kaewpreedee, P, Perera, RAPM, Poon, LLM, Nicholls, JM, Peiris, M, Yen, H-L (B7) 2020; 583 Johnson, BA, Xie, X, Bailey, AL, Kalveram, B, Lokugamage, KG, Muruato, A, Zou, J, Zhang, X, Juelich, T, Smith, JK, Zhang, L, Bopp, N, Schindewolf, C, Vu, M, Vanderheiden, A, Winkler, ES, Swetnam, D, Plante, JA, Aguilar, P, Plante, KS, Popov, V, Lee, B, Weaver, SC, Suthar, MS, Routh, AL, Ren, P, Ku, Z, An, Z, Debbink, K, Diamond, MS, Shi, P-Y, Freiberg, AN, Menachery, VD (B13) 2021; 591 Hajj Hussein, I, Chams, N, Chams, S, El Sayegh, S, Badran, R, Raad, M, Gerges-Geagea, A, Leone, A, Jurjus, A (B42) 2015; 3 Chan, JF-W, Zhang, AJ, Yuan, S, Poon, VK-M, Chan, CC-S, Lee, AC-Y, Chan, W-M, Fan, Z, Tsoi, H-W, Wen, L, Liang, R, Cao, J, Chen, Y, Tang, K, Luo, C, Cai, J-P, Kok, K-H, Chu, H, Chan, K-H, Sridhar, S, Chen, Z, Chen, H, To, KK-W, Yuen, K-Y (B8) 2020; 71 Muus, C, Luecken, MD, Eraslan, G, Sikkema, L, Waghray, A, Heimberg, G, Kobayashi, Y, Vaishnav, ED, Subramanian, A, Smillie, C, Jagadeesh, KA, Duong, ET, Fiskin, E, Triglia, ET, Ansari, M, Cai, P, Lin, B, Buchanan, J, Chen, S, Shu, J, Haber, AL, Chung, H, Montoro, DT, Adams, T, Aliee, H, Allon, SJ, Andrusivova, Z, Angelidis, I, Ashenberg, O, Bassler, K, Bécavin, C, Benhar, I, Bergenstråhle, J, Bergenstråhle, L, Bolt, L, Braun, E, Bui, LT, Callori, S, Chaffin, M, Chichelnitskiy, E, Chiou, J, Conlon, TM, Cuoco, MS, Cuomo, ASE, Deprez, M, Duclos, G, Fine, D, Fischer, DS, Ghazanfar, S, Gillich, A (B37) 2021; 27 Shirato, K, Nao, N, Katano, H, Takayama, I, Saito, S, Kato, F, Katoh, H, Sakata, M, Nakatsu, Y, Mori, Y, Kageyama, T, Matsuyama, S, Takeda, M (B45) 2020; 73 Liu, Z, Zheng, H, Lin, H, Li, M, Yuan, R, Peng, J, Xiong, Q, Sun, J, Li, B, Wu, J, Yi, L, Peng, X, Zhang, H, Zhang, W, Hulswit, RJG, Loman, N, Rambaut, A, Ke, C, Bowden, TA, Pybus, OG, Lu, J (B24) 2020; 94 Klimstra, WB, Tilston-Lunel, NL, Nambulli, S, Boslett, J, McMillen, CM, Gilliland, T, Dunn, MD, Sun, C, Wheeler, SE, Wells, A, Hartman, AL, McElroy, AK, Reed, DS, Rennick, LJ, Duprex, WP (B23) 2020; 101 Supasa, P, Zhou, D, Dejnirattisai, W, Liu, C, Mentzer, AJ, Ginn, HM, Zhao, Y, Duyvesteyn, HME, Nutalai, R, Tuekprakhon, A, Wang, B, Paesen, GC, Slon-Campos, J, López-Camacho, C, Hallis, B, Coombes, N, Bewley, KR, Charlton, S, Walter, TS, Barnes, E, Dunachie, SJ, Skelly, D, Lumley, SF, Baker, N, Shaik, I, Humphries, HE, Godwin, K, Gent, N, Sienkiewicz, A, Dold, C, Levin, R, Dong, T, Pollard, AJ, Knight, JC, Klenerman, P, Crook, D, Lambe, T, Clutterbuck, E, Bibi, S, Flaxman, A, Bittaye, M, Belij-Rammerstorfer, S, Gilbert, S, Hall, DR, Williams, MA, Paterson, NG, James, W, Carroll, MW, Fry, EE, Mongkolsapaya, J (B35) 2021; 184 Rosenke, K, Meade-White, K, Letko, M, Clancy, C, Hansen, F, Liu, Y, Okumura, A, Tang-Huau, T-L, Li, R, Saturday, G, Feldmann, F, Scott, D, Wang, Z, Munster, V, Jarvis, MA, Feldmann, H (B9) 2020; 9 Hoffmann, M, Arora, P, Groß, R, Seidel, A, Hörnich, BF, Hahn, AS, Krüger, N, Graichen, L, Hofmann-Winkler, H, Kempf, A, Winkler, MS, Schulz, S, Jäck, H-M, Jahrsdörfer, B, Schrezenmeier, H, Müller, M, Kleger, A, Münch, J, Pöhlmann, S (B36) 2021; 184 Zivcec, M, Safronetz, D, Haddock, E, Feldmann, H, Ebihara, H (B47) 2011; 368 Chen, RE, Zhang, X, Case, JB, Winkler, ES, Liu, Y, VanBlargan, LA, Liu, J, Errico, JM, Xie, X, Suryadevara, N, Gilchuk, P, Zost, SJ, Tahan, S, Droit, L, Turner, JS, Kim, W, Schmitz, AJ, Thapa, M, Wang, D, Boon, ACM, Presti, RM, O’Halloran, JA, Kim, AHJ, Deepak, P, Pinto, D, Fremont, DH, Crowe, JE, Corti, D, Virgin, HW, Ellebedy, AH, Shi, P-Y, Diamond, MS (B32) 2021; 27 Lau, S-Y, Wang, P, Mok, BW-Y, Zhang, AJ, Chu, H, Lee, AC-Y, Deng, S, Chen, P, Chan, K-H, Song, W, Chen, Z, To, KK-W, Chan, JF-W, Yuen, K-Y, Chen, H (B20) 2020; 9 Abdool Karim, SS, de Oliveira, T (B5) 2021; 384 Zhu, Y, Feng, F, Hu, G, Wang, Y, Yu, Y, Zhu, Y, Xu, W, Cai, X, Sun, Z, Han, W, Ye, R, Qu, D, Ding, Q, Huang, X, Chen, H, Xu, W, Xie, Y, Cai, Q, Yuan, Z, Zhang, R (B26) 2021; 12 Merad, M, Martin, JC (B28) 2020; 20 Schuler, BA, Habermann, AC, Plosa, EJ, Taylor, CJ, Jetter, C, Negretti, NM, Kapp, ME, Benjamin, JT, Gulleman, P, Nichols, DS, Braunstein, LZ, Hackett, A, Koval, M, Guttentag, SH, Blackwell, TS, Webber, SA, Banovich, NE, Kropski, JA, Sucre, JM (B38) 2021; 131 Overbergh, L, Kyama, CM, Valckx, D, Debrock, S, Mwenda, JM, Mathieu, C, D’Hooghe, T (B46) 2005; 31 Pohl, MO, Busnadiego, I, Kufner, V, Glas, I, Karakus, U, Schmutz, S, Zaheri, M, Abela, I, Trkola, A, Huber, M, Stertz, S, Hale, BG (B25) 2021; 19 Lee, AC-Y, Zhang, AJ, Chan, JF-W, Li, C, Fan, Z, Liu, F, Chen, Y, Liang, R, Sridhar, S, Cai, J-P, Poon, VK-M, Chan, CC-S, To, KK-W, Yuan, S, Zhou, J, Chu, H, Yuen, K-Y (B29) 2020; 1 Li, F, Han, M, Dai, P, Xu, W, He, J, Tao, X, Wu, Y, Tong, X, Xia, X, Guo, W, Zhou, Y, Li, Y, Zhu, Y, Zhang, X, Liu, Z, Aji, R, Cai, X, Li, Y, Qu, D, Chen, Y, Jiang, S, Wang, Q, Ji, H, Xie, Y, Sun, Y, Lu, L, Gao, D (B39) 2021; 12 Peacock, TP, Goldhill, DH, Zhou, J, Baillon, L, Frise, R, Swann, OC, Kugathasan, R, Penn, R, Brown, JC, Sanchez-David, RY, Braga, L, Williamson, MK, Hassard, JA, Staller, E, Hanley, B, Osborn, M, Giacca, M, Davidson, AD, Matthews, DA, Barclay, WS (B19) 2021; 6 Li, Q, Nie, J, Wu, J, Zhang, L, Ding, R, Wang, H, Zhang, Y, Li, T, Liu, S, Zhang, M, Zhao, C, Liu, H, Nie, L, Qin, H, Wang, M, Lu, Q, Li, X, Liu, J, Liang, H, Shi, Y, Shen, Y, Xie, L, Zhang, L, Qu, X, Xu, W, Huang, W, Wang, Y (B34) 2021; 184 Pandamooz, S, Jurek, B, Meinung, CP, Baharvand, Z, Shahem-Abadi, AS, Haerteis, S (B15) 2021; 62 Sasaki, M, Uemura, K, Sato, A, Toba, S, Sanaki, T, Maenaka, K, Hall, WW, Orba, Y, Sawa, H (B18) 2021; 17 Fahlberg, MD, Blair, RV, Doyle-Meyers, LA, Midkiff, CC, Zenere, G, Russell-Lodrigue, KE, Monjure, CJ, Haupt, EH, Penney, TP, Lehmicke, G, Threeton, BM, Golden, N, Datta, PK, Roy, CJ, Bohm, RP, Maness, NJ, Fischer, T, Rappaport, J, Vaccari, M (B6) 2020; 11 Davidson, AD, Williamson, MK, Lewis, S, Shoemark, D, Carroll, MW, Heesom, KJ, Zambon, M, Ellis, J, Lewis, PA, Hiscox, JA, Matthews, DA (B21) 2020; 12 Lee, C-Y, Lowen, AC (B14) 2021; 48 Garcia-Beltran, WF, Lam, EC, St Denis, K, Nitido, AD, Garcia, ZH, Hauser, BM, Feldman, J, Pavlovic, MN, Gregory, DJ, Poznansky, MC, Sigal, A, Schmidt, AG, Iafrate, AJ, Naranbhai, V, Balazs, AB (B33) 2021; 184 Zhou, D, Chan, JF-W, Zhou, B, Zhou, R, Li, S, Shan, S, Liu, L, Zhang, AJ, Chen, SJ, Chan, CC-S, Xu, H, Poon, VK-M, Yuan, S, Li, C, Chik, KK-H, Chan, CC-Y, Cao, J, Chan, C-Y, Kwan, K-Y, Du, Z, Lau, TT-K, Zhang, Q, Zhou, J, To, KK-W, Zhang, L, Ho, DD, Yuen, K-Y, Chen, Z (B43) 2021; 29 Wong, YC, Lau, SY, Wang To, KK, Mok, BWY, Li, X, Wang, P, Deng, S, Woo, KF, Du, Z, Li, C, Zhou, J, Chan, JFW, Yuen, KY, Chen, H, Chen, Z (B44) 2021; 73 Huang, Y, Yang, C, Xu, XF, Xu, W, Liu, SW (B16) 2020; 41 Plante, JA, Liu, Y, Liu, J, Xia, H, Johnson, BA, Lokugamage, KG, Zhang, X, Muruato, AE, Zou, J, Fontes-Garfias, CR, Mirchandani, D, Scharton, D, Bilello, JP, Ku, Z, An, Z, Kalveram, B, Freiberg, AN, Menachery, VD, Xie, X, Plante, KS, Weaver, SC, Shi, P-Y (B3) 2021; 592 Winstone, H, Lista, MJ, Reid, AC, Bouton, C, Pickering, S, Galao, RP, Kerridge, C, Doores, KJ, Swanson, CM, Neil, SJD (B40) 2021; 95 Kellam, P, Barclay, W (B31) 2020; 101 Hassan, AO, Case, JB, Winkler, ES, Thackray, LB, Kafai, NM, Bailey, AL, McCune, BT, Fox, JM, Chen, RE, Alsoussi, WB, Turner, JS, Schmitz, AJ, Lei, T, Shrihari, S, Keeler, SP, Fremont, DH, Greco, S, McCray, PB, Perlman, S, Holtzman, MJ, Ellebedy, AH, Diamond, MS (B12) 2020; 182 Mykytyn, AZ, Breugem, TI, Riesebosch, S, Schipper, D, van den Doel, PB, Rottier, RJ, Lamers, MM, Haagmans, BL (B41) 2021; 10 Hoffmann, M, Kleine-Weber, H, Pöhlmann, S (B17) 2020; 78 Ogando, NS, Dalebout, TJ, Zevenhoven-Dobbe, JC, Limpens, RWAL, van der Meer, Y, Caly, L, Druce, J, de Vries, JJC, Kikkert, M, Bárcena, M, Sidorov, I, Snijder, EJ (B22) 2020; 101 Fajgenbaum, DC, June, CH (B2) 2020; 383 Imai, M, Iwatsuki-Horimoto, K, Hatta, M, Loeber, S, Halfmann, PJ, Nakajima, N, Watanabe, T, Ujie, M, Takahashi, K, Ito, M, Yamada, S, Fan, S, Chiba, S, Kuroda, M, Guan, L, Takada, K, Armbrust, T, Balogh, A, Furusawa, Y, Okuda, M, Ueki, H, Yasuhara, A, Sakai-Tagawa, Y, Lopes, TJS, Kiso, M, Yamayoshi, S, Kinoshita, N, Ohmagari, N, Hattori, S-I, Takeda, M, Mitsuya, H, Krammer, F, Suzuki, T, Kawaoka, Y (B10) 2020; 117 Tay, MZ, Poh, CM, Rénia, L, MacAry, PA, Ng, LFP (B27) 2020; 20 Hou, YJ, Chiba, S, Halfmann, P, Ehre, C, Kuroda, M, Dinnon, KH, Leist, SR, Schäfer, A, Nakajima, N, Takahashi, K, Lee, RE, Mascenik, TM, Graham, R, Edwards, CE, Tse, LV, Okuda, K, Markmann, AJ, Bartelt, L, de Silva, A, Margolis, DM, Boucher, RC, Randell, SH, Suzuki, T, Gralinski, LE, Kawaoka, Y, Baric, RS (B4) 2020; 370 Jiang, R-D, Liu, M-Q, Chen, Y, Shan, C, Zhou, Y-W, Shen, X-R, Li, Q, Zhang, L, Zhu, Y, Si, H-R, Wang, Q, Min, J, Wang, X, Zhang, W, Li, B, Zhang, H-J, Baric, RS, Zhou, P, Yang, X-L, Shi, Z-L (B11) 2020; 182 |
References_xml | – ident: e_1_3_2_46_2 doi: 10.7883/yoken.JJID.2020.061 – ident: e_1_3_2_38_2 doi: 10.1038/s41591-020-01227-z – ident: e_1_3_2_13_2 doi: 10.1016/j.cell.2020.06.011 – ident: e_1_3_2_21_2 doi: 10.1080/22221751.2020.1756700 – ident: e_1_3_2_47_2 doi: 10.1016/j.cyto.2005.07.002 – ident: e_1_3_2_18_2 doi: 10.1016/j.molcel.2020.04.022 – ident: e_1_3_2_36_2 doi: 10.1016/j.cell.2021.02.033 – ident: e_1_3_2_43_2 doi: 10.3389/fpubh.2015.00269 – ident: e_1_3_2_45_2 doi: 10.1093/cid/ciaa953 – ident: e_1_3_2_10_2 doi: 10.1080/22221751.2020.1858177 – ident: e_1_3_2_2_2 doi: 10.1016/j.cytogfr.2020.05.009 – ident: e_1_3_2_16_2 doi: 10.1146/annurev-pharmtox-121120-012309 – ident: e_1_3_2_9_2 doi: 10.1093/cid/ciaa325 – ident: e_1_3_2_14_2 doi: 10.1038/s41586-021-03237-4 – ident: e_1_3_2_25_2 doi: 10.1128/JVI.00790-20 – ident: e_1_3_2_24_2 doi: 10.1099/jgv.0.001481 – ident: e_1_3_2_15_2 doi: 10.1016/j.coviro.2021.03.009 – ident: e_1_3_2_29_2 doi: 10.1038/s41577-020-0331-4 – ident: e_1_3_2_32_2 doi: 10.1099/jgv.0.001439 – ident: e_1_3_2_35_2 doi: 10.1016/j.cell.2021.02.042 – ident: e_1_3_2_23_2 doi: 10.1099/jgv.0.001453 – ident: e_1_3_2_39_2 doi: 10.1172/JCI140766 – ident: e_1_3_2_28_2 doi: 10.1038/s41577-020-0311-8 – ident: e_1_3_2_26_2 doi: 10.1371/journal.pbio.3001006 – ident: e_1_3_2_37_2 doi: 10.1016/j.cell.2021.03.036 – ident: e_1_3_2_8_2 doi: 10.1038/s41586-020-2342-5 – ident: e_1_3_2_40_2 doi: 10.1038/s41467-021-21171-x – ident: e_1_3_2_48_2 doi: 10.1016/j.jim.2011.02.004 – ident: e_1_3_2_34_2 doi: 10.1016/j.cell.2021.03.013 – ident: e_1_3_2_3_2 doi: 10.1056/NEJMra2026131 – ident: e_1_3_2_17_2 doi: 10.1038/s41401-020-0485-4 – ident: e_1_3_2_7_2 doi: 10.1038/s41467-020-19967-4 – ident: e_1_3_2_20_2 doi: 10.1038/s41564-021-00908-w – ident: e_1_3_2_41_2 doi: 10.1128/JVI.02422-20 – ident: e_1_3_2_4_2 doi: 10.1038/s41586-020-2895-3 – ident: e_1_3_2_31_2 doi: 10.1016/j.xcrm.2020.100059 – ident: e_1_3_2_11_2 doi: 10.1073/pnas.2009799117 – ident: e_1_3_2_44_2 doi: 10.1016/j.chom.2021.02.019 – ident: e_1_3_2_27_2 doi: 10.1038/s41467-021-21213-4 – ident: e_1_3_2_33_2 doi: 10.1038/s41591-021-01294-w – ident: e_1_3_2_22_2 doi: 10.1186/s13073-020-00763-0 – ident: e_1_3_2_5_2 doi: 10.1126/science.abe8499 – ident: e_1_3_2_12_2 doi: 10.1016/j.cell.2020.05.027 – ident: e_1_3_2_42_2 doi: 10.7554/eLife.64508 – ident: e_1_3_2_19_2 doi: 10.1371/journal.ppat.1009233 – ident: e_1_3_2_30_2 doi: 10.1016/j.xcrm.2020.100121 – ident: e_1_3_2_6_2 doi: 10.1056/NEJMc2100362 – volume: 583 start-page: 834 year: 2020 end-page: 838 ident: B7 article-title: Pathogenesis and transmission of SARS-CoV-2 in golden hamsters publication-title: Nature doi: 10.1038/s41586-020-2342-5 – volume: 73 start-page: e437 year: 2021 end-page: e444 ident: B44 article-title: Natural transmission of bat-like severe acute respiratory syndrome coronavirus 2 without proline-arginine-arginine-alanine variants in COVID-19 patients publication-title: Clin Infect Dis doi: 10.1093/cid/ciaa953 – volume: 53 start-page: 13 year: 2020 end-page: 24 ident: B1 article-title: IL-6: relevance for immunopathology of SARS-CoV-2 publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2020.05.009 – volume: 591 start-page: 293 year: 2021 end-page: 299 ident: B13 article-title: Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis publication-title: Nature doi: 10.1038/s41586-021-03237-4 – volume: 184 start-page: 2362 year: 2021 end-page: 2371.e9 ident: B34 article-title: SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape publication-title: Cell doi: 10.1016/j.cell.2021.02.042 – volume: 10 year: 2021 ident: B41 article-title: SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site publication-title: Elife doi: 10.7554/eLife.64508 – volume: 384 start-page: 1866 year: 2021 end-page: 1868 ident: B5 article-title: New SARS-CoV-2 variants: clinical, public health, and vaccine implications publication-title: N Engl J Med doi: 10.1056/NEJMc2100362 – volume: 31 start-page: 454 year: 2005 end-page: 458 ident: B46 article-title: Validation of real-time RT-PCR assays for mRNA quantification in baboons publication-title: Cytokine doi: 10.1016/j.cyto.2005.07.002 – volume: 29 start-page: 551 year: 2021 end-page: 563.e5 ident: B43 article-title: Robust SARS-CoV-2 infection in nasal turbinates after treatment with systemic neutralizing antibodies publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.02.019 – volume: 370 start-page: 1464 year: 2020 end-page: 1468 ident: B4 article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo publication-title: Science doi: 10.1126/science.abe8499 – volume: 182 start-page: 50 year: 2020 end-page: 58.e8 ident: B11 article-title: Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2 publication-title: Cell doi: 10.1016/j.cell.2020.05.027 – volume: 383 start-page: 2255 year: 2020 end-page: 2273 ident: B2 article-title: Cytokine storm publication-title: N Engl J Med doi: 10.1056/NEJMra2026131 – volume: 62 year: 2021 ident: B15 article-title: Experimental models of SARS-CoV-2 infection: possible platforms to study COVID-19 pathogenesis and potential treatments publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev-pharmtox-121120-012309 – volume: 6 start-page: 899 year: 2021 end-page: 909 ident: B19 article-title: The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets publication-title: Nat Microbiol doi: 10.1038/s41564-021-00908-w – volume: 19 year: 2021 ident: B25 article-title: SARS-CoV-2 variants reveal features critical for replication in primary human cells publication-title: PLoS Biol doi: 10.1371/journal.pbio.3001006 – volume: 182 start-page: 744 year: 2020 end-page: 753.e4 ident: B12 article-title: A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies publication-title: Cell doi: 10.1016/j.cell.2020.06.011 – volume: 117 start-page: 16587 year: 2020 end-page: 16595 ident: B10 article-title: Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2009799117 – volume: 368 start-page: 24 year: 2011 end-page: 35 ident: B47 article-title: Validation of assays to monitor immune responses in the Syrian golden hamster (Mesocricetus auratus) publication-title: J Immunol Methods doi: 10.1016/j.jim.2011.02.004 – volume: 101 start-page: 791 year: 2020 end-page: 797 ident: B31 article-title: The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection publication-title: J Gen Virol doi: 10.1099/jgv.0.001439 – volume: 184 start-page: 2201 year: 2021 end-page: 2211.e7 ident: B35 article-title: Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera publication-title: Cell doi: 10.1016/j.cell.2021.02.033 – volume: 27 start-page: 546 year: 2021 end-page: 559 ident: B37 article-title: Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics publication-title: Nat Med doi: 10.1038/s41591-020-01227-z – volume: 27 start-page: 717 year: 2021 end-page: 726 ident: B32 article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies publication-title: Nat Med doi: 10.1038/s41591-021-01294-w – volume: 71 start-page: 2428 year: 2020 end-page: 2446 ident: B8 article-title: Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility publication-title: Clin Infect Dis doi: 10.1093/cid/ciaa325 – volume: 17 year: 2021 ident: B18 article-title: SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1009233 – volume: 20 start-page: 363 year: 2020 end-page: 374 ident: B27 article-title: The trinity of COVID-19: immunity, inflammation and intervention publication-title: Nat Rev Immunol doi: 10.1038/s41577-020-0311-8 – volume: 9 start-page: 2673 year: 2020 end-page: 2684 ident: B9 article-title: Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection publication-title: Emerg Microbes Infect doi: 10.1080/22221751.2020.1858177 – volume: 592 start-page: 116 year: 2021 end-page: 121 ident: B3 article-title: Spike mutation D614G alters SARS-CoV-2 fitness publication-title: Nature doi: 10.1038/s41586-020-2895-3 – volume: 101 start-page: 925 year: 2020 end-page: 940 ident: B22 article-title: SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology publication-title: J Gen Virol doi: 10.1099/jgv.0.001453 – volume: 1 start-page: 100121 year: 2020 ident: B29 article-title: Oral SARS-CoV-2 inoculation establishes subclinical respiratory infection with virus shedding in golden Syrian hamsters publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2020.100121 – volume: 184 start-page: 2523 year: 2021 ident: B33 article-title: Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity publication-title: Cell doi: 10.1016/j.cell.2021.03.013 – volume: 48 start-page: 73 year: 2021 end-page: 81 ident: B14 article-title: Animal models for SARS-CoV-2 publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2021.03.009 – volume: 12 start-page: 961 year: 2021 ident: B26 article-title: A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry publication-title: Nat Commun doi: 10.1038/s41467-021-21213-4 – volume: 20 start-page: 355 year: 2020 end-page: 362 ident: B28 article-title: Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages publication-title: Nat Rev Immunol doi: 10.1038/s41577-020-0331-4 – volume: 73 start-page: 304 year: 2020 end-page: 307 ident: B45 article-title: Development of genetic diagnostic methods for detection for novel coronavirus 2019(nCoV-2019) in Japan publication-title: Jpn J Infect Dis doi: 10.7883/yoken.JJID.2020.061 – volume: 78 start-page: 779 year: 2020 end-page: 784.e5 ident: B17 article-title: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells publication-title: Mol Cell doi: 10.1016/j.molcel.2020.04.022 – volume: 41 start-page: 1141 year: 2020 end-page: 1149 ident: B16 article-title: Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19 publication-title: Acta Pharmacol Sin doi: 10.1038/s41401-020-0485-4 – volume: 101 start-page: 1156 year: 2020 end-page: 1169 ident: B23 article-title: SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients publication-title: J Gen Virol doi: 10.1099/jgv.0.001481 – volume: 94 year: 2020 ident: B24 article-title: Identification of common deletions in the spike protein of severe acute respiratory syndrome coronavirus 2 publication-title: J Virol doi: 10.1128/JVI.00790-20 – volume: 1 start-page: 100059 year: 2020 ident: B30 article-title: Characterization and treatment of SARS-CoV-2 in nasal and bronchial human airway epithelia publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2020.100059 – volume: 12 start-page: 68 year: 2020 ident: B21 article-title: Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein publication-title: Genome Med doi: 10.1186/s13073-020-00763-0 – volume: 95 year: 2021 ident: B40 article-title: The polybasic cleavage site in SARS-CoV-2 spike modulates viral sensitivity to type I interferon and IFITM2 publication-title: J Virol doi: 10.1128/JVI.02422-20 – volume: 11 start-page: 6078 year: 2020 ident: B6 article-title: Cellular events of acute, resolving or progressive COVID-19 in SARS-CoV-2 infected non-human primates publication-title: Nat Commun doi: 10.1038/s41467-020-19967-4 – volume: 184 start-page: 2384 year: 2021 end-page: 2393.e12 ident: B36 article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies publication-title: Cell doi: 10.1016/j.cell.2021.03.036 – volume: 131 year: 2021 ident: B38 article-title: Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 in lung epithelium publication-title: J Clin Invest doi: 10.1172/JCI140766 – volume: 12 start-page: 866 year: 2021 ident: B39 article-title: Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide publication-title: Nat Commun doi: 10.1038/s41467-021-21171-x – volume: 9 start-page: 837 year: 2020 end-page: 842 ident: B20 article-title: Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction publication-title: Emerg Microbes Infect doi: 10.1080/22221751.2020.1756700 – volume: 3 start-page: 269 year: 2015 ident: B42 article-title: Vaccines through centuries: major cornerstones of global health publication-title: Front Public Health doi: 10.3389/fpubh.2015.00269 |
SSID | ssj0000331830 |
Score | 2.4449904 |
Snippet | SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens... Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the... ABSTRACT Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0141521 |
SubjectTerms | Animals Antibodies, Neutralizing - immunology Antibodies, Viral - immunology attenuation Cell Line Chlorocebus aethiops COVID-19 - pathology Cross Reactions - immunology Furin - metabolism furin cleavage site Humans Microbial Pathogenesis neutralizing antibodies Research Article SARS-CoV-2 SARS-CoV-2 - genetics SARS-CoV-2 - immunology SARS-CoV-2 - pathogenicity spike Spike Glycoprotein, Coronavirus - genetics Vaccines, Attenuated - immunology Vero Cells Virulence - genetics |
SummonAdditionalLinks | – databaseName: Open Access Journals from American Society for Microbiology dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9wwEBYhodCX0rvuhUpLn6rEOytZ9qN3SUhb0pa6G_ImZEkmC4m3xHYg_74j-aAbGuibkccHmhnNN9IchHwAwzNbyhkTQlrGLTiWVhlnaMwhKY2t-tick2_J8Yp_ORNnOwTGXJhhBpt93VyGg_xJsyE9uFysN_s-MlEwnzu-JyDjqIx7eb76_nXaWYnnXk7jsaDm7edw7cV3w5YdCuX6_4Uxb4dK_mV7jh6SBwNopHnP5Udkx9WPyb2-jeTNE3Jd5D8LttycMqALlFy0RlTTk64_Zae6pYjyaDE7KIAuL5y-xjWEFog16aFvj71uG5q3iJ07xJ2Wnq6vupCJRHVtaZ8R2NAffT0HXBvp55BS0t48Jaujw1_LYzb0U2BazKFlqKtzDaiQvMwyG3MrMlECVADoJugElz2D_moyM1VlZGJSabUxcp7Fla8Rj1fPyG69qd0LQlPrE2w5SI3wAN-m41JKbbiT0qAHYiPy3k-yGtmpgq8BqfKsUIEVCmYR-TTyQJmhJLnvjHFxF_nHifx3X4vjLsKFZ-hE5EtohwEUKDVopDIJRyyknXRGc4Nep7NxbJ3wDXCqWMcReTeKg0KV8-counabrlGIEtH0o18rIvK8F4_pUzjs-wLKiMgtwdn6l-079fo8lPVGVztBgX75X1P3itwHH10Tdrdfk932qnNvEB615dtBH_4AiJQKAQ priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBYjUNjLWLtf3rqisbGnaXEukmU_JqGlG3SMeS19E7Iks0DrjNou9L_fSXJCUlb2sjdjC1tId7rvs07fEfIBDC9sJSdMCGkZt-BYXhecYTCHrDK2jrk5Z9-y03P-9VJcbpX68jlhUR44DtzYZBxDlnbSGc0NkgNn09Q64euU1KkObB1j3haZCmvw1NtquhbVhHx8PV-uPvusRsG8LuhIt9ewE4uCZP_fcOb9dMmt-HPylDwZgCOdxQ7vk0euOSB7sZTk3TNyW85-lGyxumBA52i9GJGopmd93GmnuqOI9Gg5GZdAF1dO3-I6QkvEm_TYl8hedi2ddYife8Sell4sb_pwGonqxtJ4KrCl36OmA66P9Es4VtLdPSfnJ8c_F6dsqKnAtJhCx9BfpxrQKXlVFDblVhSiAqgBkCroDJc-g5w1m5i6NjIzubTaGDkt0trrxOPVCzJqVo17RWhu_SFbDlIjRMC36bSSUhvupDTIQmxC3vtBVoNTtCrwDciVnwoVpkLBJCGf1nOgzCBL7qtjXD3U_OOm-e-ox_FQw7mf0E0jL6MdbqBxqcG41L-MKyHv1uag0O38Xopu3KpvFSJFDP_IbUVCXkbz2HwKb_vagDIhcsdwdvqy-6RZ_grS3ki3Myj46__R-TfkMfgEnPAD_JCMupvevUUE1VVHwVn-AHGrFtg priority: 102 providerName: Directory of Open Access Journals |
Title | SARS-CoV-2 Bearing a Mutation at the S1/S2 Cleavage Site Exhibits Attenuated Virulence and Confers Protective Immunity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34425707 https://journals.asm.org/doi/10.1128/mBio.01415-21 https://www.proquest.com/docview/2564134485 https://pubmed.ncbi.nlm.nih.gov/PMC8406294 https://doaj.org/article/c64901ae7eca4c998ed00de51843f0a0 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdQJ9BeEN8LH5URiCe8JY4TJw8IpdXGABUQoVPfIsd2oFKXQJNM9L_n7CSFTtsLL1GUOB_y3fl-Z_t-h9BLKlmscu6RIOCKMEU1iYqYEXDmNMylKrq9ObNP4emcfVgEi7-UQn0H1leGdqae1Hy9Ovz9a_MWDP5NlwATHZ1PltWh2bAYEJNSvgdOiZtiBrMe6dtB2TfK6w4sm5ef2ke3fGbU15SVHYn6nO74KUvnfxUGvbyV8h_fdHIH3e5BJU46LbiLbujyHrrZlZnc3EcXafI1JdPqjFA8Ac0Gb4UFnrXdKjwWDQYUiFPvKKV4utLiAsYYnAIWxcemfPayqXHSALZuAZcqfLZctzZTCYtS4S5jsMZfOr4HGDvxe5ty0mweoPnJ8bfpKenrLRAR-LQhYMu-oGCwLI9j5TIVxEFOaUEphBEihGFRQjwberIoJA9lxJWQkvuxWxgOeTh7iEZlVeoDhCNlEnAZ5QLgA7xNuDnnQjLNuYQIRTnohenkbJB3ZmMRGmVGKpmVSkY9B70eZJDJnrLcVM5YXdf81bb5z46r47qGEyPQbSNDsW0vVOvvWW-xmQwZYCWhuZaCSYhKtXJdpQNTIKdwheug54M6ZGCSZp1FlLpq6wxQJEADiHsDBz3q1GP7qUHLHMR3FGfnX3bvlMsflvYbQvGQxuzxfz_5BO1TsyPHzog_RaNm3epnAKmafIz2kmT--ePYTknA8d3CG1sD-gNZiyFU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgQviM-R8WXExxPZkqsTJw88pGVTS9eB6DrtzTi2Izp1KVqSof5D_J2ck7SiE5N42VvkWPnw3dm_s-_uR8hbUCzWKffdIODaZRqMG2Uxc3ExhzBVOmtic0ZHYX_CPp8Gpxvk9zIX5szy8s6KXVmc1-f41rDtRnTLRxjtnXen810bnRi44LfBlEOz-IWuWvFx8Anl-g7gYP-413dbNgFXBh0oXdTUjgRUR5bGsfaYDuIgBcgAECTLEI1eobcW-irLFA9VxLVUindiL7MV0vEKn3uLbNlzSnTytpJk8mW42s3xOtY2vGURz6vfifM9_hCsrX01RcC_cO3V8My_1ruD--ReC1Rp0mjWA7Jh8ofkdkNduXhELsfJt7Hbm5-4QLs4PLgCUklHVXOyT2VJEVnSsb83BtqbGXmJ8xYdI76l-5aSe1oWNCkRr1eIdTU9mV5UdfYTlbmmTRZiQb82NSRwPqaDOo2lXDwmkxsZ9SdkM5_n5imhkbZJvQy4REiCT5NeyrlUzHCu0OvRDnljB1m0RliI2r-BSFhRiFoUAnyHfFjKQKi2DLpl45hd1_39qvvPpv7HdR27VqCrTrZsd92AWizaWUCokCH-koYbJZlCT9doz9MmsKQ7mSc9h7xeqoNAM7dnNzI386oQiEwRbqAvHThku1GP1auw2XIRcofwNcVZ-5b1O_n0R11KHN37EGK2819D94rc6R-PDsXh4Gj4jNwFG91T764_J5vlRWVeIDwr05etbVDy_abN8Q8L0UaG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IK4jXI24PJEtcZ04eeAh7VatlI2J0mlvxrEdUWlLpyUZ6h_id3KcS0UnJvGyt8ixHOdc7O_Y5wLwjioW65T7bhBw7TJNjRtlMXNxM6dhqnTW-OYcHIb7M_b5JDjZgN9dLExLwWJbFmf1Rb7V7HOdtfUIo52zwXyxbb0TA5f6rTPlxCx_oalWfBrvIl_fUzra-z7cd9tqAq4M-rR0UVL7kqI4sjSOtcd0EAcppRmlCJJliEqv0FoLfZVliocq4loqxfuxl9kM6fiE496CzfpirAebSTL7Olmd5nh9qxtel8Tz6jxxvcf_oWt7X10i4F-49qp75l_73eg-3GuBKkkayXoAGyZ_CLeb0pXLR3A5Tb5N3eHi2KVkgOTBHZBIclA1N_tElgSRJZn6O1NKhqdGXuK6RaaIb8meLck9LwuSlIjXK8S6mhzPL6o6-onIXJMmCrEgR00OCVyPybgOYymXj2F2I1R_Ar18kZunQCJtg3oZ5RIhCY4mvZRzqZjhXKHVox14a4ksOhEStX1DI2FZIWpWCOo78LHjgVBtGnRbjeP0uu4fVt3Pm_wf13UcWIauOtm03XUDCrFoVwGhQob4SxpulGQKLV2jPU-bwBbdyTzpOfCmEweBam7vbmRuFlUhEJki3EBbOnBgqxGP1aew2dYi5A7wNcFZm8v6m3z-s04ljuZ9SGP27L9I9xruHO2OxJfx4eQ53KXWuac-XH8BvfKiMi8RnZXpq1Y1CPy4aW38A5hGRiI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+Bearing+a+Mutation+at+the+S1%2FS2+Cleavage+Site+Exhibits+Attenuated+Virulence+and+Confers+Protective+Immunity&rft.jtitle=mBio&rft.au=Sasaki%2C+Michihito&rft.au=Toba%2C+Shinsuke&rft.au=Itakura%2C+Yukari&rft.au=Chambaro%2C+Herman+M.&rft.date=2021-08-31&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=12&rft.issue=4&rft_id=info:doi/10.1128%2FmBio.01415-21&rft_id=info%3Apmid%2F34425707&rft.externalDocID=PMC8406294 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |